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Abstract

We study the multiplicity of nonnegative solutions to the problem,

−�u = λa(x)up + f (u) in Ω, u = 0 on ∂Ω, (Pλ)

where Ω is a smooth bounded domain in R
N , f : [0,∞) → R oscillates near the origin or at infinity, and p > 0, λ ∈ R. While

oscillatory right-hand sides usually produce infinitely many distinct solutions, an additional term involving up may alter the situa-
tion radically. Via a direct variational argument we fully describe this phenomenon, showing that the number of distinct non-trivial
solutions to problem (Pλ) is strongly influenced by up and depends on λ whenever one of the following two cases holds:

• p � 1 and f oscillates near the origin;
• p � 1 and f oscillates at infinity (p may be critical or even supercritical).

The coefficient a ∈ L∞(Ω) is allowed to change its sign, while its size is relevant only for the threshold value p = 1 when the
behaviour of f (s)/s plays a crucial role in both cases. Various H 1

0 - and L∞-norm estimates of solutions are also given.
© 2010 Elsevier Masson SAS. All rights reserved.

Résumé

On étudie la multiplicité des solutions non négatives du problème,

−�u = λa(x)up + f (u) dans Ω, u = 0 sur ∂Ω, (Pλ)

où Ω est un domaine borné et régulier de R
N , f : [0,∞) → R est une fonction oscillante au voisinage de l’origine ou à l’infini,

et p > 0, λ ∈ R. Tant que les terms non linéaires oscillants produisent d’habitude une infinité de solutions distinctes, le terme
supplémentaire up altére radicalement la situation. Par une méthode variationelle directe, nous décrivons complètement cette
situation et nous montrons que le nombre des solutions non trivialles et distinctes du problème (Pλ) est influencé par le terme up , si

• p � 1 et f est oscillatoire au voisinage de l’origine ; ou
• p � 1 et f est oscillatoire à l’infini (p peut être critique ou surcritique).
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La grandeur du coefficient a ∈ L∞(Ω) est essentielle seulement dans le cas p = 1, tandis que le comportement du f (s)/s et aussi
important dans les deux cas considerés. Cette méthode permet d’obtenir quelques estimations des solutions dans H 1

0 et L∞.
© 2010 Elsevier Masson SAS. All rights reserved.
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1. Introduction and main results

This paper deals with the problem: {−�u = λa(x)up + f (u) in Ω,

u � 0, u �≡ 0 in Ω,

u = 0 on ∂Ω,

(Pλ)

where Ω ⊂ R
N (N � 3) is a smooth bounded domain with boundary ∂Ω , a ∈ L∞(Ω), f : [0,∞) → R is a continuous

function, while p > 0 and λ ∈ R are some parameters. The purpose of this paper is to study the number and behaviour
of solutions to problem (Pλ), where f oscillates near the origin or at infinity. We premise a strong competition between
the term involving up and the oscillatory nonlinearity f .

Before starting our detailed analysis, we notice that competition phenomena for related problems have been widely
studied recently. For instance, Cârstea, Ghergu and Rădulescu [5] studied the combined effects of asymptotically
linear and singular nonlinearities of a Lane–Emden–Fowler type elliptic problem; Ambrosetti, Brézis and Cerami
[3], De Figueiredo, Gossez and Ubilla [6,7], considered the case of concave–convex nonlinearities in (Pλ). In the
latter cases (i.e., [3,6,7]), the sublinear term up and the superlinear term f (u) = uq compete with each other, where
0 � p < 1 < q � (N + 2)/(N − 2) = 2∗ − 1. As a consequence of this competition, problem (Pλ) has at least two
positive solutions for small λ > 0 and no positive solution for large λ. Since u 	→ −�u is a linear map, the above
statement is well reflected by the algebraic equation,

s = λsp + sq, s > 0. (Eλ
p,q )

Indeed, there exists a λ∗ > 0 such that for every λ ∈ (0, λ∗) equation (Eλ
p,q) has two solutions, (Eλ∗

p,q) has one solution,
and for λ > λ∗ equation (Eλ

p,q) has no solution.
Equations involving oscillatory terms usually give infinitely many distinct solutions, see Kristály, Moroşanu and

Tersian [8], Obersnel and Omari [10], Omari and Zanolin [11], Saint Raymond [12]. However, surprising facts may
occur even in simple cases; indeed, if p = 1 and we consider the oscillatory function f (s) = fμ(s) = μ sin s (μ ∈ R),
problem (Pλ) has only the trivial solution whenever (|λ| · ‖a‖L∞ +|μ|)λ1(Ω) < 1, where λ1(Ω) denotes the principal
eigenvalue of −� on H 1

0 (Ω), and ‖ · ‖L∞ is the L∞(Ω)-norm. Consequently, our first task is to identify some classes
of functions which have a suitable oscillatory behaviour and produce infinitely many distinct solutions for (Pλ). Then,
we investigate the influence of up on the oscillatory nonlinearities.

In the sequel, we state our main results, treating separately the two cases, i.e., when f oscillates near the origin, and
at infinity, respectively. The coefficient a ∈ L∞(Ω) is allowed to be indefinite (i.e., it may change its sign), suggested
by several recent works, including Alama and Tarantello [1,2], Berestycki, Cappuzzo Dolcetta and Nirenberg [4],
De Figueiredo, Gossez and Ubilla [6,7], Servadei [13].

1.1. Oscillation near the origin

Let f ∈ C([0,∞),R) and F(s) = ∫ s

0 f (t) dt , s � 0. We assume:

(f 0
1 ) −∞ < lim infs→0+ F(s)

s2 ; lim sups→0+ F(s)

s2 = +∞,

(f 0
2 ) l0 := lim infs→0+ f (s)

s
< 0.

Remark 1.1. Hypotheses (f 0
1 ) and (f 0

2 ) imply an oscillatory behaviour of f near the origin. Let α,β, γ ∈ R

be such that 0 < α < 1 < α + β , and γ ∈ (0,1). The function f0 : [0,∞) → R defined by f0(0) = 0 and
f0(s) = sα(γ + sin s−β), s > 0, verifies (f 0) and (f 0), respectively.
1 2



A. Kristály, G. Moroşanu / J. Math. Pures Appl. 94 (2010) 555–570 557
Theorem 1.1 (Case p � 1). Assume a ∈ L∞(Ω) and let f ∈ C([0,∞),R) satisfies (f 0
1 ) and (f 0

2 ). If

(a) either p = 1 and λa(x) < λ0 a.e. x ∈ Ω for some 0 < λ0 < −l0,
(b) or p > 1 and λ ∈ R is arbitrary,

then there exists a sequence {u0
i }i ⊂ H 1

0 (Ω) of distinct weak solutions of problem (Pλ) such that

lim
i→∞

∥∥u0
i

∥∥
H 1

0
= lim

i→∞
∥∥u0

i

∥∥
L∞ = 0. (1)

Remark 1.2.

(i) If l0 = −∞, then (a) holds for every λ ∈ R. For instance, this may happen for f0 from Remark 1.1.
(ii) Notice that p > 1 may be critical or even supercritical in Theorem 1.1(b). Having a suitable nonlinearity

oscillating near the origin, Theorem 1.1 roughly says that the term defined by s 	→ sp (s � 0) does not affect
the number of distinct solutions of (Pλ) whenever p > 1; this is also the case for certain values of λ ∈ R when
p = 1. A similar relation may be stated as before for both the equation (Eλ

p,q) and the elliptic problem involving
concave–convex nonlinearities. Namely, the thesis of Theorem 1.1 is nicely illustrated by the equation,

s = λsp + f0(s), s � 0, (E0)

where f0 is the function appearing in Remark 1.1. Since l0 = −∞, for every λ ∈ R and p � 1, equation (E0) has
infinitely many distinct positive solutions.

On the other hand, this phenomenon dramatically changes when p < 1. In this case, the term s 	→ sp (s � 0)

may compete with the function f0 near the origin such that the number of distinct solutions of (E0) becomes finite for
many values of λ; this fact happens when 0 < p < α (α is the number defined in Remark 1.1). However, the number of
distinct solutions to (E0) becomes greater and greater if |λ| gets smaller and smaller as a simple (graphical) argument
shows.

In the language of our Dirichlet problem (Pλ), the latter statement is perfectly described by the following result:

Theorem 1.2 (Case 0 < p < 1). Assume a ∈ L∞(Ω). Let f ∈ C([0,∞),R) satisfies (f 0
1 ) and (f 0

2 ), and
0 < p < 1. Then, for every k ∈ N, there exists λ0

k > 0 such that (Pλ) has at least k distinct weak solutions
{u0

1,λ, . . . , u
0
k,λ} ⊂ H 1

0 (Ω) whenever λ ∈ [−λ0
k, λ

0
k]. Moreover,∥∥u0

i,λ

∥∥
H 1

0
< i−1 and

∥∥u0
i,λ

∥∥
L∞ < i−1 for any i = 1, k; λ ∈ [−λ0

k, λ
0
k

]
. (2)

1.2. Oscillation at infinity

Let f ∈ C([0,∞),R). We assume:

(f ∞
1 ) −∞ < lim infs→∞ F(s)

s2 ; lim sups→∞
F(s)

s2 = +∞,

(f ∞
2 ) l∞ := lim infs→∞ f (s)

s
< 0.

Remark 1.3. Hypotheses (f ∞
1 ) and (f ∞

2 ) imply an oscillatory behaviour of f at infinity. Let α,β, γ ∈ R be such that
1 < α, |α − β| < 1, and γ ∈ (0,1). Then, the function f∞ : [0,∞) → R defined by f∞(s) = sα(γ + sin sβ) verifies
the hypotheses (f ∞

1 ) and (f ∞
2 ), respectively.

The counterpart of Theorem 1.1 can be stated as follows:

Theorem 1.3 (Case p � 1). Assume a ∈ L∞(Ω). Let f ∈ C([0,∞),R) satisfies (f ∞
1 ) and (f ∞

2 ) with f (0) = 0. If

(a) either p = 1 and λa(x) < λ∞ a.e. x ∈ Ω for some 0 < λ∞ < −l∞,
(b) or p < 1 and λ ∈ R is arbitrary,



558 A. Kristály, G. Moroşanu / J. Math. Pures Appl. 94 (2010) 555–570
then there exists a sequence {u∞
i }i ⊂ H 1

0 (Ω) of distinct, weak solutions of problem (Pλ) such that

lim
i→∞

∥∥u∞
i

∥∥
L∞ = ∞. (3)

Remark 1.4. If

sup
s∈[0,∞)

|f (s)|
1 + s2∗−1

< ∞, (4)

then we also have limi→∞ ‖u∞
i ‖H 1

0
= ∞ in Theorem 1.3. For details, see Section 4.

Remark 1.5. A similar observation can be made as in Remark 1.2. Indeed, when f oscillates at infinity, Theorem 1.3
shows that the term defined by s 	→ sp (s � 0) does not affect the number of distinct solutions of (Pλ) whenever
p < 1. This is also the case for certain values of λ ∈ R when p = 1. A similar phenomenon occurs in the equation,

s = λsp + f∞(s), s � 0, (E∞)

where f∞ is the function defined in Remark 1.3. Since l∞ = −∞, for every λ ∈ R and p � 1, equation (E∞) has
infinitely many distinct positive solutions.

On the other hand, when p > 1, the term s 	→ sp (s � 0) may dominate the function f∞ at infinity. In particular,
when α < p, the number of distinct solutions of (E∞) may become finite for many values of λ (here, α is the number
defined in Remark 1.3). The positive finding is that the number of distinct solutions for (E∞) increases whenever |λ|
decreases to zero.

In view of this observation, we obtain a natural counterpart of Theorem 1.2.

Theorem 1.4 (Case p > 1). Assume a ∈ L∞(Ω). Let f ∈ C([0,∞),R) satisfies (f ∞
1 ) and (f ∞

2 ) with f (0) = 0,
and p > 1. Then, for every k ∈ N, there exists λ∞

k > 0 such that (Pλ) has at least k distinct weak solutions
{u∞

1,λ, . . . , u
∞
k,λ} ⊂ H 1

0 (Ω) whenever λ ∈ [−λ∞
k , λ∞

k ]. Moreover,∥∥u∞
i,λ

∥∥
L∞ > i − 1 for any i = 1, k; λ ∈ [−λ∞

k , λ∞
k

]
. (5)

Remark 1.6. If f verifies (4) and p � 2∗ − 1 in Theorem 1.4, then∥∥u∞
i,λ

∥∥
H 1

0
> i − 1 for any i = 1, k; λ ∈ [−λ∞

k , λ∞
k

]
.

For details, see also Section 4.

We conclude this section by stating a result for a model problem which involves concave–convex nonlinearities
and an oscillatory term. We consider the problem:{−�u = λup + μuq + f (u), u � 0 on Ω,

u = 0 on ∂Ω,
(Pλ,μ)

where 0 < p < 1 < q , and λ,μ ∈ R. The following result proves that the number of solutions (Pλ,μ) is influenced

(a) by the sublinear term when f oscillates near the origin (with no effect of the superlinear term); and alternatively,
(b) by the superlinear term when f oscillates at infinity (with no effect of the sublinear term).

More precisely, applying Theorems 1.2 and 1.4, we have the:

Theorem 1.5. Let f ∈ C([0,∞),R) and 0 < p < 1 < q .

(a) If (f 0
1 ) and (f 0

2 ) hold, then for every k ∈ N and μ ∈ R, there exists λk,μ > 0 such that (Pλ,μ) has at least k distinct
weak solutions in H 1

0 (Ω) whenever λ ∈ [−λk,μ,λk,μ].
(b) If (f ∞

1 ) and (f ∞
2 ) hold with f (0) = 0, then for every k ∈ N and λ ∈ R, there exists μk,λ > 0 such that (Pλ,μ) has

at least k distinct weak solutions in H 1
0 (Ω) whenever μ ∈ [−μk,λ,μk,λ].
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2. An auxiliary result

In this section we consider the problem:{−�u + K(x)u = h(x,u), u � 0 in Ω,

u = 0 on ∂Ω,
(PK

h )

and assume that

(HK ) K ∈ L∞(Ω), essinfΩ K > 0,
(H1

h) h : Ω × [0,∞) → R is a Carathéodory function, h(x,0) = 0 for a.e. x ∈ Ω , and there is Mh > 0 such that
|h(x, s)| � Mh for a.e. x ∈ Ω and all s ∈ R,

(H2
h) there are 0 < δ < η such that h(x, s) � 0 for a.e. x ∈ Ω and all s ∈ [δ, η].

We extend the function h by h(x, s) = 0 for a.e. x ∈ Ω and s � 0. We introduce the energy functional
E : H 1

0 (Ω) → R associated with problem (PK
h ), defined by:

E (u) = 1

2
‖u‖2

H 1
0

+ 1

2

∫
Ω

K(x)u2 dx −
∫
Ω

H
(
x,u(x)

)
dx, u ∈ H 1

0 (Ω),

where H(x, s) = ∫ s

0 h(x, t) dt , s ∈ R. Due to hypothesis (H1
h), it is easy to see that E is well-defined. Moreover,

standard arguments show that E is of class C1 on H 1
0 (Ω).

Finally, considering the number η ∈ R from (H2
h), we introduce the set,

Wη = {
u ∈ H 1

0 (Ω): ‖u‖L∞ � η
}
.

Since h(x,0) = 0, then 0 is clearly a solution of (PK
h ). In the sequel, under some general assumptions, we guarantee

the existence of a (possible trivial) weak solution of (PK
h ) which is indispensable in our further investigations (see

Sections 3 and 4).

Theorem 2.1. Assume that (HK), (H1
h), (H2

h) hold. Then

(i) the functional E is bounded from below on Wη and its infimum is attained at some ũ ∈ Wη,
(ii) ũ(x) ∈ [0, δ] for a.e. x ∈ Ω ,

(iii) ũ is a weak solution of (PK
h ).

Proof. (i) Due to (H1
h) and by using Hölder’s and Poincaré’s inequalities, the functional E is bounded from below on

the whole space H 1
0 (Ω). In addition, one can easily see that E is sequentially weak lower semicontinuous and the set

Wη is convex and closed in H 1
0 (Ω), thus weakly closed. Combining these facts, there is an element ũ ∈ Wη which is

a minimum point of E over Wη.
(ii) Let A = {x ∈ Ω: ũ(x) /∈ [0, δ]} and suppose that m(A) > 0. Here and in the sequel, m(·) denotes the Lebesgue

measure. Define the function γ : R → R by γ (s) = min(s+, δ), where s+ = max(s,0). Now, set w = γ ◦ ũ. Since γ is
a Lipschitz function and γ (0) = 0, the theorem of Marcus–Mizel [9] shows that w ∈ H 1

0 (Ω). Moreover, 0 � w(x) � δ

for a.e. Ω . Consequently, w ∈ Wη.
We introduce the sets A1 = {x ∈ A: ũ(x) < 0} and A2 = {x ∈ A: ũ(x) > δ}. Thus, A = A1 ∪ A2, and we have that

w(x) = ũ(x) for all x ∈ Ω \ A, w(x) = 0 for all x ∈ A1, and w(x) = δ for all x ∈ A2. Moreover, we have:

E (w) − E (ũ) = 1

2

[‖w‖2
H 1

0
− ‖ũ‖2

H 1
0

] + 1

2

∫
Ω

K(x)
[
w2 − ũ2] −

∫
Ω

[
H(x,w) − H(x, ũ)

]

= −1

2

∫
A

|∇ũ|2 + 1

2

∫
A

K(x)
[
w2 − ũ2] −

∫
A

[
H(x,w) − H(x, ũ)

]
.

Since essinfΩK > 0, one has,
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∫
A

K(x)
[
w2 − ũ2] = −

∫
A1

K(x)ũ2 +
∫
A2

K(x)
[
δ2 − ũ2] � 0.

Due to the fact that h(x, s) = 0 for all s � 0, one has,∫
A1

[
H(x,w) − H(x, ũ)

] = 0.

By the mean value theorem, for a.e. x ∈ A2, there exists θ(x) ∈ [δ, ũ(x)] ⊆ [δ, η] such that

H
(
x,w(x)

) − H
(
x, ũ(x)

) = H(x, δ) − H
(
x, ũ(x)

) = h
(
x, θ(x)

)(
δ − ũ(x)

)
.

Thus, on account of (H2
h), one has, ∫

A2

[
H(x,w) − H(x, ũ)

]
� 0.

Consequently, every term of the expression E (w) − E (ũ) is non-positive. On the other hand, since w ∈ Wη, then
E (w) � E (ũ) = infWη E . So, every term in E (w) − E (ũ) should be zero. In particular,∫

A1

K(x)ũ2 =
∫
A2

K(x)
[
ũ2 − δ2] = 0.

Due to (HK), we necessarily have m(A) = 0, contradicting our assumption.
(iii) Let us fix v ∈ C∞

0 (Ω) and let ε0 = (η − δ)/(‖v‖C0 + 1) > 0. Define the function E : [−ε0, ε0] → R by
E(ε) = E (ũ + εv) with ε ∈ [−ε0, ε0]. Due to (ii), for every ε ∈ [−ε0, ε0], the element ũ + εv belongs to the set Wη.
Consequently, due to (i), one has E(ε) � E(0) for every ε ∈ [−ε0, ε0]. Since E is differentiable at 0 and E′(0) = 0 it
follows that 〈E ′(ũ), v〉 = 0. Since v ∈ C∞

0 (Ω) is arbitrary, and the set C∞
0 (Ω) is dense in H 1

0 (Ω), we obtain that ũ is
a weak solution of (PK

h ). �
We conclude this section by constructing a special function which will be useful in the proof of our theorems.

In the sequel, let B(x0, r) ⊂ Ω be the N -dimensional ball with radius r > 0 and center x0 ∈ Ω . For s > 0, define:

zs(x) =
⎧⎨
⎩

0, if x ∈ Ω \ B(x0, r),

s, if x ∈ B(x0, r/2),
2s
r
(r − |x − x0|), if x ∈ B(x0, r) \ B(x0, r/2).

(6)

It is clear that zs ∈ H 1
0 (Ω). Moreover, we have ‖zs‖L∞ = s, and

‖zs‖2
H 1

0
=

∫
Ω

|∇zs |2 = 4rN−2(1 − 2−N
)
ωNs2 ≡ C(r,N)s2 > 0, (7)

where ωN is the volume of B(0,1) ⊂ R
N .

Notation. For every η > 0, we define the truncation function τη : [0,∞) → R by τη(s) = min(η, s), s � 0.

3. Proofs of Theorems 1.1 and 1.2

Since the parts (a) and (b) of Theorem 1.1 will be treated simultaneously, we consider again the problem from the
previous section, {−�u + K(x)u = h(x,u), u � 0 in Ω,

u = 0 on ∂Ω,
(PK

h )

where the potential K :Ω → R fulfills (HK ). The function h :Ω × [0,∞) → R is Carathéodory, and we assume:
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(H0
0) h(x,0) = 0 for a.e. x ∈ Ω , and there exists s0 > 0 such that

sup
s∈[0,s0]

∣∣h(·, s)∣∣ ∈ L∞(Ω);

(H0
1) −∞ < lim infs→0+ H(x,s)

s2 and lim sups→0+ H(x,s)

s2 = +∞ uniformly for a.e. x ∈ Ω ; here,

H(x, s) = ∫ s

0 h(x, t) dt ;
(H0

2) there are two sequences {δi}, {ηi} with 0 < ηi+1 < δi < ηi , limi→∞ ηi = 0, and h(x, s) � 0 for a.e. x ∈ Ω and
for every s ∈ [δi, ηi], i ∈ N.

Theorem 3.1. Assume (HK), (H0
0), (H0

1) and (H0
2) hold. Then there exists a sequence {u0

i }i ⊂ H 1
0 (Ω) of distinct weak

solutions of problem (PK
h ) such that

lim
i→∞

∥∥u0
i

∥∥
H 1

0
= lim

i→∞
∥∥u0

i

∥∥
L∞ = 0. (8)

Proof. Without any loss of generality, we may assume that {δi}i , {ηi}i ⊂ (0, s0), where s0 > 0 comes from (H0
0).

For every i ∈ N, define the truncation function hi : Ω × [0,∞) → R by,

hi(x, s) = h
(
x, τηi

(s)
)
, (9)

and let Ei : H 1
0 (Ω) → R be the energy functional associated with the problem (PK

hi
). Let Hi(x, s) = ∫ s

0 hi(x, t) dt .

Due to hypotheses (H0
0) and (H0

2), the function hi verifies the assumptions of Theorem 2.1 for every i ∈ N with
[δi, ηi]. Consequently, for every i ∈ N, there exists u0

i ∈ Wηi such that

u0
i is the minimum point of the functional Ei on Wηi , (10)

u0
i (x) ∈ [0, δi] for a.e. x ∈ Ω, (11)

u0
i is a weak solution of

(
PK

hi

)
. (12)

Due to (9), (11) and (12), u0
i is a weak solution not only for (PK

hi
) but also for the problem (PK

h ).

Now, we prove that there are infinitely many distinct elements in the sequence {u0
i }i . To see this, we first prove that

Ei

(
u0

i

)
< 0 for all i ∈ N; (13)

lim
i→∞ Ei

(
u0

i

) = 0. (14)

The left part of (H0
1) implies the existence of some lh0 > 0 and ζ ∈ (0, η1) such that

essinfx∈ΩH(x, s) � −lh0 s2 for all s ∈ (0, ζ ). (15)

Let Lh
0 > 0 be large enough so that

1

2
C(r,N) +

(
1

2
‖K‖L∞ + lh0

)
m(Ω) < Lh

0(r/2)NωN, (16)

where r > 0 and C(r,N) > 0 come from (7). Taking into account the right part of (H0
1), there is a sequence

{s̃i}i ⊂ (0, ζ ) such that s̃i � δi and

essinfx∈ΩH(x, s̃i) > Lh
0 s̃2

i for all i ∈ N. (17)

Let i ∈ N be a fixed number and let zs̃i ∈ H 1
0 (Ω) be the function from (6) corresponding to the value s̃i > 0. Then

zs̃i ∈ Wηi , and on account of (7), (17) and (15), one has:
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Ei (zs̃i ) = 1

2
‖zs̃i ‖2

H 1
0

+ 1

2

∫
Ω

K(x)z2
s̃i

−
∫
Ω

Hi

(
x, zs̃i (x)

)
dx

= 1

2
C(r,N)s̃2

i + 1

2

∫
Ω

K(x)z2
s̃i

−
∫

B(x0,r/2)

H(x, s̃i ) dx −
∫

B(x0,r)\B(x0,r/2)

H
(
x, zs̃i (x)

)
dx

�
[

1

2
C(r,N) + 1

2
‖K‖L∞m(Ω) − Lh

0(r/2)NωN + lh0 m(Ω)

]
s̃2
i .

Consequently, using (10) and (16), we obtain that

Ei

(
u0

i

) = min
Wηi

Ei � Ei (zs̃i ) < 0 (18)

which proves in particular (13). Now, let us prove (14). For every i ∈ N, by using the mean value theorem, (9), (H0
0)

and (11), we have:

Ei

(
u0

i

)
� −

∫
Ω

Hi

(
x,u0

i (x)
)
dx � −

∥∥∥ sup
s∈[0,s0]

∣∣h(·, s)∣∣∥∥∥
L∞m(Ω)δi .

Due to limi→∞ δi = 0, the above inequality and (18) leads to (14).
On account of (9) and (11), we observe that

Ei

(
u0

i

) = E1
(
u0

i

)
for all i ∈ N.

Combining this relation with (13) and (14), we see that the sequence {u0
i }i contains infinitely many distinct elements.

It remains to prove relation (8). The former limit easily follows by (11), i.e. ‖u0
i ‖L∞ � δi for all i ∈ N, combined

with limi→∞ δi = 0. For the latter limit, we use (18), (H0
0), (9) and (11), obtaining for all i ∈ N that

1

2

∥∥u0
i

∥∥2
H 1

0
� 1

2

∥∥u0
i

∥∥2
H 1

0
+ 1

2

∫
Ω

K(x)
(
u0

i

)2
<

∫
Ω

Hi

(
x,u0

i (x)
)
�

∥∥∥ sup
s∈[0,s0]

∣∣h(·, s)∣∣∥∥∥
L∞m(Ω)δi

which concludes the proof of Theorem 3.1. �
Proof of Theorem 1.1. (a) Case p = 1. Let λ ∈ R as in the hypothesis, i.e., λa(x) < λ0 a.e. x ∈ Ω for some
0 < λ0 < −l0. Let us choose λ̃0 ∈ (λ0,−l0), and

K(x) = λ̃0 − λa(x) and h(x, s) = λ̃0s + f (s) for all (x, s) ∈ Ω × [0,∞). (19)

Note that essinfΩK � λ̃0 − λ0 > 0, so (HK) is satisfied. Due to (f 0
1 ) and (f 0

2 ), we have f (0) = 0. Thus, (H0
0)

clearly holds. Moreover, since H(x, s)/s2 = λ̃0/2 + F(s)/s2, s > 0, hypothesis (f 0
1 ) implies (H0

1). Finally, since
l0 < −λ̃0, there exists a sequence {si}i ⊂ (0,1) converging to 0 such that f (si)/si < −λ̃0 for all i ∈ N. Consequently,
by using the continuity of f , we may choose two sequences {δi}i , {ηi}i ⊂ (0,1) such that 0 < ηi+1 < δi < si < ηi ,
limi→∞ ηi = 0, and λ̃0s + f (s) � 0 for all s ∈ [δi, ηi] and i ∈ N. Therefore, (H0

2) holds too. It remains to apply
Theorem 3.1, observing that (PK

h ) is equivalent to problem (Pλ) via the choice (19).
(b) Case p > 1. Let λ ∈ R be arbitrary fixed. Let us also fix a number λ0 ∈ (0,−l0) and choose

K(x) = λ0 and h(x, s) = λa(x)sp + λ0s + f (s) for all (x, s) ∈ Ω × [0,∞). (20)

Clearly, (HK) is satisfied. Since a ∈ L∞(Ω), a simple argument yields that (H0
0) also holds. Moreover, since p > 1

and H(x, s)/s2 = λa(x)sp−1/(p+1)+λ0/2+F(s)/s2, s > 0, hypothesis (f 0
1 ) implies (H0

1). Note that for a.e x ∈ Ω

and every s ∈ [0,∞), we have:

h(x, s) � |λ| · ‖a‖L∞sp + λ0s + f (s) ≡ h̃0(s). (21)
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Due to (f 0
2 ), lim infs→0+ h̃0(s)

s
= λ0 + l0 < 0. In particular, there exists a sequence {si}i ⊂ (0,1) converging to 0 such

that h̃0(si) < 0 for all i ∈ N. Consequently, by using the continuity of h̃0, we can choose two sequences {δi}i , {ηi}i ⊂
(0,1) such that 0 < ηi+1 < δi < si < ηi , limi→∞ ηi = 0, and h̃0(s) � 0 for all s ∈ [δi, ηi] and i ∈ N. Therefore, by
using (21), hypothesis (H0

2) holds. Now, we can apply Theorem 3.1; problem (PK
h ) is equivalent to problem (Pλ)

through the choice (20). In both cases (i.e., (a) and (b)), relation (1) is implied by (8). This completes the proof of
Theorem 1.1. �
Proof of Theorem 1.2. The proof is divided into four steps.

Step 1. Let λ0 ∈ (0,−l0). On account of (f 0
1 ), there exists a sequence {si}i ⊂ (0,1) converging to 0, such that

f (si)/si < −λ0. For every λ ∈ R define the functions hλ : Ω × R → R and h̃ : R
2 → R by:

hλ(x, s) = λa(x)sp + λ0s + f (s) for all (x, s) ∈ Ω × [0,∞),

h̃(λ, s) = |λ| · ‖a‖L∞sp + λ0s + f (s) for all s ∈ [0,∞).

Since h̃(0, si) = λ0si + f (si) < 0 and due to the continuity of h̃, we can choose three sequences
{δi}i , {ηi}i , {λi}i ⊂ (0,1) such that 0 < ηi+1 < δi < si < ηi , limi→∞ ηi = 0, and for every i ∈ N,

h̃(λ, s) � 0 for all λ ∈ [−λi, λi] and s ∈ [δi, ηi]. (22)

Clearly, we may assume that

δi � min
{
i−1,2−1i−2

[
1 + ‖a‖L1 + m(Ω) max

s∈[0,1]
∣∣f (s)

∣∣]−1}
, i ∈ N. (23)

Since hλ(x, s) � h̃(λ, s) for a.e. x ∈ Ω and all (λ, s) ∈ R × [0,∞), on account of (22), for every i ∈ N, we have:

hλ(x, s) � 0 for a.e. x ∈ Ω and all λ ∈ [−λi, λi], s ∈ [δi, ηi]. (24)

For every i ∈ N and λ ∈ [−λi, λi], let hλ
i : Ω × [0,∞) → R be defined by:

hλ
i (x, s) = hλ

(
x, τηi

(s)
)
, (25)

and K(x) = λ0. Let Ei,λ : H 1
0 (Ω) → R be the energy functional associated with (PK

hλ
i

), i.e.,

Ei,λ(u) = 1

2
‖u‖2

H 1
0

+ 1

2

∫
Ω

K(x)u2 −
∫
Ω

( u(x)∫
0

hλ
i (x, s) ds

)
dx. (26)

Then, for every i ∈ N and λ ∈ [−λi, λi], the function hλ
i verifies the hypotheses of Theorem 2.1; see (24) for (H2

hλ
i

).

Therefore, for every i ∈ N and λ ∈ [−λi, λi]:
there exists u0

i,λ ∈ Wηi such that Ei,λ

(
u0

i,λ

) = min
Wηi

Ei,λ, (27)

u0
i,λ(x) ∈ [0, δi] for a.e. x ∈ Ω, (28)

u0
i,λ is a weak solution of

(
PK

hλ
i

)
. (29)

Due to the definition of the functions hλ
i and K , u0

i,λ is a weak solution not only for (PK

hλ
i

), see (25), (28) and (29), but

also for our initial problem (Pλ) once we guarantee that u0
i,λ �≡ 0.

Step 2. For λ = 0, the function hλ
i = h0

i verifies the hypotheses of Theorem 3.1; more precisely, h0
i is precisely the

function appearing in (9) and Ei := Ei,0 is the energy functional associated with problem (PK

h0
i

). Consequently, besides

(27)–(29), the elements u0 := u0 also verify:
i i,0
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Ei

(
u0

i

) = min
Wηi

Ei � Ei (zs̃i ) < 0 for all i ∈ N, (30)

where zs̃i ∈ Wηi come from the proof of Theorem 3.1, see (18).
Step 3. Let {θi}i be a sequence with negative terms such that limi→∞ θi = 0. On account of (30), up to a subse-

quence, we may assume that

θi < Ei

(
u0

i

)
� Ei (zs̃i ) < θi+1. (31)

Let

λ′
i = (p + 1)(θi+1 − Ei (zs̃i ))

‖a‖L1 + 1
and λ′′

i = (p + 1)(Ei (u
0
i ) − θi)

‖a‖L1 + 1
, i ∈ N.

Fix k ∈ N. On account of (31),

λ0
k = min

(
λ1, . . . , λk, λ

′
1, . . . , λ

′
k, λ

′′
1, . . . , λ

′′
k

)
> 0.

Then, for every i ∈ {1, . . . , k} and λ ∈ [−λ0
k, λ

0
k] we have:

Ei,λ

(
u0

i,λ

)
� Ei,λ(zs̃i )

(
see (27)

)
= 1

2
‖zs̃i ‖2

H 1
0

− λ

p + 1

∫
Ω

a(x)z
p+1
s̃i

−
∫
Ω

F
(
zs̃i (x)

)
dx

= Ei (zs̃i ) − λ

p + 1

∫
Ω

a(x)z
p+1
s̃i

< θi+1
(
see the choice of λ′

i and s̃i � δi < 1
)
,

and taking into account that u0
i,λ belongs to Wηi , and u0

i is the minimum point of Ei over the set Wηi , see relation
(30), we have:

Ei,λ

(
u0

i,λ

) = Ei

(
u0

i,λ

) − λ

p + 1

∫
Ω

a(x)
(
u0

i,λ

)p+1

� Ei

(
u0

i

) − λ

p + 1

∫
Ω

a(x)
(
u0

i,λ

)p+1

> θi

(
see the choice of λ′′

i and (28)
)
.

In conclusion, for every for every i ∈ {1, . . . , k} and λ ∈ [−λ0
k, λ

0
k] we have:

θi < Ei,λ

(
u0

i,λ

)
< θi+1 < 0,

thus

E1,λ

(
u0

1,λ

)
< · · · < Ek,λ

(
u0

k,λ

)
< 0.

But, u0
i,λ ∈ Wη1 for every i ∈ {1, . . . , k}, so Ei,λ(u

0
i,λ) = E1,λ(u

0
i,λ), see relation (25). Therefore, from above, we obtain

that for every λ ∈ [−λ0
k, λ

0
k],

E1,λ

(
u0

1,λ

)
< · · · < E1,λ

(
u0

k,λ

)
< 0 = E1,λ(0).

These inequalities show that the elements u0
1,λ, . . . , u

0
k,λ are distinct (and non-trivial) whenever λ ∈ [−λ0

k, λ
0
k].

Step 4. It remains to prove conclusion (2). The former relation follows directly by (28) and (23). To check the latter,
we observe that for every i ∈ {1, . . . , k} and λ ∈ [−λ0

k, λ
0
k],

E1,λ

(
u0

i,λ

) = Ei,λ

(
u0

i,λ

)
< θi+1 < 0.

Consequently, for every i ∈ {1, . . . , k} and λ ∈ [−λ0, λ0], by a mean value theorem we obtain:
k k
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1

2

∥∥u0
i,λ

∥∥2
H 1

0
<

λ

p + 1

∫
Ω

a(x)
(
u0

i,λ

)p+1 +
∫
Ω

F
(
u0

i,λ(x)
)
dx

�
[

1

p + 1
‖a‖L1 + m(Ω) max

s∈[0,1]
∣∣f (s)

∣∣]δi

(
see (28) and δi, λ

0
k � 1

)
< 2−1i−2 (

see (23)
)

which concludes the proof of Theorem 1.2. �
4. Proofs of Theorems 1.3 and 1.4

In order to prove Theorems 1.3 and 1.4 we follow more or less the technique of the previous section. However,
for completeness, we give all the details. We consider again the problem (PK

h ), where the Carathéodory function
h : Ω × [0,∞) → R fulfills

(H∞
0 ) h(x,0) = 0 for a.e. x ∈ Ω , and for every s � 0,

sup
t∈[0,s]

∣∣h(·, t)∣∣ ∈ L∞(Ω);

(H∞
1 ) −∞ < lim infs→∞ H(x,s)

s2 and lim sups→∞
H(x,s)

s2 = +∞ uniformly for a.e. x ∈ Ω ; here, H(x, s) = ∫ s

0 h(x, t) dt ;
(H∞

2 ) there are two sequences {δi}, {ηi} with 0 < δi < ηi < δi+1, limi→∞ δi = +∞, and h(x, s) � 0 for a.e. x ∈ Ω

and for every s ∈ [δi, ηi], i ∈ N.

Theorem 4.1. Assume (HK ), (H∞
0 ), (H∞

1 ) and (H∞
2 ) hold. Then there exists a sequence {u∞

i }i ⊂ H 1
0 (Ω) of distinct

weak solutions of problem (PK
h ) such that

lim
i→∞

∥∥u∞
i

∥∥
L∞ = ∞. (32)

Proof. For any i ∈ N, we introduce the truncation function hi :Ω × [0,∞) → R by:

hi(x, s) = h
(
x, τηi

(s)
)
. (33)

Let Ei : H 1
0 (Ω) → R be the energy functional associated with problem (PK

hi
). As before, let Hi(x, s) = ∫ s

0 hi(x, t) dt .
On account of hypotheses (H∞

0 ) and (H∞
2 ), hi fulfills the assumptions of Theorem 2.1 for every i ∈ N with [δi, ηi].

Thus, for every i ∈ N, there is an element u∞
i ∈ Wηi such that

u∞
i is the minimum point of the functional Ei on Wηi , (34)

u∞
i (x) ∈ [0, δi] for a.e. x ∈ Ω, (35)

u∞
i is a weak solution of

(
PK

hi

)
. (36)

Thanks to (36), (33) and (35), u∞
i is also a weak solution for the problem (PK

h ).
We prove that there are infinitely many distinct elements in the sequence {u∞

i }i . To this end, it is enough to show
that

lim
i→∞ Ei

(
u∞

i

) = −∞. (37)

Indeed, let us assume that in the sequence {u∞
i }i there are only finitely many distinct elements, say {u∞

1 , . . . , u∞
i0

}
for some i0 ∈ N. Consequently, due to (33), the sequence {Ei (u

∞
i )}i reduces to at most the finite set

{Ei0(u
∞
1 ), . . . , Ei0(u

∞
i0

)}, which contradicts relation (37).

Now, we prove (37). By (H∞
1 ), there exist lh∞ > 0 and ζ > 0 such that

essinfx∈ΩH(x, s) � −lh∞s2 for all s > ζ. (38)
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Fix Lh∞ > 0 large enough such that

1

2
C(r,N) +

(
1

2
‖K‖L∞ + lh∞

)
m(Ω) < Lh∞(r/2)NωN, (39)

where r > 0 and C(r,N) > 0 are from (7). Due to the right-hand side of (H∞
1 ), one can fix a sequence {s̃i}i ⊂ (0,∞)

such that limi→∞ s̃i = ∞, and

essinfx∈ΩH(x, s̃i) > Lh∞s̃2
i for all i ∈ N. (40)

Since limi→∞ δi = ∞, see (H∞
2 ), we can choose a subsequence {δmi

}i of {δi}i such that s̃i � δmi
for all i ∈ N. Let

i ∈ N be fixed and let zs̃i ∈ H 1
0 (Ω) be the function from (6) corresponding to the value s̃i > 0. Then zs̃i ∈ Wηmi , and

on account of (7), (40) and (38), we have:

Emi
(zs̃i ) = 1

2
‖zs̃i ‖2

H 1
0

+ 1

2

∫
Ω

K(x)z2
s̃i

−
∫
Ω

Hmi

(
x, zs̃i (x)

)
dx

= 1

2
C(r,N)s̃2

i + 1

2

∫
Ω

K(x)z2
s̃i

−
∫

B(x0,r/2)

H(x, s̃i ) dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zs̃i
>ζ }

H
(
x, zs̃i (x)

)
dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zs̃i
�ζ }

H
(
x, zs̃i (x)

)
dx

�
[

1

2
C(r,N) + 1

2
‖K‖L∞m(Ω) − Lh∞(r/2)NωN + lh∞m(Ω)

]
s̃2
i

+
∥∥∥ sup

s∈[0,ζ ]
∣∣h(·, s)∣∣∥∥∥

L∞m(Ω)ζ.

The above estimate, relation (39) and limi→∞ s̃i = ∞ clearly show that

lim
i→∞ Emi

(zs̃i ) = −∞. (41)

On the other hand, using (34), we have:

Emi

(
u∞

mi

) = min
W

ηmi

Emi
� Emi

(zs̃i ). (42)

Therefore, on account of (41), we have:

lim
i→∞ Emi

(
u∞

mi

) = −∞. (43)

Note that the sequence {Ei (u
∞
i )}i is non-increasing. Let i < k; then, due to (33), we have:

Ei

(
u∞

i

) = min
Wηi

Ei = min
Wηi

Ek � min
Wηk

Ek = Ek

(
u∞

k

)
.

Combining this fact with (43), we obtain (37).
Now, we prove (32). Arguing by contradiction assume there exists a subsequence {u∞

ki
}i of {u∞

i }i such that for all
i ∈ N, we have ‖u∞

ki
‖L∞ � M for some M > 0. In particular, {u∞

ki
}i ⊂ Wηl for some l ∈ N. Thus, for every ki � l,

we have:

El

(
u∞

l

) = min
Wηl

El = min
Wηl

Eki

� min
W

ηki

Eki
= Eki

(
u∞

ki

)
� min

Wηl
Eki

(
cf. hypothesis, u∞

ki
∈ Wηl

)
= El

(
u∞

l

)
.
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As a consequence,

Eki

(
u∞

ki

) = El

(
u∞

l

)
for all i ∈ N. (44)

Since the sequence {Ei (u
∞
i )}i is non-increasing, on account of (44), one can find a number i0 ∈ N such that

Ei (u
∞
i ) = El(u

∞
l ) for all i � i0. This fact contradicts (37), which concludes the proof of Theorem 4.1. �

Proof of Theorem 1.3. (a) Case p = 1. Let us fix λ ∈ R as in the hypothesis, i.e., λa(x) < λ∞ a.e. x ∈ Ω for some
0 < λ∞ < −l∞. Fix also λ̃∞ ∈ (λ∞,−l∞) and let

K(x) = λ̃∞ − λa(x) and h(x, s) = λ̃∞s + f (s) for all (x, s) ∈ Ω × [0,∞). (45)

It is clear that essinfΩ K � λ̃∞ − λ∞ > 0, so (HK) is satisfied. Since f (0) = 0, (H∞
0 ) holds too. Note that

H(x, s)/s2 = λ̃∞/2 + F(s)/s2, s > 0; thus, hypothesis (f ∞
1 ) implies (H∞

1 ). Since l∞ < −λ̃∞, there is a sequence
{si}i ⊂ (0,∞) converging to +∞ such that f (si)/si < −λ̃∞ for all i ∈ N. By using the continuity of f , we may fix
two sequences {δi}i , {ηi}i ⊂ (0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and λ̃∞s + f (s) � 0 for all
s ∈ [δi, ηi] and i ∈ N. Therefore, (H∞

2 ) is also fulfilled. Now, we are in the position to apply Theorem 4.1. Throughout
the choice (45), (PK

h ) is equivalent to problem (Pλ) which concludes the proof.
(b) Case p < 1. Let λ ∈ R be fixed arbitrarily and fix λ∞ ∈ (0,−l∞). Now, let us choose:

K(x) = λ∞ and h(x, s) = λa(x)sp + λ∞s + f (s) for all (x, s) ∈ Ω × [0,∞). (46)

Hypothesis (HK) is clearly satisfied. Due to the fact that a ∈ L∞(Ω), hypothesis (H∞
0 ) holds too. Since p < 1 and

H(x, s)/s2 = λa(x)sp−1/(p + 1) + λ∞/2 + F(s)/s2, s > 0, hypothesis (f ∞
1 ) implies (H∞

1 ). For a.e. x ∈ Ω , and
every s ∈ [0,∞), we have:

h(x, s) � |λ| · ‖a‖L∞sp + λ∞s + f (s) ≡ h̃∞(s). (47)

Thanks to (f ∞
2 ), we have lim infs→∞ h̃∞(s)

s
= λ∞ + l∞ < 0. Therefore, one can fix a sequence {si}i ⊂ (0,∞)

converging to +∞ such that h̃∞(si) < 0 for all i ∈ N. Now, by using the continuity of h̃∞, one can fix two se-
quences {δi}i , {ηi}i ⊂ (0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and h̃∞(s) � 0 for all s ∈ [δi, ηi]
and i ∈ N. Thus, by using (47), hypothesis (H∞

2 ) holds. Now, we can apply Theorem 4.1, observing that problem (PK
h )

is equivalent to problem (Pλ) through the choice (46). Finally, in both cases (i.e., (a) and (b)), (32) implies relation
(3). This concludes the proof of Theorem 1.3. �
Proof of Remark 1.4. Assume that (4) holds. By contradiction, let us assume that there exists a bounded subsequence
{u∞

ki
}i of {u∞

i }i in H 1
0 (Ω). Since H 1

0 (Ω) is continuously embedded into Lt(Ω), t ∈ [1,2∗], after an elementary
estimate, we obtain that the sequence {Eki

(u∞
ki

)}i is bounded. Since the sequence {Ei (u
∞
i )}i is non-increasing, it will

be bounded as well, which contradicts (37). �
Proof of Theorem 1.4. The proof is divided into five steps.

Step 1. Let λ∞ ∈ (0,−l∞). Due to (f ∞
1 ), we may fix a sequence {si}i ⊂ (0,∞) converging to ∞, such that

f (si)/si < −λ∞. For every λ ∈ R, let us define two functions hλ : Ω × R → R and h̃ : R
2 → R by:

hλ(x, s) = λa(x)sp + λ∞s + f (s) for all (x, s) ∈ Ω × [0,∞),

h̃(λ, s) = |λ| · ‖a‖L∞sp + λ∞s + f (s) for all s ∈ [0,∞).

Note that h̃(0, si) = λ∞si + f (si) < 0. Due to the continuity of h̃, we can fix three sequences {δi}i , {ηi}i ⊂ (0,∞)

and {λi}i ⊂ (0,1) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and for every i ∈ N,

h̃(λ, s) � 0 for all λ ∈ [−λi, λi] and s ∈ [δi, ηi]. (48)

Without any loss of generality, we may assume that

δi � i, i ∈ N. (49)
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Note that hλ(x, s) � h̃(λ, s) for a.e. x ∈ Ω and all (λ, s) ∈ R × [0,∞). Taking into account of (48), for every i ∈ N,
we have:

hλ(x, s) � 0 for a.e. x ∈ Ω and all λ ∈ [−λi, λi], s ∈ [δi, ηi]. (50)

For any i ∈ N and λ ∈ [−λi, λi], let hλ
i : Ω × [0,∞) → R be defined by:

hλ
i (x, s) = hλ

(
x, τηi

(s)
)
, (51)

and K(x) = λ∞. Let Ei,λ : H 1
0 (Ω) → R be the energy functional associated with the problem (PK

hλ
i

), which is formally

the same as in (26). Note that for every i ∈ N and λ ∈ [−λi, λi], the function hλ
i fulfills the hypotheses of Theorem 2.1;

see (50) for (H2
hλ

i

). Consequently, for every i ∈ N and λ ∈ [−λi, λi],

there exists ũ∞
i,λ ∈ Wηi with Ei,λ

(
ũ∞

i,λ

) = min
Wηi

Ei,λ, (52)

ũ∞
i,λ(x) ∈ [0, δi] for a.e. x ∈ Ω, (53)

ũ∞
i,λ is a weak solution of

(
PK

hλ
i

)
. (54)

On account of the definition of the functions hλ
i and K , and relations (54) and (53), ũ∞

i,λ is also a weak solution for
our initial problem (Pλ) once we have ũ∞

i,λ �≡ 0.

Step 2. Note that for λ = 0, the function hλ
i = h0

i verifies the hypotheses of Theorem 4.1; in fact, h0
i is the function

appearing in (33) and Ei := Ei,0 is the energy functional associated with problem (PK

h0
i

). Denoting u∞
i := ũ∞

i,0, we also

have:

Emi

(
u∞

mi

) = min
W

ηmi

Emi
� Emi

(zs̃i ), (55)

lim
i→∞ Emi

(
u∞

mi

) = −∞, (56)

where the special subsequence {u∞
mi

}i of {u∞
i }i and zs̃i ∈ Wηmi appear in the proof of Theorem 4.1, see relations (42)

and (43), respectively.
Step 3. Let us fix a sequence {θi}i with negative terms such that limi→∞ θi = −∞. Due to (55) and (56), up to a

subsequence, we may assume that

θi+1 < Emi

(
u∞

mi

)
� Emi

(zs̃i ) < θi. (57)

For any i ∈ N, define

λ′
i = (p + 1)(θi − Emi

(zs̃i ))

δ
p+1
mi

(‖a‖L1 + 1)
and λ′′

i = (p + 1)(Emi
(u∞

mi
) − θi+1)

δ
p+1
mi

(‖a‖L1 + 1)
.

Fix k ∈ N. Thanks to (57),

λ∞
k = min

(
λ1, . . . , λk, λ

′
1, . . . , λ

′
k, λ

′′
1, . . . , λ

′′
k

)
> 0.

Therefore, for every i ∈ {1, . . . , k} and λ ∈ [−λ∞
k , λ∞

k ] we have:

Emi,λ

(
ũ∞

mi,λ

)
� Emi,λ(zs̃i )

(
see (52)

)
= 1

2
‖zs̃i ‖2

H 1
0

− λ

p + 1

∫
Ω

a(x)z
p+1
s̃i

−
∫
Ω

F
(
zs̃i (x)

)
dx

= Emi
(zs̃i ) − λ

p + 1

∫
Ω

a(x)z
p+1
s̃i

< θi

(
see the choice of λ′

i and s̃i � δmi

)
,
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and since ũ∞
mi,λ

belongs to Wηmi , and u∞
mi

is the minimum point of Emi
over the set Wηmi , see relation (55), we have:

Emi,λ

(
ũ∞

mi,λ

) = Emi

(
ũ∞

mi,λ

) − λ

p + 1

∫
Ω

a(x)
(
ũ∞

mi,λ

)p+1

� Emi

(
u∞

mi

) − λ

p + 1

∫
Ω

a(x)
(
ũ∞

mi,λ

)p+1

> θi+1
(
see the choice of λ′′

i and (53)
)
.

Consequently, for every i ∈ {1, . . . , k} and λ ∈ [−λ∞
k , λ∞

k ] we have:

θi+1 < Emi,λ

(
ũ∞

mi,λ

)
< θi < 0, (58)

therefore

Emk,λ

(
ũ∞

mk,λ

)
< · · · < Em1,λ

(
ũ∞

m1,λ

)
< 0. (59)

Note that ũ∞
mi,λ

∈ Wηmk for every i ∈ {1, . . . , k}, so Emi,λ(ũ
∞
mi,λ

) = Emk,λ(ũ
∞
mi,λ

), see relation (51). From above, for
every λ ∈ [−λ∞

k , λ∞
k ], we have:

Emk,λ

(
ũ∞

mk,λ

)
< · · · < Emk,λ

(
ũ∞

m1,λ

)
< 0 = Emk,λ(0).

In particular, the elements ũ∞
m1,λ

, . . . , ũ∞
mk,λ

are distinct (and non-trivial) whenever λ ∈ [−λ∞
k , λ∞

k ].
Step 4. Assume that k � 2 and fix λ ∈ [−λ∞

k , λ∞
k ]. We prove that∥∥ũ∞

mi,λ

∥∥
L∞ > δmi−1 for all i ∈ {2, . . . , k}. (60)

Let us assume that there exists an element i0 ∈ {2, . . . , k} such that ‖ũ∞
mi0 ,λ‖L∞ � δmi0−1 . Since δmi0−1 < ηmi0−1 , then

ũ∞
mi0 ,λ ∈ W

ηmi0−1 . Thus, on account of (52) and (51), we have:

Emi0−1,λ

(
ũ∞

mi0−1,λ

) = min
W

ηmi0−1
Emi0−1,λ � Emi0−1,λ

(
ũ∞

mi0 ,λ

) = Emi0 ,λ

(
ũ∞

mi0 ,λ

)
,

which contradicts (59). Therefore, (60) holds true.
Step 5. Let u∞

i,λ := ũ∞
mi,λ

for any i ∈ {1, . . . , k} and λ ∈ [−λ∞
k , λ∞

k ]; these elements verify all the requirements
of Theorem 1.4. Indeed, since Em1,λ(u

∞
1,λ) = Em1,λ(ũ

∞
m1,λ

) < 0 = Em1,λ(0), then ‖u∞
1,λ‖L∞ > 0, which proves (5) for

i = 1. If k � 2, then on account of step 4, (49) and mi � i, for every i ∈ {2, . . . , k}, we have:∥∥u∞
i,λ

∥∥
L∞ > δmi−1 � mi−1 � i − 1,

i.e., relation (5) holds true. This ends the proof of Theorem 1.4. �
Proof of Remark 1.6. Due to (4), there exists a C > 0 such that |f (s)| � C(1 + s2∗−1) for all s � 0. We denote by
St > 0 the Sobolev embedding constant of the continuous embedding H 1

0 (Ω) ↪→ Lt(Ω), t ∈ [1,2∗]. Without any loss
of generality, we may assume that for every i ∈ N,

θi < − 1

p + 1
‖a‖L∞S

p+1
p+1(i − 1)p+1 − C

[
S1(i − 1) + S2∗

2∗ (i − 1)2∗]
, (61)

where the sequence {θi}i comes from step 3 of the proof of Theorem 1.4.
Fix λ ∈ [−λ∞

k , λ∞
k ] and assume that there exists i0 ∈ {1, . . . , k} such that ‖u∞

i0,λ
‖H 1

0
� i0 − 1. On account of (58),

we have in particular Emi0 ,λ(u
∞
i0,λ

) < θi0 . Consequently, we have:

1

2

∥∥u∞
i0,λ

∥∥2
H 1

0
= Emi0 ,λ

(
u∞

i0,λ

) + λ

p + 1

∫
Ω

a(x)
(
u∞

i0,λ

)p+1 +
∫
Ω

F
(
u∞

i0,λ
(x)

)
dx

< θi0 + |λ| ‖a‖L∞S
p+1
p+1

∥∥u∞
i0,λ

∥∥p+1
H 1
p + 1 0
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+ C
[
S1

∥∥u∞
i0,λ

∥∥
H 1

0
+ S2∗

2∗
∥∥u∞

i0,λ

∥∥2∗
H 1

0

]
� θi0 + 1

p + 1
‖a‖L∞S

p+1
p+1(i0 − 1)p+1

+ C
[
S1(i0 − 1) + S2∗

2∗ (i0 − 1)2∗] (
λ∞

k � 1
)

< 0
(
see (61)

)
,

a contradiction. �
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