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Abstract

We show the equivalence of the non-positivity of the flag curvature with the non-positive curvature
properties of Busemann and Pedersen for (not necessarily reversible) Berwald manifolds. So an
analytical property is characterized by synthetic concepts of non-positively curved metric spaces.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the 1940s, Busemann developed a synthetic geometry on metric spaces. In particular,
he axiomatically elaborated a whole theory of non-positively curved metric spaces, which
have no differential structure a priori and they possess the essential qualitative geometric
properties of Finsler manifolds. These spaces are the so-called G-spa¢@sps@é] This
notion of non-positive curvature requires that in small geodesic triangles the length of a side
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is at least the twice of the geodesic distance of the mid-points of the other two sidgk, see

p. 237] In 1952, Pederse€9] introduced a weaker non-positive curvature notion than that

of Busemann which is in fact equivalent with the convexity of the (small) capsules (i.e., the
loci equidistant to geodesic segments). The curvature notion of Pedersen is enough to prove
many of the results obtained by Busem§Bin However, the real merit of Pedersen’s notion
relies in the fact that while the Hilbert metric of the interior of a simple, closed and convex
curvek in the Euclidean plane clearly satisfies this curvature condition, Busemann’s curva-
ture condition holds if and only i is an ellipse, see Kelly and Straig§. Therefore, in the

latter case, the Hilbert metric (which is in general a (projective) Finsler metric with constant
flag curvature-1) becomes a Riemannian one. This means that, although for Riemannian
spaces the non-positivity of the sectional curvature, Pedersen’s and Busemann’s curvature
conditions are mutually equivalent (s Theorem (41.6)] the non-positivity of the flag
curvature of generic Finsler manifold is not enough to guarantee Busemann’s property. Ba-
sically, we have two possibilities in order to obtain such a characterization for Finsler spaces:

() To find anew notion of curvature in Finsler geometry such that for an arbitrary Finsler
manifold the non-positivity of this curvature is equivalent with the Busemann non-
positive curvature condition, as it was proposed by hénProblem 25]

(I) To keep the flag curvature, but put some restrictive condition on the Finsler metric.

In spite of the fact that (reversible) Finsler manifolds are included in G-spaces, only few
results are known which establish a link between differential invariants of a Finsler
manifold and thenetric properties of the induced metric space. [@] (see als¢3, p. 270),
Pedersen restricted his studies to two-dimensional reversible Finsler spaces, showing that
if it has convex capsules, then its usual curvature is non-positive; the converse problem
remains an open question until now. Using the Cartan connection and suitable modifi-
cations of the proof of Pedersen, Moal extended the above result to Finsler spaces
of arbitrary dimension. On the other hand,[#}, the authors and Cs. Varga proved that
finite-dimensionaBerwald spaces of non-positive flag curvature are curved in the sense of
Busemann. Therefore, Berwald spaces (i.e., Finsler spaces whose Chern connection coef-
ficientsFi’; in natural coordinates depend only on the base point) seem to be the first class
of Finsler metrics that are non-positively curved in the sense of Busemann and which are
neither flat nor Riemannian.

The above result gave us the expectation to obtain a characterization of the Busemann
curvature notion in these special Finsler spaces, which is in accordance with (I1); however,
(I) seems to be a remarkable, but a very hard problem.

Let (M, F) be a Berwald space, whekds positively (but perhaps not absolutely) homo-
geneous of degree one and dgt be the induced (non-reversible) metric By The main
result of this paper (see Secti@rfor the exact notions and formulation) asserts that the
following six criteria are mutually equivalent:

e The flag curvature of(, F) is non-positive;
e (M, dr)is curved in the sense of Busemann;
e (M, dF)is curved in the sense of Pedersen in forward manner;
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e (M, dF)is curved in the sense of Pedersen in backward manner;
e The small forward capsules i, dr) are convex sets;
e The small backward capsules i(dr) are convex sets.

This result also includes in particular a partial answer to the question of Pedersen (see
[9, p. 87), i.e., every reversible Berwald space of non-positive flag curvature has convex
capsules. Beyond its own interest of our result, we mention that only few notions exist in
Finsler geometry which can be compared from the “forward” and “backward” points of
view (see Bao et a[1]).

Inthe 1950s, Aleksandrov introduced independently another notion of curvature in metric
spaces, based on the convexity of the distance function. It is well-known that the condition
of Busemann curvature is weaker than the Aleksandrov ong5s€erollary 2.3.1] Nev-
ertheless, in Riemannian spaces the Aleksandrov curvature condition holds if and only if
the sectional curvature is non-positive ($2eTheorem 1A.6), but in the Finsler case the
picture is quite rigid. Namely, if on a reversible Finsler manifald ) the Aleksandrov
curvature condition holds (on the induced metric spaceMbyR)) then (M, F) it must be
Riemannian, seR, Proposition 1.14]

In the proof of our main result the assumption that the Finsler structure is of Berwald
type plays an indispensable role in several times. It would be interesting to examine whether
or not the above result works farlarger class of Finsler spaces than the Berwald ones,
working in the (ll) context. As far as the Busemann curvature condition is concerned, we
believe that, as in the Aleksandrov case, we face a rigidity result; namely, if the Busemann
curvature condition holds on a Finsler manifold,(F) then it must be of Berwald type.

If this is true, the problem (I) would be solved in the following way: among the Finsler
manifolds, the Berwald spaces would be the largest class having the property of (1), where
the curvature could be chosen to be the flag one.

Shen gave to the authors an example for a specific family of Berwald spaces which is
non-Riemannian with non-positive flag curvature, seef@ksdamely, let (1o, g) be atwo-
dimensional Riemannian space of constant sectional curv&iure 0, ande an arbitrary
positive constant. Then the Finsler metricn= R x My is defined by

F(t, x, y;t,u,v) = \/1'2 + 8,y ((u, V), (u, v)) + 6\/1’4 + g(zx’y)((u, v), (u, v)),

which satisfies the requirements. Moreover, the flag curvaturéf/o#§ is not constant.
Since M, F) is a non-Riemannian Berwald spac#{,(dr) is not curved in the sense of
Aleksandrov, but it is in the sense of Busemann and Pedersen, due to the our result.
2. Basic notions and the main result

2.1. Curvature notions on metric spaces

Let (M, d) be a non-reversible metric space. Since the functias not necessarily
symmetric, we define thérward and backward metric balls, respectively, with center
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p € M and radius > 0 as
B;(r) ={geM:d(p,q) <r} and B,(r)={qe M:d(q. p)<r}

A continuous curvey : [a, b] — M with y(a) = x, y(b) = y is ashortest geodesic, if
I(y) = d(x, y), wherel(y) denotes thgeneralized length of y and it is defined by

I(y) = Sup{z dliy(ti—1), y(t) a=to<t1<---<thb=b, ne N} .
i=1

We say that ¥, d) is alocally geodesic (length) space if for every pointp € M there
is ap, > 0 such that for every two points y € B;,f(pp) there exists a shortest geodesic
joining them.

Definition 1. A locally geodesic spaceM, d) is said to be aBusemann non-positive
curvature space (Shortly, Busemann NPC space), ifforeveryp € M there existg,, > Osuch

that for any two shortest geodesigs - : [0, 1] - M with y1(0) = y»2(0) = x € B;,“(,o,,)
and with endpoints1(1), y2(1) € B;;(p,,) we have

24 (m (;) 7 (;)) < (1), (1),

(We shall say thayy andy, satisfy theBusemann NPC inequality).

Lety : [a, b] — M be acurve ang € M be fixed arbitrarily. We denote by distg) =
inf{d(y(t), q) : t € [a, b]} and distg, y) = inf{d(q, y(¢)) : t € [a, D]}.

Definition 2. A locally geodesic space\, d) is said to be a forward (respackward)
Pedersen non-positive curvature space (shortly, forward (respbackward) Pedersen NPC
space), if for everyp € M there existso, > 0 such that for any two shortest geodesics
v1, 2 [0, 1] — B} (pp), the functionf™* : [0, 1] — R (resp.f~ : [0, 1] — R), defined
by

fH(@) = distl, y2(r))  (resp.f~ (1) = dist((1), y2))
is quasiconvex, i.e., for everye [0, 1]

@) = max(f(0), fH(1)} (resp.f~(r) < max(f(0), f~(1)}).

Lety : [a, b] — M be a shortest geodesic and> 0. Attached toy anda, we define
theforward andbackward capsules, respectively, as

C;'(ot) ={qgeM:distlyq) <o} and C, () ={q € M :distg,y) < a}.
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Let Mg be a non-empty subset . The pair {, «) is say to bgorward (resp.backward)
Mo-admissible, if C;L(oz) C Mo (resp.C,, () C Mo).

Definition 3. We say that a locally geodesic spasg ¢) hasconvex forward (resp.back-
ward) capsules if for every p € M there exists, > 0 such that for every forward (resp.
backward)B;(pp)—admissible pairy, ), the seﬂ;f(a) (resp.C, () is convex.

As usually, the convexity of a set means that every two points in it can be uniquely joined
by a shortest geodesic and the image of this curve belongs entirely to the set.

2.2. Berwald spaces

In this section, we recall briefly some known facts about Berwald spaces. For details,
see[l].

Let M be an-dimensionalC* manifold andTM = |J,,, M the tangent bundle. If
the continuous functio : TM — R, satisfies the conditions that it &> on TM \ {0};
F(tu) = tF(u) forall > 0 andu € TM, i.e., F is positively homogeneous of degree one;
and the ma_1tri>gij(u) = (%Fz)y,-y,- (u) is positive definite for all: € TM \ {0}, then we say
that (M, F) is aFinsler manifold.

Lety : [0, 7] — M be a piecewis€ curve. ltsintegral length is defined as

L) = /0 "), 7).

Forxg, x1 € M denote byl"(xo, x1) the set of all piecewis€* curvesy : [0, 7] — M such
thaty(0) = xg andy(r) = x1. Define a maply : M x M — [0, co) by

dr(xo,x1) = inf  L(y).
r(x0, x1) AL ()

Of course, we havér(xo, x1) > 0, where equality holds ifand onlyif = x1; dr(xo, x2) <
dr(xo, x1) + dr(x1, x2). In general, sincé is only a positive homogeneous function,
dr(xo, x1) # dFr(x1, x0), therefore Y, dr) is only a non-reversible metric space.

Let 7*TM be the pull-back of the tangent bundiés by = : TM \ {0} — M. Unlike
the Levi—Civita connection in Riemann geometry, there is no unique natural connection
in the Finsler case. Among these connectiongtfiM, we choose th€hern connection
whose coefficients are denotedﬁ}z (se€1, p. 38). This connection induces tl@rvature
tensor, denoted byR (see[1, Chapter 3.

Let (x, y) € TM \ 0 andV a section of the pulled-back bundtéTM. Then

8.y (R(V, y)y, V)
K(y, V)= ,
80 (s Mee (Vs V) = [80en) (v, V)2

1)

is theflag curvature with flagy and transverse edge Here,g(.. ) = gij(x,y) dr' ® dx/ :=
(3F?),i,s di’ ® dx/ is the Riemannian metric on the pulled-back bunef@ (seefl,
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p. 68). WhenF is Riemannian, then the flag curvature coincides with the sectional cur-
vature. LetK abbreviate the collection of flag curvatuf@s(V, W) : 0# V, W € TxM, x €
M,V andW are not collinegr. We say that the flag curvature d¥f( F) is non-positive if
K <0.

A Finsler manifold is ofBerwald type if the Chern connection coefficient#; in natural
coordinates depends only on the base point.

The main result of this paper can be formulated as follows.

Theorem 1. Let (M, F) be a Berwald space where F is positively (but perhaps not absolutely)
homogeneous of degree one. The following assertions are equivalent:

(@) The flag curvature of (M, F) is non-positive.
(b) (M, dF) is a Busemann NPC space.

(c) (M, dF) is a forward Pedersen NPC space.
(d) (M, dF) is a backward Pedersen NPC space.
(e) (M, dF) has convex forward capsules.

(A (M, dr) has convex backward capsules.

The paper is organized as follows. In the next section we recall further results, which
will be used throughout the paper. In Sectihnve will prove the implicationd) = (); in
Sectionb, the implications &) = (c) and ¢) = (d); in Section6, the implications ¢) =
(e) and €) = (f); in Section7, the implication ¢) = (a) while in the last section the
implication (f) = (a).

3. Auxiliary results from Finsler geometry

The Chern connection defines the covariant derivaliyé/ of a vector fieldU € X(M)
inthe directionV € T,,M. Since, in general, the Chern connection coefficiéfisn natural
coordinates have a directional dependence, we must say explicit®{l{ais defined with
a fixed reference vector. In particular, tet [0, r] — M be a smooth curve with velocity
field T = T(¢r) = o(¢). Suppose thaty andW are vector fields defined alorng We define
D7 U with reference vector W as

i

. , 3
+ U]Tk(F;k)(aW) P

X o (r)

DU—dU
%= 1 g

Acurveo : [0,r] — M, with velocity T = ¢ is a (Finslerian) geodesic if

T
Dy [F(T)} =0, withreference vectdr. (2)

If U, V.andW are vector fields along a curve which has velocityl’ = ¢, we have the
derivative rule

d
EgW(Ua V) =gw(DrU, V) + gw(U, DV) 3
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wheneverD7U and D7V are with reference vectd andone of the following conditions
holds:

e [ orVis proportional tow, or
e W =T ando is a geodesic.

A vector fieldJ along a geodesie : [0, r] — M (with velocity field 7) is said to be a
Jacobi field if it satisfies the equation:

DrDrJ + R(J, T)T =0, (4)

whereRr is the curvature tensor. Here, the covariant derivallyas defined with reference
vectorT.

Let ¥ : [0, 7] x [-1,1] — M be a piecewis€> variation of a geodesie : [0, r] —
M, with X(-,0) = 0. Let

) )
T:Tt, = > UZUI, = —
(t.5) =~ (t.5) = —

the velocities of the-curves (i.e., X(z, s = constant)) ang-curves (i.e., X(t = constants)),
respectively. The formula for th@:st variation of arc length gives us

r

d
L5(0) = 5 LS, o = gr (u, F(TT)) )

‘S:O 0

Thesecond variation of arc length can be expressed as
2

T ds?

A F(T;S_O[gT(DrU, DrU) - gr(R(U. T)T. U)o dr

T T IF(T)\?
e (DUU’ F(T)>s_0 /0 F(T)ISZO ( ds >|s_0 a

0

where all covariant derivatives are with reference vegtet T(z, 0).

Forp e M,r > 0,letB,(r) :=={y € T,M : F(p, y) < r} bethe opermngent ball and let
B;; (r) andB,, (r) the forward and backward metric balls, respectively, defined by means of
dr. Itiswell-known that the topology generated by the forward (resp. backward) metric balls
coincide with the underlying manifold topology, respectively. Moreover, by the Whitehead'’s
theorem (sefL1]or[1, Exercise 6.4.3, p. 16¥&nd[1, Lemma6.2.1, p. 14@le can conclude
the following useful result (see al$d]).

L5(0): L(X(-, 5))s=0

Proposition 1. Let (M, F) be a Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one. For every point p € M there exist a small p, > 0
and cp, > 1 (depending only on p) such that for every pair of points qo, q1 in BZ (pp) we
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1
:dF(CIL q0) < dr(qo. q1) < cpdr(q1, 90)- (6)
P

Moreover, for every real number k > 1 and q € B;(pp/k) the mapping €xp, is cl-
diffeomorphism from By(2p,/k) onto B;(Z,op/k) and every pair of points qg, q1 in
B;(pp/k) can be joined by a unique minimal geodesic from qo to q1 lying entirely in
B;(Pp/k)

A geodesic fromgg to g1 is said to beminimal if its integral length equals
the metric distancelr(qo, g1). Since we are within the Finsler context, the gener-
alized lengthi(y) and the integral length.(y) of (piecewise)C* curves coincide
(see [4, Theorem 2, p. 186] Therefore, the minimal Finsler geodesic and short-
est geodesic notions coincide, too. In particular, ®upposition lasserts that ev-
ery (non-reversible) metric space, induced by a Finsler metric, is a locally geodesic
space.

4. (a) = (b)

This part is basically included i7], but for the sake of completeness we give the proof.

Let us fix p € M and considep, > 0, ¢, > 1 from ourProposition 1 We will prove
that p;, = ‘c’—;’ is a good choice irDefinition 1 To do this, letys, y2: [0,1] — M be
two (minimal) geodesics withy1(0) = y2(0) = x € B} (0},) and y1(1), y2(1) € B; (o).
By our Proposition 1 we can construct a unique geodegic[0, 1] — M joining y1(1)
with y2(1) anddg(y1(2), y2(1)) = L(y). Clearly, y(s) € B;(p;,) for all s € [0, 1] (we ap-
plied ourProposition Ifor k = ¢,). Moreover,x € B;j(s)(pr). Indeed, by(6), we obtain
dr(y(s), x) < dr(y(s), p) +dr(p, x) < cpdr(p, ¥(s)) + £}, < (cp + 1)p}, < 2pp. There-
fore, we can defineX : [0,1] x [0, 1] - M by X(z,5) = exp,,»((1 —1) - exp;é)(x)).
The curvet — X(1—t,s) is a radial geodesic which joing(s) with x. Taking into
account that M, F) is of Berwald type, the reverse of—~ X(1—1t,5s), i.e., t—
X (t,s) is a geodesic too (se€f@, Exercise 5.3.3, p. 128ffor all s € [0, 1]. Moreover,
X(0,0) = x = y»1(0), ¥(1,0) = y(0) = y1(1). From the unigueness of the geodesic be-
tween x and y1(1), we haveX(-, 0) = y1. Analogously, we haveX(-, 1) = y». Since
X is a geodesic variation (of the curves and y»), the vector fieldJ;, defined by
Js(t) = %E(t, s) € Txu5)M is a Jacobi field alongz(-, s), s € [0, 1] (see[1, p. 130).
In particular, we haveX(1,s) = y(s), Js(0)=0, J(1) = 2 5(L s) = %” and Jy(3)
= 25(3.9).

Now, we fix s € [0, 1]. Since J;(0) = 0 and the flag curvature in non-positive, then
the geodesic (-, s) has no conjugated points. Therefodg(r) # 0 for ¢ € (0, 1]. Hence,
g1, (Js, Js)(¢) is well defined for every e (0, 1]. Moreover

F(I5)(0) := F(Z(, 5), Js(1) = [g5,(Js, J)?() #0, V¥ € (0,1]. (7)
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Let 7, the velocity field ofX(-, s). Applying twice formula(3), we obtain

o 12,0 ¢ _d [gs(Dr,Js, Js)
Solen e W) =GP0 = § | E0RR )

[gJ.;(DTSDTxJSv Js) + gJ;(DTSJS: DT;JS)] - F(Jy)
_ _gi(DTs Js, Js) : F(Js)_l (l)
- F2(Jy)

g«lx(DTsDTxJS’ JV) : FZ(JY)

+84,(Dr, Js, D, Jy) - F2(Jy) — 5. (Dr, Jy., Jy)

- F3(J,) “

where the covariant derivatives (for generic Finsler manifolds) are with reference vector
Js. Since M, F) is a Berwald space, the Chern connection coefficients do not depend on
the direction, the notion of reference vector becomes irrelevant. Therefore, we can use the
Jacobi equatio@), concluding thag; (D7, Dr, Js, J5) = —g4,(R(Js, T5) Ty, Js). Using the
symmetry property of the curvature tensor (fkeExercise 3.9.6, p. 7R]the formula of

the flag curvature, and the Schwarz inequality we have

—ng(R(Js, Ts)Tsv Js) = _gJ;(R(Ts’ Js)Js, Ts)
= —K(Js, Ty) - [84,(Js. J5)gu,(Ts. Ty) — g5.(Js. T)] = 0.

For the last two terms of the numerator we apply again the Schwarz inequality and we
conclude that

d2
@F(JS)(I) >0, forallre (0,1].

SinceJ(t) # 0 for ¢ € (0, 1], the mapping — F(J;)(¢) is C* on (0, 1]. From the above
inequality and the second order Taylor expansion abau(0, 1], we obtain

F(J)(w) + (r - v)%F(Js)(v) < F(Js)(®) (8)

for everyr € (0, 1]. Lettings — 0 andv = 1/2 in (8), by the continuity off’, we obtain

() (;) Sk (;) <o,

Letv =1/2 andr = 1 in (8), and adding the obtained inequality with the above one, we
conclude that

(= () 2 (o)) o 3) = (0.,
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Integrating the last inequality with respectstérom 0 to 1, we obtain

1 1 1 9 1
2 (5(z) =2 (=) 52 ()
1 d
- / F (y(s), dy> ds = L(y) = dr (L), y2(L)).
0 S

SinceX(3,0) = y1(3), 2(3. 1) = y2(3) andX(3, -) is aC* curve, by the definition of the
metric functiond g, we conclude thag; andy» satisfy the Busemann NPC inequality.

5. ()= (c)A(d)

Let p € M be a fixed point antp,, o, > 0 as in Sectiod. We will see thatp),
is also a good choice iefinition 2 First, we prove that for two arbitrary mini-
mal geodesics1, y2 : [0, 1] — B;(p;), the functionf : [0, 1] — R, defined byf(¢) :=
Sy (t) = dr(yi(t), v2(2)) is convex. To this end, it is enough to prove E}weonvexity of
£, due to the continuity of the metric functieh-.

Thus, we fixa, b € [0, 1], a < b. We definey; : [0, 1] — B;;(p’p) by 7i(#) = yi((b —
a)t+a),i € {1, 2}. By [1. Exercise 5.3.2, p. 128, is a minimal geodesic, joining;(«)
andy;(b), i € {1, 2}. Sincey1(a), y2(b) € B;j(p;,), there exists a uniqgue minimal geodesic
y:[0,1] — B;(p;) which joinsy1(a) with y2(b). Let y andy, the reverse of andy», re-
spectively,i.e.y, y2 : [0, 1] — M, defined by () = y(1 — 1) andy(r) = 72(1 — ¢t). Since
(M, F) is a Berwald space; andy, are geodesics too, which are the shortest ones (they
belong toB;fz(b)(pr)). Therefore, they minimize the arc length functional among all piece-
wise C* curves which joinyz(b) with y1(a), andy2(b) with y2(a), respectively. Now, we
apply the Busemann NPC inequality for the geodesic p#irsA) and ¢, y»), respectively.

We obtain that

2 (&1 (;) Ly (;)) < dr(a(L). YD) = F);

1

2ar (7(3) 72 (3)) = rt. 00 = s

Since?(%) = y(%), by the triangle inequality and the above two relations we have
a+b a+b a+b (1N . /1
P(577) m(n(57) #(57) = (0 (5) 2 (2))

. (1 1 _(1\ _ /1 fla) + f(b)
<ar(3(5) (o)) 4o (7(5) 7 (5)) = 5

which concludes thé-convexity off.
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Now, we fix two arbitrary minimal geodesiasg, y» : [0, 1] — B;;(p;,). Let f*, f~:
[0, 1] — R, defined, as before, by

fT(0) = dist@a, y2(0)) and [~ (1) = dist(a(r). y2)-

It is clear that there exis, 11 € [0, 1] such thatf+(0) = dr(y1(t0), y2(0)) and f (1) =
dr(ya(t1), y2(1)). We definey : [0, 1] — M by p(¢) = y1((t1 — to)t + to). Again, due to the
factthat 4, F) is a Berwald spacé,will be a minimal geodesic (which joins the poimtg#o)
andyi(t1)), whose image is contained in thatjaf. Since the functiom — dg(¥(1), y2(2))
is convex, we have for all € [0, 1]

FH@) =distla, y2(r)) < dist@, y2(1)) < dp(7(1), y2(t)) < ‘tdp(7(1), y2(1))
+(1 = 0)dp(#(0), y2(0)) < (r + 1 — /) max{dr(¥(1), y2(1)), dr(¥(0). y2(0))}
=maxX f*(1), FH ),

i.e., /1 is quasiconvex. A similar argument shows tifatis also quasiconvex.

6. (¢) = (e) and (d) = (f)

First, we prove ) = (e).

Letp € M be afixed pointang), > O asin Sectiod. Lety : [a, b] — M be a minimal
geodesic and > 0 suchthaty, «)is aforwardB;(p;,)—admissible pairandfix, y € Cj; (@)
arbitrarily. Lety : [0, 1] — M be the reparametrization efi.e.,y(r) = y((b — a)t + a). ¥
will be also a minimal geodesic alf () = CZ («). SinceC? () C B; (0),), there exists a
unigue minimal geodesit : [0, 1] — M which joinsx andy, and the image af belongs to
B";’,'(p/p). Since the functiom — dist(y, o(¢)) is quasiconvex (cf.d)), then for allz € [0, 1]

dist, o(f)) < maxdist@, o(0)), dist(, o(1))} = max{dist(y, x), dist(, y)} < a.

Thus, the curves belongs entirely td;(a) = Cj(oe).
In the case ofd) = (f), the argument is similar. We fix arbitrarily a minimal geodesic
y . [a, b] — M anda > 0 suchthaty, «) isabackwar(B;;(p/p)—admissible pair and choose

two pointsx, y € C,, (). Takingy as above, due 6; (o) C Blf(p;,), there exists a unique
minimal geodesie : [0, 1] — M lying on x andy, whose image is contained E}j;(p;).
By the quasiconvexity of — dist(o(¢), ¥) we conclude thad belongs tw; (@) =C, ().

7. (e) = (a)

Let p € M be a fixed point and consider two nonzero, non-collinear vectof, M.
Denote them byp andUy. We will prove thatK (T, Up) < 0. To this end, we may suppose
thatUp and Ty aregr,-orthogonal (segl, p. 69), i.e., gr,(To, Uo) = 0.
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Letr € (0, 1) and choosé > 0 so small that
8[rF(To) + max{F(Uo), F(—Uo)}] < Pl (9)

where,o/p is from Sectior. Let us definer : [0, r] — M by o(r) = exp,(1570). Clearly,o

is a geodesic which has constant sp&E(lp) andL (o) = rdF(Tp). LetT = T(¢),t € [0, r]
be the velocity field ob. We will translateUy alongo in a parallel manner, obtaining a
vector fieldU = U(z), i.e.

DrU =0 and U(0)= Up. (20)

Since (1, F) is of Berwald type, the reference vecto(it®) becomes irrelevant again. Since
DT = 0 (o is a geodesic with constant speed), by form{@)awe obtain

d
EgT(T, U) = gr(DrT,U) + gr(T, DrU) =0

Therefore g7(T, U) = const = gr,(To, Up) =
Let X :[0,r] x[-1, 1] - M, defined by

(1, 5) = expy((s8U (1))

which is a variation ob. From the first variation formula, s¢B), we have

r

L@ = 0| (1)

Further, let us defing, : [—1, 1] — Mbyy; = 2(t,-), t € [0, r]. We will prove thaty;
is a minimal geodesic.

To this end, from(10) we observe that the vector fielelJ is also parallel along. More-
over, F(U(t)) = F(Up) and F(—U(t)) = F(—Up) alongo, due to Ichijyo’s result (sed1,
p. 258). By (9), the geodesie belongs tOB;(p;,) and F(ssU(¢t)) = d8|s| F(sgn6)U(z)) <
§max{F(Uo), F(=Uo)} < p), for all s € [-1, 1]. Therefore,ssU(r) € By(;)(2p),) for all
(t,s) € [0, r] x [-1,1]. This implies, in virtue ofProposition 1 that exp, is a cl-
dlffeomorphlsm fromB(,)(20),) into Bg(t)(z,o;). In particularc™ : [0, 1] — M, defined by
cE(s) = exp, ) (£s8U(#)) will be radial geodesics minimizing distances (which are equals
to §F(xUp), respectively) among all piecewig®® curves inM that share their endpoints.
We observe further thag" coincidesyy, ,;, while ¢, is the reverse ofy_, ;. Therefore,
by (9), for fixeds € [—1, 1], we have

dr(p. vi(s)) < dp(p. o(0) + dr(o(t). vi(s)) < L(0) + dr(v:(0), y(s))
< L(0) + max{dr(c;(0), ¢ (Is1)), dr(c; (0), ¢; (Is1)}
= 8rF(Tp) + 8|s| max{F(U(r)), F(-U(@1))}
< 8rF(Tp) + s max{ F(Up), F(—Up)} < ,o;,.

Thus, y; belongs entirely tdS'jg(p;,). Sincec; is a minimal geodesic, its reversg, ,
must be also a geodesic. Singds aC> curve on -1, 1] which is contained irﬁ;ﬁ(p;),
it must be a minimal geodesic.
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Let g € C;FO(L(o)) be fixed arbitrarily. Lets, € [-1, 1] such thatdr(yo(sq), q) =
dist(yo, q). Moreover, by(9) we have

dr(p,q) <dr(p, vo(sq)) + dr(vo(se), 9)
< max(dr(cd (0), cg (Isq])). dr(cg (0), ¢ (Is41))} + dist(vo. g)
< dmax{(F(Uo), F(~Uo)} + L(0) < 0,

This implies thaCf (L(0)) C B; (o)), i.e., (o, L(0)) is a forwardB} (0),)-admissible pair.

Sincegr(T, U) = 0 (att = r, in particular), the curve, is transversal tar at the
point o(r) = y,(0). Thereforey, is tangent to the capsu[é%(L(a)), which is a convex
set, by the hypothesis. In this way, will be a supporting line tcC)fO(L(a)) at o(r),
i.e., the curvey, does not meet the s¢yy € M : dist(yo, ¢) < L(0)}. This means that
dr(yo(u), yr(s)) > dist(yo, v+(s)) > L(o) forallu, s € [—1, 1]. In particular, from(11)and
the Taylor expansion faok x, we have

L'-(0) > 0. (12)

For a fixedr € [0, r], the geodesicy,,; with velocity %(r, s) has constant speed.
Thus, Eq.(2) reduces toD(x;as).5) 2= (1. 5) = 0, s € [0, 1]. In particular, fors = 0 we
have%(r, 0) = U(r) andDy»U(r) = 0. Sincer € [0, r] was arbitrarily fixed,

DyU = 0 alongo. (13)

By (10), (12), (13) and the second variation formula, we obtain that
| e Do <o

Moreover, from(1) andg7 (7, U) = 0 we have
| k@ v <o

Since F(T) = F?(To) and g7(U, U) = const.= g7, (Uo, Uo) # 0 (use formula(3)), the
above inequality reduces gfé K(T, U)dr < 0. If r — 0, by the continuity oK we obtain
K(To, Upg) = K(T(0), U(0)) < 0, which completes the proof.

8. (f)=(a)

The proof of this implication is a slight modification of the previous section; thus, we
will indicate only the differences.

Let g € (0, p},) such thatB,(8) C Bj(p;,), and instead of9), chooses > 0 so small
that

8[r(1+ cp)F(To) + c, max{F(Uo), F(—=Uo)}] < B, (14)
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wherec,, > 1is fromProposition 1The construction of, > andy; are the same, obtaining
in a similar manner (due t(14)), thaty, is a minimal geodesic which belongslﬁ?f(p;,),
t €10, r].

Let g € C, (L(0)) be a fixed point. There is, € [-1, 1] such thatdr(q, y-(s4)) =
dist(g, v) < L(0) = érF(To). Sincey,(0) = o(r) andy,(s,) belong toB;(,o},) C B;j(pp),
by (6) and (14)we have

dr(q, p) =dr(q. vr(sq)) + dr(vr(sq), v-(0)) + dr(v,(0), p)
< L(0) + ¢pldr(v:(0), :(sq)) + dr(p, o (r))]
< L(0) + cp[d max{ F(Uo), F(—Uo)} + L(0)] < B.

Thereforeg € B,(B) C B,J;(p;,). This implies that, (L(0)) C B;;(p;,), i.e., vy, L(0)) is
a backward3/ (p),)-admissible pair.

Since the curveyg is transversal te at the point(0) = y0(0) = p (note thagr (7, U) =
0 atr = 0), yo is tangent to the capsulg, (L(0)), which is a convex set, by hypothesis.
Similarly, as in the previous section, we obtain tdal(yo(s), y,(u)) > dist(o, (1)) >
L(o) for all s, u € [—1, 1]; in particularL’;.(0) > 0. This completely concludes the proof.
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