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{−�u = v p in Ω;
−�v = f (u) in Ω;
u = v = 0 on ∂Ω,

where 0 < p < 2
N−2 , Ω is a bounded domain in R

N and the con-
tinuous nonlinear term f has an unusual oscillatory behavior. The
sequence of solutions tends to zero (resp., infinity) with respect to
certain norms and the nonlinear term f may enjoy an arbitrary
growth at infinity (resp., at zero) whenever f oscillates near zero
(resp., at infinity). Our results provide the first applications of Ric-
ceri’s variational principle in the theory of coupled elliptic systems.
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1. Introduction and results

We consider the elliptic system

⎧⎨
⎩

−�u = g(v) in Ω;
−�v = f (u) in Ω;
u = v = 0 on ∂Ω,

(S)
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where Ω ⊂ R
N (N � 2) is an open bounded domain with smooth boundary, and f , g : R → R are

continuous functions.
In the particular case when g(s) = sp , f (s) = sq (p,q > 1) and N � 3 (here and in the sequel,

we use the notation sα = sgn(s)|s|α , α > 0), system (S) has been widely studied replacing the usual
criticality notion (i.e., p,q � N+2

N−2 ) by the so-called “critical hyperbola” which involves both parameters

p and q, i.e., those pairs of points (p,q) ∈ R
2+ which verify

1

p + 1
+ 1

q + 1
= 1 − 2

N
. (CH)

Points (p,q) on this curve meet the typical non-compactness phenomenon of Sobolev embeddings
and non-existence of solutions for (S) has been pointed out by Mitidieri [7] and van der Vorst [11]
via Pohozaev-type arguments. On the other hand, when

1 >
1

p + 1
+ 1

q + 1
> 1 − 2

N
, (1)

the existence of nontrivial solutions for (S) has been proven by de Figueiredo and Felmer [2], Hulshof,
Mitidieri and van der Vorst [5]. Note that the latter results work also for nonlinearities g(s) ∼ sp and
f (s) ∼ sq as |s| → ∞ with (p,q) fulfilling (1). The points verifying (1) form a proper region in the
first quadrant of the (p,q)-plane situated below the critical hyperbola (CH). Note that (1) is verified
for any p,q > 1 whenever N = 2.

In spite of the aforementioned results, the whole region below (CH) is far to be understood from
the point of view of existence/multiplicity of solutions for (S). By exploiting the Trudinger–Moser
inequality and elements from critical point theory, de Figueiredo, do Ó and Ruf [3] considered sys-
tem (S) when Ω is a bounded domain in R

2, and the nonlinearities f , g have maximal growth like
exponential. Moreover, via a Mountain Pass argument, de Figueiredo and Ruf [4] proved the existence
of at least one nontrivial solution to the problem

⎧⎨
⎩

−�u = v p in Ω;
−�v = f (u) in Ω;
u = v = 0 on ∂Ω,

( S̃)

when {
0 < p, if N = 2;
0 < p < 2

N−2 , if N � 3,
(1̃)

and f : R → R has a suitable superlinear growth at infinity, formulated in terms of the Ambrosetti–
Rabinowitz condition. Later on, Salvatore [10] guaranteed via the Pohozaev’s fibering method the
existence of a whole sequence of solutions to ( S̃) in a similar context as [4] assuming in addition that
the nonlinear term f is odd. Note that in the latter two papers (i.e., [4] and [10]) no further growth
restriction is required on the nonlinear term f other than the Ambrosetti–Rabinowitz condition. This
latter fact is not surprising taking into account that (1̃) is actually equivalent to

1 >
1

p + 1
> 1 − 2

N
,

which is nothing but a “degenerate” case of (1) putting formally q = ∞, i.e., the growth of f may be
arbitrary large.

The aim of the present paper is to complete the works [3,4] and [10] by guaranteeing the existence
of infinitely many pairs of distinct solutions to the system ( S̃) when (1̃) holds and the nonlinear term
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f has an oscillatory behavior. Moreover, the nonlinear term f may enjoy an arbitrary growth at infinity
(resp., at zero) whenever it oscillates near the origin (resp., at infinity) in a suitable way. In addition,
the size of our solutions reflects the oscillatory behavior of the nonlinear term, see relations (2) and
(3) below; namely, the solutions are small (resp., large) in L∞-norm and in a suitably chosen Sobolev
space whenever the nonlinearity f oscillates near the origin (resp., at infinity). We emphasize that no
symmetry condition is required on f .

In the sequel, we formulate our main results. Before doing that, note that system ( S̃) is equivalent
to the Poisson equation

{
−�(−�u)

1
p = f (u) in Ω;

u = �u = 0 on ∂Ω.
(P)

The suitable functional space where solutions of (P ) is going to be sought is

E = W 2,
p+1

p (Ω) ∩ W
1,

p+1
p

0 (Ω)

endowed with the norm

‖u‖E =
(∫

Ω

|�u| p+1
p dx

) p
p+1

.

As we anticipated, two different cases will be considered; namely, the nonlinear term has a suit-
able oscillatory behavior either near the origin or at infinity.

1.1. Oscillation near the origin

Let f ∈ C(R,R) and F (s) = ∫ s
0 f (t)dt, s ∈ R. We assume that:

(H1
0) −∞ < lim infs→0

F (s)

|s|
p+1

p
� lim sups→0

F (s)

|s|
p+1

p
= +∞,

(H2
0) there exist two sequences {ak} and {bk} in ]0,∞[ with bk+1 < ak < bk, limk→∞ bk = 0 such that

sgn(s) f (s) � 0 for every |s| ∈ [ak,bk], and

(H3
0) limk→∞ ak

bk
= 0 and limk→∞

max[−ak ,ak ] F

b
p+1

p
k

= 0.

Theorem 1. Assume that (1̃) holds and f ∈ C(R,R) fulfills (H1
0)–(H3

0). Then, system ( S̃) possesses a sequence
{(uk, vk)} ⊂ E × E of distinct (strong) solutions which satisfy

lim
k→∞

‖uk‖E = lim
k→∞

‖vk‖E = lim
k→∞

‖uk‖∞ = lim
k→∞

‖vk‖∞ = 0. (2)

Remark 1. Hypotheses (H1
0)–(H2

0) imply an oscillatory behavior of f near the origin while (H3
0) is a

technical assumption which seems to be indispensable in our arguments.
In the sequel, we provide a concrete example when hypotheses (H1

0)–(H3
0) are fulfilled. Let ak =

k−kk+1
and bk = k−kk

, k � 2, and a1 = 1, b1 = 2. It is clear that bk+1 < ak < bk , limk→∞ ak/bk = 0, and
limk→∞ bk = 0. Let f : R → R be defined by
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f (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕk(
s−bk+1

ak−bk+1
), s ∈ [bk+1,ak], k � 1;

0, s ∈ ]ak,bk[, k � 1;
0, s ∈ ]−∞,0];
g(s), s ∈ [2,∞[,

where g : [2,∞[ → R is any continuous function with g(2) = 0, and ϕk : [0,1] → [0,∞[ is a sequence
of continuous functions such that ϕk(0) = ϕk(1) = 0 and there are some positive constants c1 and c2
such that

c1
(
b

2p+2
p

k − b
2p+2

p

k+1

)
(ak − bk+1)

−1 �
1∫

0

ϕk(s)ds � c2
(
b

p+2
p

k − b
p+2

p

k+1

)
(ak − bk+1)

−1.

Note that F (s) = 0 for every s ∈ ]−∞,0] and F is non-decreasing on [0,2], while c1b
2p+2

p

k � F (ak) =
max[−ak,ak] F � c2b

p+2
p

k . Due to these inequalities, the hypotheses of Theorem 1 are verified.

1.2. Oscillation at infinity

In this subsection, we state a perfect counterpart of Theorem 1 when the nonlinearity f has an
oscillation at infinity. We assume that:

(H1∞) −∞ < lim inf|s|→∞ F (s)

|s|
p+1

p
� lim sup|s|→∞ F (s)

|s|
p+1

p
= +∞,

(H2∞) there exist two sequences {ak} and {bk} in ]0,∞[ with ak < bk < ak+1 and limk→∞ bk = ∞ such
that

sgn(s) f (s) � 0 for every |s| ∈ [ak,bk], and

(H3∞) limk→∞ ak
bk

= 0 and limk→∞
max[−ak ,ak ] F

b
p+1

p
k

= 0.

Theorem 2. Assume that (1̃) holds and f ∈ C(R,R) fulfills (H1∞)–(H3∞). Then, system ( S̃) possesses a se-
quence {(uk, vk)} ⊂ E × E of distinct (strong) solutions which satisfy

lim
k→∞

‖uk‖E = lim
k→∞

‖vk‖E = lim
k→∞

‖uk‖∞ = lim
k→∞

‖vk‖∞ = ∞. (3)

Remark 2. Assumptions (H1∞)–(H2∞) imply an oscillatory behavior of f at infinity. A concrete example

is described in the sequel when hypotheses (H1∞)–(H3∞) are fulfilled. Let ak = kkk
and bk = kkk+1

(k � 2) and a1 = 5, b1 = 10. Clearly, one has ak < bk < ak+1, limk→∞ ak/bk = 0, and limk→∞ bk = ∞.

Let f : R → R be defined by

f (s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕk(
s−bk

ak+1−bk
), s ∈ [bk,ak+1], k � 1;

0, s ∈ ]ak,bk[, k � 1;
g(s), s ∈ [−5,5];
0, s ∈ ]−∞,−5[,

where g : [−5,5] → R is any continuous function with g(±5) = 0, and ϕk : [0,1] → [0,∞[ is a se-
quence of continuous functions such that ϕk(0) = ϕk(1) = 0 and there are some constants c1, c2 > 0
such that
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c1
(
b

3p+1
3p

k+1 − b
3p+1

3p

k

)
(ak+1 − bk)

−1 �
1∫

0

ϕk(s)ds � c2
(
b

2p+1
2p

k+1 − b
2p+1

2p

k

)
(ak+1 − bk)

−1.

Note that F (s) = 0 for every s ∈ ]−∞,−5] and F is non-decreasing on [5,∞[. Moreover, for k ∈ N

large enough we have

c1
(
b

3p+1
3p

k − 10
3p+1

3p
) +

5∫
0

g(s)ds � F (ak) = max[−ak,ak]
F � c2

(
b

2p+1
2p

k − 10
2p+1

2p
) +

5∫
0

g(s)ds.

Now, an easy computation shows the hypotheses of Theorem 2 are verified.

The proofs of Theorems 1 and 2 are based on a general variational principle of Ricceri (see [8] and
[9]). As far as we know, the present paper gives the first application of Ricceri’s variational principle
to coupled systems of non-gradient type.

The paper is organized as follows. In the next section we first describe the variational framework
we are working in, then the abstract form of Ricceri’s variational principle is recalled. In Sections 3
and 4 we prove Theorems 1 and 2, respectively, while in the last section we are going to formulate
two open problems related to system ( S̃).

2. Preliminaries

Due to (1̃) one has p+1
p > 1 + N−2

2 = N
2 , therefore W 2,

p+1
p (Ω) ⊂⊂ C(Ω), so

E ⊂⊂ C(Ω). (4)

For further use, we denote by κ0 > 0 the best embedding constant of E ⊂⊂ C(Ω). The energy func-
tional associated to the Poisson problem (P ) is I : E → R defined by

I(u) = p

p + 1
‖u‖

p+1
p

E − F (u),

where

F (u) =
∫
Ω

F
(
u(x)

)
dx.

Due to (4), the functional I is well defined, is of class C1 on E and

I ′(u)(h) =
∫
Ω

(−�u)
1
p (−�h)dx −

∫
Ω

f (u)h dx, u,h ∈ E.

Note that if u ∈ E is a critical point of I then it is a weak solution of problem (P ); in such a case,

the pair (u, (−�u)
1
p ) ∈ E × E is a weak solution of system ( S̃). See also [4, Subsection 3.1] and [10,

Proposition 2.1]. Moreover, standard regularity arguments show that the pair (u, (−�u)
1
p ) ∈ E × E is

actually a strong solution of system ( S̃), see [4].
On account of the above facts, in order to prove Theorems 1 and 2, it is enough to find sequences

of critical points for the functional I with the required properties, i.e., to fulfill relations (2) and (3).
To do that, we apply a general variational principle of Ricceri, see [8] and [9], that can be stated as
follows:
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Theorem R. (See [8, Theorem 2.5].) Let X be a reflexive real Banach space, Φ,Ψ : X → R be two sequentially
weakly lower semicontinuous, continuously Gâteaux differentiable functionals. Assume that Ψ is strongly con-
tinuous and coercive. For each s > infX Ψ , set

ϕ(s) := inf
Ψ s

Φ(u) − infclw Ψ s Φ

s − Ψ (u)
, (5)

where Ψ s := {u ∈ X: Ψ (u) < s} and clw Ψ s is the closure of Ψ s in the weak topology of X . Furthermore, set

δ := lim inf
s→(infX Ψ )+

ϕ(s), γ := lim inf
s→+∞ ϕ(s). (6)

Then, the following conclusions hold.

(A) If δ < +∞ then, for every λ > δ, either
(A1) there is a global minimum of Ψ which is a local minimum of Φ + λΨ , or
(A2) there is a sequence {uk} of pairwise distinct critical points of Φ + λΨ , with limk→+∞ Ψ (uk) =

infX Ψ, weakly converging to a global minimum of Ψ .
(B) If γ < +∞ then, for every λ > γ , either

(B1) Φ + λΨ possesses a global minimum, or
(B2) there is a sequence {uk} of critical points of the functional Φ + λΨ such that limk→+∞ Ψ (uk) =

+∞.

In our framework concerning problem (P ) (thus, system ( S̃)), we choose X = E , and Ψ,Φ : E → R

are defined by

Ψ (u) = ‖u‖
p+1

p
E , Φ(u) = −F (u), u ∈ E.

Standard arguments show that Ψ and Φ are sequentially weakly lower semicontinuous. The energy
functional becomes I = p

p+1 Ψ + Φ . Moreover the function from (5) takes the form

ϕ(s) = inf
‖u‖p+1

E <sp

sup{F (v): ‖v‖p+1
E � sp} − F (u)

s − ‖u‖
p+1

p
E

, s > 0.

To conclude this section, we are going to construct a special element in the space E which will
play a crucial role in our proofs. Let x0 ∈ Ω and R > 0 be such that B(x0, R) ⊂ Ω; here and in the
sequel, B(x0,a) = {x ∈ R

N : |x − x0| < a}, a > 0. Let 0 < r < R be fixed. We consider the function
w : Ω → R defined by

w(x) =
∫ −|x−x0|
−∞ α(t)dt∫ −r

−R α(t)dt
, (7)

where α : R → R is given by

α(t) =
{

e
1

(t+R)(t+r) , if t ∈ ]−R,−r[;
0, if t /∈ ]−R,−r[.

It is clear that w ∈ C∞
0 (Ω) ⊂ E; moreover, w � 0, ‖w‖∞ = 1 and
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w(x) =
{

1, if x ∈ B(x0, r);
0, if x ∈ Ω \ B(x0, R).

(8)

Throughout the proofs of Theorems 1 and 2 we will use the following useful observation whose
assumptions come from (H2

0) and (H2∞), respectively.

Lemma 1. Let {ak}, {bk} ⊂ ]0,∞[ be two sequences such that ak < bk, limk→∞ ak/bk = 0, and sgn(s) f (s) �
0 for every |s| ∈ [ak,bk]. Let sk = (bk/κ0)

p+1
p . Then,

(a) max[−bk,bk] F = max[−ak,ak] F ≡ F (sk) with sk ∈ [−ak,ak].
(b) ‖sk w‖

p+1
p

E < sk for k ∈ N large enough.

Proof. (a) It follows from the standard Mean Value Theorem and from the hypotheses that
sgn(s) f (s) � 0 for every |s| ∈ [ak,bk].

(b) Since limk→∞ ak/bk = 0, we may fix k0 ∈ N such that ak/bk < κ−1
0 ‖w‖−1

E for k > k0. Then, one
has

‖sk w‖
p+1

p
E = |sk|

p+1
p ‖w‖

p+1
p

E � a
p+1

p

k ‖w‖
p+1

p
E < (bk/κ0)

p+1
p = sk. �

3. Proof of Theorem 1

Let {ak} and {bk} be as in the hypotheses. We recall from (6) that δ = lim infs→0+ ϕ(s).

Lemma 2. δ = 0.

Proof. By definition, δ � 0. Suppose that δ > 0. By the first inequality of (H1
0), there exist two positive

numbers 
0 and �0 such that

F (s) > −
0|s|
p+1

p for every s ∈ ]−�0,�0[. (9)

Furthermore, let sk, sk be as in Lemma 1 and let wk = sk w ∈ E, where w is defined in (7). By (H3
0)

and condition limk→∞ sk
bk

= 0 (|sk| � ak), there exists k0 ∈ N such that for k > k0 we have

m(Ω)
F (sk)

b
p+1

p

k

+
(

δ

2
‖w‖

p+1
p

E + m(Ω)
0

)( |sk|
bk

) p+1
p

<
δ

2κ
p+1

p

0

. (10)

Let v ∈ E be arbitrarily fixed with ‖v‖
p+1

p
E � sk. Thus, due to the embedding from (4), we have

‖v‖∞ � bk. Due to Lemma 1(a), we obtain

F
(

v(x)
)
� max

[−bk,bk]
F = F (sk) for every x ∈ Ω.

Since 0 � |wk(x)| � |sk| < �0 for large k ∈ N and for all x ∈ Ω, taking into account (9) and (10), it
follows that
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sup
‖v‖p+1

E �sp
k

F (v) − F (wk) = sup

‖v‖
p+1

p
E �sk

∫
Ω

F (v)dx −
∫
Ω

F (wk)dx

� m(Ω)F (sk) + m(Ω)
0|sk|
p+1

p

<
δ

2

(
sk − ‖wk‖

p+1
p

E

)
.

Since ‖wk‖
p+1

p
E < sk (cf. Lemma 1(b)), and sk → 0 as k → ∞, we obtain

δ � lim inf
k→∞

ϕ(sk) � lim inf
k→∞

sup‖v‖p+1
E �sp

k
F (v) − F (wk)

sk − ‖wk‖
p+1

p
E

� δ

2
,

contradiction. This proves our claim. �
Lemma 3. 0 is not a local minimum of I = p

p+1 Ψ + Φ .

Proof. Let 
0 > 0 and �0 > 0 from the proof of Lemma 2, and x0 ∈ Ω and r, R > 0 from the definition
of the function w , see (7). Let L0 > 0 be such that

rNωN L0 − p

p + 1
‖w‖

p+1
p

E − (
RN − rN)

ωN
0 > 0, (11)

where ωN is the volume of the N-dimensional unit ball. By the right-hand side of (H1
0) we deduce

the existence of a sequence {s0
k } ⊂ ]−�0,�0[ converging to zero such that

F
(
s0

k

)
> L0

∣∣s0
k

∣∣ p+1
p . (12)

Let w0
k = s0

k w ∈ E . Due to (8), (9), (11) and (12), we have

I
(

w0
k

) = p

p + 1

∥∥w0
k

∥∥ p+1
p

E −
∫
Ω

F
(

w0
k

)

= p

p + 1
‖w‖

p+1
p

E

∣∣s0
k

∣∣ p+1
p −

∫
B(x0,r)

F
(

w0
k

) −
∫

B(x0,R)\B(x0,r)

F
(

w0
k

)

� p

p + 1
‖w‖

p+1
p

E

∣∣s0
k

∣∣ p+1
p − F

(
s0

k

)
m

(
B(x0, r)

) + 
0
(
m

(
B(0, R)

) − m
(

B(0, r)
))∣∣s0

k

∣∣ p+1
p

�
∣∣s0

k

∣∣ p+1
p

(
p

p + 1
‖w‖

p+1
p

E − rNωN L0 + (
RN − rN)

ωN
0

)
< 0 = I(0).

Since ‖w0
k‖E → 0 as k → ∞, 0 is not a local minimum of I, as claimed. �

Proof of Theorem 1. Applying Theorem R(A), with λ = p
p+1 (see Lemma 2), we can exclude condition

(A1) (see Lemma 3). Therefore there exists a sequence {uk} ⊂ E of pairwise distinct critical points of
I = p

p+1 Ψ + Φ such that
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lim
k→∞

‖uk‖E = 0. (13)

Thus, {(uk, vk)} = {(uk, (−�uk)
1
p )} ⊂ E × E is a sequence of distinct pairs of solutions to the sys-

tem ( S̃).
It remains to prove (2). First, due to (4) and (13), we have that limk→∞ ‖uk‖∞ = 0. For every

k ∈ N let mk ∈ [−‖uk‖∞,‖uk‖∞] =: Jk such that | f (mk)| = maxs∈ Jk | f (s)|. Note that diam Jk → 0 as
k → ∞; thus limk→∞ mk = 0 which implies that limk→∞ f (mk) = 0. On the other hand, from the
second equation of system ( S̃) we have that

‖vk‖
p+1

p
E =

∫
Ω

|�vk|
p+1

p dx =
∫
Ω

∣∣ f (uk)
∣∣ p+1

p dx �
∣∣ f (mk)

∣∣ p+1
p m(Ω),

which implies that limk→∞ ‖vk‖E = 0. Using again (4) we have limk→∞ ‖vk‖∞ = 0. �
4. Proof of Theorem 2

The proof of Theorem 2 is similar to that of Theorem 1. Let {ak} and {bk} be from Theorem 2 and
γ = lim infs→+∞ ϕ(s) from (6).

Lemma 4. γ = 0.

Proof. It is clear that γ � 0. Suppose that γ > 0. Due to the left-hand side of (H1∞), one can find two
positive numbers 
∞ and �∞ such that

F (s) > −
∞|s| p+1
p for every |s| > �∞. (14)

Let sk , sk be as in Lemma 1. By the fact that limk→∞ bk = ∞, hypothesis (H3∞) and condition

limk→∞ sk
bk

= 0 (−ak � sk � ak), there exists k0 ∈ N such that for every k > k0 we have

m(Ω)
max[−�∞,�∞] |F | + F (sk)

b
p+1

p

k

+
(

γ

2
‖w‖

p+1
p

E + m(Ω)
∞
)( |sk|

bk

) p+1
p

<
γ

2κ
p+1

p

0

. (15)

Let wk = sk w ∈ E, where w is defined in (7). A similar estimation as in Lemma 2 gives throughout
relations (14) and (15) that

sup
‖v‖p+1

E �sp
k

F (v) − F (wk) = sup

‖v‖
p+1

p
E �sk

∫
Ω

F (v)dx −
∫
Ω

F (wk)dx

= sup

‖v‖
p+1

p
E �sk

∫
Ω

F (v)dx −
∫

{|wk(x)|>�∞}
F (wk)dx

−
∫

{|wk(x)|��∞}
F (wk)dx

� m(Ω)F (sk) + m(Ω)
∞|sk|
p+1

p + m(Ω) max[−�∞,�∞] |F |

<
γ (

sk − ‖wk‖
p+1

p
E

)
.

2
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Since sk → +∞,

γ � lim inf
k→∞

ϕ(sk) � lim inf
k→∞

sup‖v‖p+1
E �sp

k
F (v) − F (wk)

sk − ‖wk‖
p+1

p
E

� γ

2
,

which contradicts γ > 0. �
Lemma 5. I = p

p+1 Ψ + Φ is not bounded from below on E.

Proof. Let 
∞ and �∞ be from the proof of Lemma 4, and let L∞ > 0 be such that

rNωN L∞ − p

p + 1
‖w‖

p+1
p

E − (
RN − rN)

ωN
∞ > 0, (16)

where r and R are from the definition of the function w , see (7). By the second part of (H1∞) we
deduce the existence of a sequence {s∞

k } ⊂ R with limk→∞ |s∞
k | = ∞ and

F
(
s∞

k

)
> L∞

∣∣s∞
k

∣∣ p+1
p . (17)

Let w∞
k = s∞

k w ∈ E . We clearly have that

I
(

w∞
k

) = p

p + 1
‖w‖

p+1
p

E

∣∣s∞
k

∣∣ p+1
p − F

(
s∞

k

)
ωNrN −

∫
B(x0,R)\B(x0,r)

F
(

w∞
k

)
.

For abbreviation, we choose the set X = B(x0, R) \ B(x0, r). Then, on account of (14) we have

∫
X

F
(

w∞
k

) =
∫

X∩{|w∞
k (x)|>�∞}

F
(

w∞
k

) +
∫

X∩{|w∞
k (x)|��∞}

F
(

w∞
k

)

� −
∞
∫

X∩{|w∞
k (x)|>�∞}

∣∣w∞
k

∣∣ p+1
p − (

RN − rN)
ωN max[−�∞,�∞] |F |

� −(
RN − rN)

ωN

(

∞

∣∣s∞
k

∣∣ p+1
p + max[−�∞,�∞] |F |

)
.

Consequently, due to (17) and the above estimation, we have

I
(

w∞
k

)
�

∣∣s∞
k

∣∣ p+1
p

(
p

p + 1
‖w‖

p+1
p

E − rNωN L∞ + (
RN − rN)

ωN
∞
)

+ (
RN − rN)

ωN max[−�∞,�∞] |F |.

Since limk→∞ |s∞
k | = ∞, due to (16), we have limk→∞ I(w∞

k ) = −∞; consequently, infE I = −∞. �
Proof of Theorem 2. In Theorem R(B) we may choose λ = p

p+1 (see Lemma 4). On account of Lemma 5
the alternative (B1) can be excluded. Therefore, there exists a sequence {uk} ⊂ E of distinct critical
points of I = p

p+1 Ψ + Φ such that

lim ‖uk‖E = ∞. (18)

k→∞
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Thus, {(uk, vk)} = {(uk, (−�uk)
1
p )} ⊂ E × E is a sequence of distinct pairs of solutions to the sys-

tem ( S̃).
We now prove the rest of (3). Assume that for every k ∈ N we have ‖vk‖∞ � M for some M > 0.

In particular, from the first equation of system ( S̃) we obtain that

‖uk‖
p+1

p
E =

∫
Ω

|�uk|
p+1

p dx =
∫
Ω

|vk|p+1 dx � M p+1m(Ω),

which contradicts relation (18). Consequently, limk→∞ ‖vk‖∞ = ∞. But, this fact and (4) give at once
that limk→∞ ‖vk‖E = ∞ as well. Assume finally that for every k ∈ N we have ‖uk‖∞ � M ′ for some
M ′ > 0. The second equation of system ( S̃) shows that

‖vk‖
p+1

p
E =

∫
Ω

|�vk|
p+1

p dx =
∫
Ω

∣∣ f (uk)
∣∣ p+1

p dx � m(Ω) max
s∈[−M ′,M ′]

∣∣ f (s)
∣∣ p+1

p ,

which contradicts the fact that limk→∞ ‖vk‖E = ∞. The proof is complete. �
5. Further problems related to system ( S̃)

1. We assume (1̃) holds and consider the perturbed system

⎧⎨
⎩

−�u = v p in Ω;
−�v = f (u) + εg(u) in Ω;
u = v = 0 on ∂Ω,

( S̃ε)

where g : R → R is any continuous function with g(0) = 0. We predict that for every n ∈ N

there exists εn > 0 such that for every ε ∈ [−εn, εn], system ( S̃ε) has at least n distinct pairs of
solutions whenever f : R → R verifies the set of assumptions from Theorem 1 or Theorem 2. This
statement is not unexpected taking into account the recent papers of Anello and Cordaro [1] and
Kristály [6] where a prescribed number of solutions were guaranteed for certain elliptic problems
of scalar type whenever the parameter in the front of the perturbation is small enough. In both
papers (i.e., [1] and [6]) the uniform Lipschitz truncation function ha : R → R (a > 0), ha(s) =
min(a,max(s,0)) plays a key role, fulfilling as well the so-called Markovian property concerning
the superposition operators: for any u ∈ W 1,r

0 (Ω) one also has ha ◦ u ∈ W 1,r
0 (Ω), where r > 1.

Note however that a similar property is not available any longer replacing the space W 1,r
0 (Ω)

by a higher order Sobolev space W 2,r(Ω); in particular, the Markovian property is not valid for

E = W 2,
p+1

p (Ω) ∩ W
1,

p+1
p

0 (Ω).
2. Based on (1̃), the embedding E ⊂⊂ C(Ω) is essential in our investigations, see the proof of Lem-

mas 2 and 4. Is it possible to obtain similar conclusions as in Theorems 1 and 2 by omitting (1̃)

and considering the whole region below the critical hyperbola?
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