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Abstract

We show the equivalence of the non-positivity of the flag curvature with the non-positive curvature
properties of Busemann and Pedersen for (not necessarily reversible) Berwald manifolds. So an
analytical property is characterized by synthetic concepts of non-positively curved metric spaces.
© 2005 Elsevier B.V. All rights reserved.

MSC: 53C70; 53C23; 53C60

Keywords: Berwald space; Geodesic space; Non-positive flag curvature; Convex capsules

1. Introduction

In the 1940s, Busemann developed a synthetic geometry on metric spaces. In particular,
he axiomatically elaborated a whole theory of non-positively curved metric spaces, which
have no differential structure a priori and they possess the essential qualitative geometric
properties of Finsler manifolds. These spaces are the so-called G-spaces, see[3, p. 37]. This
notion of non-positive curvature requires that in small geodesic triangles the length of a side
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is at least the twice of the geodesic distance of the mid-points of the other two sides, see[3,
p. 237]. In 1952, Pedersen[9] introduced a weaker non-positive curvature notion than that
of Busemann which is in fact equivalent with the convexity of the (small) capsules (i.e., the
loci equidistant to geodesic segments). The curvature notion of Pedersen is enough to prove
many of the results obtained by Busemann[3]. However, the real merit of Pedersen’s notion
relies in the fact that while the Hilbert metric of the interior of a simple, closed and convex
curveK in the Euclidean plane clearly satisfies this curvature condition, Busemann’s curva-
ture condition holds if and only ifK is an ellipse, see Kelly and Straus[6]. Therefore, in the
latter case, the Hilbert metric (which is in general a (projective) Finsler metric with constant
flag curvature−1) becomes a Riemannian one. This means that, although for Riemannian
spaces the non-positivity of the sectional curvature, Pedersen’s and Busemann’s curvature
conditions are mutually equivalent (see[3, Theorem (41.6)]), the non-positivity of the flag
curvature of ageneric Finsler manifold is not enough to guarantee Busemann’s property. Ba-
sically, we have two possibilities in order to obtain such a characterization for Finsler spaces:

(I) To find anew notion of curvature in Finsler geometry such that for an arbitrary Finsler
manifold the non-positivity of this curvature is equivalent with the Busemann non-
positive curvature condition, as it was proposed by Shen[10, Problem 25];

(II) To keep the flag curvature, but put some restrictive condition on the Finsler metric.

In spite of the fact that (reversible) Finsler manifolds are included in G-spaces, only few
results are known which establish a link between thedifferential invariants of a Finsler
manifold and themetric properties of the induced metric space. In[9] (see also[3, p. 270]),
Pedersen restricted his studies to two-dimensional reversible Finsler spaces, showing that
if it has convex capsules, then its usual curvature is non-positive; the converse problem
remains an open question until now. Using the Cartan connection and suitable modifi-
cations of the proof of Pedersen, Moalla[8] extended the above result to Finsler spaces
of arbitrary dimension. On the other hand, in[7], the authors and Cs. Varga proved that
finite-dimensionalBerwald spaces of non-positive flag curvature are curved in the sense of
Busemann. Therefore, Berwald spaces (i.e., Finsler spaces whose Chern connection coef-
ficientsΓ k

ij in natural coordinates depend only on the base point) seem to be the first class
of Finsler metrics that are non-positively curved in the sense of Busemann and which are
neither flat nor Riemannian.

The above result gave us the expectation to obtain a characterization of the Busemann
curvature notion in these special Finsler spaces, which is in accordance with (II); however,
(I) seems to be a remarkable, but a very hard problem.

Let (M, F) be a Berwald space, whereF is positively (but perhaps not absolutely) homo-
geneous of degree one and letdF be the induced (non-reversible) metric byF. The main
result of this paper (see Section2 for the exact notions and formulation) asserts that the
following six criteria are mutually equivalent:

• The flag curvature of (M, F) is non-positive;
• (M, dF ) is curved in the sense of Busemann;
• (M, dF ) is curved in the sense of Pedersen in forward manner;



A. Kristaly, L. Kozma / Journal of Geometry and Physics 56 (2006) 1257–1270 1259

• (M, dF ) is curved in the sense of Pedersen in backward manner;
• The small forward capsules in (M, dF ) are convex sets;
• The small backward capsules in (M, dF ) are convex sets.

This result also includes in particular a partial answer to the question of Pedersen (see
[9, p. 87]), i.e., every reversible Berwald space of non-positive flag curvature has convex
capsules. Beyond its own interest of our result, we mention that only few notions exist in
Finsler geometry which can be compared from the “forward” and “backward” points of
view (see Bao et al.[1]).

In the 1950s, Aleksandrov introduced independently another notion of curvature in metric
spaces, based on the convexity of the distance function. It is well-known that the condition
of Busemann curvature is weaker than the Aleksandrov one, see[5, Corollary 2.3.1]. Nev-
ertheless, in Riemannian spaces the Aleksandrov curvature condition holds if and only if
the sectional curvature is non-positive (see[2, Theorem 1A.6]), but in the Finsler case the
picture is quite rigid. Namely, if on a reversible Finsler manifold (M, F) the Aleksandrov
curvature condition holds (on the induced metric space by (M, F)) then (M, F) it must be
Riemannian, see[2, Proposition 1.14].

In the proof of our main result the assumption that the Finsler structure is of Berwald
type plays an indispensable role in several times. It would be interesting to examine whether
or not the above result works fora larger class of Finsler spaces than the Berwald ones,
working in the (II) context. As far as the Busemann curvature condition is concerned, we
believe that, as in the Aleksandrov case, we face a rigidity result; namely, if the Busemann
curvature condition holds on a Finsler manifold (M, F) then it must be of Berwald type.
If this is true, the problem (I) would be solved in the following way: among the Finsler
manifolds, the Berwald spaces would be the largest class having the property of (I), where
the curvature could be chosen to be the flag one.

Shen gave to the authors an example for a specific family of Berwald spaces which is
non-Riemannian with non-positive flag curvature, see also[7]. Namely, let (M0, g) be a two-
dimensional Riemannian space of constant sectional curvatureKg ≤ 0, andε an arbitrary
positive constant. Then the Finsler metric onM = R× M0 is defined by

F (t, x, y; τ, u, v) =
√

τ2 + g(x,y)((u, v), (u, v)) + ε

√
τ4 + g2

(x,y)((u, v), (u, v)),

which satisfies the requirements. Moreover, the flag curvature of (M, F) is not constant.
Since (M, F) is a non-Riemannian Berwald space, (M, dF ) is not curved in the sense of
Aleksandrov, but it is in the sense of Busemann and Pedersen, due to the our result.

2. Basic notions and the main result

2.1. Curvature notions on metric spaces

Let (M, d) be a non-reversible metric space. Since the functiond is not necessarily
symmetric, we define theforward and backward metric balls, respectively, with center
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p ∈ M and radiusr > 0 as

B+
p (r) = {q ∈ M : d(p, q) < r} and B−

p (r) = {q ∈ M : d(q, p) < r}.

A continuous curveγ : [a, b] → M with γ(a) = x, γ(b) = y is a shortest geodesic, if
l(γ) = d(x, y), wherel(γ) denotes thegeneralized length of γ and it is defined by

l(γ) = sup

{
n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < · · · < tn = b, n ∈ N
}

.

We say that (M, d) is a locally geodesic (length) space if for every pointp ∈ M there
is aρp > 0 such that for every two pointsx, y ∈ B+

p (ρp) there exists a shortest geodesic
joining them.

Definition 1. A locally geodesic space (M, d) is said to be aBusemann non-positive
curvature space (shortly,Busemann NPC space), if for everyp ∈ M there existsρp > 0 such
that for any two shortest geodesicsγ1, γ2 : [0, 1] → M with γ1(0) = γ2(0) = x ∈ B+

p (ρp)
and with endpointsγ1(1), γ2(1) ∈ B+

p (ρp) we have

2d

(
γ1

(
1

2

)
, γ2

(
1

2

))
≤ d(γ1(1), γ2(1)).

(We shall say thatγ1 andγ2 satisfy theBusemann NPC inequality).

Let γ : [a, b] → M be a curve andq ∈ M be fixed arbitrarily. We denote by dist(γ, q) =
inf {d(γ(t), q) : t ∈ [a, b]} and dist(q, γ) = inf {d(q, γ(t)) : t ∈ [a, b]}.

Definition 2. A locally geodesic space (M, d) is said to be a forward (resp.backward)
Pedersen non-positive curvature space (shortly, forward (resp.backward) Pedersen NPC
space), if for everyp ∈ M there existsρp > 0 such that for any two shortest geodesics
γ1, γ2 : [0, 1] → B+

p (ρp), the functionf+ : [0, 1] → R (resp.f− : [0, 1] → R), defined
by

f+(t) = dist(γ1, γ2(t)) (resp.f−(t) = dist(γ1(t), γ2))

is quasiconvex, i.e., for everyt ∈ [0, 1]

f+(t) ≤ max{f+(0), f+(1)} (resp.f−(t) ≤ max{f−(0), f−(1)}).

Let γ : [a, b] → M be a shortest geodesic andα > 0. Attached toγ andα, we define
theforward andbackward capsules, respectively, as

C+γ (α) = {q ∈ M : dist(γ, q) ≤ α} and C−γ (α) = {q ∈ M : dist(q, γ) ≤ α}.
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LetM0 be a non-empty subset ofM. The pair (γ, α) is say to beforward (resp.backward)
M0-admissible, if C+γ (α) ⊂ M0 (resp.C−γ (α) ⊂ M0).

Definition 3. We say that a locally geodesic space (M, d) hasconvex forward (resp.back-
ward) capsules if for every p ∈ M there existsρp > 0 such that for every forward (resp.
backward)B+

p (ρp)-admissible pair (γ, α), the setC+γ (α) (resp.C−γ (α)) is convex.

As usually, the convexity of a set means that every two points in it can be uniquely joined
by a shortest geodesic and the image of this curve belongs entirely to the set.

2.2. Berwald spaces

In this section, we recall briefly some known facts about Berwald spaces. For details,
see[1].

Let M be an-dimensionalC∞ manifold andTM = ⋃
x∈M TxM the tangent bundle. If

the continuous functionF : TM → R+ satisfies the conditions that it isC∞ on TM \ {0};
F (tu) = tF (u) for all t ≥ 0 andu ∈ TM, i.e.,F is positively homogeneous of degree one;
and the matrixgij(u) := ( 1

2F2)yiyj (u) is positive definite for allu ∈ TM \ {0}, then we say
that (M, F) is aFinsler manifold.

Let γ : [0, r] → M be a piecewiseC∞ curve. Itsintegral length is defined as

L(γ) =
∫ r

0
F (γ(t), γ̇(t)) dt.

Forx0, x1 ∈ M denote byΓ (x0, x1) the set of all piecewiseC∞ curvesγ : [0, r] → M such
thatγ(0) = x0 andγ(r) = x1. Define a mapdF : M × M → [0, ∞) by

dF (x0, x1) = inf
γ∈Γ (x0,x1)

L(γ).

Of course, we havedF (x0, x1) ≥ 0, where equality holds if and only ifx0 = x1;dF (x0, x2) ≤
dF (x0, x1) + dF (x1, x2). In general, sinceF is only a positive homogeneous function,
dF (x0, x1) �= dF (x1, x0), therefore (M, dF ) is only a non-reversible metric space.

Let π∗TM be the pull-back of the tangent bundleTM by π : TM \ {0} → M. Unlike
the Levi–Civita connection in Riemann geometry, there is no unique natural connection
in the Finsler case. Among these connections onπ∗TM, we choose theChern connection
whose coefficients are denoted byΓ i

jk (see[1, p. 38]). This connection induces thecurvature
tensor, denoted byR (see[1, Chapter 3]).

Let (x, y) ∈ TM \ 0 andV a section of the pulled-back bundleπ∗TM. Then

K(y, V ) = g(x,y)(R(V, y)y, V )

g(x,y)(y, y)g(x,y)(V, V ) − [g(x,y)(y, V )]2
, (1)

is theflag curvature with flagy and transverse edgeV. Here,g(x,y) := gij(x,y) dxi ⊗ dxj :=
( 1

2F2)yiyj dxi ⊗ dxj is the Riemannian metric on the pulled-back bundleπ∗TM (see[1,
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p. 68]). WhenF is Riemannian, then the flag curvature coincides with the sectional cur-
vature. LetK abbreviate the collection of flag curvatures{K(V, W) : 0 �= V, W ∈ TxM, x ∈
M, V andW are not collinear}. We say that the flag curvature of (M, F) is non-positive if
K ≤ 0.

A Finsler manifold is ofBerwald type if the Chern connection coefficientsΓ k
ij in natural

coordinates depends only on the base point.
The main result of this paper can be formulated as follows.

Theorem 1. Let (M,F) be a Berwald space where F is positively (but perhaps not absolutely)
homogeneous of degree one. The following assertions are equivalent:

(a) The flag curvature of (M, F) is non-positive.
(b) (M, dF ) is a Busemann NPC space.
(c) (M, dF ) is a forward Pedersen NPC space.
(d) (M, dF ) is a backward Pedersen NPC space.
(e) (M, dF ) has convex forward capsules.
(f) (M, dF ) has convex backward capsules.

The paper is organized as follows. In the next section we recall further results, which
will be used throughout the paper. In Section4, we will prove the implication (a) ⇒ (b); in
Section5, the implications (b) ⇒ (c) and (b) ⇒ (d); in Section6, the implications (c) ⇒
(e) and (d) ⇒ (f ); in Section7, the implication (e) ⇒ (a) while in the last section the
implication (f ) ⇒ (a).

3. Auxiliary results from Finsler geometry

The Chern connection defines the covariant derivativeDV U of a vector fieldU ∈ X(M)
in the directionV ∈ TpM. Since, in general, the Chern connection coefficientsΓ i

jk in natural
coordinates have a directional dependence, we must say explicitly thatDV U is defined with
a fixed reference vector. In particular, letσ : [0, r] → M be a smooth curve with velocity
field T = T (t) = σ̇(t). Suppose thatU andW are vector fields defined alongσ. We define
DT U with reference vector W as

DT U =
[

dUi

dt
+ UjT k(Γ i

jk)(σ,W)

]
∂

∂xi |σ(t)
.

A curveσ : [0, r] → M, with velocityT = σ̇ is a (Finslerian) geodesic if

DT

[
T

F (T )

]
= 0, with reference vectorT. (2)

If U, V andW are vector fields along a curveσ, which has velocityT = σ̇, we have the
derivative rule

d

dt
gW (U, V ) = gW (DT U, V ) + gW (U, DT V ) (3)
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wheneverDT U andDT V are with reference vectorW andone of the following conditions
holds:

• U or V is proportional toW, or
• W = T andσ is a geodesic.

A vector fieldJ along a geodesicσ : [0, r] → M (with velocity fieldT) is said to be a
Jacobi field if it satisfies the equation:

DT DT J + R(J, T )T = 0, (4)

whereR is the curvature tensor. Here, the covariant derivativeDT is defined with reference
vectorT.

Let Σ : [0, r] × [−1, 1] → M be a piecewiseC∞ variation of a geodesicσ : [0, r] →
M, with Σ(·, 0) = σ. Let

T = T (t, s) = ∂Σ

∂t
, U = U(t, s) = ∂Σ

∂s

the velocities of thet-curves (i.e.,Σ(t, s = constant)) ands-curves (i.e.,Σ(t = constant, s)),
respectively. The formula for thefirst variation of arc length gives us

L′
Σ(0) := d

ds
L(Σ(·, s))|s=0 = gT

(
U,

T

F (T )

)
|s=0

∣∣∣∣∣
r

0

. (5)

Thesecond variation of arc length can be expressed as

L′′
Σ(0) : = d2

ds2L(Σ(·, s))|s=0

=
∫ r

0

1

F (T )|s=0
[gT (DT U, DT U) − gT (R(U, T )T, U)]|s=0 dt

+ gT

(
DUU,

T

F (T )

)
|s=0

∣∣∣∣∣
r

0

−
∫ r

0

1

F (T )|s=0

(
∂F (T )

∂s

)2

|s=0
dt,

where all covariant derivatives are with reference vectorT = T (t, 0).
Forp ∈ M, r > 0, letBp(r) := {y ∈ TpM : F (p, y) < r} be the opentangent ball and let

B+
p (r) andB−

p (r) the forward and backward metric balls, respectively, defined by means of
dF . It is well-known that the topology generated by the forward (resp. backward) metric balls
coincide with the underlying manifold topology, respectively. Moreover, by the Whitehead’s
theorem (see[11] or[1, Exercise 6.4.3, p. 164]) and[1, Lemma 6.2.1, p. 146]we can conclude
the following useful result (see also[7]).

Proposition 1. Let (M, F) be a Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one. For every point p ∈ M there exist a small ρp > 0
and cp > 1 (depending only on p) such that for every pair of points q0, q1 in B+

p (ρp) we



1264 A. Kristaly, L. Kozma / Journal of Geometry and Physics 56 (2006) 1257–1270

have

1

cp

dF (q1, q0) ≤ dF (q0, q1) ≤ cpdF (q1, q0). (6)

Moreover, for every real number k ≥ 1 and q ∈ B+
p (ρp/k) the mapping expq is C1-

diffeomorphism from Bq(2ρp/k) onto B+
q (2ρp/k) and every pair of points q0, q1 in

B+
p (ρp/k) can be joined by a unique minimal geodesic from q0 to q1 lying entirely in
B+

p (ρp/k).

A geodesic fromq0 to q1 is said to beminimal if its integral length equals
the metric distancedF (q0, q1). Since we are within the Finsler context, the gener-
alized length l(γ) and the integral lengthL(γ) of (piecewise)C∞ curves coincide
(see [4, Theorem 2, p. 186]). Therefore, the minimal Finsler geodesic and short-
est geodesic notions coincide, too. In particular, ourProposition 1asserts that ev-
ery (non-reversible) metric space, induced by a Finsler metric, is a locally geodesic
space.

4. (a) ⇒ (b)

This part is basically included in[7], but for the sake of completeness we give the proof.
Let us fixp ∈ M and considerρp > 0, cp > 1 from ourProposition 1. We will prove

that ρ′
p = ρp

cp
is a good choice inDefinition 1. To do this, letγ1, γ2 : [0, 1] → M be

two (minimal) geodesics withγ1(0) = γ2(0) = x ∈ B+
p (ρ′

p) and γ1(1), γ2(1) ∈ B+
p (ρ′

p).
By our Proposition 1, we can construct a unique geodesicγ : [0, 1] → M joining γ1(1)
with γ2(1) anddF (γ1(1), γ2(1)) = L(γ). Clearly,γ(s) ∈ B+

p (ρ′
p) for all s ∈ [0, 1] (we ap-

plied ourProposition 1for k = cp). Moreover,x ∈ B+
γ(s)(2ρp). Indeed, by(6), we obtain

dF (γ(s), x) ≤ dF (γ(s), p) + dF (p, x) ≤ cpdF (p, γ(s)) + ρ′
p ≤ (cp + 1)ρ′

p < 2ρp. There-

fore, we can defineΣ : [0, 1] × [0, 1] → M by Σ(t, s) = expγ(s)((1 − t) · exp−1
γ(s)(x)).

The curvet �→ Σ(1 − t, s) is a radial geodesic which joinsγ(s) with x. Taking into
account that (M, F) is of Berwald type, the reverse oft �→ Σ(1 − t, s), i.e., t �→
Σ(t, s) is a geodesic too (see[1, Exercise 5.3.3, p. 128]) for all s ∈ [0, 1]. Moreover,
Σ(0, 0) = x = γ1(0), Σ(1, 0) = γ(0) = γ1(1). From the uniqueness of the geodesic be-
tween x and γ1(1), we haveΣ(·, 0) = γ1. Analogously, we haveΣ(·, 1) = γ2. Since
Σ is a geodesic variation (of the curvesγ1 and γ2), the vector fieldJs, defined by
Js(t) = ∂

∂s
Σ(t, s) ∈ TΣ(t,s)M is a Jacobi field alongΣ(·, s), s ∈ [0, 1] (see[1, p. 130]).

In particular, we haveΣ(1, s) = γ(s), Js(0) = 0, Js(1) = ∂
∂s

Σ(1, s) = dγ
ds

and Js( 1
2)

= ∂
∂s

Σ( 1
2, s).

Now, we fix s ∈ [0, 1]. SinceJs(0) = 0 and the flag curvature in non-positive, then
the geodesicΣ(·, s) has no conjugated points. Therefore,Js(t) �= 0 for t ∈ (0, 1]. Hence,
gJs (Js, Js)(t) is well defined for everyt ∈ (0, 1]. Moreover

F (Js)(t) := F (Σ(t, s), Js(t)) = [gJs (Js, Js)]
1/2(t) �= 0, ∀t ∈ (0, 1]. (7)
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Let Ts the velocity field ofΣ(·, s). Applying twice formula(3), we obtain

d2

dt2
[gJs (Js, Js)]

1/2(t) = d2

dt2
F (Js)(t) = d

dt

[
gJs (DTsJs, Js)

F (Js)

]
(t)

=

[gJs (DTsDTsJs, Js) + gJs (DTsJs, DTsJs)] · F (Js)

−g2
Js

(DTsJs, Js) · F (Js)−1

F2(Js)
(t)

=

gJs (DTsDTsJs, Js) · F2(Js)

+gJs (DTsJs, DTsJs) · F2(Js) − g2
Js

(DTsJs, Js)

F3(Js)
(t),

where the covariant derivatives (for generic Finsler manifolds) are with reference vector
Js. Since (M, F) is a Berwald space, the Chern connection coefficients do not depend on
the direction, the notion of reference vector becomes irrelevant. Therefore, we can use the
Jacobi equation(4), concluding thatgJs (DTsDTsJs, Js) = −gJs (R(Js, Ts)Ts, Js). Using the
symmetry property of the curvature tensor (see[1, Exercise 3.9.6, p. 73]), the formula of
the flag curvature, and the Schwarz inequality we have

−gJs (R(Js, Ts)Ts, Js) = −gJs (R(Ts, Js)Js, Ts)

= −K(Js, Ts) · [gJs (Js, Js)gJs (Ts, Ts) − g2
Js

(Js, Ts)] ≥ 0.

For the last two terms of the numerator we apply again the Schwarz inequality and we
conclude that

d2

dt2
F (Js)(t) ≥ 0, for all t ∈ (0, 1].

SinceJs(t) �= 0 for t ∈ (0, 1], the mappingt �→ F (Js)(t) is C∞ on (0, 1]. From the above
inequality and the second order Taylor expansion aboutv ∈ (0, 1], we obtain

F (Js)(v) + (t − v)
d

dt
F (Js)(v) ≤ F (Js)(t) (8)

for everyt ∈ (0, 1]. Letting t → 0 andv = 1/2 in (8), by the continuity ofF, we obtain

F (Js)

(
1

2

)
− 1

2

d

dt
F (Js)

(
1

2

)
≤ 0.

Let v = 1/2 andt = 1 in (8), and adding the obtained inequality with the above one, we
conclude that

2F

(
Σ

(
1

2
, s

)
,

∂

∂s
Σ

(
1

2
, s

))
= 2F (Js)

(
1

2

)
≤ F (Js)(1) = F

(
γ(s),

dγ

ds

)
.
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Integrating the last inequality with respect tos from 0 to 1, we obtain

2L

(
Σ

(
1

2
, ·

))
= 2

∫ 1

0
F

(
Σ

(
1

2
, s

)
,

∂

∂s
Σ

(
1

2
, s

))
ds

≤
∫ 1

0
F

(
γ(s),

dγ

ds

)
ds = L(γ) = dF (γ1(1), γ2(1)).

SinceΣ( 1
2, 0) = γ1( 1

2), Σ( 1
2, 1) = γ2( 1

2) andΣ( 1
2, ·) is aC∞ curve, by the definition of the

metric functiondF , we conclude thatγ1 andγ2 satisfy the Busemann NPC inequality.

5. (b) ⇒ (c) ∧ (d)

Let p ∈ M be a fixed point andρp, ρ′
p > 0 as in Section4. We will see thatρ′

p

is also a good choice inDefinition 2. First, we prove that for two arbitrary mini-
mal geodesicsγ1, γ2 : [0, 1] → B+

p (ρ′
p), the functionf : [0, 1] → R, defined byf (t) :=

fγ1,γ2(t) = dF (γ1(t), γ2(t)) is convex. To this end, it is enough to prove the1
2-convexity of

f, due to the continuity of the metric functiondF .
Thus, we fixa, b ∈ [0, 1], a < b. We defineγ̃i : [0, 1] → B+

p (ρ′
p) by γ̃i(t) = γi((b −

a)t + a), i ∈ {1, 2}. By [1. Exercise 5.3.2, p. 128], γ̃i is a minimal geodesic, joiningγi(a)
andγi(b), i ∈ {1, 2}. Sinceγ1(a), γ2(b) ∈ B+

p (ρ′
p), there exists a unique minimal geodesic

γ : [0, 1] → B+
p (ρ′

p) which joinsγ1(a) with γ2(b). Let γ̄ andγ̄2 the reverse ofγ andγ̃2, re-
spectively, i.e.,̄γ, γ̄2 : [0, 1] → M, defined bȳγ(t) = γ(1 − t) andγ̄2(t) = γ̃2(1 − t). Since
(M, F) is a Berwald space,̄γ and γ̄2 are geodesics too, which are the shortest ones (they
belong toB+

γ2(b)(2ρp)). Therefore, they minimize the arc length functional among all piece-
wiseC∞ curves which joinγ2(b) with γ1(a), andγ2(b) with γ2(a), respectively. Now, we
apply the Busemann NPC inequality for the geodesic pairs (γ̃1, γ) and (̄γ, γ̄2), respectively.
We obtain that

2dF

(
γ̃1

(
1

2

)
, γ

(
1

2

))
≤ dF (γ̃1(1), γ(1)) = f (b);

2dF

(
γ̄

(
1

2

)
, γ̄2

(
1

2

))
≤ dF (γ̄(1), γ̄2(1)) = f (a).

Sinceγ̄( 1
2) = γ( 1

2), by the triangle inequality and the above two relations we have

F

(
a + b

2

)
= dF

(
γ1

(
a + b

2

)
, γ2

(
a + b

2

))
= dF

(
γ̃1

(
1

2

)
, γ̃2

(
1

2

))

≤ dF

(
γ̃1

(
1

2

)
, γ

(
1

2

))
+ dF

(
γ̄

(
1

2

)
, γ̄2

(
1

2

))
≤ f (a) + f (b)

2
,

which concludes the12-convexity off.
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Now, we fix two arbitrary minimal geodesicsγ1, γ2 : [0, 1] → B+
p (ρ′

p). Let f+, f− :
[0, 1] → R, defined, as before, by

f+(t) = dist(γ1, γ2(t)) and f−(t) = dist(γ1(t), γ2).

It is clear that there existt0, t1 ∈ [0, 1] such thatf+(0) = dF (γ1(t0), γ2(0)) andf+(1) =
dF (γ1(t1), γ2(1)). We definẽγ : [0, 1] → M by γ̃(t) = γ1((t1 − t0)t + t0). Again, due to the
fact that (M,F) is a Berwald space,γ̃ will be a minimal geodesic (which joins the pointsγ1(t0)
andγ1(t1)), whose image is contained in that ofγ1. Since the functiont �→ dF (γ̃(t), γ2(t))
is convex, we have for allt ∈ [0, 1]

f+(t) = dist(γ1, γ2(t)) ≤ dist(γ̃, γ2(t)) ≤ dF (γ̃(t), γ2(t)) ≤ ‘ tdF (γ̃(1), γ2(1))

+(1 − t)dF (γ̃(0), γ2(0)) ≤ (t + 1 − t) max{dF (γ̃(1), γ2(1)), dF (γ̃(0), γ2(0))}
= max{f+(1), f+(0)},

i.e.,f+ is quasiconvex. A similar argument shows thatf− is also quasiconvex.

6. (c) ⇒ (e) and (d) ⇒ (f )

First, we prove (c) ⇒ (e).
Letp ∈ M be a fixed point andρ′

p > 0 as in Section4. Letγ : [a, b] → M be a minimal
geodesic andα > 0 such that (γ, α) is a forwardB+

p (ρ′
p)-admissible pair and fixx, y ∈ C+γ (α)

arbitrarily. Letγ̃ : [0, 1] → M be the reparametrization ofγ, i.e.,γ̃(t) = γ((b − a)t + a). γ̃
will be also a minimal geodesic andC+γ (α) = C+γ̃ (α). SinceC+γ̃ (α) ⊂ B+

p (ρ′
p), there exists a

unique minimal geodesicσ : [0, 1] → M which joinsx andy, and the image ofσ belongs to
B+

p (ρ′
p). Since the functiont �→ dist(γ̃, σ(t)) is quasiconvex (cf. (c)), then for allt ∈ [0, 1]

dist(γ̃, σ(t)) ≤ max{dist(γ̃, σ(0)), dist(γ̃, σ(1))} = max{dist(γ̃, x), dist(γ̃, y)} ≤ α.

Thus, the curveσ belongs entirely toC+γ̃ (α) = C+γ (α).
In the case of (d) ⇒ (f ), the argument is similar. We fix arbitrarily a minimal geodesic

γ : [a, b] → M andα > 0 such that (γ, α) is a backwardB+
p (ρ′

p)-admissible pair and choose

two pointsx, y ∈ C−γ (α). Takingγ̃ as above, due toC−γ̃ (α) ⊂ B+
p (ρ′

p), there exists a unique
minimal geodesicσ : [0, 1] → M lying on x andy, whose image is contained inB+

p (ρ′
p).

By the quasiconvexity oft �→ dist(σ(t), γ̃) we conclude thatσ belongs toC−γ̃ (α) = C−γ (α).

7. (e) ⇒ (a)

Let p ∈ M be a fixed point and consider two nonzero, non-collinear vectors inTpM.
Denote them byT0 andU0. We will prove thatK(T0, U0) ≤ 0. To this end, we may suppose
thatU0 andT0 aregT0-orthogonal (see[1, p. 69]), i.e.,gT0(T0, U0) = 0.
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Let r ∈ (0, 1) and chooseδ > 0 so small that

δ[rF (T0) + max{F (U0), F (−U0)}] < ρ′
p, (9)

whereρ′
p is from Section4. Let us defineσ : [0, r] → M by σ(t) = expp(tδT0). Clearly,σ

is a geodesic which has constant speedδF (T0) andL(σ) = rδF (T0). LetT = T (t), t ∈ [0, r]
be the velocity field ofσ. We will translateU0 alongσ in a parallel manner, obtaining a
vector fieldU = U(t), i.e.

DT U = 0 and U(0) = U0. (10)

Since (M, F) is of Berwald type, the reference vector in(10)becomes irrelevant again. Since
DT T = 0 (σ is a geodesic with constant speed), by formula(3) we obtain

d

dt
gT (T, U) = gT (DT T, U) + gT (T, DT U) = 0.

Therefore,gT (T, U) = const. = gT0(T0, U0) = 0.
Let Σ : [0, r] × [−1, 1] → M, defined by

Σ(t, s) = expσ(t)(sδU(t)),

which is a variation ofσ. From the first variation formula, see(5), we have

L′
Σ(0) = 1

δF (T0)
gT (T, U)

∣∣∣∣
r

0
= 0. (11)

Further, let us defineγt : [−1, 1] → M by γt = Σ(t, ·), t ∈ [0, r]. We will prove thatγt

is a minimal geodesic.
To this end, from(10)we observe that the vector field−U is also parallel alongσ. More-

over,F (U(t)) = F (U0) andF (−U(t)) = F (−U0) alongσ, due to Ichijȳo’s result (see[1,
p. 258]). By (9), the geodesicσ belongs toB+

p (ρ′
p) andF (sδU(t)) = δ|s|F (sgn(s)U(t)) ≤

δ max{F (U0), F (−U0)} < ρ′
p for all s ∈ [−1, 1]. Therefore,sδU(t) ∈ Bσ(t)(2ρ′

p) for all

(t, s) ∈ [0, r] × [−1, 1]. This implies, in virtue ofProposition 1, that expσ(t) is a C1-
diffeomorphism fromBσ(t)(2ρ′

p) intoB+
σ(t)(2ρ′

p). In particular,c±
t : [0, 1] → M, defined by

c±
t (s) = expσ(t)(±sδU(t)) will be radial geodesics minimizing distances (which are equals

to δF (±U0), respectively) among all piecewiseC∞ curves inM that share their endpoints.
We observe further thatc+

t coincidesγt|[0,1] , while c−
t is the reverse ofγt|[−1,0] . Therefore,

by (9), for fixeds ∈ [−1, 1], we have

dF (p, γt(s)) ≤ dF (p, σ(t)) + dF (σ(t), γt(s)) ≤ L(σ) + dF (γt(0), γt(s))

≤ L(σ) + max{dF (c+
t (0), c+

t (|s|)), dF (c−
t (0), c−

t (|s|))}
= δrF (T0) + δ|s| max{F (U(t)), F (−U(t))}
≤ δrF (T0) + δ max{F (U0), F (−U0)} < ρ′

p.

Thus,γt belongs entirely toB+
p (ρ′

p). Sincec−
t is a minimal geodesic, its reverseγt|[−1,0]

must be also a geodesic. Sinceγt is aC∞ curve on [−1, 1] which is contained inB+
p (ρ′

p),
it must be a minimal geodesic.
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Let q ∈ C+γ0
(L(σ)) be fixed arbitrarily. Letsq ∈ [−1, 1] such thatdF (γ0(sq), q) =

dist(γ0, q). Moreover, by(9) we have

dF (p, q) ≤ dF (p, γ0(sq)) + dF (γ0(sq), q)

≤ max{dF (c+
0 (0), c+

0 (|sq|)), dF (c−
0 (0), c−

0 (|sq|))} + dist(γ0, q)

≤ δ max{F (U0), F (−U0)} + L(σ) < ρ′
p.

This implies thatC+γ0
(L(σ)) ⊂ B+

p (ρ′
p), i.e., (γ0, L(σ)) is a forwardB+

p (ρ′
p)-admissible pair.

SincegT (T, U) = 0 (at t = r, in particular), the curveγr is transversal toσ at the
point σ(r) = γr(0). Therefore,γr is tangent to the capsuleC+γ0

(L(σ)), which is a convex
set, by the hypothesis. In this way,γr will be a supporting line toC+γ0

(L(σ)) at σ(r),
i.e., the curveγr does not meet the set{q ∈ M : dist(γ0, q) < L(σ)}. This means that
dF (γ0(u), γr(s)) ≥ dist(γ0, γr(s)) ≥ L(σ) for all u, s ∈ [−1, 1]. In particular, from(11)and
the Taylor expansion forLΣ, we have

L′′
Σ(0) ≥ 0. (12)

For a fixedt ∈ [0, r], the geodesicγt|[0,1] with velocity ∂Σ
∂s

(t, s) has constant speed.
Thus, Eq.(2) reduces toD(∂Σ/∂s)(t,s)

∂Σ
∂s

(t, s) = 0, s ∈ [0, 1]. In particular, fors = 0 we
have∂Σ

∂s
(t, 0) = U(t) andDU(t)U(t) = 0. Sincet ∈ [0, r] was arbitrarily fixed,

DUU = 0 alongσ. (13)

By (10), (12), (13), and the second variation formula, we obtain that

∫ r

0
gT (R(U, T )T, U) dt ≤ 0.

Moreover, from(1) andgT (T, U) = 0 we have

∫ r

0
K(T, U)F2(T )gT (U, U) dt ≤ 0.

SinceF2(T ) = F2(T0) andgT (U, U) = const.= gT0(U0, U0) �= 0 (use formula(3)), the
above inequality reduces to

∫ r

0 K(T, U) dt ≤ 0. If r → 0, by the continuity ofK we obtain
K(T0, U0) = K(T (0), U(0)) ≤ 0, which completes the proof.

8. (f ) ⇒ (a)

The proof of this implication is a slight modification of the previous section; thus, we
will indicate only the differences.

Let β ∈ (0, ρ′
p) such thatB−

p (β) ⊂ B+
p (ρ′

p), and instead of(9), chooseδ > 0 so small
that

δ[r(1 + cp)F (T0) + cp max{F (U0), F (−U0)}] < β, (14)
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wherecp > 1 is fromProposition 1. The construction ofσ, Σ andγt are the same, obtaining
in a similar manner (due to(14)), thatγt is a minimal geodesic which belongs toB+

p (ρ′
p),

t ∈ [0, r].
Let q ∈ C−γr

(L(σ)) be a fixed point. There issq ∈ [−1, 1] such thatdF (q, γr(sq)) =
dist(q, γr) ≤ L(σ) = δrF (T0). Sinceγr(0) = σ(r) andγr(sq) belong toB+

p (ρ′
p) ⊂ B+

p (ρp),
by (6) and (14)we have

dF (q, p) ≤ dF (q, γr(sq)) + dF (γr(sq), γr(0)) + dF (γr(0), p)

≤ L(σ) + cp[dF (γr(0), γr(sq)) + dF (p, σ(r))]

≤ L(σ) + cp[δ max{F (U0), F (−U0)} + L(σ)] < β.

Therefore,q ∈ B−
p (β) ⊂ B+

p (ρ′
p). This implies thatC−γr

(L(σ)) ⊂ B+
p (ρ′

p), i.e., (γr, L(σ)) is
a backwardB+

p (ρ′
p)-admissible pair.

Since the curveγ0 is transversal toσ at the pointσ(0) = γ0(0) = p (note thatgT (T, U) =
0 at t = 0), γ0 is tangent to the capsuleC−γr

(L(σ)), which is a convex set, by hypothesis.
Similarly, as in the previous section, we obtain thatdF (γ0(s), γr(u)) ≥ dist(γ0, γr(u)) ≥
L(σ) for all s, u ∈ [−1, 1]; in particularL′′

Σ(0) ≥ 0. This completely concludes the proof.

Acknowledgements
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