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Abstract By using the Riemann-Finsler geometry, we study the existence and loca-
tion of the optimal points for a general cost function involving Finsler distances. Our
minimization problem provides a model for the placement of a deposit within a do-
main with several markets such that the total transportation cost is minimal. Several
concrete examples are studied either by precise mathematical tools or by evolutionary
(computer assisted) techniques.

Keywords General cost functions · Riemann-Finsler manifolds ·
Optimal deposit placements · Evolutionary techniques

1 Introduction and Motivation

Various practical problems in economics lead to minimization problems. Typical
cases occur when numerical data are adjusted by means of the least square method or
optimal (equilibrium) points are found for certain cost functions, etc.
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The purpose of the present paper is to treat a natural economical question: There
are n ∈ N markets and their coordinates are known. Find the possible places for those
deposits from which (resp. to which) the sum of certain transportation costs to (resp.
from) markets attains the minimum. Here, the costs depend on the distances between
the deposit and the given n markets.

At first glance, the problem looks very simple; however, serious technical prob-
lems may occur even in simple situations.1 To show this, let us consider three markets
P1,P2,P3 placed on an inclined plane (slope) with an angle α to the horizontal plane,
denoted by (Sα). Assume that three cars transport products from (resp. to) deposit
P ∈ (Sα) to (resp. from) markets P1,P2,P3 ∈ (Sα) such that:

• they move always in (Sα) along straight roads;
• the Earth gravity acts on them (we omit other physical perturbations such as fric-

tion, air resistance, etc.);
• the transport costs coincide with the distance (measuring actually the time elapsed

to arrive) from (resp. to) deposit P to (resp. from) markets Pi (i = 1,2,3).

We emphasize that usually the two distances, i.e., from the deposit to the markets and
conversely, are not the same. The point here is that the travel speed depends heavily on
both the slope of the terrain and the direction of travel. More precisely, if a car moves
with a constant speed v [m/s] on a horizontal plane, it goes lt = vt + g

2 t2 sinα cos θ

meters in t seconds on (Sα), where θ is the angle between the straight road and
the direct downhill road (θ is measured in clockwise direction). The law of the above
phenomenon can be described relatively to the horizontal plane by means of the para-
metrized function

Fα(y1, y2) = y2
1 + y2

2

v

√
y2

1 + y2
2 + g

2 y1 sinα

, (y1, y2) ∈ R
2 \ {(0,0)}. (1)

Here, g ≈ 9.81 m

s2 . The distance (measuring the time to arrive) from P = (P 1,P 2) to

Pi = (P 1
i , P 2

i ) is

dα(P,Pi) = Fα(P 1
i − P 1,P 2

i − P 2),

and for the converse it is

dα(Pi,P ) = Fα(P 1 − P 1
i , P 2 − P 2

i ).

Consequently, we have to minimize the functions

Cf (P ) =
3∑

i=1

dα(P,Pi) and Cb(P ) =
3∑

i=1

dα(Pi,P ), (2)

1A mathematical problem should be difficult in order to entice us, yet not completely inaccessible, lest it
mock at our efforts. It should be to us a guide post on the mazy paths to hidden truths, and ultimately a
reminder of our pleasures in the successful solution. (D. Hilbert)
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Fig. 1 We fix P1 = (−250,−50), P2 = (0,−100) and P3 = (−50,100) on the slope (Sα) with an-
gle α = 35◦ . If v = 10, the minimum of the total forward cost on the slope is Cf ≈ 40.3265; the
corresponding deposit is located at Tf ≈ (−226.11,−39.4995) ∈ (Sα). However, the minimum of
the total backward cost on the slope is Cb ≈ 38.4143; the corresponding deposit has the coordinates
Tb ≈ (−25.1332,−35.097) ∈ (Sα). Numerical data are provided by 2 000 iterations of search operators
involved in the genetic algorithm described in Sect. 2.3

when P moves on (Sα). The function Cf (resp. Cb) denotes the total forward (resp.
backward) cost between the deposit P ∈ (Sα) and markets P1,P2,P3 ∈ (Sα). The
minimum points of Cf and Cb , respectively, may be far from each other (see Fig. 1),
due to the fact that Fα (and dα) is not symmetric unless α = 0, i.e., Fα(−y1,−y2) �=
Fα(y1, y2) for each (y1, y2) ∈ R

2 \ {(0,0)}. We will use in general Tf (resp. Tb) to
denote a minimum point of Cf (resp. Cb), which corresponds to the position of a
deposit when we measure costs in forward (resp. backward) manner, see (2).

In the case α = 0 (when (Sα) is a horizontal plane), the functions Cf and Cb

coincide (the same is true for Tf and Tb). The minimum point T = Tf = Tb is
the well-known Torricelli point corresponding to the triangle P1P2P3�. Note that

F0(y1, y2) =
√

y2
1 + y2

2/v corresponds to the standard Euclidean metric; indeed,

d0(P,Pi) = d0(Pi,P ) =
√

(P 1
i − P 1)2 + (P 2

i − P 2)2/v

measures the time, which is needed to arrive from P to Pi (and vice-versa) with
constant velocity v. See Fig. 1.

Unfortunately, finding critical points as possible minima does not yield any result:
either the minimization function is not smooth enough (usually, it is only a locally
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Lipschitz function) or the system, which would give the critical points, becomes very
complicated even in quite simple cases (see (9) below). Consequently, the main pur-
pose of the present paper is to study the set of these minima (existence, location) in
various geometrical settings.

Note, that the function appearing in (1) is a typically Finsler metric on R
2, intro-

duced and studied first by Matsumoto in [1]; see also [2]. In this way, elements from
Riemann-Finsler geometry are needed in order to handle the question formulated
above. Thus, in the first part of Sect. 2, we recall some basic notions from Riemann-
Finsler geometry and we formulate the main question of this paper in its full gener-
ality. Then, some facts on the evolutionary approach (genetic algorithm) are recalled,
which are extremely useful for numerical calculations; by using this technique, we are
able to localize/approximate the global minima of the total cost functions. In Sect. 3,
we prove some existence, uniqueness and multiplicity results. Relevant numerical
(counter)examples are constructed by means of evolutionary methods and computa-
tional geometry tools, emphasizing the applicability and sharpness of our results.

2 Formulation of the Main Problem. Mathematical and Evolutionary
Approach

In this section, we recall briefly basic notions and results from Riemann-Finsler
geometry and evolutionary approach, which will be used in the sequel. In Sect. 2.2,
we give the precise formulation of the main problem.

2.1 Elements from Riemann-Finsler Geometry

Let M be a connected m-dimensional C∞ manifold and let T M = ⋃
p∈M TpM be its

tangent bundle. If the continuous function F : T M → [0,∞) satisfies the conditions
that it is C∞ on T M \ {0}; F(tu) = tF (u) for all t ≥ 0 and u ∈ T M , i.e., F is posi-
tively homogeneous of degree one; and the matrix gij (u) := ( 1

2F 2)yiyj (u) is positive
definite for all u ∈ T M \ {0}, then we say that (M,F) is a Finsler manifold.

Let γ : [0, r] → M be a piecewise C∞ curve. Its integral length is defined as

L(γ ) =
∫ r

0
F(γ (t), γ̇ (t)) dt.

For x0, x1 ∈ M , denote by �(x0, x1) the set of all piecewise C∞ curves γ : [0, r] →
M such that γ (0) = x0 and γ (r) = x1. Define a map dF : M × M → [0,∞) by

dF (x0, x1) = inf
γ∈�(x0,x1)

L(γ ). (3)

Of course, we have

dF (x0, x1) ≥ 0,

where equality holds if and only if x0 = x1, and

dF (x0, x2) ≤ dF (x0, x1) + dF (x1, x2),
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the so-called triangle inequality. In general, since F is only a positive homogeneous
function, dF (x0, x1) �= dF (x1, x0); therefore, (M,dF ) is only a nonreversible metric
space.

Let π∗T M be the pull-back of the tangent bundle T M by π : T M \ {0} → M .
Unlike the Levi-Civita connection in Riemann geometry, there is no unique natural
connection in the Finsler case. Among these connections on π∗T M , we choose the
Chern connection whose coefficients are denoted by �k

ij ; see p. 38 in [2]. This con-
nection induces the curvature tensor, denoted by R; see Chap. 3 in [2].

A C∞ curve σ : [0,1] → M is said to be a constant Finslerian speed geodesic if

d2σ i

dt2
+ dσ j

dt

dσ k

dt
(�i

jk)(σ,T ) = 0, i = 1, . . . ,m = dimM, (4)

where T denotes the velocity field associated with σ . A Finsler manifold (M,F) is
said to be geodesically complete if every geodesic σ : [0,1] → M parameterized to
have constant Finslerian speed, can be extended to a geodesic defined on (−∞,∞).

A set M0 ⊆ M is forward bounded if there exist p ∈ M and r > 0 such that M0 ⊆
{x ∈ M : dF (p,x) < r}. Similarly, M0 ⊆ M is backward bounded if there exist p ∈
M and r > 0 such that M0 ⊆ {x ∈ M : dF (x,p) < r}.

Let (x, y) ∈ T M \0 and let V be a section of the pulled-back bundle π∗T M . Then,

K(y,V ) = g(x,y)(R(V,y)y,V )

g(x,y)(y, y)g(x,y)(V ,V ) − [g(x,y)(y,V )]2
(5)

is the flag curvature with flag y and transverse edge V . Here,

g(x,y) := gij (x,y)dxi ⊗ dxj :=
(

1

2
F 2

)

yiyj

dxi ⊗ dxj

is the Riemannian metric on the pulled-back bundle π∗T M ; see p. 68 in [2].
When F is Riemannian, then the flag curvature coincides with the sectional cur-
vature. Let K be the collection of flag curvatures {K(V,W) : 0 �= V,W ∈ TxM,

x ∈ M;V and W are not collinear}. We say that the flag curvature of (M,F) is non-
positive if K ≤ 0.

A Finsler manifold is of Berwald type if the Chern connection coefficients �k
ij in

natural coordinates depend only on the base point. Special Berwald spaces are the
(locally) Minkowski spaces and the Riemann manifolds. In the latter case, the Chern
connection coefficients �k

ij coincide the Christofel symbols.

2.2 Formulation of the Main Problem

Let (M,F) be a connected Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one and let dF be from (3). Consider the points
Pi ∈ M, i = 1, . . . , n, corresponding to the markets. We are looking for the set of
minima of the cost functions Cf (Pi, n, s),Cb(Pi, n, s) : M → [0,∞), corresponding
to the place of the deposit(s), defined by

Cf (Pi, n, s)(P ) =
n∑

i=1

ds
F (P,Pi) and Cb(Pi, n, s)(P ) =

n∑
i=1

ds
F (Pi,P ),
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where s ≥ 1. The value Cf (Pi, n, s)(P ) (resp. Cb(Pi, n, s)(P )) denotes the total s-
forward (resp. s-backward) cost between the deposit P ∈ M and the markets Pi ∈ M ,
i = 1, . . . , n. When s = 1, we simply say total forward (resp. backward) cost.

2.3 Evolutionary Approach

Evolutionary techniques are useful and efficient in case of such optimization prob-
lems, when the search space is large, complex, or traditional search and numerical
methods fail. They are based on the principles of evolution via natural selection,
employing a population of individuals that undergoes selection in the presence of
variation-inducing operators such as mutation and recombination. In the present case,
we are interested in finding solutions for the following optimization problems:

minCf (Pi, n, s)(p), s.t. p ∈ M, (6)

minCb(Pi, n, s)(p), s.t. p ∈ M. (6′)

Equilibrium points and their orbits presented in all figures of the present paper are
generated by a simple genetic algorithm. In the sequel, we give a short description of
the elements and search operators involved in this evolutionary technique.

2.3.1 Evolutionary Representation

A search process starts with a randomly generated initial population P̃0 containing
the individuals p1,p2, . . . , pk ∈ M . Each individual is determined by genes, i.e., by
coordinates of points pi , and each of them has a fitness value. In the case of the cost
function Cf (Pi, n, s) (resp. Cb(Pi, n, s)), the fitness of an individual pi ∈ P̃l , l ≥ 0 ,
is given by

eval(pi) = −Cf (Pi, n, s)(pi) (resp. eval (pi) = −Cb(Pi, n, s)(pi)).

If eval(pi) > eval(pj ) (i �= j , i, j ∈ {1,2, . . . , k}), the individual pi is considered
better than the individual pj .

2.3.2 Search Operators

Selection and mutation operators are presented below. During the evolution process,
recombination (crossover) is not used. If someone is looking for solutions of opti-
mization problems (6) in a Finsler manifold in which the parametric form of geo-
desics is unknown, then the genetic representation of individuals can be changed by
using some type of curve interpolation or approximation method (e.g., by control
polygons and knot vectors which determine cubic splines or cubic nonuniform ratio-
nal B-splines, see [3]); in this case, one can define also a recombination operator, e.g.,
switching the parts of control polygons of two individuals selected at random.
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2.3.3 Selection

Tournament selection was used for determining the individuals of the next genera-
tions. This operator runs a “tournament” among a few individuals chosen at random
from the actual population P̃l , l ≥ 0, and selects the winner (the one with the best
fitness) for mutation. Repeating the selection process k times, one gets a new and
potentially better generation P̃l+1 than population P̃l .

2.3.4 Mutation

Mutation is done by perturbing the coordinates of a randomly selected individual
pi ∈ P̃l , i ∈ {1,2, . . . , k} , l ≥ 0 such that pi ∈ M . Mutation occurs during evolution
according to a user-definable mutation probability pmut ∈ (0,1].

3 Results and Examples

In this section we prove some mathematical results concerning the set of minima for
functions Cf (Pi, n, s) and Cb(Pi, n, s).

Let (M,F) be an m-dimensional connected Finsler manifold, where F is posi-
tively (but perhaps not absolutely) homogeneous of degree one. By using the triangle
inequality, for every x0, x1, x2 ∈ M we have

|dF (x1, x0) − dF (x2, x0)| ≤ max{dF (x1, x2), dF (x2, x1)}. (7)

Given any point P ∈ M , there exists a coordinate map ϕP defined on the closure of
some precompact open subset U containing P such that ϕP maps the set U diffeo-
morphically onto the open Euclidean ball Bm(r), r > 0, with ϕP (P ) = 0Rm . More-
over, there is a constant c > 1, depending on only P and U such that

c−1‖ϕP (x1) − ϕP (x2)‖ ≤ dF (x1, x2) ≤ c‖ϕP (x1) − ϕP (x2)‖, (8)

for every x1, x2 ∈ U ; see p. 149 in [2]. Here, ‖ · ‖ denotes the Euclidean norm on R
m.

We claim that for every Q ∈ M , the function dF (ϕ−1
P (·),Q) is a Lipschitz function

on ϕP (U) = Bm(r). Indeed, for every yi = ϕP (xi) ∈ ϕP (U), i = 1,2, due to (7) and
(8), one has

|dF (ϕ−1
P (y1),Q) − dF (ϕ−1

P (y2),Q)| = |dF (x1,Q) − dF (x2,Q)|
≤ max{dF (x1, x2), dF (x2, x1)} ≤ c‖y1 − y2‖.

Consequently, for every Q ∈ M , there exists a generalized gradient of the (locally)
Lipschitz function dF (ϕ−1

P (·),Q) on ϕP (U) = Bm(r), see p. 27 in [4]; i.e., for every
y ∈ ϕP (U) = Bm(r), we have

∂dF (ϕ−1
P (·),Q)(y) = {ξ ∈ R

m : d0
F (ϕ−1

P (·),Q)(y;h) ≥ 〈ξ,h〉 for all h ∈ R
m},
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where 〈·, ·〉 denotes the standard inner product on R
m and

d0
F (ϕ−1

P (·),Q)(y;h) = lim sup
z→y, t→0+

dF (ϕ−1
P (z + th),Q) − dF (ϕ−1

P (z),Q)

t
.

Theorem 3.1 (Necessary Condition) Assume that Tf ∈ M is a minimum point for
Cf (Pi, n, s) and that ϕTf

is a map as above. Then,

0Rm ∈
n∑

i=1

ds−1
F (Tf ,Pi)∂dF (ϕ−1

Tf
(·),Pi)(ϕTf

(Tf )). (9)

Proof Since Tf ∈ M is a minimum point of the locally Lipschitz function
Cf (Pi, n, s), then

0Rm ∈ ∂

(
n∑

i=1

ds
F (ϕ−1

Tf
(·),Pi)

)
(ϕTf

(Tf ));

see Proposition 2.3.2 in [4]. Now, using the basic properties of the generalized gradi-
ent, see Proposition 2.3.3 and Theorem 2.3.10 in [4], we conclude the proof. �

Remark 3.1 A result similar to Theorem 3.1 can also be obtained for Cb(Pi, n, s).

Example 3.1 Let M = R
m, m ≥ 2, be endowed with the natural Euclidean metric.

Taking into account (9), a simple computation shows that the unique minimum point
Tf = Tb (i.e., the place of the deposit) for Cf (Pi, n,2) = Cb(Pi, n,2) is the centre of
gravity of markets {P1, . . . ,Pn}, i.e., 1

n

∑n
i=1 Pi . In this case, ϕTf

can be the identity
map on R

m.

Remark 3.2 The system (9) may become very complicated even for simple cases; it
is enough to consider the Matsumoto metric given by (1). In such cases, we are not
able to give an explicit formula for minimal points. This observation leads us to a
theoretical study of problem (6).

The next result gives an alternative concerning the number of minimum points of
the function Cf (Pi, n, s) in a general geometrical framework. (Similar result can be
obtained for Cb(Pi, n, s).) Namely, we have the following theorem.

Theorem 3.2 Let (M,F) be a simply connected, geodesically complete Berwald
manifold of nonpositive flag curvature, where F is positively (but perhaps not
absolutely) homogeneous of degree one. Then:

(a) there exists either a unique or infinitely many minimum points for Cf (Pi, n,1);
(b) there exists a unique minimum point for Cf (Pi, n, s) whenever s > 1.

Proof First of all, we observe that M is not a backward bounded set. Indeed, if we
assume that it is, then M is compact due to Hopf-Rinow theorem, see p. 172 and
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p. 168 in [2]. On the other hand, due to the Cartan-Hadamard theorem, see p. 238
in [2], the exponential map expp : TpM → M is a diffeomorphism for every p ∈ M .
Thus, the tangent space TpM = exp−1

p (M) is compact, a contradiction. Since M is
not backward bounded, in particular, for every i = 1, . . . , n, we have that

sup
P∈M

dF (P,Pi) = ∞.

Consequently, outside of a large backward bounded subset of M , denoted by M0,
the value of Cf (Pi, n, s) is large. But, M0 being compact, the continuous function
Cf (Pi, n, s) attains its infimum, i.e., the set of the minima for Cf (Pi, n, s) is always
nonempty.

In [5], the authors prove that, under the above hypotheses, the (nonreversible)
metric space (M,dF ) is a Busemann NPC space; i.e., in small geodesic triangles, the
Finslerian-length of a side is at least twice the geodesic distance of the midpoints
of the other two sides. Due to Corollary 2.2.4 in [6], (M,dF ) is a global Busemann
NPC space (i.e., the above property is valid for arbitrarily geodesic triangle). Con-
sequently, for every nonconstant geodesic σ : [0,1] → M and p ∈ M , the function
t �→ dF (σ (t),p) is convex (see Corollary 2.2.2 in [6]) and t �→ ds

F (σ (t),p) is strictly
convex, whenever s > 1 (see Corollary 2.2.6 in [6]).

(a) Let us assume that there are at least two minimum points for Cf (Pi, n,1), denot-
ing them by T 0

f and T 1
f . Let σ : [0,1] → M be a geodesic with constant Finslerian

speed such that σ(0) = T 0
f and σ(1) = T 1

f . Then, for every t ∈ (0,1), we have

Cf (Pi, n,1)(σ (t)) =
n∑

i=1

dF (σ (t),Pi)

≤ (1 − t)

n∑
i=1

dF (σ (0),Pi) + t

n∑
i=1

dF (σ (1),Pi)

= (1 − t)minCf (Pi, n,1) + t minCf (Pi, n,1)

= minCf (Pi, n,1). (10)

Consequently, for every t ∈ [0,1], σ(t) ∈ M is a minimum point for Cf (Pi, n,1).
(b) It follows directly from the strict convexity of the function t �→ ds

F (σ (t),p),
when s > 1; indeed, in (10) we have < instead of ≤ which shows that we cannot
have more then one minimum point for Cf (Pi, n,1).

�

Example 3.2 Let F be the Finsler metric introduced in (1). One can see that (R2,F )

is a typically nonsymmetric Finsler manifold. Actually, it is a (locally) Minkowski
space, so a Berwald space as well; its Chern connection vanishes, see p. 384 in [2].
According to (4) and (5), the geodesics are straight lines (hence (R2,F ) is geo-
desically complete) and the flag curvature is identically 0. Thus, we can apply
Theorem 3.2. For instance, if we consider the points P1 = (a,−b) ∈ R

2 and
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Fig. 2 A hexagon with vertices P1,P2, . . . ,P6 in the Matsumoto space. Increasing the slope’s angle α

from 0 to π/2, points T α
f

and T α
b

are wandering in the presented directions. Orbits of points T α
f

and T α
b

were generated by natural cubic spline curve interpolation

P2 = (a, b) ∈ R
2 with b �= 0, the minimum points of the function Cf (Pi,2,1)

form the segment [P1,P2], independently of the value of α. The same is true for
Cb(Pi,2,1). However, considering more complicated constellations, the situation
changes dramatically, see Fig. 2. It would be interesting to study in similar cases the
precise orbit of the (Torricelli) points T α

f and T α
b when α varies from 0 to π/2. Sev-

eral numerical experiments show that T α
f tends to a top point of the convex polygon

(as in the Fig. 2).

In the sequel, we want to study our problem in a special constellation: we assume
the markets are situated on a common “straight line”, i.e., on a geodesic which is in a
Riemann manifold. Note that, in the Riemannian context, the forward and backward
costs coincide, i.e.,

Cf (Pi, n,1) = Cb(Pi, n,1).

We denote this common value by C(Pi, n,1). We have the following theorem.

Theorem 3.3 Let (M,g) be a simply connected, complete Riemann manifold of non-
positive sectional curvature. Assume the points Pi ∈ M , i = 1, . . . , n, (n ≥ 2), belong
to a geodesic σ : [0,1] → M such that Pi = σ(ti) with 0 ≤ t1 < · · · < tn ≤ 1. Then:
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(a) the unique minimum point for C(Pi, n,1) is P[n/2] whenever n is odd;
(b) the minimum points for C(Pi, n,1) are situated on σ , between Pn/2 and Pn/2+1

whenever n is even.

In order to prove Theorem 3.3, we recall a well-known result from Riemann geome-
try.

Lemma 3.1 ([7], Lemma 3.1) Let (M,g) be a simply connected, complete Rie-
mann manifold of nonpositive sectional curvature. Consider the geodesic triangle
determined by vertices a, b, c ∈ M . If ĉ is the angle belonging to vertex c and if
A = dg(b, c), B = dg(a, c), C = dg(a, b), then

A2 + B2 − 2AB cos ĉ ≤ C2,

where dg denotes the Riemannian metric induced by F = g.

Proof of Theorem 3.3 Since (M,g) is complete, we extend σ to (−∞,∞), keeping
the same notation. First, we prove that the minimum point(s) for C(Pi, n,1) belong
to the geodesic σ . We assume the contrary, i.e., let T ∈ M \ Image(σ ) be a minimum
point of C(Pi, n,1). Let T⊥ ∈ Image(σ ) be the projection of T on the geodesic σ ,
i.e.

dg(T ,T⊥) = min
t∈R

dg(T ,σ (t)).

It is clear that the (unique) geodesic lying between T and T⊥ is perpendicular to σ .
Now, let i0 ∈ {1, . . . , n} such that Pi0 �= T⊥. Applying Lemma 3.1 to the triangle with
vertices Pi0 , T and T⊥ (so, T̂⊥ = π/2), we have

d2
g(T⊥, T ) + d2

g(T⊥,Pi0) ≤ d2
g(T ,Pi0).

Since

dg(T⊥, T ) > 0,

we have

dg(T⊥,Pi0) < dg(T ,Pi0).

Consequently,

C(Pi, n,1)(T⊥) =
n∑

i=1

dg(T⊥,Pi) <

n∑
i=1

dg(P,Pi) = minC(Pi, n,1),

a contradiction.
Now, conclusions (a) and (b) follow easily by using simple arithmetical rea-

sons. �

Theorem 3.3 is sharp in the following sense: neither the nonpositivity of the sec-
tional curvature (see Example 3.3) nor the Riemannian structure (see Example 3.4)
can be omitted.
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Example 3.3 (Sphere) Let us consider the 2-dimensional unit sphere S2 ⊂ R
3 en-

dowed with its natural Riemannian metric g0 inherited by R
3. We know that it has

constant curvature 1. Let us fix P1,P2 ∈ S2 (P1 �= P2) and their antipodals P3 = −P1,
P4 = −P2. There exists a unique great circle (geodesic) connecting Pi , i = 1, . . . ,4.
However, we observe that the function C(Pi,4,1) is constant on S2; its value is 2π .
Consequently, every point on S2 is a minimum for the function C(Pi,4,1).

Example 3.4 (Finslerian Poincaré disc) Let us consider the disc

M = {(x, y) ∈ R
2 : x2 + y2 < 4}.

Introducing the polar coordinates (r, θ) on M , i.e., x = r cos θ , y = r sin θ , we define
a Finsler metric

F((r, θ),V ) = 1

1 − r2

4

√
p2 + r2q2 + pr

1 − r4

16

,

where

V = p
∂

∂r
+ q

∂

∂θ
∈ T(r,θ)M.

(M,F) is a special (nonsymmetric) Finsler manifold, a so-called Randers space; see
Sect. 12.6 in [2]:

• it has constant negative flag curvature − 1
4 ;

• the geodesics in (M,F) have the following trajectories: Euclidean circular arcs that
intersect the boundary of M at Euclidean right angles; Euclidean straight rays that
emanate from the origin; and Euclidean straight rays that aim toward the origin.

Although (M,F) is forward geodesically complete (i.e., every geodesic σ :
[0,1] → M can be extended to [0,∞)), it has constant negative flag curvature − 1

4
and it is contractible (thus, simply connected), the conclusion of Theorem 3.3 may be
false. Indeed, one can find points in M (belonging to the same geodesic) such that the
minimum point for the total forward (resp. backward) cost function is not situated on
the geodesic, see Fig. 3.

Note that this example (Finslerian Poincaré disc) may give a model of a gravita-
tional field whose centre of gravity is located at the origin O, while the boundary
∂M means the “infinity”. Suppose that in this gravitational field, we have several
spaceships, which are delivering some cargo to certain bases or to another space-
craft. Also, assume that these spaceships are of the same type and they consume k

liter/second fuel (k > 0). Note that the expression F(dσ) denotes the physical time
elapsed to traverse a short portion dσ of the spaceship orbit. Consequently, travers-
ing a short path dσ , a spaceship consumes kF (dσ) liter of fuel. In this way, the
number k

∫ 1
0 F(σ(t), dσ (t))dt expresses the quantity of fuel used up by a spaceship

traversing an orbit σ : [0,1] → M .
Suppose that two spaceships have to meet each other (for logistical reasons) start-

ing their trip from bases P1 and P2, respectively. Consuming as low total quantity
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Fig. 3 First, the search space is limited to the geodesic determined by P1(1.6,170◦) and P2(1.3,250◦).
After 2 000 iterations of the presented genetic algorithm, the point which minimizes the total backward
(resp. forward) cost function Cb(Pi ,2,1) (resp. Cf (Pi ,2,1)) is approximated by Pb(0.8541,212.2545◦)

(resp. Pf = P1); in this case Cb(Pi ,2,1)(Pb) ≈ 1.26 (resp. Cf (Pi ,2,1)(Pf ) ≈ 2.32507). However, if
the search space is the whole Randers space M , after 2 000 iterations of search operators, the mini-
mum point of total backward (resp. forward) cost function is approximated by Tb(0.4472,212.5589◦)

(resp. Tf (1.9999,171.5237◦)), which gives Cb(Pi ,2,1)(Tb) ≈ 0.950825 < Cb(Pi ,2,1)(Pb) (resp.
Cf (Pi ,2,1)(Tf ) ≈ 2.32079 < Cf (Pi ,2,1)(Pf ))

of fuel as possible, they will choose Tb as a meeting point and not Pb on the geo-
desic determined by P1 and P2. Thus, the point Tb could be a position for an optimal
deposit-base.

Now, suppose that we have two damaged spacecraft (e.g., without fuel) at positions
P1 and P2. Two rescue spaceships consuming as low total quantity of fuel as possible,
will blastoff from base Tf and not from Pf = P1 on the geodesic determined by P1

and P2. In this case, the point Tf is the position for an optimal rescue-base. If the
spaceships in trouble are close to the center of the gravitational field M , then any
rescue-base located closely also to the center O, implies the consumption of a great
amount of energy (fuel) by the rescue spaceships in order to reach their destinations
(namely, P1 and P2). Indeed, they have to overcome the strong gravitational force
near the centre O. Consequently, this is the reason why the point Tf is so far from O ,
as Fig. 3 shows. Note that further numerical experiments support this observation.
However, there are certain special cases when the position of the optimal rescue-
base is either P1 or P2: from these two points, the farthest one from the gravitational
center O will be the position of the rescue-base. In such case, the orbit of the (single)
rescue spaceship is exactly the geodesic determined by points P1 and P2.
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4 Final Remarks

(i) In a forthcoming paper, we plan to develop mathematical tools and evolutionary
techniques to prove the existence and location of minimum points of the func-
tions Cf (Pi, n, s) and Cb(Pi, n, s) subjected to certain constraints represented
as fixed subsets/submanifolds of the initial Finsler manifold (M,F). A useful
starting point for this study can be found in [8–10], where the authors formulated
some nonlinear programming problems in the language of differential geometry,
imposing the constraint set as a finite-dimensional differentiable manifold M .
Moreover, as one can see, the proof of Theorem 3.2 is based on the convex-
ity of certain functions, exploiting the nonpositivity of the flag curvature of the
Berwald (in particular, locally Minkowski or Riemann) manifold. We think that
new kind of results could be obtained (even for problems with constraints) by
using more general convexity notions, as introduced in [11].

(ii) We intend to improve the genetic algorithm presented in Sect. 2.3 for Finsler
manifolds in which the parametric form of the geodesics is unknown, i.e., we
wish to propose a multimodal evolutionary technique based on curve interpola-
tion or approximation methods, which is able to detect the unknown geodesics
in such Finsler manifolds.

(iii) An important problem in fluid mechanics is the Monge-Kantorovich mass trans-
fer (shortly, MKMT) problem. In [12], the authors considered the MKMT
problem on metric spaces with possibly unbounded cost functions. We believe
strongly that our approach/results can be successfully applied to MKMT prob-
lems when the phenomenon occurs in a (not necessarily symmetric) Finsler
medium.
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