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Abstract We prove that if a metric measure space satisfies the volume doubling
condition and the Caffarelli-Kohn—Nirenberg inequality with the same exponent
n > 3, then it has exactly the n-dimensional volume growth. As an application,
if an n-dimensional Finsler manifold of non-negative n-Ricci curvature satisfies the
Caffarelli-Kohn—Nirenberg inequality with the sharp constant, then its flag curvature
is identically zero. In the particular case of Berwald spaces, such a space is necessarily
isometric to a Minkowski space.
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1 Introduction and statement of main results

Leta € [0, 1) be a parameter, n > 3 be an integer, and put p = 2n/(n — 2 + 2a). In
the theory of Sobolev inequalities, a central role is played by the famous Caffarelli—
Kohn—Nirenberg inequality (see [4]) which states that
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1
l?\" 2 o
[P dx < K, |Du|” dx forall u € Cy~(R"),

Rn Rn
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712 A. Kiristdly, S. Ohta

where

( 1 )5 ((2 — ap)T'((2n — 2ap)/(2 — ap))) RET
K, = (1.1)
(n—2)(n —ap) nw,I2((n — ap)/(2 — ap))

is the optimal constant (see Lieb [9]), w, := 71”/2/ ['(n/2 4 1) being the volume of
the unit ball in R"”. Moreover, a family of extremals is given by

2-n
1y (x) = (x + |x|2—“l’)2’”", x>0 (1.2)

The optimal constant and extremals for ¢ = 0 have been established by Aubin [2] and
Talenti [17] in which case the above inequality reduces to the standard Sobolev inequal-
ity; see Chou and Chu [5] for the most general case. Furthermore, various versions
of the Caffarelli-Kohn—Nirenberg inequality have been treated also on Riemannian
manifolds and Orlicz—Sobolev spaces (see, e.g., do Carmo and Xia [6]).

The main objective of the present paper is to investigate the Caffarelli-Kohn—
Nirenberg inequality in the context of metric measure spaces. As applications, we
provide novel rigidity results for Finsler manifolds by means of the sharp Caffarelli—
Kohn—-Nirenberg inequality.

In order to state the main result of the paper, we fix the numbers @, n and p as above.
Let (X, d) be a metric space and i be a Borel measure on X such that0 < w(U) < oo
for any nonempty bounded open set U C X. For some element xo € X and constant
C > 0, we consider the Caffarelli-Kohn-Nirenberg inequality on (X, d, t) of the
form

/ | (x)]” dp(x)

d(xp, x)°P
X

1

2

<C / |Du|(x)?>du(x) | forall u € Lipy(X). (CKN)Y
X

Hereafter, Lipy(X) is the space of Lipschitz functions with compact support on X,
while

|Du|(x) := liryn_f;lp %

is the local Lipschitz constant of u at x € X. The function x — |Du|(x) is Borel mea-
surable for u € Lipy(X). For instance, any bi-Lipschitz deformation of the Euclidean
space R" satisfies (CKN))é0 with some C > K,,.

For some fixed elements Cp > 1 and xo € X, we introduce the following hypotheses
on the behavior of w:
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Caffarelli-Kohn—Nirenberg inequality on metric measure spaces with applications 713

H(BG R)) _

R n
<Co|—) forallx € XandO < r < R; (VD)¢.
u(B(x,r)) r 0

B
fim inf ABC0:-D)

= AR)"
0 e (B () (AR

Asusual, B(x,r) :={ye X :d(x,y) <r}, B,(r) :={x e R" : |x| < r},and ug
is the n-dimensional Lebesgue measure.
The main result of the paper can be stated as follows.

Theorem 1.1 Leta € [0,1), n >3, p =2n/(n — 2+ 2a), xg € X, C > K,, and
Co > 1. Assume that the Caffarelli-Kohn—Nirenberg inequality (CKN))é0 holds on a
proper metric measure space (X, d, ), and the hypotheses (VD)’é0 and (AR)ﬁO are
verified. Then, for every x € X and p > 0, we have

u(B(x, p)) = C()_I(C_lKa)%ME(Bn(p))- (1.3)
In particular, (X, d, n) has the n-dimensional volume growth
Co ' (CT'K) T awnp" < 11(B(xo. p)) < Cownp" forall p > 0.

This theorem extends do Carmo and Xia’s result [6, Theorem 1.1] on Riemannian
manifolds of non-negative Ricci curvature in two respects. Theorem 1.1 is concerned
with general metric measure spaces, and assumes only the volume growth condition
(VD)’é0 instead of the curvature bound. Before discussing applications, let us give
several remarks on the hypotheses and the conclusions of the theorem.

Remark 1.2 (a) We remark that (CKN)ZO ensures that (X, d) is unbounded (equiva-
lently, non-compact). Indeed, if (X, d) is bounded, then u 4 ¢ with ¢ — oo violates
the validity of (CKN).

(b) If (X, d, ) satisfies the volume doubling condition:

w(B(x,2r)) < Au(B(x,r)) forsome A >1landallx € X, r > 0,

then we easily see that (VD)’é0 is satisfied (with, e.g., n > log, A and Co = A).
Thus (VD)'&0 can be interpreted as the volume doubling condition with the explicit
exponent n. One can also regard (VD)’é0 as a generalization of the Bishop—Gromov
volume growth estimate (of non-negative Ricci curvature).

(c) Note that, on the one hand, (VD)’ZjO implies that the Hausdorff dimension
dimy X of (X, d) is at most n. On the other hand, since

. w(B(xo, 1))
imsup —————— <

r—0 ME (Bn (l”))
by (VD)'&0 and (AR)Y , we have the Ahlfors n-regularity at xo in the sense that
Q" < w(B(xg,r)) < Qr" for some Q > 1 and small » > 0, thus we have
dimy X = n. (See [7] for the importance of the volume doubling condition and
the Ahlfors regularity in analysis on metric measure spaces.) We also remark that
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714 A. Kiristdly, S. Ohta

the constant 1 was chosen as the RHS of (AR)} merely for simplicity. Since Qy, :=
liminf, o w(B(xg, r))/r" is positive by (VD)% ,» one can normalize u so as to satisfy
(AR)Y, whenever €2, is bounded.

(d) The volume growth estimate (1.3) shows that, for instance, the cylinder S*~! xR
can not support (CKN)¢. for any x and C.

(e) The use of the measure (g as a comparing one to & in the hypotheses (VD)’é0
and (AR)}, comes from the fact that the number K, is optimal and the functions
from (1.2) are minimizers in the Euclidean Caffarelli-Kohn—Nirenberg inequality.
Therefore, if a sharp Caffarelli-Kohn—Nirenberg inequality holds in a generic metric
measure space (Xg, do, (o), knowing the optimal constant Ky > 0 and assuming that
the class of extremals is formally the same as (1.2) with dy(xg, x) instead of |x|, then
one can prove a similar statement to Theorem 1.1 by replacing ug and K, with g
and K, respectively.

We point out that, on (absolutely homogeneous for simplicity) Finsler manifolds
with non-negative n-Ricci curvature, (VD)’éO holds with Cp = 1 (see Shen [14],
Ohta [10] and Theorem 3.3 below). In particular, from Theorem 1.1, important rigidity
results can be deduced in the context of Finsler manifolds when the sharp Caffarelli—
Kohn-Nirenberg inequality holds (for precise notions, see Sect. 3). We state two such
results.

Theorem 1.3 Let a € [0,1),n > 3, p = 2n/(n — 2+ 2a), and (M, F) be a
complete n-dimensional Finsler manifold. Fix a positive smooth measure |1 on M
and assume that the n-Ricci curvature Ric, of (M, F, () is non-negative, the sharp
Caffarelli-Kohn—Nirenberg inequality (CKN))IC(0 holds for some xo € M, and in addi-
tionlim,_.o w(B(xo, 1))/ (w,r™) = 1. Then the;lag curvature of (M, F) is identically
zero.

Theorem 1.4 Leta € [0,1), n >3, p =2n/(n —2 + 2a), and (M, F) be a com-
plete n-dimensional Berwald space with non-negative Ricci curvature. If for some
xo € M and the n-dimensional Hausdorff measure of (M, F) the sharp Caffarelli—
Kohn—Nirenberg inequality (CKN));?H holds, then (M, F) is isometric to a Minkowski
space.

Remark 1.5 (a) By using anisotropic symmetrization arguments, we prove in Sect. 3
that the sharp Caffarelli-Kohn—Nirenberg inequality (CKN)),C(Oa holds on every
Minkowski space (R”, F) (Proposition 3.4). In this manner, Theorem 1.4 delimits
Minkowski spaces as the optimal geometric framework where (CKN)}?H holds within
the class of Berwald spaces with non-negative Ricci curvature.

(b) Riemannian manifolds and (locally) Minkowski spaces are Berwald spaces.
Therefore Theorem 1.4 extends do Carmo and Xia’s result [6, Corollary 1.2] in the
Riemannian context. In fact, some constructions in the proof of Theorem 1.1 are
inspired from [6].

(c) The assumption n > 3 in Theorem 1.4 is essential not only in the definition of
p =2n/(n — 2 4 2a) but also for the structure of the Berwald space. Indeed, Szab6’s
rigidity result states that any Berwald surface is either a locally Minkowski space or
a Riemannian surface, see Szab6 [16] and Bao et al. [3, Theorem 10.6.2].
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Caffarelli-Kohn—Nirenberg inequality on metric measure spaces with applications 715

The paper is constructed as follows. In Sect. 2, we prove Theorem 1.1. In Sect. 3, we
first recall some basic notions and results from Finsler geometry, and then complete
the proof of Theorems 1.3 and 1.4.

2 Proof of Theorem 1.1

We divide the proof into five steps.

Step 1 We first derive an important ODE from the extremals (1.2) in the Euclidean

2-n
case. Since u; (x) = ()» + |x|2ap ) 2=ar s a minimizer in the Euclidean Caffarelli—
Kohn-Nirenberg inequality (CKN))I‘{OH , the following integral identity holds for every
A >0

2
@-n) 3
(1 + Ix]2-op) T ’
| due
Rn
2ap—n)
pyn |x|2 ap\ 2-ap
=K2(n —2)2/ ( T )2 dug (x). @2.1)
Rn
Observe that (2 ")p = 2(‘”” n = L < 0, in particular, ap < 2. We introduce the

auxiliary funct10n Ok : (0 olz)) —> R defined by

—1+4a

l—a / (A + [x|?7ap) T
—1l4a |x|ap
Rn

Q) == - dug(x).

Then the identity (2.1) reduces to, provided that Q g is well-defined,

P —1
(—Q}())7 = K2(n — 2)? (% (W) +,\Q’E(A)) L A>0. (22)

To see that O is well-defined, we obtain from the layer cake representation of func-
n—1l+a
tions and a change of variables as t = (A 4 p>~%") =) 0~ that

oo n—Il+a

l—a (A + |x[>maop) a1
)= — eR": tbar
Qr() n—1+a/“E x NG >
0
o0
1—a / (x eR": |x| < p} fF(h. p) d
= X X 5 9
el 2 o p)dp
0
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716 A. Kiristdly, S. Ohta

where f : (0, 00)> —> R is given by

n n—1l4a
n—1+4a(+p>P)a (4 p>n) 1"

= _ l—ap
f,p) = —a ap 2 —ap)p +ap e
A+ p>P)aT (5 (n—1+a
= P p>er ﬁ(Z—ap)wLap +aprt. (23)
Hence we have
1 o0
—a
Q) = —/ME(Bn(p))f(k,p)dp- (2.4)
n—1+4a
0

An elementary calculus shows that the improper integral in (2.4) converges, thus Qg
is well-defined.

Step 2 Switching to the metric measure setting as in Theorem 1.1, we first observe
that the hypotheses (VD)’é0 and (AR)Y, yield

n(B(xo, p)) < Copg (B, (p)) forevery p > 0. 2.5

Let us consider for each A > 0 the sequence of functions uy y : X — R, k € N,
defined by

2—n

. —1 2—!1]7 2—ap
s, (x) := max{0, min{0, k — d(xo, x)} + 1}(x + max {d(xo, X),k } ) .

Since (X, d) is proper, supp(u) k) = {x € X : d(x0, x) < k+1}iscompact. Therefore
we have u, x € Lipy(X) for every A > 0 and k € N. We set

2—n
2—ap

ﬁk(x) = kli)Holo M)L,k(x) = (}L + d(X(), x)2—ap)

Since the functions u; i verify (CKN)?, a simple approximation procedure based
on (2.5) shows that iz, verifies (CKN))é0 as well. Consequently, we can apply (CKN)’é0
to i1,.. In particular, by exploiting a chain rule for the local Lipschitz constant and the
fact that x —— d(xg, x) is 1-Lipschitz (thus |Dd (xp, -)|(x) < 1 for all x), we obtain

1IN

Q2—n)p
/ (% + d(xo, x)?7P) =

d(xo. 1) du(x)

X

(ap—n)

2(ap
A + d s 2—017 2—ap
< C2(n —2)? / ( d(():;,);))hl!’—)z du(). (2.6)
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We shall rewrite (2.6) by means of the function Q : (0, c0) —> R defined by

n—1l+4a

l_a / (A' _i_d(x()’x)z—a[]) a—1

d(xg, x)P

du(x).

Before to do that, we claim that Q is well-defined. Again, by the layer cake represen-
tation of functions, one has

1 b (% + d(xo, x)>r)
= —a + d(xp, x)°~ a=
A)= —— e X: t¢dt.
o) n—l—i—a/“ * d(xg, x)2P -
0

By taking into account that diam X = oo, similarly to the previous step, we have

e ¢]

oM = —a/M(B(XO»P))f()hP) dp. 2.7

0

In particular, from (2.5) and (2.4), for every A > 0 we obtain

~ Co(l — 7
0<g0y <ol =a / e En(0)) f s p)dp = CoQE (M),
n—14+a
0

whic~h concludes the claim. Now, similarly to (2.2), we can transform the relation (2.6)
via Q into the inequality

_ 1 - -
%Q(A) n AQ’(A)), A>0.  (28)

~ 2
(=0’ = C*n—2)? (
Inspired from (2.2) and (2.8), we consider the ODE

n—1+

(=g’ ()7 = C2(n — 2)2 ( Lo+ Aq’m), A > 0. (2.9)

1—a
On account of (2.2), one can observe that (2.9) has the particular solution of the form
g = (CT'K)Ta Qr().
Step 3 We shall show that, for every A > 0,
00) = q(). (2.10)

Suppose C > K, without loss of generality. The proof of (2.10) requires a local (near
zero) and a global treatment of the quotient Q/q. First, due to the hypothesis (AR)

n
X0
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718 A. Kiristdly, S. Ohta

for every ¢ > 0 there exists p. > 0 such that u(B(xg, p)) > (1 — &)up(B,(p)) for
1

all p € [0, pc]. Therefore, by (2.7) and changing the variables as p = A2-er ¢, it turns
out that

1—a

W =TT

Pe
(1 _8)/ME(B;1(p))f()\»P)dP
0

ps)»ap%Z
l—a =242
S igal O / B (0) f (1, 1) dr.
0

A similar argument gives from (2.4) that

00
1 —

0r() = —— L 50 / e By () £(1, 1) dr. @.11)
n—14+a
0

The above relations and the fact ap — 2 < 0 lead to

(%)

OF

)\. n n
;= (CKa—l)mnggf 5 > (CK; YT (l —e).

Since ¢ > 0 is arbitrarily small, we obtain

0 (O 0
liminf 2 > (CK-HTa > 1,
0 g

a

concluding the study of the quotient Q /¢ near the origin.

Now, arguing by contradiction, we assume that there exists A > 0 such that (%) <
g()). By the continuity of the functions Q and ¢, one can fix A* < X to be the largest
number with the property Q(A#) = q(A#). Thus, g — Q is non-negative on [A*, X]. We
define for A > 0 the function z, : (0, 00) — R by z,(p) := C2n— 2)’2/0% + Ap.
By relations (2.8) and (2.9), for every A > 0, we have

I+

~ —1 - —
200 = 0000, a-g'0n) = a0,

1

Since z;, is increasing, one has in particular that
~ 1 f(n—1+a 1 fn—1+a - ~
OW—qd' =z (ﬁq(x)) -z (ﬁ Q(A)) el

Taking into account that Z)Tl is increasing and ¢ > Q on [A*, 1), the above inequality
in}plies tllat (Q - q)' () > 0 for every A € (A, ):]. In particular, we obtain 0 >
(0 —q)(A) = (Q — q)(A*) =0, a contradiction. This completes the proof of (2.10).
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Step 4 We continue to assume C > K. Observe from (2.4), (2.7) and (2.10) that
o0
/ [1Bo. p) = (€T KT 1E @ (o)) £G ) dp 2 0, 1> 0. 212)
0

By the hypothesis (VD)'&O, for every p > 0, we have

wn(B(xo, p)) _ .. w(B(xo,r))
0———— > limsup ————— =: 50
wEe By (p)) r—ooo MEB,(r))

We claim that
50> (CT'K,) ™. (2.13)

Assuming the contrary, there exists o > 0 such that, for some r¢ > 0,

w(B(xo, p)) -1 n_
—————————— < (C" ' KyTa —§y forall p > rg.
(e (B, (p)) ¢

Hence, from (2.12), (2.5) and (2.4), we first have

o0

0 = [ {uteo.p) ~ € KD e @) 10 o
0
o

< /u(B(xo,p))f(x,m dp+{(C k)T _50}/ME(Bn(P))f()~»P) dp

0

(=}

(KT / 15 @ (p)) £ s p) dp
0

ro 0]
= CO/ME(Bn(p))f()wp)dp - (C_lKa)ﬁ/ME(Bn(p))f()\vP)dp
0 0

50 / 1EBn(p)) f(h, p) dp

ro
r

—{co- ek o) [ ne@ao) G 01 dp
0

50 / 15 B (p)) £ (s p) dp
0
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o

= {co- (k0T +5o}/uE<Bn(p>)f(x,p) dp
0

n—14+a n-2+2a
5" 0 (1),
—da

n—242a
where we used Qp(A) = A TarD QEg(1) following from (2.11). Next, by using the
explicit form (2.3) of f(A, p) and a — 1 < O, the following estimate holds:

ro

/p"f(k,p)dp

-1+
—/ n—1- up{ 2— “P( - (2—ap)+ap)+ap)»]d,0

n—2ap+2 n—ap
T n

n—l+a 0 L "o 2+l
- 2—ap)+a ATT 4a aa=Tt
( l1—a ( P) p) —2ap +2 pn—ap

Reorganizing the above two estimates, we obtain the inequality of type

n—2+42a n_ n4q
ML 2@ < Myra—T + M3)a-T for all A > 0, (2.14)
where M1, M>, M3 > 0 are constants independent of & > 0. Since

n n—2+42a n
+1-— = <0,
a—1 2(a—1) 2(a—1)

(2.14) fails for large values of A > 0. This contradiction shows the validity of (2.13).

Step 5 Fix any x € X. Since B(xg, r — d(xg,x)) C B(x,r) C B(xg,r + d(xg, x))
for every r > d(xg, x), on account of the hypothesis (VD)’é0 and (2.13), one has

WBGE.p) . B . u(B(o,r)
0————— > limsup ———= =limsup ———— =5
ue By (p)) r—oo ME(BL(r)) r—ooo  ME(BL(r))
> (CT'Ky)Ta
for all p > 0. This concludes the proof. O

3 Applications: Caffarelli-Kohn—Nirenberg inequality on Finsler manifolds

Before proving Theorems 1.3 and 1.4, we concisely recall some notions from the
theory of Finsler manifolds (see Bao et al. [3], Shen [15] and Ohta [10] for details),
and prove the validity of the Caffarelli-Kohn—Nirenberg inequality on Minkowski
spaces.

@ Springer



Caffarelli-Kohn—Nirenberg inequality on metric measure spaces with applications 721

3.1 Preliminary notions from Finsler geometry
3.1.1 Finsler manifolds

Let M be a connected n-dimensional C*°-manifold and TM = |J, 4 T M be its
tangent bundle.

Definition 3.1 (Finsler manifolds) The pair (M, F) is called a Finsler manifold if a
continuous function F : TM — [0, co) satisfies the conditions:

(1) F e C®(TM\{0});
(2) F(x,tv) = |t|F(x,v) forallt € Rand (x,v) € TM,
(3) the n x n matrix

n

(x,v), wherev = viﬁ, 3.1

3 . 1 92(F?)
gz](xa U) = Eaviavj

i=1

is positive definite for all (x, v) € T M\ {0}. We will denote by g, the inner product
on 7y M induced from (3.1).

If (and only if) g;; (x, v) is independent of v in each T M \ {0}, then (M, F) gives a
Riemannian manifold. A Minkowski space consists of a finite dimensional vector space
V and a Minkowski norm which induces a Finsler metric on V by translation (i.e.,
F (x, v) is independent of x). A Finsler manifold (M, F) is called a locally Minkowski
space if any point in M admits a local coordinate system (x') on its neighborhood
such that F(x, v) depends only on v and not on x.

For a C®-curve o : [0,1] —> M, its integral length is given by Lp(c) =
fol F (o, 6)dt. Define the associated distance function dgp : M x M — [0, c0) by
drp(x1,x2) = inf, LF(0), where o runs over all C*®°-curves from x; to x,. When
(M, F) = (R", F) is a Minkowski space, one has dp(x1, x2) = F(x2 — x1). A C*°-
curve o : [0,/] —> M is called a geodesic if it is locally dr-minimizing and has
a constant speed (i.e., F'(o, ¢) is constant). We can write down the geodesic (Euler—
Lagrange) equation in terms of the covariant derivative along o (see [3] for details).
We say that (M, F) is complete if any geodesic o : [0, ] —> M can be extended to
ageodesico : R — M.

The polar transform (or the dual norm) of F is defined for every (x, «) € T*M by

a(v)

F*(x,a) := sup )
veTym\(0) F(x,v)

Note that, for every x € M, the function F*(x, -) is a Minkowski norm on 7, M. In
particular, if (R", F) is a Minkowski space, then so is (R”, F*) as well. For u(x) =
dF(xg, x) with some fixed xg € M, one can easily see that F*(x, Du(x)) = 1 for a.e.
xeM.
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722 A. Kiristdly, S. Ohta

3.1.2 Jacobi fields, Ricci curvature and volume comparison

Let o : (—¢&,&) x [0,]] —> M be a C*°-geodesic variation (i.e., t —> o (s, 1)
is geodesic for each s), and put n(r) = o (0, 7). Then the variational vector field
J() = %—‘S’(O, t) satisfies the Jacobi equation

DIDIJ + R(J, )i =0, (3.2)

where D" is the covariant derivative with reference vector 7, and R is the curvature
tensor (see [3] for details). For two linearly independent vectors v, w € Ty M and
S = span{v, w}, the flag curvature of the flag (S; v) is defined by

g (R (w, v)v, w)

K0 = e, w) — go(o, w2

If (M, F) is Riemannian, then the flag curvature reduces to the sectional curvature
which depends only on S (not on the choice of v € S). Take v € Ty M with F(x,v) = 1
and let {¢;}?_, with e, = v be an orthonormal basis of (T, M, g,) for g, from (3.1).
Put S; = span{e;, v} fori = 1,...,n — 1. Then the Ricci curvature of v is defined
by Ric(v) := Zl'-'z_ll K (S;; v). For ¢ > 0, we also set Ric(cv) := ¢*Ric(v).

Shen gave a useful interpretation of these Finsler curvatures from the Riemannian
viewpoint (see [15, Section 6.2]). Fix v € Ty M \ {0} and extend it to a C*°-vector field
V around x such that all integral curves of V are geodesic. Then the flag curvature
K (S; v) coincides with the sectional curvature of S with respect to the Riemannian
structure gy, and Ric(v) coincides with the Ricci curvature of v with respect to gy . This
observation leads the following definition of the weighted Ricci curvature associated
with an arbitrary measure on M. We refer to [10—13] for details and applications.

Definition 3.2 (Weighted Ricci curvature) Let p be a positive C°°-measure on M.
Givenv € Ty M \ {0}, let o : (—e,&) —> M be the geodesic with 6(0) = v and
decompose p along o as u = e Vvols, where vol; denotes the volume form of
the Riemannian structure gs. Then, for N € [n, oo], the N-Ricci curvature Ricy is
defined by

W oa)(©?

Ricy (v) := Ric(v) + (¢ 0 0)"(0) — N

’

where the third term is understood as 0 if N = oo or if N = n with (¢ 0 o)/ (0) = 0,
and as —oo if N = n with (¥ o0 5)'(0) # 0.

In particular, Ric, is bounded below only if (1 o o)’ = 0 along any o. In terms of
Ricy, one can show the following Bishop—Gromov-type volume comparison theorem.
(Indeed, we can reduce it to the Riemannian setting by using the gradient vector field
of the distance function from the center x.) We state only the non-negatively curved
case.
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Theorem 3.3 [10, Theorem 7.3] Let (M, F, 1) be a complete n-dimensional Finsler
manifold with non-negative N-Ricci curvature. Then we have

N

Moreover, if equality holds with N = n forallx € M and0 < r < R, then any Jacobi
field J along a geodesic o has the form J(t) = t P(t), where P is a parallel vector
field along o (i.e., D P = 0).

We will actually need only the most restrictive case of N = n.

3.2 Caffarelli-Kohn—Nirenberg inequality on Minkowski spaces

Let (M, F) be a Finsler manifold and u € Lipy(M). Note that the local Lipschitz
constant of u is given by |Du|(x) = F*(x, Du(x)) for a.e. x € M. Therefore, due
to density reasons, the Caffarelli-Kohn—Nirenberg inequality (CKN))((:0 in the Finsler
context takes the more familiar form

1

2

|u(x)” ' . )
[ e dneo | = ([ re oy auco
M M

forallu € C§°(M). We first prove that the sharp Caffarelli-Kohn—Nirenberg inequal-
ity (i.e., with C = K, from (1.1)) holds on an arbitrary Minkowski space (R”, F)
endowed with the Lebesgue measure ©r normalized so that ur(B(0, 1)) = w,.

Let us first recall two inequalities on (R”, F, it r). Given a measurable set 2 C R”,
let us denote by Q* the anisotropic symmetrization of , i.e., it is the open ball with
center 0 such that up (2*) = up(2). Forafunctionu : R" — R, u*(x) := sup{c €
R : x € {u > c}*} is the anisotropic (decreasing) symmetrization of u, where
{u>c}={x eR":u(x) > c}. Due to Alvino, Ferone, Lions and Trombetti [1] and
Van Schaftingen [18], one has

e anisotropic Polya—Szegd inequality:

/F*(Du*(x))2 dpp(x) S/F*(Du(x))zd,up(x) for all u € CJ°(R")4;
R» R~

e anisotropic Hardy-Littlewood inequality: if p > 1 and a € [0, 1], then we have

(x)? *(x)P -
| T 0 = [ S dnr o) foralu € G R,

R R~

where C°(R") 4 := {u € CP(R") : u > 0}.
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Proposition 3.4 Let (R", F) be a Minkowski space withn > 3, xog € R", a € [0, 1),
and p = 2n/(n — 2+ 2a). Then the sharp Caffarelli-Kohn—Nirenberg inequality
(CKN)),C?G holds on (R"*, F, ). Moreover; the constant K, is optimal and a family
of extremals is given by

—n

1 (x) = (A FF(x —x0)% “P)2 T A0

Proof Recall that dr (xg, x) = F(x — xo). Without loss of generality, we may assume
that xo = 0. Let us consider the constant

1/2
o (fgn F*(Du(x)?dpr ()"
T ueCEENO) (fo ([P F ()P dpp ()P
We shall claim that C, = K ! Due to the reversibility of F, it is enough to consider

non-negative functions in the above expression. By the anisotropic P6lya—Szegd and
Hardy-Littlewood inequalities we have

N F*(Dmx))zdw(x))”z
ueCe (R \{0} (fR u*(x)P F(x)=ap dMF(x))

We may assume that u* € C(l) (R™)+ (otherwise, a density argument applies). Then
there exists a non-increasing function 4 : [0, co) —> [0, 0o) of class C! such that
u*(x) = h(F(x)), and we have

F*(Du*(x)) = F*(h'(F(x))DF (x)) = —h'(F(x)) F*(DF (x)) = —h"(F (x)).

Therefore a simple calculation yields

(f F*z(Du*(x))d (x))l/2 2 n—1 172
R wr -1 (5T (00" dp)

:C{n

(Jien u* Q)P F) =P dpup (x)) /7 (Jo° h(pyp pn=1=av dp)''"

(3.3)

where o, = nw, denotes the area of the unit sphere in R”. On the other hand, fol-
lowing the approaches of Lieb [9] and Talenti [17] in the Euclidean case where the
standard Schwarz symmetrization is used, one can see that the minimizing expression
is precisely the RHS of (3.3). Therefore, we have C, = K ! which proves our claim.

2-n
Moreover, a class of minimizers hy, for (3.3) is h,(p) = (A + ,027“”) =) o> 0,
which can be obtained by the standard Euler-Lagrange method. O

Remark 3.5 After a slight modification, Proposition 3.4 remains valid also for only
positively homogeneous Minkowski norms (i.e., F(tv) = ¢t F(v) only for ¢ > 0). In
such a case, the anisotropic symmetrization is considered with respect to the backward
ball B_(0, 1) = {x € R" : F(—x) < 1}, and the level sets of the extremals have back-
ward Wulff-shapes, homothetic to B_(0, 1) (see Kristdly [8] and Van Shaftingen [18]).
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3.3 Proof of Theorems 1.3 and 1.4

Proof of Theorem 1.3 Since (M, F) is complete, by the Hopf—Rinow theorem it yields
that (M, dF, () is a proper metric measure space. On account of Theorem 3.3, (VD)’é0
holds with Cop = 1, while 4 is normalized so as to satisfy (AR)Y . On the one hand,
these properties imply that

uw(B(x, p)) < up@B,(p)) forall p >0, x € M.

On the other hand, by (CKN);‘?H , Theorem 1.1 gives the reverse inequality, thus equality
holds. By Theorem 3.3, it results that every Jacobi field J along any geodesic o has the
form J(t) = t P(t), where P is a parallel vector field along o. Then it follows from the
Jacobi equation (3.2) that RO (J,6)6 =0,sothat K(S; &) = 0withS = span{c, P}.
Due to the arbitrariness of ¢ and J, it turns out that the flag curvature of (M, F) is
identically zero. O

Proof of Theorem 1.4 On the one hand, since on every Berwald space Ric,, = Ric
holds for the Hausdorff measure i (see Shen [14, Propositions 2.6, 2.7]), we can
apply Theorem 1.3 to see that the flag curvature of (M, F) is identically zero. On
the other hand, every Berwald space with zero flag curvature is necessarily a locally
Minkowski space (see Bao et al. [3, Section 10.5]). Thanks to the volume identity
wr(B(x, p)) = ueB,(p)), (M, F) must be isometric to a Minkowski space. O

We conclude the paper by presenting an example of a non-Riemannian Berwald
space.

Example 3.6 We endow the space R"~! (n > 3) with a Riemannian metric g such that
(R"~!, ¢) is complete with non-negative Ricci curvature. For every ¢ > 0, consider
on R” = R"~! x R the metric F, : TR" — [0, 00) given by

Fe((x, 1), (v, w)) = \/gx(v, V) +w? +ey/ge (v, v)F +w!

for (x,1) € R, (v, w) € TyR"~! x T,R. We observe that (R", F;) is a non-compact,
complete, non-Riemannian Berwald space with non-negative Ricci curvature. Accord-
ing to Theorem 1.4 and Proposition 3.4, the following four statements are equivalent:

° (CKN));C(Oa holds on (R", F¢, iF,) for some element Xo = (xo, fo) € R";
° (CKN)’;‘(OH holds on (R", F¢, ur,) for every element Xo = (xo, o) € R";

g» is independent of x € R*~! (i.e., (R"!, g) is flat);
e (R", F;) is a Minkowski space.
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