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Abstract

We propose a direct approach for detecting arbitrarily many solutions for perturbed elliptic problems
involving oscillatory terms. Although the method works in various frameworks, we illustrate it on the prob-
lem

⎧⎪⎨
⎪⎩

−�u + u = Q(x)
[
f (u) + εg(u)

]
, x ∈ R

N, N � 2,

u � 0,

u(x) → 0 as |x| → ∞,

(Pε)

where Q : RN → R is a radial, positive potential, f : [0,∞) → R is a continuous nonlinearity which oscil-
lates near the origin or at infinity and g : [0,∞) → R is any arbitrarily continuous function with g(0) = 0.
Our aim is to prove that: (a) the unperturbed problem (P0), i.e. ε = 0 in (Pε), has infinitely many distinct
solutions; (b) the number of distinct solutions for (Pε) becomes greater and greater whenever |ε| is smaller
and smaller. In fact, our method surprisingly shows that (a) and (b) are equivalent in the sense that they are
deducible from each other. Various properties of the solutions are also described in L∞- and H 1-norms. Our
method is variational and a specific construction enforces the use of the principle of symmetric criticality
for non-smooth Szulkin-type functionals.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Perturbed elliptic problem; Arbitrarily many solutions; Szulkin-type functional; Symmetric criticality

✩ Research for this article was supported by the Grant PN II, ID_527/2007.
E-mail address: alexandrukristaly@yahoo.com.
0022-0396/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2008.05.014



3850 A. Kristály / J. Differential Equations 245 (2008) 3849–3868
1. Introduction and main results

Having infinitely many solutions for a given equation, after a ‘small’ perturbation of it, one
expects to find still many solutions for the perturbed equation; moreover, once the perturbation
tends to zero, the number of solutions for the perturbed equation should tend to infinity. Such
phenomenon is well known in the case of the equation sin s = c with c ∈ (−1,1) fixed, and its
perturbation sin s = c + εs, s ∈ R; the perturbed equation has more and more solutions as |ε|
decreases to 0. To the best of our knowledge, this natural phenomenon has been first exploited
in an abstract framework by Krasnosel’skii [6]. More precisely, by using topological methods,
Krasnosel’skii asserts the existence of more and more critical points of an even C1-class func-
tional perturbed by a non-even term tending to zero, the critical points of the perturbed functional
being the solutions for the studied equation.

Later on, Krasnosel’skii’s idea served for further developments; in order to describe them, we
consider the equation

−�u + V (x)u = f (x,u) + εg(x,u) in Ω, (Eε)

where Ω ⊆ R
N is an open domain, V :Ω → R is a measurable function, while f,g :Ω ×R → R

are Carathéodory functions. Subject to certain boundary condition, we assume the unperturbed
equation

−�u + V (x)u = f (x,u) in Ω, (E0)

has infinitely many distinct solutions. Then, the main question is:

(q) Fixing k ∈ N, can one find a number εk > 0 such that the perturbed equation (Eε) has at
least k distinct solutions whenever ε ∈ [−εk, εk]?

Two different classes of results are available in the literature answering affirmatively ques-
tion (q), both for bounded domains subjected to zero Dirichlet boundary condition, and V ≡ 0:

A. Perturbation of symmetric problems. Assume f (x, s) = −f (x,−s) for every (x, s) ∈
Ω × R. It is well known that if the energy functional has the Mountain Pass Geometry,
problem (E0) has infinitely many solutions, due to the symmetric version of the Mountain
Pass theorem, see Ambrosetti and Rabinowitz [1]. Furthermore, question (q) was fully an-
swered by Li and Liu [9] for arbitrarily continuous nonlinearity g, following the topological
approach developed by Degiovanni and Lancelotti [3] and Degiovanni and Rădulescu [4].

B. Perturbation of oscillatory problems. Assume f (x, ·) oscillates near the origin or at infinity,
uniformly with respect to x ∈ Ω . Special kinds of oscillations produce infinitely many solu-
tions for (E0), as shown by Omari and Zanolin [10], and Saint Raymond [13]. Concerning
the perturbed problem, Anello and Cordaro [2] answered question (q), by using the abstract
variational principle of Ricceri [12].

The main purpose of the present paper is to propose a third, direct method for answering
question (q) whenever the nonlinear term f (x, ·) belongs to a wide class of oscillatory functions.
Although our method works in various frameworks (for instance, the domain Ω is bounded, and
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the studied problem is subject to Dirichlet, Neumann or more general boundary conditions), we
illustrate this new approach by treating the problem

⎧⎪⎨
⎪⎩

−�u + u = Q(x)
[
f (u) + εg(u)

]
, x ∈ R

N, N � 2,

u � 0,

u(x) → 0 as |x| → ∞,

(Pε)

where f : [0,∞) → R is a continuous nonlinearity which oscillates near the origin or at in-
finity, see hypotheses (f 0

1 ) and (f 0
2 ), or (f ∞

1 ) and (f ∞
2 ), respectively. On the nonlinear term

g : [0,∞) → R we assume only its continuity and that g(0) = 0.

Throughout the paper we assume

(Q) Q : RN → R is a positive, continuous, radially symmetric potential such that Q ∈ Lp(RN)

for every p ∈ [1,2].

In order to formulate our results, we recall some notations. The Hilbert space H 1(RN) is
endowed with its usual inner product and norm,

〈u,v〉H 1 =
∫

RN

(∇u∇v + uv)dx, ‖u‖H 1 = √〈u,u〉H 1 , u, v ∈ H 1(
R

N
)
.

The space Lq(RN) is endowed with its usual norm ‖ · ‖Lq , q ∈ [1,∞].
Let f ∈ C([0,∞),R) and F(s) = ∫ s

0 f (t) dt, s � 0. We assume:

(f 0
1 ) −∞ < lim infs→0+ F(s)

s2 � lim sups→0+ F(s)

s2 = +∞.

(f 0
2 ) There exists a sequence {si}i ⊂ (0,∞) converging to 0 such that f (si) < 0 for every i ∈ N.

Remark 1.1. (a) Hypotheses (f 0
1 ) and (f 0

2 ) imply an oscillatory behaviour of f near the origin.
(b) Let α,β, γ ∈ R such that 0 < α < 1 < α + β, and γ ∈ (0,1). Then, the function

f : [0,∞) → R defined by f (0) = 0 and f (s) = sα(γ + sin s−β), s > 0, verifies (f 0
1 ) and (f 0

2 ),
respectively.

The first result deals with the unperturbed problem (P0):

Theorem 1.1. Assume (Q) and let f ∈ C([0,∞),R) satisfying (f 0
1 ) and (f 0

2 ). Then there exists
a sequence {u0

i }i ⊂ H 1(RN) of distinct, radially symmetric weak solutions of (P0) such that

lim
i→∞

∥∥u0
i

∥∥
L∞ = lim

i→∞
∥∥u0

i

∥∥
H 1 = 0. (1)

Keeping in mind Theorem 1.1, we expect an affirmative answer to question (q) for the per-
turbed problem (Pε). This is indeed the case:

Theorem 1.2. Assume (Q), let f ∈ C([0,∞),R) satisfying (f 0
1 ) and (f 0

2 ), and let g ∈
C([0,∞),R) with g(0) = 0. Then, for every k ∈ N, there exists ε0 > 0 such that (Pε) has at
k
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least k distinct, radially symmetric weak solutions in H 1(RN) whenever ε ∈ [−ε0
k , ε

0
k ]. More-

over, if the (first k) solutions are denoted by u0
i,ε ∈ H 1(RN), i = 1, k, then

∥∥u0
i,ε

∥∥
L∞ <

1

i
and

∥∥u0
i,ε

∥∥
H 1 <

1

i
for any i = 1, k; ε ∈ [−ε0

k , ε
0
k

]
. (2)

Remark 1.2. Note that (1) and (2) are in a perfect concordance. Furthermore, an unexpected
situation occurs: the perturbed and unperturbed problems are equivalent in the sense that they
are deducible from each other. Clearly, the perturbed problem contains the unperturbed problem
by choosing g ≡ 0. Conversely, exploiting the behaviour of certain sequences which appear in
the proof of Theorem 1.1, we are able to answer affirmatively question (q) for problem (Pε); this
construction represents actually the core of our method. For details, see Section 3.

In the sequel, we will state the counterparts of Theorems 1.1 and 1.2 whenever f oscillates at
infinity. We assume:

(f ∞
1 ) −∞ < lim infs→∞ F(s)

s2 � lim sups→∞
F(s)

s2 = +∞.
(f ∞

2 ) There exists a sequence {si}i ⊂ (0,∞) converging to +∞ such that f (si) < 0 for every
i ∈ N.

Remark 1.3. (a) Hypotheses (f ∞
1 ) and (f ∞

2 ) imply an oscillatory behaviour of f at infinity.
(b) Let α,β, γ ∈ R such that 1 < α, |α − β| < 1, and γ ∈ (0,1). Then, the function

f : [0,∞) → R defined by f (s) = sα(γ + sin sβ) verifies the hypotheses (f ∞
1 ) and (f ∞

2 ), re-
spectively.

Concerning problem (P0), we have the counterpart of Theorem 1.1:

Theorem 1.3. Assume (Q) and let f ∈ C([0,∞),R) satisfying (f ∞
1 ), (f ∞

2 ) and f (0) = 0. Then
there exists a sequence {u∞

i }i ⊂ H 1(RN) of radially symmetric weak solutions of (P0) such that

lim
i→∞

∥∥u∞
i

∥∥
L∞ = ∞. (3)

Remark 1.4. Note that beside of (f ∞
1 ) and (f ∞

2 ), no further growth condition is assumed on the
nonlinear term at infinity. Actually, this is the reason why we are not able to give H 1-estimates
for the solutions obtained in Theorem 1.3. However, if we assume that f has a half-subcritical
growth at infinity, i.e., there exist q ∈ (1,2∗/2) and c > 0 such that

∣∣f (s)
∣∣ � c

(
1 + sq−1) for all s ∈ [0,∞), (4)

then we have

lim
i→∞

∥∥u∞
i

∥∥
H 1 = ∞, (3′)

see Section 4. Here, the number 2∗ is the usual critical exponent. Let us observe that relation
(4) and the right side of (f ∞

1 ) imply 2 < q. Thus, (3′) is possible for the lower dimensions
N = 2,3, since 2 < 2∗/2 must hold. Another way to guarantee (3′) is to complete hypothesis (Q)
by allowing for instance Q ∈ L∞(RN) and (4) with q ∈ (2,2∗).
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Throughout Theorem 1.3, another affirmative answer to (q) can be done:

Theorem 1.4. Assume (Q), let f ∈ C([0,∞),R) satisfying (f ∞
1 ), (f ∞

2 ) with f (0) = 0, and
let g ∈ C([0,∞),R) with g(0) = 0. Then, for every k ∈ N, there exists ε∞

k > 0 such that (Pε)

has at least k distinct, radially symmetric weak solutions in H 1(RN) whenever ε ∈ [−ε∞
k , ε∞

k ].
Moreover, if the (first k) solutions are denoted by u∞

i,ε ∈ H 1(RN), i = 1, k, then

∥∥u∞
i,ε

∥∥
L∞ > i − 1 for any i = 1, k; ε ∈ [−ε∞

k , ε∞
k

]
. (5)

Remark 1.5. Relations (3) and (5) are also in concordance. Moreover, if both functions f and g

verify (4) with q ∈ (2,2∗/2), then beside of (5), we also have

∥∥u∞
i,ε

∥∥
H 1 > i − 1 for any i = 1, k; ε ∈ [−ε∞

k , ε∞
k

]
. (5′)

For details, see Section 4.

As we already pointed out, the method developed in the present paper is applicable in more
general settings; not only the type of the domain Ω can vary with various boundary conditions,
but also equations involving the p-Laplacian can be considered. We emphasize that existence of
infinitely many solutions for elliptic problems in R

N involving the p-Laplacian and an oscillatory
term has been already studied by Kristály [7] and Kristály, Moroşanu and Tersian [8]. However,
in those papers the assumption p > N � 2 was essential, due to a Morrey-type embedding, and
only the ‘unperturbed’ case was considered. Consequently, the unperturbed problem (P0) in the
present paper may be considered as a natural completion of [7] and [8] from the point of view of
the parameter p and the space dimension N . Finally, we mention that elliptic problems involving
decaying or unbounded terms can be also treated by this method, exploiting recent embedding
results of Su, Wang and Willem [14].

The paper is divided as follows. First, we prove a key result which is based on the principle
of symmetric criticality for (non-differentiable) Szulkin-type functionals. We emphasize that al-
though our problems (P0) and (Pε) are smooth ones, we are forced to use a typically non-smooth
principle; this is due to a specific construction performed in Section 2. Then, in Section 3 we
prove Theorems 1.1 and 1.2, while in Section 4 we are dealing with Theorems 1.3 and 1.4. Fi-
nally, in Appendix A, we recall the principle of symmetric criticality for Szulkin-type functionals,
following the paper of Kobayashi and Ôtani [5].

2. Preliminaries and a key result

Due to the fact that problems (P0) and (Pε) will be treated simultaneously, in this section we
consider the generic problem

{−�u + u = Q(x)h(u), x ∈ R
N, N � 2,

u(x) → 0 as |x| → ∞,
(Ph)

and beside of hypothesis (Q), we assume that

(h1) h : [0,∞) → R is a continuous, bounded function such that h(0) = 0;
(h2) there are 0 < a < b such that h(s) � 0 for all s ∈ [a, b].
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Due to (h1), we may extend h continuously to the whole R, putting h(s) = 0 for all s � 0.

We introduce the energy functional Eh :H 1(RN) → R associated with problem (Ph), defined
by

Eh(u) = 1

2
‖u‖2

H 1 −
∫

RN

Q(x)H
(
u(x)

)
dx, u ∈ H 1(

R
N

)
,

where H(s) = ∫ s

0 h(t) dt, s ∈ R. One can easily show that Eh is well defined; indeed, by the
mean value theorem, we have

∫

RN

Q(x)
∣∣H (

u(x)
)∣∣dx � Mh‖Q‖L2‖u‖L2 < ∞, u ∈ H 1(

R
N

)
, (6)

where Mh = sups∈R |h(s)|. Moreover, standard arguments show that Eh is of class C1 on
H 1(RN).

Now, we denote by H 1
rad(R

N) the radial functions in H 1(RN), and let

Rh = Eh|H 1
rad(R

N),

i.e., the restriction of Eh to H 1
rad(R

N). Finally, considering the number b ∈ R from (h2), we
introduce

Wb = {
u ∈ H 1(

R
N

)
: ‖u‖L∞ � b

}
and Wb

rad = Wb ∩ H 1
rad

(
R

N
)
.

The main result of this section can be stated as follows.

Theorem 2.1. Assume that (h1), (h2) and (Q) hold. Then

(i) the functional Rh is bounded from below on Wb
rad and its infimum is attained at uh ∈ Wb

rad;
(ii) uh(x) ∈ [0, a] for a.e. x ∈ R

N ;
(iii) uh is a weak solution of (Ph).

Proof. (i) Actually, Rh is bounded from below on the whole H 1
rad(R

N). Indeed, due to (6), for
all u ∈ H 1

rad(R
N) we have

Rh(u) = 1

2
‖u‖2

H 1 −
∫

RN

Q(x)H(u)dx � 1

2
‖u‖2

H 1 − Mh‖Q‖L2‖u‖H 1

� −1

2
M2

h‖Q‖2
L2 .

Now, we prove that Rh attains its infimum on Wb
rad. Note that Wb

rad is convex and closed in
H 1

rad(R
N), thus weakly closed. Due to the boundedness from below of Rh on Wb

rad, it is enough
to prove that Rh is sequentially weakly lower semicontinuous. The latter fact follows at once if we
prove that u �→ ∫

N Q(x)H(u)dx, u ∈ H 1 (RN), is sequentially weakly continuous. We argue

R rad
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by contradiction; let {ui}i ⊂ H 1
rad(R

N) be a sequence which converges weakly to u ∈ H 1
rad(R

N)

but, up to a subsequence, one can find a number ε0 > 0 such that

0 < ε0 �
∣∣∣∣
∫

RN

Q(x)H(ui) dx −
∫

RN

Q(x)H(u)dx

∣∣∣∣ for all i ∈ N,

and ui converges strongly to u in Lq(RN), for some q ∈ (2,2∗). Here, we employed the fact
that H 1

rad(R
N) is compactly embedded into Lq(RN) for all q ∈ (2,2∗). Using the mean value

theorem and Hölder inequality, from the above inequality we deduce that

0 < ε0 � Mh

∫

RN

Q(x)|ui − u| � Mh‖Q‖Lq/(q−1)‖ui − u‖Lq .

But the right-hand side tends to 0 as i → ∞, contradicting ε0 > 0. This proves (i); let uh ∈ Wb
rad

be a minimum point of Rh over Wb
rad.

(ii) Let A = {x ∈ R
N : uh(x) /∈ [0, a]} and suppose that meas(A) > 0. Define the function

γ : R → R by γ (s) = min(s+, a), where s+ = max(s,0). Now, set w = γ ◦ uh. Since γ is a
Lipschitz function and γ (0) = 0, the theorem of Marcus and Mizel [11] shows that w ∈ H 1(RN).

In addition, w is radial, since uh ∈ H 1
rad(R

N). Thus w ∈ H 1
rad(R

N). Moreover, by definition,
0 � w(x) � a for a.e. R

N .
We introduce the sets

A1 = {
x ∈ A: uh(x) < 0

}
and A2 = {

x ∈ A: uh(x) > a
}
.

Thus, A = A1 ∪A2, and we have that w(x) = uh(x) for all x ∈ R
N \A, w(x) = 0 for all x ∈ A1,

and w(x) = a for all x ∈ A2. Moreover, we have

Rh(w) − Rh(uh) = 1

2

[‖w‖2
H 1 − ‖uh‖2

H 1

] −
∫

RN

Q(x)
[
H(w) − H(uh)

]

= −1

2

∫
A

|∇uh|2 + 1

2

∫
A

[
w2 − u2

h

] −
∫
A

Q(x)
[
H(w) − H(uh)

]
.

Note that

∫
A

[
w2 − u2

h

] = −
∫
A1

u2
h +

∫
A2

[
a2 − u2

h

]
� 0.

Due to the fact that h(s) = 0 for all s � 0, one has

∫
Q(x)

[
H(w) − H(uh)

] = 0.
A1
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By the mean value theorem, for a.e. x ∈ A2, there exists θ(x) ∈ [a,uh(x)] ⊆ [a, b] such that

H
(
w(x)

) − H
(
uh(x)

) = H(a) − H
(
uh(x)

) = h
(
θ(x)

)(
a − uh(x)

)
.

Thus, on account of (h2), one has

∫
A2

Q(x)
[
H(w) − H(uh)

]
� 0.

Consequently, every term of the expression Rh(w) − Rh(uh) is non-positive. On the other hand,
since w ∈ Wb

rad, then Rh(w) � Rh(uh) = infWb
rad

Rh. So, every term in Rh(w) − Rh(uh) should
be zero. In particular,

∫
A1

u2
h =

∫
A2

[
a2 − u2

h

] = 0,

which imply that meas(A) should be 0, contradicting our assumption.
(iii) We divide this part into two steps.

Step 1. E′
h(uh)(w − uh) � 0 for every w ∈ Wb.

Standard argument shows that Wb is closed and convex in H 1(RN). Let ζWb be the indicator
function of the set Wb (i.e., ζWb(u) = 0 if u ∈ Wb, and ζWb(u) = +∞, otherwise). Since Eh

is of class C1 on H 1(RN), and ζWb is convex, lower semicontinuous and proper (i.e., �≡ +∞),
we may define the Szulkin-type functional I :H 1(RN) → R ∪ {+∞} by I = Eh + ζWb, see
Appendix A. Since Wb

rad = Wb ∩ H 1
rad(R

N), the restriction of ζWb to H 1
rad(R

N) is precisely the
indicator function ζWb

rad
of the set Wb

rad. Recall that uh is a local minimum point of Rh relative

to Wb
rad (see (i)), thus a local minimum point of the Szulkin-type functional Ĩ :H 1

rad(R
N) →

R ∪ {+∞}, defined by Ĩ = Rh + ζWb
rad

. Due to Proposition A.1 (see Appendix A), uh is a critical

point of Ĩ , i.e.,

0 ∈ R′
h(uh) + ∂ζWb

rad
(uh) in

(
H 1

rad

(
R

N
))∗

. (7)

On the other hand, we introduce the action of the orthogonal group G = O(N) on H 1(RN)

by

(gu)(x) = u
(
g−1x

)
for all g ∈ O(N), u ∈ H 1(

R
N

)
, x ∈ R

N.

Clearly, this action is linear and continuous on H 1(RN). Since the potential Q : RN → R is
radial, one can easily check that the functional Eh is O(N)-invariant. Moreover, due to the
fact that the set Wb is O(N)-invariant, the functional ζWb is O(N)-invariant as well. The set
H 1

rad(R
N) is exactly the subspace of O(N)-symmetric points of H 1(RN). Therefore, on account

of (7) and Theorem A.1 from Appendix A, we obtain

0 ∈ E′ (uh) + ∂ζWb(uh) in
(
H 1(

R
N

))∗
.
h
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Consequently, for every w ∈ H 1(RN), we have

E′
h(uh)(w − uh) + ζWb(w) − ζWb(uh) � 0,

which implies our claim.

Step 2. (Proof concluded) uh is a weak solution of (Ph).

First of all, by a Strauss-type inequality (see for instance Willem [16, p. 76]), we have that
uh(x) → 0 as |x| → ∞. It remains to prove that

∫

RN

∇uh∇v +
∫

RN

uhv −
∫

RN

Q(x)h(uh)v = 0 for all v ∈ H 1(
R

N
)
. (8)

By Step 1, we have
∫

RN

∇uh∇(w − uh) +
∫

RN

uh(w − uh) −
∫

RN

Q(x)h(uh)(w − uh) � 0, ∀w ∈ Wb.

Let us define the function γ (s) = sgn(s)min(|s|, b), and fix ε > 0 and v ∈ H 1(RN) arbitrar-
ily. Since γ is Lipschitz continuous and γ (0) = 0, the element wγ = γ ◦ (uh + εv) belongs to
H 1(RN), see Marcus and Mizel [11]. The explicit expression of the truncation function wγ is

wγ (x) =
⎧⎨
⎩

−b, if x ∈ {uh + εv < −b},
uh(x) + εv(x), if x ∈ {−b � uh + εv < b},
b, if x ∈ {b � uh + εv}.

Therefore, wγ ∈ Wb . Taking w = wγ as a test function in the previous inequality, we obtain

0 � −
∫

{uh+εv<−b}

[|∇uh|2 + uh(b + uh) − Q(x)h(uh)(b + uh)
]

+ ε

∫
{−b�uh+εv<b}

[∇uh∇v + uhv − Q(x)h(uh)v
]

−
∫

{b�uh+εv}

[|∇uh|2 − uh(b − uh) + Q(x)h(uh)(b − uh)
]
.

After a suitable rearrangement of the terms in this inequality, we obtain that

0 � ε

∫

RN

∇uh∇v + ε

∫

RN

uhv − ε

∫

RN

Q(x)h(uh)v

−
∫

|∇uh|2 −
∫

|∇uh|2

{uh+εv<−b} {b�uh+εv}
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+
∫

{uh+εv<−b}

[
Q(x)h(uh) − uh

]
(b + uh + εv)

+
∫

{b�uh+εv}

[
Q(x)h(uh) − uh

]
(−b + uh + εv)

− ε

∫
{uh+εv<−b}

∇uh∇v − ε

∫
{b�uh+εv}

∇uh∇v.

Recalling the notation Mh = sups∈R |h(s)| < ∞, and taking into account that uh(x) ∈ [0, a] ⊂
[−b, b] for a.e. x ∈ R

N , we have

∫
{uh+εv<−b}

[
Q(x)h(uh) − uh

]
(b + uh + εv) � −ε

∫
{uh+εv<−b}

[
MhQ(x) + uh(x)

]
v(x) dx

and
∫

{b�uh+εv}

[
Q(x)h(uh) − uh

]
(−b + uh + εv) � εMh

∫
{b�uh+εv}

Q(x)v(x) dx.

Using the above estimates and dividing by ε > 0, we obtain

0 �
∫

RN

∇uh∇v +
∫

RN

uhv −
∫

RN

Q(x)h(uh)v −
∫

{uh+εv<−b}

[∇uh∇v + uhv + MhQ(x)v
]

−
∫

{b�uh+εv}

[∇uh∇v − MhQ(x)v
]
.

Now, letting ε → 0+, and taking into account (ii), that is, 0 � uh(x) � a for a.e. x ∈ R
N , we

have

meas
({uh + εv < −b}) → 0 and meas

({b � uh + εv}) → 0,

respectively. Consequently, the above inequality reduces to

0 �
∫

RN

∇uh∇v +
∫

RN

uhv −
∫

RN

Q(x)h(uh)v.

Putting (−v) instead of v, we arrive to (8), i.e., uh is a weak solution of (Ph). This ends the
proof. �

We conclude this section by constructing a special function which will be useful in the proof
of our theorems. In the sequel, Bc denotes the closed N -dimensional ball with radius c > 0 and
center 0.
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Fix ρ > 0. For any s > 0 we introduce the function

ws(x) =

⎧⎪⎨
⎪⎩

0, if x ∈ R
N \ Bρ ,

s, if x ∈ Bρ/2,
2s
ρ

(ρ − |x|), if x ∈ Bρ \ Bρ/2.

(9)

It is clear that ws ∈ H 1
rad(R

N) and

‖ws‖2
H 1 � K(ρ)s2, (10)

where K(ρ) = (4 + ρ2)ρN−2ωN, and ωN denotes the volume of the N -dimensional unit ball.

3. Proof of Theorems 1.1 and 1.2

Due to (f 0
2 ) and to the continuity of f and g, we may fix the positive sequences {ai}i , {bi}i ,

and {εi}i such that limi→∞ ai = limi→∞ bi = 0, and for all i ∈ N,

bi+1 < ai < si < bi < 1; (11)

f (s) + εg(s) � 0 for all s ∈ [ai, bi] and ε ∈ [−εi, εi]. (12)

For every i ∈ N, we define the truncation functions fi, gi : [0,∞) → R by

fi(s) = f
(
min(s, bi)

)
and gi(s) = g

(
min(s, bi)

)
. (13)

By (f 0
1 ) and (f 0

2 ) we have f (0) = 0. Since fi(0) = gi(0) = 0, we may extend continuously the
functions fi and gi to the whole real line, taking 0 for negative arguments. For every s ∈ R and
i ∈ N, let Fi(s) = ∫ s

0 fi(t) dt and Gi(s) = ∫ s

0 gi(t) dt .
For every i ∈ N and ε ∈ [−εi, εi] the function h0

i,ε : [0,∞) → R defined by h0
i,ε = fi + εgi is

continuous, bounded, and h0
i,ε(0) = 0. On account of relations (12) and (13), we have h0

i,ε(s) � 0

for all s ∈ [ai, bi]. Thus, we may apply Theorem 2.1 to the function h0
i,ε obtaining that for every

i ∈ N and ε ∈ [−εi, εi], the problem

{−�u + u = Q(x)h0
i,ε(u), x ∈ R

N ,

u(x) → 0 as |x| → ∞,
(P0

i,ε)

has a radially symmetric, weak solution u0
i,ε ∈ H 1(RN) such that

u0
i,ε ∈ [0, ai] for a.e. x ∈ R

N ; (14)

u0
i,ε is the infimum of the functional Rε

i on W
bi

rad, (15)

where

Rε
i (u) = 1

2
‖u‖2

H 1 −
∫
N

Q(x)
[
Fi(u) + εGi(u)

]
, u ∈ H 1

rad

(
R

N
)
. (16)
R
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Due to (13) and (14), u0
i,ε is a weak solution not only for (P0

i,ε) but also for our problem (Pε).

Consequently, it remains to prove that

(I0) there are infinitely many distinct elements in the sequence {u0
i,0}i verifying (1), see Theo-

rem 1.1;
(II0) for every k ∈ N, there are at least k distinct elements u0

i,ε verifying (2) when ε belongs to a
certain interval around the origin, see Theorem 1.2.

Proof of (I0); Theorem 1.1 concluded. For abbreviation, take u0
i = u0

i,0 and Ri = R0
i for every

i ∈ N. We first prove that

Ri

(
u0

i

)
< 0 for all i ∈ N; (17)

lim
i→∞Ri

(
u0

i

) = 0. (18)

The left side of (f 0
1 ) implies the existence of l0 > 0 and δ ∈ (0, b1) such that

F(s) � −l0s
2 for all s ∈ (0, δ). (19)

Let L0 > 0 be large enough such that

1

2
K(ρ) + l0‖Q‖L1 < L0(ρ/2)NωN min

Bρ/2
Q, (20)

where ρ > 0 and K(ρ) come from (10). Taking into account the right side of (f 0
1 ), there is a

sequence {s̃i}i ⊂ (0, δ) such that s̃i � ai and F(s̃i) > L0s̃
2
i for all i ∈ N. Let i ∈ N fixed and

ws̃i ∈ H 1
rad(R

N) be the function from (9) corresponding to the value s̃i > 0. Then ws̃i ∈ W
bi

rad,
and on account of (10) and (19) one has

Ri(ws̃i ) = 1

2
‖ws̃i ‖2

H 1 −
∫

RN

Q(x)Fi

(
ws̃i (x)

)
dx

= 1

2
‖ws̃i ‖2

H 1 − F(s̃i)

∫
Bρ/2

Q(x)dx −
∫

Bρ\Bρ/2

Q(x)F
(
ws̃i (x)

)
dx

�
[

1

2
K(ρ) − L0(ρ/2)NωN min

Bρ/2
Q + l0‖Q‖L1

]
s̃2
i .

Consequently, using (20), we obtain that

Ri

(
u0

i

) = min
W

bi

Ri � Ri(ws̃i ) < 0, (21)

rad
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which proves in particular (17). Now, let us prove (18). For every i ∈ N, by using the mean value
theorem, (11), (13) and (14), we have

Ri

(
u0

i

)
� −

∫

RN

Q(x)Fi

(
u0

i (x)
)
dx � −‖Q‖L1 max

s∈[0,1]
∣∣f (s)

∣∣ai.

Taking into account that limi→∞ ai = 0, the above inequality and (21) leads to (18).
Due to (13) and (14), we observe that

Ri

(
u0

i

) = R1
(
u0

i

)
for all i ∈ N.

Combining this relation with (17) and (18), we see that the sequence {u0
i }i contains infinitely

many distinct elements.
It remains to prove relation (1). The first limit easily follows by (14), i.e. ‖u0

i ‖L∞ � ai for
all i ∈ N, combined with limi→∞ ai = 0. For the second limit, we use (21), (11), (13) and (14),
obtaining for all i ∈ N that

1

2

∥∥u0
i

∥∥2
H 1 < ‖Q‖L1 max

s∈[0,1]
∣∣f (s)

∣∣ai,

which concludes the proof of Theorem 1.1. �
Proof of (II0); Theorem 1.2 concluded. Let {θi}i be a sequence with negative terms such that
limi→∞ θi = 0. By (18) and (21), we clear have that limi→∞ Ri(ws̃i ) = 0. Thus, up to a sub-
sequence, we may assume that the sequence {(θi,Ri(u

0
i ),Ri(ws̃i ), ai)}i ⊂ R

4 which converges
to 0R4 , has the property that for all i ∈ N,

θi < Ri

(
u0

i

)
� Ri(ws̃i ) < θi+1; (22)

ai < min

(
1

i
,

1

2i2‖Q‖L1[max[0,1] |f | + max[0,1] |g| + 1]
)

. (23)

Let us denote

ε′
i = θi+1 − Ri(ws̃i )

‖Q‖L1[max[0,1] |g| + 1] and ε′′
i = Ri(u

0
i ) − θi

‖Q‖L1[max[0,1] |g| + 1] , i ∈ N.

Fix k ∈ N. On account of (22),

ε0
k = min

(
1, ε1, . . . , εk, ε

′
1, . . . , ε

′
k, ε

′′
1 , . . . , ε′′

k

)
> 0.

Then, for every i ∈ {1, . . . , k} and ε ∈ [−ε0
k , ε

0
k ] we have

Rε
i

(
u0

i,ε

)
� Rε

i (ws̃i )
(
see (15)

)

= Ri(ws̃i ) − ε

∫

RN

Q(x)Gi(ws̃i )

< θi+1
(
see the choice of ε′ and (11)

)
,
i
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and taking into account that u0
i,ε belongs to W

bi

rad, and u0
i is the minimum point of Ri over the

set W
bi

rad, see relation (15) for ε = 0, we have

Rε
i

(
u0

i,ε

) = Ri

(
u0

i,ε

) − ε

∫

RN

Q(x)Gi

(
u0

i,ε

)

� Ri

(
u0

i

) − ε

∫

RN

Q(x)Gi

(
u0

i,ε

)

> θi

(
see the choice of ε′′

i and (11)
)
.

In conclusion, for every i ∈ {1, . . . , k} and ε ∈ [−ε0
k , ε

0
k ] we have

θi < Rε
i

(
u0

i,ε

)
< θi+1,

thus

Rε
1

(
u0

1,ε

)
< · · · < Rε

k

(
u0

k,ε

)
.

But, u0
i,ε ∈ W

b1
rad for every i ∈ {1, . . . , k}, so Rε

i (u
0
i,ε) = Rε

1(u
0
i,ε), see relation (13). Therefore,

from above, we obtain that for every ε ∈ [−ε0
k , ε

0
k ],

Rε
1

(
u0

1,ε

)
< · · · < Rε

1

(
u0

k,ε

)
.

In particular, this fact shows that the elements u0
1,ε, . . . , u

0
k,ε are distinct whenever ε ∈ [−ε0

k , ε
0
k ].

It remains to prove relation (2). The first relation directly follows by (14) and (23). To check
the second limit, we observe that for every i ∈ {1, . . . , k} and ε ∈ [−ε0

k , ε
0
k ],

Rε
1

(
u0

i,ε

) = Rε
i

(
u0

i,ε

)
< θi+1 < 0.

Consequently, for every i ∈ {1, . . . , k} and ε ∈ [−ε0
k , ε

0
k ], by a mean value theorem we obtain

1

2

∥∥u0
i,ε

∥∥2
H 1 <

∫

RN

Q(x)
[
Fi

(
u0

i,ε

) + εGi

(
u0

i,ε

)]

� ‖Q‖L1

[
max
[0,1]

|f | + max
[0,1]

|g|
]
ai

(
see (11), (14) and ε0

k � 1
)

<
1

2i2

(
see (23)

)
,

which concludes the proof of Theorem 1.2. �
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4. Proof of Theorems 1.3 and 1.4

The left side of (f ∞
1 ) implies the existence of l∞ > 0 and δ > 0 such that

F(s) � −l∞s2 for all s > δ. (24)

Fix a number L∞ > 0 large enough such that

1

2
K(ρ) + l∞‖Q‖L1 < L∞(ρ/2)NωN min

Bρ/2
Q, (25)

where ρ > 0 and K(ρ) are from (10). The right side of (f ∞
1 ) implies the existence of a sequence

{s̃i}i ⊂ (0,∞) such that limi→∞ s̃i = ∞, and

F(s̃i) > L∞s̃2
i for all i ∈ N. (26)

Since limi→∞ si = ∞, see (f ∞
2 ), we may fix a subsequence {smi

}i of {si}i such that s̃i � smi
for

all i ∈ N. Due to the continuity of f and g, we may fix the positive sequences {ai}i , {bi}i , and
{εi}i such that limi→∞ ai = limi→∞ bi = +∞, and for all i ∈ N,

ai < smi
< bi < ai+1; (27)

f (s) + εg(s) � 0 for all s ∈ [ai, bi] and ε ∈ [−εi, εi]. (28)

In the same way as we did in (13), let us define the truncation functions fi, gi : [0,∞) → R by

fi(s) = f
(
min(s, bi)

)
and gi(s) = g

(
min(s, bi)

)
. (29)

Since fi(0) = gi(0) = 0, we may extend continuously the functions fi and gi to the whole real
line, taking 0 for negative arguments. For every s ∈ R and i ∈ N, let Fi(s) = ∫ s

0 fi(t) dt and
Gi(s) = ∫ s

0 gi(t) dt .
For every i ∈ N fixed and ε ∈ [−εi, εi] the function h∞

i,ε : [0,∞) → R defined by h∞
i,ε = fi +

εgi is continuous, bounded, and h∞
i,ε(0) = 0. On account of relations (28) and (29), one has

h∞
i,ε(s) � 0 for all s ∈ [ai, bi]. Consequently, we may apply Theorem 2.1 to the function h∞

i,ε

obtaining that for every i ∈ N and ε ∈ [−εi, εi], the problem

{−�u + u = Q(x)h∞
i,ε(u), x ∈ R

N ,

u(x) → 0 as |x| → ∞,
(P∞

i,ε)

has a radially symmetric, weak solution u∞
i,ε ∈ H 1(RN) such that

u∞
i,ε ∈ [0, ai] for a.e. x ∈ R

N ; (30)

u∞
i,ε is the infimum of the functional Rε

i on W
bi

rad, (31)

where Rε
i is defined exactly as in (16). Due to (29) and (30), u∞

i,ε is a weak solution not only for
(P∞ ) but also for the initial problem (Pε). Consequently, we have to prove that
i,ε
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(I∞) there are infinitely many distinct elements in the sequence {u∞
i,0}i verifying (3), see Theo-

rem 1.3;
(II∞) for every k ∈ N, there are at least k distinct elements u∞

i,ε verifying (5) when ε belongs to
a certain interval around the origin, see Theorem 1.4.

Proof of (I∞); Theorem 1.3 concluded. Let u∞
i = u∞

i,0 and Ri = R0
i for every i ∈ N. We prove

that

lim
i→∞Ri

(
u∞

i

) = −∞. (32)

Let i ∈ N be fixed and ws̃i ∈ H 1
rad(R

N) be the function from (9) corresponding to the value s̃i > 0.

Then ws̃i ∈ W
bi

rad, and on account of (10), (24) and (26), one has

Ri(ws̃i ) = 1

2
‖ws̃i ‖2

H 1 −
∫

RN

Q(x)Fi

(
ws̃i (x)

)
dx

= 1

2
‖ws̃i ‖2

H 1 − F(s̃i)

∫
Bρ/2

Q(x)dx −
∫

(Bρ\Bρ/2)∩{ws̃i
>δ}

Q(x)F
(
ws̃i (x)

)
dx

−
∫

(Bρ\Bρ/2)∩{ws̃i
�δ}

Q(x)F
(
ws̃i (x)

)
dx

�
[

1

2
K(ρ) − L∞(ρ/2)NωN min

Bρ/2
Q + l∞‖Q‖L1

]
s̃2
i + ‖Q‖L1 max

s∈[0,δ]
∣∣F(s)

∣∣.

Using the fact that limi→∞ s̃i = ∞ and (25), we have that limi→∞ Ri(ws̃i ) = −∞. But,
Ri(u

∞
i ) � Ri(ws̃i ) for all i ∈ N, which implies (32).

Now, let us assume that in the sequence {u∞
i }i there are only finitely many distinct elements,

say {u∞
1 , . . . , u∞

i0
} for some i0 ∈ N. Consequently, the sequence {Ri(u

∞
i )}i reduces mostly to the

finite set {Ri0(u
∞
1 ), . . . ,Ri0(u

∞
i0

)}, which contradicts relation (32).
It remains to prove (3). Arguing by contradiction assume there exists a subsequence {u∞

ki
}i

of {u∞
i }i such that for all i ∈ N, we have ‖u∞

ki
‖L∞ � M for some M > 0. In particular,

{u∞
ki

}i ⊂ W
bl

rad for some l ∈ N. Thus, for every ki � l, we have

Rl

(
u∞

l

) = min
W

bl
rad

Rl = min
W

bl
rad

Rki

� min
W

bki
rad

Rki
= Rki

(
u∞

ki

)

� min
W

bl
rad

Rki

(
cf. hypothesis, u∞

ki
∈ W

bl

rad

)

= Rl

(
u∞)

.
l
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As a consequence,

Rki

(
u∞

ki

) = Rl

(
u∞

l

)
for all i ∈ N. (33)

But, the sequence {Ri(u
∞
i )}i is non-increasing; indeed, due to (31) and (29), for all i ∈ N, one

has

Ri+1
(
u∞

i+1

) = min
W

bi+1
rad

Ri+1 � min
W

bi
rad

Ri+1 = min
W

bi
rad

Ri = Ri

(
u∞

i

)
.

Combining this latter fact with (33), one can find a number i0 ∈ N such that Ri(u
∞
i ) = Rl(u

∞
l )

for all i � i0. This fact contradicts (32) which concludes the proof of Theorem 1.3. �
Proof of (3′) from Remark 1.4. Assume that (4) holds for f with q ∈ (2,2∗/2). By contradic-
tion, we assume that there exists a subsequence {u∞

ki
}i of {u∞

i }i such that for all i ∈ N, we have

‖u∞
ki

‖H 1 � M̃ for some M̃ > 0. Now, let us fix α ∈ [2q,2∗). On account of (4) and the mean
value theorem, we have

∣∣∣∣
∫

RN

Q(x)Fki

(
u∞

ki
(x)

)
dx

∣∣∣∣ � c
(‖Q‖L2

∥∥u∞
ki

∥∥
L2 + ‖Q‖Lα/(α−q)

∥∥u∞
ki

∥∥q

Lα

)

� c
(‖Q‖L2M̃ + ‖Q‖Lα/(α−q)C

q
αM̃q

)
< ∞,

where Cα > 0 is the Sobolev embedding constant in H 1(RN) ↪→ Lα(RN). Consequently, the
sequence {Rki

(u∞
ki

)}i is bounded. Since the sequence {Ri(u
∞
i )}i is non-increasing, it will be

bounded as well, which contradicts (32). �
Proof of (II∞); Theorem 1.4 concluded. Let {θi}i be a sequence with negative terms such that
limi→∞ θi = −∞. On account of the proof of Theorem 1.3, up to a subsequence, we may assume
that the sequence {(θi,Ri(u

∞
i ),Ri(ws̃i ), ai)}i ⊂ R

4 which converges to (−∞,−∞,−∞,∞),
has the property that for all i ∈ N,

θi+1 < Ri

(
u∞

i

)
� Ri(ws̃i ) < θi; (34)

ai � i. (35)

Let us denote

ε′
i = θi − Ri(ws̃i )

‖Q‖L1[max[0,bi ] |g| + 1]bi

and ε′′
i = Ri(u

∞
i ) − θi+1

‖Q‖L1[max[0,bi ] |g| + 1]bi

, i ∈ N.

Fix k ∈ N. Due to (34), we have

ε∞
k = min

(
1, ε1, . . . , εk, ε

′
1, . . . , ε

′
k, ε

′′
1 , . . . , ε′′

k

)
> 0.

Then, for every i ∈ {1, . . . , k} and ε ∈ [−ε∞, ε∞] we have
k k
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Rε
i

(
u∞

i,ε

)
� Rε

i (ws̃i )
(
see (31)

)

= Ri(ws̃i ) − ε

∫

RN

Q(x)Gi(ws̃i )

< θi

(
see the choice of ε′

i , s̃i � smi
and (27)

)
,

and since u∞
i,ε belongs to W

bi

rad, and u∞
i is the minimum point of Ri on the set W

bi

rad, see relation
(31) for ε = 0, we have

Rε
i

(
u∞

i,ε

) = Ri

(
u∞

i,ε

) − ε

∫

RN

Q(x)Gi

(
u∞

i,ε

)

� Ri

(
u∞

i

) − ε

∫

RN

Q(x)Gi

(
u∞

i,ε

)

> θi+1
(
see the choice of ε′′

i , s̃i � smi
, and (27)

)
.

Thus, for every i ∈ {1, . . . , k} and ε ∈ [−ε∞
k , ε∞

k ] we have

θi+1 < Rε
i

(
u∞

i,ε

)
< θi. (36)

In particular,

Rε
k

(
u∞

k,ε

)
< · · · < Rε

1

(
u∞

1,ε

)
< 0. (37)

By construction, u∞
i,ε ∈ W

bk

rad for every i ∈ {1, . . . , k}, see (27); thus, Rε
i (u

∞
i,ε) = Rε

k(u
∞
i,ε), see

relation (29). Therefore, (37) implies that for every ε ∈ [−ε∞
k , ε∞

k ],

Rε
k

(
u∞

k,ε

)
< · · · < Rε

k

(
u∞

1,ε

)
< 0.

In particular, the elements u∞
1,ε, . . . , u

∞
k,ε are distinct whenever ε ∈ [−ε∞

k , ε∞
k ].

Now, we prove relation (5). Fix ε ∈ [−ε∞
k , ε∞

k ]. First, since Rε
1(u

∞
1,ε) < 0 = Rε

1(0), then
‖u∞

1,ε‖L∞ > 0 which proves (5) for i = 1. We further prove that

∥∥u∞
i,ε

∥∥
L∞ > ai−1 for all i ∈ {2, . . . , k}. (38)

Let us assume that there exists an element i0 ∈ {2, . . . , k} such that ‖u∞
i0,ε

‖L∞ � ai0−1. Since

ai0−1 < bi0−1, then u∞
i0,ε

∈ W
bi0−1

rad . Thus, on account of (31) and (29), we have

Rε
i0−1

(
u∞

i0−1,ε

) = min
W

bi0−1
rad

Rε
i0−1 � Rε

i0−1

(
u∞

i0,ε

) = Rε
i0

(
u∞

i0,ε

)
,

which contradicts (37). Thus, (38) holds true which can be combined with (35), obtaining rela-
tion (5). This ends the proof of Theorem 1.4. �
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Proof of (5′) from Remark 1.5. Assume that both f and g verify (4) with q ∈ (2,2∗/2). Fix
α ∈ [2q,2∗). We may assume that the sequence {θi}i from (34) fulfills

θi < −2c‖Q‖L2(i − 1) − 2c‖Q‖Lα/(α−q)C
q
α(i − 1)q for all i ∈ N, (39)

where c > 0 comes from (4). Let us fix ε ∈ [−ε∞
k , ε∞

k ]. We assume that ‖u∞
i0,ε

‖H 1 � i0 − 1 for
some i0 ∈ {1, . . . , k}. Then, we have

1

2

∥∥u∞
i0,ε

∥∥2
H 1 = Rε

i0

(
u∞

i0,ε

) +
∫

RN

Q(x)
[
Fi0

(
u∞

i0,ε

) + εGi0

(
u∞

i0,ε

)]

< θi0 + c
(
1 + |ε|)[‖Q‖L2

∥∥u∞
i0,ε

∥∥
H 1 + ‖Q‖Lα/(α−q)C

q
α

∥∥u∞
i0,ε

∥∥q

H 1

] (
see (36)

)
� θi0 + 2c

[‖Q‖L2(i0 − 1) + ‖Q‖Lα/(α−q)C
q
α(i0 − 1)q

] (
ε∞
k � 1

)
< 0

(
see (39)

)
,

contradiction. Therefore, relation (5′) is proved. �
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Appendix A. Principle of symmetric criticality for Szulkin-type functionals

The proof of our main results rely heavily in the principle of symmetric criticality for Szulkin-
type functionals, which we state here for the sake of completeness. For further details, see the
paper of Kobayashi and Ôtani [5].

Let X be a real Banach space and X∗ its dual. Let E :X → R be a functional of class C1 and
let ζ :X → R ∪ {+∞} be a proper (i.e. �≡ +∞), convex, lower semicontinuous function. Then,
I = E + ζ is a Szulkin-type functional, see [15]. An element u ∈ X is called a critical point of
I = E + ζ if

E′(u)(v − u) + ζ(v) − ζ(u) � 0 for all v ∈ X, (40)

or equivalently,

0 ∈ E′(u) + ∂ζ(u) in X∗,

where ∂ζ(u) stands for the subdifferential of the convex functional ζ at u ∈ X.

Proposition A.1. (See [15, p. 80].) Every local minimum point of I = E + ζ is a critical point
of I in the sense of (40).

Let G be a topological group acting linearly on X. We say that G acts continuously on X

if the map (g,u) �→ gu from G × X into X is continuous. A set M is called G-invariant if
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gM = {gu: u ∈ M} ⊆ M for every g ∈ G. A function h on X is called G-invariant if h(gu) =
h(u) for every u ∈ X and g ∈ G. The linear subspace of G-symmetric points of X is defined by

Σ = FixG(X) = {u ∈ X: gu = u for all g ∈ G}.
A special form of [5, Theorem 3.16] is the following result, known as the principle of symmetric
criticality for Szulkin functionals.

Theorem A.1. Let X be a reflexive Banach space and let I = E + ζ :X → R ∪ {+∞} be a
Szulkin-type functional on X. If a compact group G acts linearly and continuously on X, and the
functionals E and ζ are G-invariant, then the principle of symmetric criticality holds, i.e., fixing
u ∈ Σ , we have

0 ∈ (E|Σ)′(u) + ∂(ζ |Σ)(u) in Σ∗ �⇒ 0 ∈ E′(u) + ∂ζ(u) in X∗.
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