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Abstract We prove that if a metric measure space satisfies the volume doubling
condition and the Caffarelli–Kohn–Nirenberg inequality with the same exponent
n ≥ 3, then it has exactly the n-dimensional volume growth. As an application,
if an n-dimensional Finsler manifold of non-negative n-Ricci curvature satisfies the
Caffarelli–Kohn–Nirenberg inequality with the sharp constant, then its flag curvature
is identically zero. In the particular case of Berwald spaces, such a space is necessarily
isometric to a Minkowski space.

Mathematics Subject Classification (2000) 35R06 · 53C60 · 58J60

1 Introduction and statement of main results

Let a ∈ [0, 1) be a parameter, n ≥ 3 be an integer, and put p = 2n/(n − 2 + 2a). In
the theory of Sobolev inequalities, a central role is played by the famous Caffarelli–
Kohn–Nirenberg inequality (see [4]) which states that

⎛
⎝

∫

Rn

|u|p

|x |ap
dx

⎞
⎠

1
p

≤ Ka

⎛
⎝

∫

Rn

|Du|2 dx

⎞
⎠

1
2

for all u ∈ C∞
0 (R

n),
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712 A. Kristály, S. Ohta

where

Ka :=
(

1

(n − 2)(n − ap)

) 1
2
(
(2 − ap)�((2n − 2ap)/(2 − ap))

nωn�2((n − ap)/(2 − ap))

) 2−ap
2n−2ap

(1.1)

is the optimal constant (see Lieb [9]), ωn := πn/2/�(n/2 + 1) being the volume of
the unit ball in R

n . Moreover, a family of extremals is given by

uλ(x) =
(
λ+ |x |2−ap

) 2−n
2−ap

, λ > 0. (1.2)

The optimal constant and extremals for a = 0 have been established by Aubin [2] and
Talenti [17] in which case the above inequality reduces to the standard Sobolev inequal-
ity; see Chou and Chu [5] for the most general case. Furthermore, various versions
of the Caffarelli–Kohn–Nirenberg inequality have been treated also on Riemannian
manifolds and Orlicz–Sobolev spaces (see, e.g., do Carmo and Xia [6]).

The main objective of the present paper is to investigate the Caffarelli–Kohn–
Nirenberg inequality in the context of metric measure spaces. As applications, we
provide novel rigidity results for Finsler manifolds by means of the sharp Caffarelli–
Kohn–Nirenberg inequality.

In order to state the main result of the paper, we fix the numbers a, n and p as above.
Let (X, d) be a metric space andμ be a Borel measure on X such that 0 < μ(U ) < ∞
for any nonempty bounded open set U ⊂ X . For some element x0 ∈ X and constant
C > 0, we consider the Caffarelli–Kohn–Nirenberg inequality on (X, d, μ) of the
form

⎛
⎝

∫

X

|u(x)|p

d(x0, x)ap
dμ(x)

⎞
⎠

1
p

≤ C

⎛
⎝

∫

X

|Du|(x)2 dμ(x)

⎞
⎠

1
2

for all u ∈ Lip0(X). (CKN)x0
C

Hereafter, Lip0(X) is the space of Lipschitz functions with compact support on X ,
while

|Du|(x) := lim sup
y→x

|u(y)− u(x)|
d(x, y)

is the local Lipschitz constant of u at x ∈ X . The function x �−→ |Du|(x) is Borel mea-
surable for u ∈ Lip0(X). For instance, any bi-Lipschitz deformation of the Euclidean
space R

n satisfies (CKN)x0
C with some C ≥ Ka .

For some fixed elements C0 ≥ 1 and x0 ∈ X , we introduce the following hypotheses
on the behavior of μ:
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Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications 713

μ(B(x, R))

μ(B(x, r))
≤ C0

(
R

r

)n

for all x ∈ X and 0 < r < R; (VD)nC0

lim inf
r→0

μ(B(x0, r))

μE (Bn(r))
= 1. (AR)nx0

As usual, B(x, r) := {y ∈ X : d(x, y) < r}, Bn(r) := {x ∈ R
n : |x | < r}, and μE

is the n-dimensional Lebesgue measure.
The main result of the paper can be stated as follows.

Theorem 1.1 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), x0 ∈ X, C ≥ Ka, and
C0 ≥ 1. Assume that the Caffarelli–Kohn–Nirenberg inequality (CKN)x0

C holds on a
proper metric measure space (X, d, μ), and the hypotheses (VD)nC0

and (AR)nx0
are

verified. Then, for every x ∈ X and ρ > 0, we have

μ(B(x, ρ)) ≥ C−1
0 (C−1 Ka)

n
1−aμE (Bn(ρ)). (1.3)

In particular, (X, d, μ) has the n-dimensional volume growth

C−1
0 (C−1 Ka)

n
1−a ωnρ

n ≤ μ(B(x0, ρ)) ≤ C0ωnρ
n for all ρ > 0.

This theorem extends do Carmo and Xia’s result [6, Theorem 1.1] on Riemannian
manifolds of non-negative Ricci curvature in two respects. Theorem 1.1 is concerned
with general metric measure spaces, and assumes only the volume growth condition
(VD)nC0

instead of the curvature bound. Before discussing applications, let us give
several remarks on the hypotheses and the conclusions of the theorem.

Remark 1.2 (a) We remark that (CKN)x0
C ensures that (X, d) is unbounded (equiva-

lently, non-compact). Indeed, if (X, d) is bounded, then u + c with c → ∞ violates
the validity of (CKN)x0

C .
(b) If (X, d, μ) satisfies the volume doubling condition:

μ(B(x, 2r)) ≤ �μ(B(x, r)) for some � ≥ 1 and all x ∈ X, r > 0,

then we easily see that (VD)nC0
is satisfied (with, e.g., n ≥ log2� and C0 = �).

Thus (VD)nC0
can be interpreted as the volume doubling condition with the explicit

exponent n. One can also regard (VD)nC0
as a generalization of the Bishop–Gromov

volume growth estimate (of non-negative Ricci curvature).
(c) Note that, on the one hand, (VD)nC0

implies that the Hausdorff dimension
dimH X of (X, d) is at most n. On the other hand, since

lim sup
r→0

μ(B(x0, r))

μE (Bn(r))
≤ C0

by (VD)nC0
and (AR)nx0

, we have the Ahlfors n-regularity at x0 in the sense that

�−1rn ≤ μ(B(x0, r)) ≤ �rn for some � ≥ 1 and small r > 0, thus we have
dimH X = n. (See [7] for the importance of the volume doubling condition and
the Ahlfors regularity in analysis on metric measure spaces.) We also remark that

123



714 A. Kristály, S. Ohta

the constant 1 was chosen as the RHS of (AR)nx0
merely for simplicity. Since �x0 :=

lim infr→0 μ(B(x0, r))/rn is positive by (VD)nC0
, one can normalizeμ so as to satisfy

(AR)nx0
whenever �x0 is bounded.

(d) The volume growth estimate (1.3) shows that, for instance, the cylinder S
n−1×R

can not support (CKN)xC for any x and C .
(e) The use of the measure μE as a comparing one to μ in the hypotheses (VD)nC0

and (AR)nx0
comes from the fact that the number Ka is optimal and the functions

from (1.2) are minimizers in the Euclidean Caffarelli–Kohn–Nirenberg inequality.
Therefore, if a sharp Caffarelli–Kohn–Nirenberg inequality holds in a generic metric
measure space (X0, d0, μ0), knowing the optimal constant K0 > 0 and assuming that
the class of extremals is formally the same as (1.2) with d0(x0, x) instead of |x |, then
one can prove a similar statement to Theorem 1.1 by replacing μE and Ka with μ0
and K0, respectively.

We point out that, on (absolutely homogeneous for simplicity) Finsler manifolds
with non-negative n-Ricci curvature, (VD)nC0

holds with C0 = 1 (see Shen [14],
Ohta [10] and Theorem 3.3 below). In particular, from Theorem 1.1, important rigidity
results can be deduced in the context of Finsler manifolds when the sharp Caffarelli–
Kohn–Nirenberg inequality holds (for precise notions, see Sect. 3). We state two such
results.

Theorem 1.3 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), and (M, F) be a
complete n-dimensional Finsler manifold. Fix a positive smooth measure μ on M
and assume that the n-Ricci curvature Ricn of (M, F, μ) is non-negative, the sharp
Caffarelli–Kohn–Nirenberg inequality (CKN)x0

Ka
holds for some x0 ∈ M, and in addi-

tion limr→0 μ(B(x0, r))/(ωnrn) = 1. Then the flag curvature of (M, F) is identically
zero.

Theorem 1.4 Let a ∈ [0, 1), n ≥ 3, p = 2n/(n − 2 + 2a), and (M, F) be a com-
plete n-dimensional Berwald space with non-negative Ricci curvature. If for some
x0 ∈ M and the n-dimensional Hausdorff measure of (M, F) the sharp Caffarelli–
Kohn–Nirenberg inequality (CKN)x0

Ka
holds, then (M, F) is isometric to a Minkowski

space.

Remark 1.5 (a) By using anisotropic symmetrization arguments, we prove in Sect. 3
that the sharp Caffarelli–Kohn–Nirenberg inequality (CKN)x0

Ka
holds on every

Minkowski space (Rn, F) (Proposition 3.4). In this manner, Theorem 1.4 delimits
Minkowski spaces as the optimal geometric framework where (CKN)x0

Ka
holds within

the class of Berwald spaces with non-negative Ricci curvature.
(b) Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces.

Therefore Theorem 1.4 extends do Carmo and Xia’s result [6, Corollary 1.2] in the
Riemannian context. In fact, some constructions in the proof of Theorem 1.1 are
inspired from [6].

(c) The assumption n ≥ 3 in Theorem 1.4 is essential not only in the definition of
p = 2n/(n − 2 + 2a) but also for the structure of the Berwald space. Indeed, Szabó’s
rigidity result states that any Berwald surface is either a locally Minkowski space or
a Riemannian surface, see Szabó [16] and Bao et al. [3, Theorem 10.6.2].
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Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications 715

The paper is constructed as follows. In Sect. 2, we prove Theorem 1.1. In Sect. 3, we
first recall some basic notions and results from Finsler geometry, and then complete
the proof of Theorems 1.3 and 1.4.

2 Proof of Theorem 1.1

We divide the proof into five steps.

Step 1 We first derive an important ODE from the extremals (1.2) in the Euclidean

case. Since uλ(x) = (
λ+ |x |2−ap

) 2−n
2−ap is a minimizer in the Euclidean Caffarelli–

Kohn–Nirenberg inequality (CKN)x0
Ka

, the following integral identity holds for every
λ > 0:

⎛
⎝

∫

Rn

(
λ+ |x |2−ap

) (2−n)p
2−ap

|x |ap
dμE (x)

⎞
⎠

2
p

= K 2
a (n − 2)2

∫

Rn

(
λ+ |x |2−ap

) 2(ap−n)
2−ap

|x |2ap−2 dμE (x). (2.1)

Observe that (2−n)p
2−ap = 2(ap−n)

2−ap = n
a−1 < 0, in particular, ap < 2. We introduce the

auxiliary function QE : (0,∞) −→ R defined by

QE (λ) := 1 − a

n − 1 + a

∫

Rn

(
λ+ |x |2−ap

) n−1+a
a−1

|x |ap
dμE (x).

Then the identity (2.1) reduces to, provided that QE is well-defined,

(−Q′
E (λ)

) 2
p = K 2

a (n − 2)2
(

n − 1 + a

1 − a
QE (λ)+ λQ′

E (λ)

)
, λ > 0. (2.2)

To see that QE is well-defined, we obtain from the layer cake representation of func-

tions and a change of variables as t = (λ+ ρ2−ap)
n−1+a

a−1 ρ−ap that

QE (λ) = 1 − a

n − 1 + a

∞∫

0

μE

⎧⎨
⎩x ∈ R

n :
(
λ+ |x |2−ap

) n−1+a
a−1

|x |ap
> t

⎫⎬
⎭ dt

= 1 − a

n − 1 + a

∞∫

0

μE
{

x ∈ R
n : |x | < ρ

}
f (λ, ρ) dρ,
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716 A. Kristály, S. Ohta

where f : (0,∞)2 −→ R is given by

f (λ, ρ) = n − 1 + a

1 − a

(λ+ ρ2−ap)
n

a−1

ρap
(2 − ap)ρ1−ap + ap

(λ+ ρ2−ap)
n−1+a

a−1

ρap+1

= (λ+ ρ2−ap)
n

a−1

ρap+1

{
ρ2−ap

(
n − 1 + a

1 − a
(2 − ap)+ ap

)
+ apλ

}
. (2.3)

Hence we have

QE (λ) = 1 − a

n − 1 + a

∞∫

0

μE (Bn(ρ)) f (λ, ρ) dρ. (2.4)

An elementary calculus shows that the improper integral in (2.4) converges, thus QE

is well-defined.

Step 2 Switching to the metric measure setting as in Theorem 1.1, we first observe
that the hypotheses (VD)nC0

and (AR)nx0
yield

μ(B(x0, ρ)) ≤ C0μE (Bn(ρ)) for every ρ > 0. (2.5)

Let us consider for each λ > 0 the sequence of functions uλ,k : X −→ R, k ∈ N,
defined by

uλ,k(x) := max{0,min{0, k − d(x0, x)} + 1}
(
λ+ max

{
d(x0, x), k−1

}2−ap ) 2−n
2−ap

.

Since (X, d) is proper, supp(uλ,k) = {x ∈ X : d(x0, x) ≤ k+1} is compact. Therefore
we have uλ,k ∈ Lip0(X) for every λ > 0 and k ∈ N. We set

ũλ(x) := lim
k→∞ uλ,k(x) =

(
λ+ d(x0, x)2−ap

) 2−n
2−ap

.

Since the functions uλ,k verify (CKN)x0
C , a simple approximation procedure based

on (2.5) shows that ũλ verifies (CKN)x0
C as well. Consequently, we can apply (CKN)x0

C
to ũλ. In particular, by exploiting a chain rule for the local Lipschitz constant and the
fact that x �−→ d(x0, x) is 1-Lipschitz (thus |Dd(x0, ·)|(x) ≤ 1 for all x), we obtain

⎛
⎝

∫

X

(
λ+ d(x0, x)2−ap

) (2−n)p
2−ap

d(x0, x)ap
dμ(x)

⎞
⎠

2
p

≤ C2(n − 2)2
∫

X

(
λ+ d(x0, x)2−ap

) 2(ap−n)
2−ap

d(x0, x)2ap−2 dμ(x). (2.6)
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Caffarelli–Kohn–Nirenberg inequality on metric measure spaces with applications 717

We shall rewrite (2.6) by means of the function Q̃ : (0,∞) −→ R defined by

Q̃(λ) := 1 − a

n − 1 + a

∫

X

(
λ+ d(x0, x)2−ap

) n−1+a
a−1

d(x0, x)ap
dμ(x).

Before to do that, we claim that Q̃ is well-defined. Again, by the layer cake represen-
tation of functions, one has

Q̃(λ) = 1 − a

n − 1 + a

∞∫

0

μ

⎧⎨
⎩x ∈ X :

(
λ+ d(x0, x)2−ap

) n−1+a
a−1

d(x0, x)ap
> t

⎫⎬
⎭ dt.

By taking into account that diam X = ∞, similarly to the previous step, we have

Q̃(λ) = 1 − a

n − 1 + a

∞∫

0

μ(B(x0, ρ)) f (λ, ρ) dρ. (2.7)

In particular, from (2.5) and (2.4), for every λ > 0 we obtain

0 < Q̃(λ) ≤ C0(1 − a)

n − 1 + a

∞∫

0

μE (Bn(ρ)) f (λ, ρ) dρ = C0 QE (λ),

which concludes the claim. Now, similarly to (2.2), we can transform the relation (2.6)
via Q̃ into the inequality

(−Q̃′(λ))
2
p ≤ C2(n − 2)2

(
n − 1 + a

1 − a
Q̃(λ)+ λQ̃′(λ)

)
, λ > 0. (2.8)

Inspired from (2.2) and (2.8), we consider the ODE

(−q ′(λ))
2
p = C2(n − 2)2

(
n − 1 + a

1 − a
q(λ)+ λq ′(λ)

)
, λ > 0. (2.9)

On account of (2.2), one can observe that (2.9) has the particular solution of the form

q(λ) = (C−1 Ka)
n

1−a QE (λ).

Step 3 We shall show that, for every λ > 0,

Q̃(λ) ≥ q(λ). (2.10)

Suppose C > Ka without loss of generality. The proof of (2.10) requires a local (near
zero) and a global treatment of the quotient Q̃/q. First, due to the hypothesis (AR)nx0

,
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718 A. Kristály, S. Ohta

for every ε > 0 there exists ρε > 0 such that μ(B(x0, ρ)) ≥ (1 − ε)μE (Bn(ρ)) for

all ρ ∈ [0, ρε]. Therefore, by (2.7) and changing the variables as ρ = λ
1

2−ap t , it turns
out that

Q̃(λ) ≥ 1 − a

n − 1 + a
(1 − ε)

ρε∫

0

μE (Bn(ρ)) f (λ, ρ) dρ

= 1 − a

n − 1 + a
(1 − ε)λ

n−2+2a
2(a−1)

ρελ
1

ap−2∫

0

μE (Bn(t)) f (1, t) dt.

A similar argument gives from (2.4) that

QE (λ) = 1 − a

n − 1 + a
λ

n−2+2a
2(a−1)

∞∫

0

μE (Bn(t)) f (1, t) dt. (2.11)

The above relations and the fact ap − 2 < 0 lead to

lim inf
λ→0

Q̃(λ)

q(λ)
= (C K −1

a )
n

1−a lim inf
λ→0

Q̃(λ)

QE (λ)
≥ (C K −1

a )
n

1−a (1 − ε).

Since ε > 0 is arbitrarily small, we obtain

lim inf
λ→0

Q̃(λ)

q(λ)
≥ (C K −1

a )
n

1−a > 1,

concluding the study of the quotient Q̃/q near the origin.
Now, arguing by contradiction, we assume that there exists λ̃ > 0 such that Q̃(λ̃) <

q(λ̃). By the continuity of the functions Q̃ and q, one can fix λ# < λ̃ to be the largest
number with the property Q̃(λ#) = q(λ#). Thus, q − Q̃ is non-negative on [λ#, λ̃]. We

define for λ > 0 the function zλ : (0,∞) −→ R by zλ(ρ) := C−2(n − 2)−2ρ
2
p +λρ.

By relations (2.8) and (2.9), for every λ > 0, we have

zλ(−Q̃′(λ)) ≤ n − 1 + a

1 − a
Q̃(λ), zλ(−q ′(λ)) = n − 1 + a

1 − a
q(λ).

Since zλ is increasing, one has in particular that

Q̃′(λ)− q ′(λ) ≥ z−1
λ

(
n − 1 + a

1 − a
q(λ)

)
− z−1

λ

(
n − 1 + a

1 − a
Q̃(λ)

)
, λ ∈ [λ#, λ̃].

Taking into account that z−1
λ is increasing and q ≥ Q̃ on [λ#, λ̃], the above inequality

implies that (Q̃ − q)′(λ) ≥ 0 for every λ ∈ [λ#, λ̃]. In particular, we obtain 0 >

(Q̃ − q)(λ̃) ≥ (Q̃ − q)(λ#) = 0, a contradiction. This completes the proof of (2.10).
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Step 4 We continue to assume C > Ka . Observe from (2.4), (2.7) and (2.10) that

∞∫

0

{
μ(B(x0, ρ))− (C−1 Ka)

n
1−aμE (Bn(ρ))

}
f (λ, ρ) dρ ≥ 0, λ > 0. (2.12)

By the hypothesis (VD)nC0
, for every ρ > 0, we have

C0
μ(B(x0, ρ))

μE (Bn(ρ))
≥ lim sup

r→∞
μ(B(x0, r))

μE (Bn(r))
=: s0.

We claim that

s0 ≥ (C−1 Ka)
n

1−a . (2.13)

Assuming the contrary, there exists δ0 > 0 such that, for some r0 > 0,

μ(B(x0, ρ))

μE (Bn(ρ))
≤ (C−1 Ka)

n
1−a − δ0 for all ρ ≥ r0.

Hence, from (2.12), (2.5) and (2.4), we first have

0 ≤
∞∫

0

{
μ(B(x0, ρ))− (C−1 Ka)

n
1−aμE (Bn(ρ))

}
f (λ, ρ) dρ

≤
r0∫

0

μ(B(x0, ρ)) f (λ, ρ) dρ +
{
(C−1 Ka)

n
1−a − δ0

} ∞∫

r0

μE (Bn(ρ)) f (λ, ρ) dρ

−(C−1 Ka)
n

1−a

∞∫

0

μE (Bn(ρ)) f (λ, ρ) dρ

≤ C0

r0∫

0

μE (Bn(ρ)) f (λ, ρ) dρ − (C−1 Ka)
n

1−a

r0∫

0

μE (Bn(ρ)) f (λ, ρ) dρ

−δ0

∞∫

r0

μE (Bn(ρ)) f (λ, ρ) dρ

=
{

C0 − (C−1 Ka)
n

1−a + δ0

} r0∫

0

μE (Bn(ρ)) f (λ, ρ) dρ

−δ0

∞∫

0

μE (Bn(ρ)) f (λ, ρ) dρ
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720 A. Kristály, S. Ohta

=
{

C0 − (C−1 Ka)
n

1−a + δ0

} r0∫

0

μE (Bn(ρ)) f (λ, ρ) dρ

−δ0
n − 1 + a

1 − a
λ

n−2+2a
2(a−1) QE (1),

where we used QE (λ) = λ
n−2+2a
2(a−1) QE (1) following from (2.11). Next, by using the

explicit form (2.3) of f (λ, ρ) and a − 1 < 0, the following estimate holds:

r0∫

0

ρn f (λ, ρ) dρ

≤ λ
n

a−1

r0∫

0

ρn−1−ap
{
ρ2−ap

(
n − 1 + a

1 − a
(2 − ap)+ ap

)
+ apλ

}
dρ

=
(

n − 1 + a

1 − a
(2 − ap)+ ap

)
rn−2ap+2

0

n − 2ap + 2
λ

n
a−1 + ap

rn−ap
0

n − ap
λ

n
a−1 +1.

Reorganizing the above two estimates, we obtain the inequality of type

M1λ
n−2+2a
2(a−1) ≤ M2λ

n
a−1 + M3λ

n
a−1 +1 for all λ > 0, (2.14)

where M1,M2,M3 > 0 are constants independent of λ > 0. Since

n

a − 1
+ 1 − n − 2 + 2a

2(a − 1)
= n

2(a − 1)
< 0,

(2.14) fails for large values of λ > 0. This contradiction shows the validity of (2.13).

Step 5 Fix any x ∈ X . Since B(x0, r − d(x0, x)) ⊂ B(x, r) ⊂ B(x0, r + d(x0, x))
for every r > d(x0, x), on account of the hypothesis (VD)nC0

and (2.13), one has

C0
μ(B(x, ρ))

μE (Bn(ρ))
≥ lim sup

r→∞
μ(B(x, r))

μE (Bn(r))
= lim sup

r→∞
μ(B(x0, r))

μE (Bn(r))
= s0

≥ (C−1 Ka)
n

1−a

for all ρ > 0. This concludes the proof. 
�

3 Applications: Caffarelli–Kohn–Nirenberg inequality on Finsler manifolds

Before proving Theorems 1.3 and 1.4, we concisely recall some notions from the
theory of Finsler manifolds (see Bao et al. [3], Shen [15] and Ohta [10] for details),
and prove the validity of the Caffarelli–Kohn–Nirenberg inequality on Minkowski
spaces.
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3.1 Preliminary notions from Finsler geometry

3.1.1 Finsler manifolds

Let M be a connected n-dimensional C∞-manifold and T M = ⋃
x∈M Tx M be its

tangent bundle.

Definition 3.1 (Finsler manifolds) The pair (M, F) is called a Finsler manifold if a
continuous function F : T M −→ [0,∞) satisfies the conditions:

(1) F ∈ C∞(T M \ {0});
(2) F(x, tv) = |t |F(x, v) for all t ∈ R and (x, v) ∈ T M ;
(3) the n × n matrix

gi j (x, v) := 1

2

∂2(F2)

∂vi∂v j
(x, v), where v =

n∑
i=1

vi ∂

∂xi
, (3.1)

is positive definite for all (x, v) ∈ T M \{0}. We will denote by gv the inner product
on Tx M induced from (3.1).

If (and only if) gi j (x, v) is independent of v in each Tx M \ {0}, then (M, F) gives a
Riemannian manifold. A Minkowski space consists of a finite dimensional vector space
V and a Minkowski norm which induces a Finsler metric on V by translation (i.e.,
F(x, v) is independent of x). A Finsler manifold (M, F) is called a locally Minkowski
space if any point in M admits a local coordinate system (xi ) on its neighborhood
such that F(x, v) depends only on v and not on x .

For a C∞-curve σ : [0, l] −→ M , its integral length is given by L F (σ ) :=∫ l
0 F(σ, σ̇ ) dt . Define the associated distance function dF : M × M −→ [0,∞) by

dF (x1, x2) := infσ L F (σ ), where σ runs over all C∞-curves from x1 to x2. When
(M, F) = (Rn, F) is a Minkowski space, one has dF (x1, x2) = F(x2 − x1). A C∞-
curve σ : [0, l] −→ M is called a geodesic if it is locally dF -minimizing and has
a constant speed (i.e., F(σ, σ̇ ) is constant). We can write down the geodesic (Euler–
Lagrange) equation in terms of the covariant derivative along σ (see [3] for details).
We say that (M, F) is complete if any geodesic σ : [0, l] −→ M can be extended to
a geodesic σ : R −→ M .

The polar transform (or the dual norm) of F is defined for every (x, α) ∈ T ∗M by

F∗(x, α) := sup
v∈Tx M\{0}

α(v)

F(x, v)
.

Note that, for every x ∈ M , the function F∗(x, ·) is a Minkowski norm on T ∗
x M . In

particular, if (Rn, F) is a Minkowski space, then so is (Rn, F∗) as well. For u(x) =
dF (x0, x) with some fixed x0 ∈ M , one can easily see that F∗(x, Du(x)) = 1 for a.e.
x ∈ M .
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3.1.2 Jacobi fields, Ricci curvature and volume comparison

Let σ : (−ε, ε) × [0, l] −→ M be a C∞-geodesic variation (i.e., t �−→ σ(s, t)
is geodesic for each s), and put η(t) = σ(0, t). Then the variational vector field
J (t) := ∂σ

∂s (0, t) satisfies the Jacobi equation

Dη̇
η̇Dη̇

η̇ J + Rη̇(J, η̇)η̇ ≡ 0, (3.2)

where Dη̇ is the covariant derivative with reference vector η̇, and Rη̇ is the curvature
tensor (see [3] for details). For two linearly independent vectors v,w ∈ Tx M and
S = span{v,w}, the flag curvature of the flag (S; v) is defined by

K (S; v) := gv(Rv(w, v)v,w)

F(v)2gv(w,w)− gv(v,w)2
.

If (M, F) is Riemannian, then the flag curvature reduces to the sectional curvature
which depends only on S (not on the choice of v ∈ S). Take v ∈ Tx M with F(x, v) = 1
and let {ei }n

i=1 with en = v be an orthonormal basis of (Tx M, gv) for gv from (3.1).
Put Si = span{ei , v} for i = 1, . . . , n − 1. Then the Ricci curvature of v is defined
by Ric(v) := ∑n−1

i=1 K (Si ; v). For c ≥ 0, we also set Ric(cv) := c2Ric(v).
Shen gave a useful interpretation of these Finsler curvatures from the Riemannian

viewpoint (see [15, Section 6.2]). Fix v ∈ Tx M \{0} and extend it to a C∞-vector field
V around x such that all integral curves of V are geodesic. Then the flag curvature
K (S; v) coincides with the sectional curvature of S with respect to the Riemannian
structure gV , and Ric(v) coincides with the Ricci curvature of vwith respect to gV . This
observation leads the following definition of the weighted Ricci curvature associated
with an arbitrary measure on M . We refer to [10–13] for details and applications.

Definition 3.2 (Weighted Ricci curvature) Let μ be a positive C∞-measure on M .
Given v ∈ Tx M \ {0}, let σ : (−ε, ε) −→ M be the geodesic with σ̇ (0) = v and
decompose μ along σ as μ = e−ψvolσ̇ , where volσ̇ denotes the volume form of
the Riemannian structure gσ̇ . Then, for N ∈ [n,∞], the N-Ricci curvature RicN is
defined by

RicN (v) := Ric(v)+ (ψ ◦ σ)′′(0)− (ψ ◦ σ)′(0)2
N − n

,

where the third term is understood as 0 if N = ∞ or if N = n with (ψ ◦ σ)′(0) = 0,
and as −∞ if N = n with (ψ ◦ σ)′(0) �= 0.

In particular, Ricn is bounded below only if (ψ ◦ σ)′ ≡ 0 along any σ . In terms of
RicN , one can show the following Bishop–Gromov-type volume comparison theorem.
(Indeed, we can reduce it to the Riemannian setting by using the gradient vector field
of the distance function from the center x .) We state only the non-negatively curved
case.
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Theorem 3.3 [10, Theorem 7.3] Let (M, F, μ) be a complete n-dimensional Finsler
manifold with non-negative N-Ricci curvature. Then we have

μ(B(x, R))

μ(B(x, r))
≤

(
R

r

)N

for every x ∈ M, 0 < r < R.

Moreover, if equality holds with N = n for all x ∈ M and 0 < r < R, then any Jacobi
field J along a geodesic σ has the form J (t) = t P(t), where P is a parallel vector
field along σ (i.e., Dσ̇

σ̇ P ≡ 0).

We will actually need only the most restrictive case of N = n.

3.2 Caffarelli–Kohn–Nirenberg inequality on Minkowski spaces

Let (M, F) be a Finsler manifold and u ∈ Lip0(M). Note that the local Lipschitz
constant of u is given by |Du|(x) = F∗(x, Du(x)) for a.e. x ∈ M . Therefore, due
to density reasons, the Caffarelli–Kohn–Nirenberg inequality (CKN)x0

C in the Finsler
context takes the more familiar form

⎛
⎝

∫

M

|u(x)|p

dF (x0, x)ap
dμ(x)

⎞
⎠

1
p

≤ C

⎛
⎝

∫

M

F∗(x, Du(x))2 dμ(x)

⎞
⎠

1
2

for all u ∈ C∞
0 (M). We first prove that the sharp Caffarelli–Kohn–Nirenberg inequal-

ity (i.e., with C = Ka from (1.1)) holds on an arbitrary Minkowski space (Rn, F)
endowed with the Lebesgue measure μF normalized so that μF (B(0, 1)) = ωn .

Let us first recall two inequalities on (Rn, F, μF ). Given a measurable set� ⊂ R
n ,

let us denote by �� the anisotropic symmetrization of �, i.e., it is the open ball with
center 0 such thatμF (�

�) = μF (�). For a function u : R
n −→ R, u�(x) := sup{c ∈

R : x ∈ {u > c}�} is the anisotropic (decreasing) symmetrization of u, where
{u > c} = {x ∈ R

n : u(x) > c}. Due to Alvino, Ferone, Lions and Trombetti [1] and
Van Schaftingen [18], one has

• anisotropic Pólya–Szegő inequality:

∫

Rn

F∗(Du�(x))2 dμF (x) ≤
∫

Rn

F∗(Du(x))2 dμF (x) for all u ∈ C∞
0 (R

n)+;

• anisotropic Hardy–Littlewood inequality: if p > 1 and a ∈ [0, 1], then we have

∫

Rn

u(x)p

F(x)ap
dμF (x) ≤

∫

Rn

u�(x)p

F(x)ap
dμF (x) for all u ∈ C∞

0 (R
n)+,

where C∞
0 (R

n)+ := {u ∈ C∞
0 (R

n) : u ≥ 0}.
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Proposition 3.4 Let (Rn, F) be a Minkowski space with n ≥ 3, x0 ∈ R
n, a ∈ [0, 1),

and p = 2n/(n − 2 + 2a). Then the sharp Caffarelli–Kohn–Nirenberg inequality
(CKN)x0

Ka
holds on (Rn, F, μF ). Moreover, the constant Ka is optimal and a family

of extremals is given by

uλ(x) =
(
λ+ F(x − x0)

2−ap
) 2−n

2−ap
, λ > 0.

Proof Recall that dF (x0, x) = F(x − x0). Without loss of generality, we may assume
that x0 = 0. Let us consider the constant

Ca = inf
u∈C∞

0 (Rn)\{0}

(∫
Rn F∗(Du(x))2 dμF (x)

)1/2

(∫
Rn |u(x)|p F(x)−ap dμF (x)

)1/p .

We shall claim that Ca = K −1
a . Due to the reversibility of F , it is enough to consider

non-negative functions in the above expression. By the anisotropic Pólya–Szegő and
Hardy–Littlewood inequalities we have

Ca = inf
u∈C∞

0 (Rn)+\{0}

(∫
Rn F∗(Du�(x))2 dμF (x)

)1/2

(∫
Rn u�(x)p F(x)−ap dμF (x)

)1/p .

We may assume that u� ∈ C1
0(R

n)+ (otherwise, a density argument applies). Then
there exists a non-increasing function h : [0,∞) −→ [0,∞) of class C1 such that
u�(x) = h(F(x)), and we have

F∗(Du�(x)) = F∗(h′(F(x))DF(x)) = −h′(F(x))F∗(DF(x)) = −h′(F(x)).

Therefore a simple calculation yields

(∫
Rn F∗2(Du�(x)) dμF (x)

)1/2

(∫
Rn u�(x)p F(x)−ap dμF (x)

)1/p = α
1
2 − 1

p
n

(∫ ∞
0 h′(ρ)2ρn−1 dρ

)1/2

(∫ ∞
0 h(ρ)pρn−1−ap dρ

)1/p , (3.3)

where αn = nωn denotes the area of the unit sphere in R
n . On the other hand, fol-

lowing the approaches of Lieb [9] and Talenti [17] in the Euclidean case where the
standard Schwarz symmetrization is used, one can see that the minimizing expression
is precisely the RHS of (3.3). Therefore, we have Ca = K −1

a which proves our claim.

Moreover, a class of minimizers hλ for (3.3) is hλ(ρ) = (
λ+ ρ2−ap

) 2−n
2−ap , λ > 0,

which can be obtained by the standard Euler–Lagrange method. 
�
Remark 3.5 After a slight modification, Proposition 3.4 remains valid also for only
positively homogeneous Minkowski norms (i.e., F(tv) = t F(v) only for t > 0). In
such a case, the anisotropic symmetrization is considered with respect to the backward
ball B−(0, 1) = {x ∈ R

n : F(−x) < 1}, and the level sets of the extremals have back-
ward Wulff-shapes, homothetic to B−(0, 1) (see Kristály [8] and Van Shaftingen [18]).
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3.3 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3 Since (M, F) is complete, by the Hopf–Rinow theorem it yields
that (M, dF , μ) is a proper metric measure space. On account of Theorem 3.3, (VD)nC0
holds with C0 = 1, while μ is normalized so as to satisfy (AR)nx0

. On the one hand,
these properties imply that

μ(B(x, ρ)) ≤ μE (Bn(ρ)) for all ρ > 0, x ∈ M.

On the other hand, by (CKN)x0
Ka

, Theorem 1.1 gives the reverse inequality, thus equality
holds. By Theorem 3.3, it results that every Jacobi field J along any geodesic σ has the
form J (t) = t P(t), where P is a parallel vector field along σ . Then it follows from the
Jacobi equation (3.2) that Rσ̇ (J, σ̇ )σ̇ ≡ 0, so that K (S; σ̇ ) ≡ 0 with S = span{σ̇ , P}.
Due to the arbitrariness of σ and J , it turns out that the flag curvature of (M, F) is
identically zero. 
�
Proof of Theorem 1.4 On the one hand, since on every Berwald space Ricn = Ric
holds for the Hausdorff measure μF (see Shen [14, Propositions 2.6, 2.7]), we can
apply Theorem 1.3 to see that the flag curvature of (M, F) is identically zero. On
the other hand, every Berwald space with zero flag curvature is necessarily a locally
Minkowski space (see Bao et al. [3, Section 10.5]). Thanks to the volume identity
μF (B(x, ρ)) = μE (Bn(ρ)), (M, F) must be isometric to a Minkowski space. 
�

We conclude the paper by presenting an example of a non-Riemannian Berwald
space.

Example 3.6 We endow the space R
n−1 (n ≥ 3) with a Riemannian metric g such that

(Rn−1, g) is complete with non-negative Ricci curvature. For every ε > 0, consider
on R

n = R
n−1 × R the metric Fε : T R

n −→ [0,∞) given by

Fε((x, t), (v,w)) =
√

gx (v, v)+ w2 + ε

√
gx (v, v)2 + w4

for (x, t) ∈ R
n, (v,w) ∈ TxR

n−1 × TtR. We observe that (Rn, Fε) is a non-compact,
complete, non-Riemannian Berwald space with non-negative Ricci curvature. Accord-
ing to Theorem 1.4 and Proposition 3.4, the following four statements are equivalent:

• (CKN)x̃0
Ka

holds on (Rn, Fε, μFε ) for some element x̃0 = (x0, t0) ∈ R
n ;

• (CKN)x̃0
Ka

holds on (Rn, Fε, μFε ) for every element x̃0 = (x0, t0) ∈ R
n ;

• gx is independent of x ∈ R
n−1 (i.e., (Rn−1, g) is flat);

• (Rn, Fε) is a Minkowski space.
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