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Abstract. The paper is concerned with the equation −∆hu = f(u) on Sd

where ∆h denotes the Laplace-Beltrami operator on the standard unit sphere
(Sd, h), while the continuous nonlinearity f : R → R oscillates either at zero
or at infinity having an asymptotically critical growth in the Sobolev sense. In
both cases, by using a group-theoretical argument and an appropriate varia-
tional approach, we establish the existence of [d/2] + (−1)d+1 − 1 sequences of
sign-changing weak solutions in H2

1 (Sd) whose elements in different sequences
are mutually symmetrically distinct whenever f has certain symmetry and

d ≥ 5. Although we are dealing with a smooth problem, we are forced to use
a non-smooth version of the principle of symmetric criticality (see Kobayashi-

Ôtani, J. Funct. Anal. 214 (2004), 428-449). The L∞– and H2
1–asymptotic

behaviour of the sequences of solutions are also fully characterized.

1. Introduction. We consider the nonlinear elliptic problem

−∆hu = f(u) on Sd, (P)

where ∆hu = divh(∇u) denotes the Laplace-Beltrami operator acting on u : Sd →
R, (Sd, h) is the unit sphere, h being the canonical metric induced from R

d+1.
Denoting formally 0+ or +∞ by the common symbol L (standing for a limit

point), we assume on the continuous nonlinearity f : R → R that

(fL
1 ) −∞ < lim infs→L

F (s)
s2 ≤ lim sups→L

F (s)
s2 = +∞;

(fL
2 ) lim infs→L

f(s)
s < 0,

where F (s) =
∫ s

0 f(t)dt. One can easily observe that f has an oscillatory behaviour

at L. In particular, a whole sequence of distinct, constant solutions for (P) appears
as zeros of the function s 7→ f(s), s > 0.

The purpose of the present paper is to investigate the existence of non-constant
solutions for (P) under the assumptions (fL

1 ) and (fL
2 ). This problem will be

achieved by constructing sign-changing solutions for (P). We prove two multiplicity
results corresponding to L = 0+ and L = +∞, respectively; the ’piquancy’ is that
not only infinitely many sign-changing solutions for (P) are guaranteed but we also
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give a lower estimate of the number of those sequences of solutions for (P) whose
elements in different sequences are mutually symmetrically distinct.

In order to handle this problem, solutions for (P) are being sought in the standard
Sobolev space H2

1 (Sd) which is the completion of C∞(Sd) with respect to the usual
norm

‖u‖H2
1

=

(
∫

Sd

|∇u|2dσh +

∫

Sd

u2dσh

)1/2

.

We say that u ∈ H2
1 (Sd) is a weak solution for (P) if

∫

Sd

〈∇u,∇v〉dσh =

∫

Sd

f(u)vdσh for all v ∈ H2
1 (Sd),

where 〈·, ·〉 denotes the scalar product associated with the Riemannian metric h
for 1-forms, and dσh is the Riemannian measure.

Since we are interested in the existence of infinitely many sign-changing solutions,
it seems some kind of symmetry hypothesis on the nonlinearity f is indispensable;
namely, we assume that f is odd in an arbitrarily small neighborhood of the origin
whenever L = 0+, and f is odd on the whole R whenever L = +∞. In the case
L = 0+ no further assumption on f is needed at infinity (neither symmetry nor
growth of f ; in particular, f may have even a supercritical growth). However,

when L = +∞, we have to control the growth of f ; we assume f(s) = O(s
d+2

d−2 )
as s → ∞, i.e. f has an asymptotically critical growth at infinity. In both cases
(L = 0+ and L = +∞), the energy functional E : H2

1 (Sd) → R associated with (P)
is well-defined, which is the key tool in order to achieve our results.

The first task is to construct certain subspaces of H2
1 (Sd) containing invariant

functions under special actions defined by means of carefully chosen subgroups of
the orthogonal group O(d+1). A particular form of this construction has been first
exploited by Ding [7]. In our case, every nontrivial element from these subspaces
of H2

1 (Sd) changes the sign. The main feature of these subspaces of H2
1 (Sd) is

based on the symmetry properties of their elements: no nontrivial element from one
subspace can belong to another subspace, i.e., elements from distinct subspaces are
distinguished by their symmetries. Consequently, guaranteeing nontrivial solutions
for (P) in distinct subspaces of H2

1 (Sd) of the above type, these elements cannot be
compared with each other. We show by an explicit construction that the minimal
number of these subspaces of H2

1 (Sd) is sd = [d/2] + (−1)d+1 − 1. Here, [·] denotes
the integer function. For details, see Section 3.

We roughly describe the strategy to construct infinitely many distinct sign-
changing solutions for (P) in a fixed subspace of H2

1 (Sd) of the above type; for
the sake of simplicity, we denote by W such a subspace of H2

1 (Sd). Now, we re-
strict the energy functional E to W , denoting it by EW , and we fix certain L∞-level
sets in W, say Wk ⊂ W , k ∈ N; the sequence {Wk}k is decreasing (resp. increas-
ing) whenever L = 0+ (resp. L = +∞). Up to a subsequence of {Wk}k ⊂ W ,
the relative minimizers of EW to Wk have different energy levels; so their set is
uncountable. The non-smooth principle of symmetric criticality for Szulkin-type
functionals (see Kobayashi-Ôtani [11] and Akagi-Kobayashi-Ôtani [1]) and a careful
truncation argument imply that the relative minimizers of EW on the sets Wk are
actually weak solutions of (P). In some respects, this approach is quite unusual:
dealing with a problem in a pure smooth context we are forced to use a proper
non-smooth principle. Moreover, the L∞–norm and H2

1–norm of the sequences of
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solutions for (P) tend to L ∈ {0+,+∞} whenever f oscillates at L; this fact fully
reflects the oscillatory behaviour of f at L.

Elliptic problems involving oscillatory nonlinearities have been studied in Omari-
Zanolin [15], Ricceri [16], Saint Raymond [17], subjected to standard Neumann or
Dirichlet boundary value conditions on bounded open domains of R

n, or even on
unbounded domains, see Faraci-Kristály [8], Kristály [12]. Results in finding sign-
changing solutions for semilinear problems can be found in Li-Wang [13], Zou [19]
and references therein. The strategy in these last papers is to construct suitable
closed convex sets which contain all the positive and negative solutions in the inte-
rior, and are invariant with respect to some vector fields. Our approach is rather dif-
ferent than those of [13], [19] and is related to the works of Bartsch-Schneider-Weth
[2] and Bartsch-Willem [3], where the existence of non-radial and sign-changing so-
lutions are studied for Schrödinger and polyharmonic equations defined on R

n. For
further results concerning sign-changing solutions, see [4], [6], [14] and references
therein.

The plan of the paper is as follows. In the sequel we state our main theo-
rems. In Section 3, by using a group-theoretical argument, we explicitly construct
sd = [d/2] + (−1)d+1 − 1 subspaces of H2

1 (Sd) with special symmetrical properties.
In Sections 4 and 5 we prove our main Theorems 2.1 and 2.2, respectively, while
Section 6 contains a list of concluding remarks.

2. Main results. In the sequel, we denote by ‖ · ‖∞ the usual sup-norm on Sd.
Let f : R → R be a continuous function and F (s) =

∫ s

0 f(t)dt. We assume that

(f0
1 ) −∞ < lim infs→0+

F (s)
s2 ≤ lim sups→0+

F (s)
s2 = +∞;

(f0
2 ) lim infs→0+

f(s)
s < 0.

The first result can be formulated as follows:

Theorem 2.1. Let d ≥ 5 and f : R → R be a continuous function which is odd in

an arbitrarily small neighborhood of the origin, verifying (f0
1 ) and (f0

2 ). Then there

exist at least sd = [d/2] + (−1)d+1 − 1 sequences {ui
k}k ⊂ H2

1 (Sd), i ∈ {1, ..., sd}, of

sign-changing weak solutions of (P) distinguished by their symmetry properties. In

addition,

lim
k→∞

‖ui
k‖∞ = lim

k→∞
‖ui

k‖H2
1

= 0 for every i ∈ {1, ..., sd}.

Example 1. Let α, β, γ ∈ R such that α + β > 1 > α > 0, and γ ∈ (0, 1). Then,
the function f : R → R defined by f(0) = 0 and f(s) = |s|α−1s(γ + sin |s|−β) near
the origin (but s 6= 0) and extended in an arbitrarily way to the whole R, verifies
both (f0

1 ) and (f0
2 ).

We have a counterpart of Theorem 2.1 when the nonlinear term oscillates at
infinity. Instead of (f0

1 ) and (f0
2 ), respectively, we assume

(f∞
1 ) −∞ < lim infs→∞

F (s)
s2 ≤ lim sups→∞

F (s)
s2 = +∞;

(f∞
2 ) lim infs→∞

f(s)
s < 0.

Unlike in Theorem 2.1 where no further assumption is needed at infinity, we have
to control here the growth of f . We assume that f has an asymptotically critical

growth at infinity, namely,

(f∞
3 ) lim sups→∞

|f(s)|

1+s2∗−1 <∞, where 2∗ = 2d
d−2 .
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Our next result can be formulated as follows:

Theorem 2.2. Let d ≥ 5 and f : R → R be an odd, continuous function which

verifies (f∞
1 ), (f∞

2 ) and (f∞
3 ). Then there exist at least sd = [d/2] + (−1)d+1 − 1

sequences {ũi
k}k ⊂ H2

1 (Sd), i ∈ {1, ..., sd}, of sign-changing weak solutions of (P)
distinguished by their symmetry properties. In addition,

lim
k→∞

‖ũi
k‖∞ = lim

k→∞
‖ũi

k‖H2
1

= ∞ for every i ∈ {1, ..., sd}.

Example 2. Let d ≥ 5 and α, β, γ ∈ R such that d+2
d−2 ≥ α > 1, |α − β| < 1, and

γ ∈ (0, 1). Then, the function f : R → R defined by f(s) = |s|α−1s(γ + sin |s|β)
verifies the hypotheses (f∞

1 ), (f∞
2 ) and (f∞

3 ), respectively.

3. Subspaces of H2
1 (Sd) with special symmetries: a group-theoretical ar-

gument. Let d ≥ 5 and sd = [d/2] + (−1)d+1 − 1. For every i ∈ {1, ..., sd}, we
define

Gd,i =

{

O(i+ 1) ×O(d − 2i− 1) ×O(i+ 1), if i 6= d−1
2 ,

O(d+1
2 ) ×O(d+1

2 ), if i = d−1
2 .

Let us denote by 〈Gd,i;Gd,j〉 the group generated by Gd,i and Gd,j. The key result
of this section is

Proposition 3.1. For every i, j ∈ {1, ..., sd} with i 6= j, the group 〈Gd,i;Gd,j〉 acts

transitively on Sd.

Proof. Without loosing the generality, we may assume that i < j. The proof is di-
vided into three steps. For abbreviation, we introduce the notation 0k = (0, ..., 0) ∈
R

k, k ∈ {1, ..., d+ 1}.
Step 1. The group 〈Gd,i;Gd,j〉 acts transitively on Sd−j−1 × {0j+1}.

When j = d−1
2 , the proof is trivial since O(d+1

2 ) acts transitively on S
d−1

2 . Assume

so that j 6= d−1
2 . We show that for every σ = (σ1, σ2, σ3) ∈ Sd−j−1 with σ1 ∈ R

i+1,

σ2 ∈ R
j−i, σ3 ∈ R

d−2j−1, and ω ∈ Sj fixed arbitrarily, there exists gij ∈ 〈Gd,i;Gd,j〉
such that

gij(ω, 0d−j) = (σ, 0j+1). (1)

Since O(j + 1) acts transitively on Sj , for every σ̃2 ∈ R
j−i with the property that

(σ1, σ̃2) ∈ Sj , there exists an element gj ∈ O(j + 1) such that

gjω = (σ1, σ̃2). (2)

Note that |σ1|
2 + |σ̃2|

2 = 1 and |σ1|
2 + |σ2|

2 + |σ3|
2 = 1; so |σ̃2|

2 = |σ2|
2 + |σ3|

2.
If σ̃2 = 0j−i then σ2 = 0j−i and σ3 = 0d−2j−1; thus, σ = (σ1, 0d−j−i−1). Let

gij := gj × idRd−j ∈ Gd,j. Then, due to (2), we have

gij(ω, 0d−j) = (gjω, 0d−j) = (σ1, 0j−i, 0d−j) = (σ1, 0d−i) = (σ, 0j+1),

which proves (1).
If σ̃2 6= 0j−i, let r = |σ̃2| > 0. Since O(d − 2i − 1) acts transitively on Sd−2i−2

(thus, also on the sphere rSd−2i−2), then there exists gi ∈ O(d − 2i− 1) such that
gi(σ̃2, 0d−j−i−1) = (σ2, σ3, 0j−i) ∈ rSd−2i−2. Let

g̃i = idRi+1 × gi × idRi+1 ∈ Gd,i and g̃j = gj × idRd−j ∈ Gd,j .
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Then gij := g̃ig̃j ∈ 〈Gd,i;Gd,j〉 and on account of (2) and i + 1 < d − j (since
i < j ≤ sd), we have

g̃ig̃j(ω, 0d−j) = g̃i(gjω, 0d−j) = g̃i(σ1, σ̃2, 0d−j) = (σ1, gi(σ̃2, 0d−j−i−1), 0i+1)

= (σ1, σ2, σ3, 0j−i, 0i+1) = (σ, 0j+1),

i.e., relation (1).
Now, let σ, σ̃ ∈ Sd−j−1. Then, fixing ω ∈ Sj , on account of (1), there are

g1, g2 ∈ 〈Gd,i;Gd,j〉 such that g1(ω, 0d−j) = (σ, 0j+1) and g2(ω, 0d−j) = (σ̃, 0j+1).

Consequently, g2g
−1
1 ∈ 〈Gd,i;Gd,j〉 and g2g

−1
1 (σ, 0j+1) = (σ̃, 0j+1), i.e., the group

〈Gd,i;Gd,j〉 acts transitively on Sd−j−1 × {0j+1}.
Step 2. The group 〈Gd,i;Gd,j〉 acts transitively on Sd−i−1 × {0i+1}.

We can proceed in a similar way as in Step 1; however, for the reader’s convenience,
we sketch the proof. We show that for every σ = (σ1, σ2, σ3) ∈ Sd−i−1 with σ1 ∈
R

i+1, σ2 ∈ R
d−j−i−1, σ3 ∈ R

j−i, and ω ∈ Sd−j−1 fixed arbitrarily, there is gij ∈
〈Gd,i;Gd,j〉 such that

gij(ω, 0j+1) = (σ, 0i+1). (3)

Let σ̃2 ∈ R
d−j−i−1 be such that |σ1|

2 + |σ̃2|
2 = 1. Then, due to Step 1, there exists

g̃ij ∈ 〈Gd,i;Gd,j〉 such that g̃ij(ω, 0j+1) = (σ1, σ̃2, 0j+1).
If σ̃2 = 0d−j−i−1 then σ2 = 0d−j−i−1 and σ3 = 0j−i; thus, (3) is verified with

the choice gij := g̃ij ∈ 〈Gd,i;Gd,j〉.
If σ̃2 6= 0d−j−i−1 then let r = |σ̃2| > 0. Since O(d − 2i− 1) acts transitively on

Sd−2i−2 (thus, also on the sphere rSd−2i−2), then there exists gi ∈ O(d − 2i − 1)
such that gi(σ̃2, 0j−i) = (σ2, σ3) ∈ rSd−2i−2. Let g̃i = idRi+1 × gi × idRi+1 ∈ Gd,i.
Then

g̃ig̃ij(ω, 0j+1) = g̃i(σ1, σ̃2, 0j+1) = (σ1, gi(σ̃2, 0j−i), 0i+1) = (σ, 0i+1).

Consequently, gij := g̃ig̃ij ∈ 〈Gd,i;Gd,j〉 verifies (3). Now, following the last part of
Step 1, our claim follows.

Step 3. (Proof concluded) The group 〈Gd,i;Gd,j〉 acts transitively on Sd.

We show that for every σ = (σ1, σ2, σ3) ∈ Sd with σ1 ∈ R
i+1, σ2 ∈ R

d−j−i−1,
σ3 ∈ R

j+1, and ω ∈ Sd−i−1 fixed arbitrarily, there is gij ∈ 〈Gd,i;Gd,j〉 such that

gij(ω, 0i+1) = σ. (4)

Let σ̃3 ∈ R
j−i such that |σ̃3| = |σ3|. Then, due to Step 2, there exists g̃ij ∈

〈Gd,i;Gd,j〉 such that g̃ij(ω, 0i+1) = (σ1, σ2, σ̃3, 0i+1).
If σ̃3 = 0j−i then σ3 = 0j+1 and (4) is verified by choosing gij := g̃ij ∈

〈Gd,i;Gd,j〉.
If σ̃3 6= 0j−i, let r = |σ̃3| = |σ3| > 0. Since O(j + 1) acts transitively on Sj ,

there exists gj ∈ O(j + 1) such that gj(σ̃3, 0i+1) = σ3 ∈ rSj . Let us fix the element
g̃j = idRd−j × gj ∈ Gd,j . Then

g̃j g̃ij(ω, 0i+1) = g̃j(σ1, σ2, σ̃3, 0i+1) = (σ1, σ2, gj(σ̃3, 0i+1)) = (σ1, σ2, σ3) = σ.

Consequently, gij := g̃j g̃ij ∈ 〈Gd,i;Gd,j〉 verifies (4).
Now, let σ, σ̃ ∈ Sd. Then, fixing ω ∈ Sd−i−1, on account of (4), there are

g1, g2 ∈ 〈Gd,i;Gd,j〉 such that g1(ω, 0i+1) = σ and g2(ω, 0i+1) = σ̃. Consequently,

g2g
−1
1 ∈ 〈Gd,i;Gd,j〉 and g2g

−1
1 (σ) = σ̃, i.e., the group 〈Gd,i;Gd,j〉 acts transitively

on Sd. This completes the proof. �

Let d ≥ 5 and fix Gd,i for some i ∈ {1, ..., sd}.We define the function τi : Sd → Sd

associated to Gd,i by



924 ALEXANDRU KRISTÁLY

τi(σ) =

{

(σ3, σ2, σ1), if i 6= d−1

2
, and σ = (σ1, σ2, σ3) with σ1, σ3 ∈ R

i+1, σ2 ∈ R
d−2i−1;

(σ3, σ1), if i = d−1

2
, and σ = (σ1, σ3) with σ1, σ3 ∈ R

d+1

2 .

It is clear by construction that τi /∈ Gd,i, τiGd,iτ
−1
i = Gd,i and τ2

i = idRd+1 .
Inspired by [2], [3], we introduce the action of the group Gτi

d,i = 〈Gd,i, τi〉 ⊂

O(d+ 1) on the space H2
1 (Sd). Due to the above properties of τi, only two types of

elements in Gτi

d,i can be distinguished; namely, g̃ = g ∈ Gd,i, and g̃ = τig ∈ Gτi

d,i\Gd,i

(with g ∈ Gd,i), respectively. Therefore, the action Gτi

d,i ×H2
1 (Sd) → H2

1 (Sd) given
by

gu(σ) = u(g−1σ), (τig)u(σ) = −u(g−1τ−1
i σ), (5)

for g ∈ Gd,i, u ∈ H2
1 (Sd) and σ ∈ Sd, is well-defined, continuous and linear. We

define the subspace of H2
1 (Sd) containing all symmetric points with respect to the

compact group Gτi

d,i, i.e.,

HG
τi
d,i

(Sd) = {u ∈ H2
1 (Sd) : g̃u = u for every g̃ ∈ Gτi

d,i}.

For further use, we also introduce

HGd,i
(Sd) = {u ∈ H2

1 (Sd) : gu = u for every g ∈ Gd,i},

where the action of the group Gd,i on H2
1 (Sd) is defined by the first relation of (5).

Remark 1. Every nonzero element of the space HG
τi
d,i

(Sd) changes sign. To see

this, let u ∈ HG
τi
d,i

(Sd) \ {0}. Due to the Gτi

d,i-invariance of u and (5) we have

u(σ) = −u(τ−1
i σ) for every σ ∈ Sd. Since u 6= 0, it should change the sign.

The next result shows us how can we construct mutually distinct subspaces of
H2

1 (Sd) which cannot be compared by symmetrical point of view.

Theorem 3.1. For every i, j ∈ {1, ..., sd} with i 6= j, one has

a) HGd,i
(Sd) ∩HGd,j

(Sd) = {constant functions on Sd};

b) HG
τi
d,i

(Sd) ∩H
G

τj

d,j

(Sd) = {0}.

Proof. a) Let u ∈ HGd,i
(Sd) ∩ HGd,j

(Sd). In particular, u is both Gd,i- and Gd,j-
invariant, i.e. giu = gju = u for every gi ∈ Gd,i and gj ∈ Gd,j, respectively.
Consequently, u is also 〈Gd,i, Gd,j〉-invariant; thus, u(σ) = u(gijσ) for every gij ∈
〈Gd,i, Gd,j〉 and σ ∈ Sd. Due to Proposition 3.1, for every fixed σ ∈ Sd, the orbit
of gijσ is the whole sphere Sd whenever gij runs through 〈Gd,i, Gd,j〉. Therefore, u
should be constant.

b) Let u ∈ HG
τi
d,i

(Sd) ∩ H
G

τj

d,j

(Sd). The second relation of (5) shows that

u(σ) = −u(τ−1
i σ) = −u(τ−1

j σ), σ ∈ Sd. But, due to a), u is constant. Thus, u
should be 0. �

To conclude this section, we construct explicit functions belonging to HG
τi
d,i

(Sd)

which will be essential in the proof of Theorems 2.1 and 2.2, but it is of interest in
its own right as well. Before we give the class of functions we are speaking about,
we say that a set D ⊂ Sd is Gτi

d,i-invariant, if g̃D ⊆ D for every g̃ ∈ Gτi

d,i.
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Proposition 3.2. Let i ∈ {1, ..., sd} and s > 0 be fixed. Then there exist a number

Ci > 0 and a Gτi

d,i-invariant set Di ⊂ Sd with Volh(Di) > 0, both independent on

the number s, and a function w ∈ HG
τi
d,i

(Sd) such that

i) ‖w‖∞ ≤ s;
ii) |∇w(σ)| ≤ Cis for a.e. σ ∈ Sd;
iii) |w(σ)| = s for every σ ∈ Di.

An explicit function w : Sd → R fulfilling all the requirements of Proposition 3.2 is
given by

w(σ) =
8s

(R − r)
sgn(|σ1| − |σ3|) max

(

0, min

(

R − r

8
,
R − r

4
−

−max

(
∣

∣

∣

∣

|σ1| + |σ3| −
R + 3r

4

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

∣|σ1| − |σ3|
∣

∣ −
R + 3r

4

∣

∣

∣

∣

)))

(6)

where R > r, and σ = (σ1, σ2, σ3) ∈ Sd with σ1, σ3 ∈ R
i+1, σ2 ∈ R

d−2i−1 whenever

i 6= d−1
2 , and σ = (σ1, σ3) ∈ Sd with σ1, σ3 ∈ R

d+1

2 whenever i = d−1
2 . The Gτi

d,i-

invariant set Di ⊂ Sd can be defined as

Di =

{

σ ∈ S
d :

∣

∣

∣

∣

|σ1| + |σ3| −
R + 3r

4

∣

∣

∣

∣

≤
R − r

8
,

∣

∣

∣

∣

||σ1| − |σ3|| −
R + 3r

4

∣

∣

∣

∣

≤
R − r

8

}

.

The geometrical image of the function w from (6) is shown by Fig. 1.

Figure 1. The image of the function w : Sd → R from (6) with parameters
r = 0.2, R = 1.5, s = 0.4; the value w(σ) is represented (radially) on the line
determined by 0 ∈ R

d+1 and σ ∈ Sd, the ’zero altitude’ being cσ, i.e., the
sphere cSd, with c = 1.3. The union of those 8 disconnected holes on the
sphere Sd where the function w takes values s and (−s) corresponds to the

G
τi
d,i–invariant set Di. (Note that the figure describes the case i 6= d−1

2
. When

i = d−1

2
the coordinate σ2 vanishes and the figure becomes simpler.)
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4. Proof of Theorem 2.1. Throughout this section we assume the hypotheses
of Theorem 2.1 are fulfilled. Let s̃ > 0 be so small that f is odd on [−s̃, s̃], and

let f̃(s) = sgn(s)f(min(|s|, s̃)). Clearly, f̃ is continuous and odd on R. Define also

F̃ (s) =
∫ s

0
f̃(t)dt, s ∈ R.

On account of (f0
2 ), one may fix c0 > 0 such that

lim inf
s→0+

f(s)

s
< −c0 < 0. (7)

In particular, there is a sequence {sk}k ⊂ (0, s̃) converging (decreasingly) to 0, such
that

f̃(sk) = f(sk) < −c0sk. (8)

Let us define the functions

ψ(s) = f̃(s) + c0s and Ψ(s) =

∫ s

0

ψ(t)dt = F̃ (s) +
c0
2
s2, s ∈ R. (9)

Due to (8), ψ(sk) < 0; so, there are two sequences {ak}k, {bk}k ⊂ (0, s̃), both
converging to 0, such that bk+1 < ak < sk < bk for every k ∈ N and

ψ(s) ≤ 0 for every s ∈ [ak, bk]. (10)

Since c0 > 0, see (7), the norm

‖u‖c0 =

(
∫

Sd

|∇u|2dσh + c0

∫

Sd

u
2
dσh

)1/2

(11)

is equivalent to the standard norm ‖ · ‖H2
1
. Now, we define E : H2

1 (Sd) → R by

E(u) =
1

2
‖u‖2

c0
−

∫

Sd

Ψ(u(σ))dσh,

which is well-defined since ψ has a subcritical growth, and H2
1 (Sd) is compactly

embedded into Lp(Sd), p ∈ [1, 2∗), see Hebey [9, Theorem 2.9, p. 37]. Moreover, E
belongs to C1(H2

1 (Sd)), it is even, and it coincides with the energy functional asso-
ciated to (P) on the set B∞(s̃) = {u ∈ L∞(Sd) : ‖u‖∞ ≤ s̃} because the functions

f and f̃ coincide on [−s̃, s̃].

From now on, we fix i ∈ {1, ..., sd} and the corresponding subspace HG
τi
d,i

(Sd) of

H2
1 (Sd) introduced in the previous section. Let us denote by Ei the restriction of

the functional E to HG
τi
d,i

(Sd) and for every k ∈ N, consider the set

T i
k = {u ∈ HG

τi
d,i

(Sd) : ‖u‖∞ ≤ bk}, (12)

where bk is from (10).

Proposition 4.1. The functional Ei is bounded from below on T i
k and its infimum

mi
k on T i

k is attained at ui
k ∈ T i

k. Moreover, mi
k = Ei(u

i
k) < 0 for every k ∈ N.

Proof. For every u ∈ T i
k we have

Ei(u) =
1

2
‖u‖2

c0
−

∫

Sd

Ψ(u(σ))dσh ≥ − max
[−bk,bk]

Ψ · Volh(Sd) > −∞.

It is clear that T i
k is convex and closed, thus weakly closed in HG

τi
d,i

(Sd). Let

mi
k = infT i

k
Ei, and {un}n ⊂ T i

k be a minimizing sequence of Ei for mi
k. Then, for
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large n ∈ N, we have

1

2
‖un‖

2
c0

≤ mi
k + 1 + max

[−bk,bk]
Ψ · Volh(Sd),

thus {un}n is bounded in HG
τi
d,i

(Sd). Up to a subsequence, {un}n weakly converges

in HG
τi
d,i

(Sd) to some ui
k ∈ T i

k. Since ψ has a subcritical growth, by using the

compactness of the embedding HG
τi
d,i

(Sd) ⊂ H2
1 (Sd) →֒ Lp(Sd), 1 ≤ p < 2∗, one can

conclude the sequentially weak continuity of the function u 7→
∫

Sd Ψ(u(σ))dσh, u ∈

HG
τi
d,i

(Sd). Consequently, Ei is sequentially weak lower semicontinuous. Combining

this fact with the weak closedness of the set T i
k, we obtain Ei(u

i
k) = mi

k = infT i
k
Ei.

The next task is to prove that mi
k < 0 for every k ∈ N. First, due to (9) and

(f0
1 ), we have

−∞ < lim inf
s→0+

Ψ(s)

s2
≤ lim sup

s→0+

Ψ(s)

s2
= +∞. (13)

Therefore, the left-hand side of (13) and the evenness of Ψ implies the existence of
l > 0 and ̺ ∈ (0, s̃) such that

Ψ(s) ≥ −ls2 for every s ∈ (−̺, ̺). (14)

Let Di ⊂ Sd and Ci > 0 be from Proposition 3.2 (which depend only on Gd,i

and τi), and fix a number l > 0 large enough such that

lVolh(Di) >
(

l +
c0
2

)

Volh(Sd) +
C2

i

2
, (15)

c0 > 0 being from (7). Taking into account the right-hand side of (13), there is a

sequence {sk}k ⊂ (0, ̺) such that sk ≤ bk and Ψ(sk) = Ψ(−sk) > ls2k for every
k ∈ N.

Let wk := wsk
∈ HG

τi
d,i

(Sd) be the function from Proposition 3.2 corresponding

to the value sk > 0. Then wk ∈ T i
k and one has

Ei(wk) =
1

2
‖wk‖

2
c0

−

∫

Sd

Ψ(wk(σ))dσh

≤
1

2

(

C2
i + c0Volh(Sd)

)

s2k −

∫

Di

Ψ(wk(σ))dσh −

∫

Sd\Di

Ψ(wk(σ))dσh.

On account of Proposition 3.2 iii), we have
∫

Di

Ψ(wk(σ))dσh = Ψ(sk)Volh(Di) > lVolh(Di)s
2
k.

On the other hand, due to (14) and Proposition 3.2 i), we have
∫

Sd\Di

Ψ(wk(σ))dσh ≥ −l

∫

Sd\Di

w2
k(σ)dσh > −lVolh(Sd)s2k.

Combining (15) with the above estimations, we obtain that mi
k = infT i

k
Ei ≤

Ei(wk) < 0, which proves our claim. �

Proposition 4.2. Let ui
k ∈ T i

k from Proposition 4.1. Then, ‖ui
k‖∞ ≤ ak. (The

number ak is from (10).)
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Proof. Let A = {σ ∈ Sd : ui
k(σ) /∈ [−ak, ak]} and suppose that meas(A) > 0. Define

the function γ(s) = sgn(s)min(|s|, ak) and set wk = γ ◦ ui
k. Since γ is Lipschitz

continuous, then wk ∈ H2
1 (Sd), see Hebey [9, Proposition 2.5, p. 24].

We first claim that wk ∈ HG
τi
d,i

(Sd). To see this, it suffices to prove that g̃wk = wk

for every g̃ ∈ Gτi

d,i. First, let g̃ = g ∈ Gd,i. Since gui
k = ui

k, we have

gwk(σ) = wk(g−1σ) = (γ ◦ ui
k)(g−1σ) = γ(ui

k(g−1σ)) = γ(ui
k(σ)) = wk(σ)

for every σ ∈ Sd. Now, let g̃ = τig ∈ Gτi

d,i \Gd,i (with g ∈ Gd,i). Since γ is an odd

function and (τig)u
i
k = ui

k, on account of (5) we have

(τig)wk(σ) = −wk(g−1τ−1
i σ) = −(γ ◦ ui

k)(g−1τ−1
i σ)

= γ(−ui
k(g−1τ−1

i σ)) = γ((τig)u
i
k(σ)) = γ(ui

k(σ))
= wk(σ)

for every σ ∈ Sd. In conclusion, the claim is true, and wk ∈ HG
τi
d,i

(Sd). Moreover,

‖wk‖∞ ≤ ak. Consequently, wk ∈ T i
k.

We introduce the sets

A1 = {σ ∈ A : ui
k(σ) < −ak} and A2 = {σ ∈ A : ui

k(σ) > ak}.

Thus, A = A1∪A2, and we have that wk(σ) = ui
k(σ) for all σ ∈ Sd\A, wk(σ) = −ak

for all σ ∈ A1, and wk(σ) = ak for all σ ∈ A2. Moreover,

Ei(wk) − Ei(u
i
k) =

= −
1

2

∫

A

|∇ui
k|

2dσh +
c0
2

∫

A

[w2
k − (ui

k)2]dσh −

∫

A

[Ψ(wk) − Ψ(ui
k)]dσh

= −
1

2

∫

A

|∇ui
k(σ)|2dσh +

c0
2

∫

A

[a2
k − (ui

k(σ))2]dσh

−

∫

A1

[Ψ(−ak) − Ψ(ui
k(σ))]dσh −

∫

A2

[Ψ(ak) − Ψ(ui
k(σ))]dσh.

Note that
∫

A
[w2

k−(ui
k)2]dσh ≤ 0. Next, by the mean value theorem, for a.e. σ ∈ A2,

there exists θk(σ) ∈ [ak, bk] such that Ψ(ak) − Ψ(ui
k(σ)) = ψ(θk(σ))(ak − ui

k(σ)).
Thus, on account of (10), one has

∫

A2

[Ψ(ak) − Ψ(ui
k(σ))]dσh ≥ 0.

In the same way, using the oddness of ψ, we conclude that
∫

A1

[Ψ(−ak) − Ψ(ui
k(σ))]dσh ≥ 0.

In conclusion, every term of the expression Ei(wk) − Ei(u
i
k) is nonpositive. On the

other hand, since wk ∈ T i
k, then Ei(wk) ≥ Ei(u

i
k) = infT i

k
Ei. So, every term in

Ei(wk) − Ei(u
i
k) should be zero. In particular,

∫

A

|∇ui
k(σ)|2dσh =

∫

A

[a2
k − (ui

k(σ))2]dσh = 0.

These equalities imply that meas(A) should be 0, contradicting our initial assump-
tion. �

Proposition 4.3. limk→∞mi
k = limk→∞ ‖ui

k‖∞ = limk→∞ ‖ui
k‖H2

1
= 0.
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Proof. Using Proposition 4.2, we have that ‖ui
k‖∞ ≤ ak < s̃ for a.e. σ ∈ Sd.

Therefore, we readily have that limk→∞ ‖ui
k‖∞ = 0.

Moreover, the mean value theorem shows that

mi
k = Ei(u

i
k) ≥ −

∫

Sd

Ψ(ui
k(σ))dσh ≥ − max

[−s̃,s̃]
|ψ|

∫

Sd

|ui
k(σ)|dσh

≥ − max
[−s̃,s̃]

|ψ|Volh(Sd)ak.

Since limk→∞ ak = 0, we have limk→∞mk ≥ 0. On the other hand, mk < 0 for
every k ∈ N, see Proposition 4.1, which implies limk→∞mi

k = 0.
Note that

‖ui
k‖

2
c0

2
= mi

k +

∫

Sd

Ψ(ui
k(σ))dσh ≤ mi

k + max
[−s̃,s̃]

|ψ|Volh(Sd)ak,

thus limk→∞ ‖ui
k‖c0

= 0. But ‖ · ‖c0
and ‖ · ‖H2

1
are equivalent norms. �

Now, we prove the key result of this section where the non-smooth principle of
symmetric criticality for Szulkin-type functions plays a crucial role.

Proposition 4.4. ui
k is a weak solution of (P) for every k ∈ N.

Proof. We divide the proof into two parts. First, let

Tk = {u ∈ H2
1 (Sd) : ‖u‖∞ ≤ bk}.

Step 1. E ′(ui
k)(w − ui

k) ≥ 0 for every w ∈ Tk.

The set Tk is closed and convex in H2
1 (Sd). Let ζTk

be the indicator function of
the set Tk (i.e., ζTk

(u) = 0 if u ∈ Tk, and ζTk
(u) = +∞, otherwise). We define the

Szulkin-type functional Ik : H2
1 (Sd) → R ∪ {+∞} by Ik = E + ζTk

, see [18], i.e.,
E is of class C1(H2

1 (Sd)), and ζTk
is convex, lower semicontinuous and proper. On

account of (12), we have that T i
k = Tk ∩HG

τi
d,i

(Sd); therefore, the restriction of ζTk

to HG
τi
d,i

(Sd) is precisely the indicator function ζT i
k

of the set T i
k. Since ui

k is a local

minimum point of Ei relative to T i
k (see Proposition 4.1), then ui

k is a critical point
of the functional Ii

k := Ei + ζT i
k

in the sense of Szulkin [18, p. 78], i.e.,

0 ∈ E ′
i(u

i
k) + ∂ζT i

k
(ui

k) in (HG
τi
d,i

(Sd))∗, (16)

where ∂ζT i
k

stands for the subdifferential of the convex function ζT i
k
.

Since E is even, by means of (5) one can easily check that it is Gτi

d,i-invariant. The

function ζTk
is also Gτi

d,i-invariant since g̃Tk ⊆ Tk for every g̃ ∈ Gτi

d,i (we use again

(5)). Finally, since Gτi

d,i ⊂ O(d + 1) is compact, and Ei and ζT i
k

are the restrictions

of E and ζTk
to HG

τi
d,i

(Sd), respectively, we may apply – via relation (16) – the

principle of symmetric criticality proved by Kobayaski-Ôtani [11, Theorem 3.16, p.
443]. Thus, we obtain

0 ∈ E ′(ui
k) + ∂ζTk

(ui
k) in (H2

1 (Sd))∗.

Consequently, for every w ∈ H2
1 (Sd), we have

E ′(ui
k)(w − ui

k) + ζTk
(w) − ζTk

(ui
k) ≥ 0,

which implies our claim.
Step 2. (Proof concluded) ui

k is a weak solution of (P).
By Step 1, we have
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∫

Sd

〈∇ui
k,∇(w − ui

k)〉dσh + c0

∫

Sd

ui
k(w − ui

k)dσh

−

∫

Sd

ψ(ui
k)(w − ui

k)dσh ≥ 0, ∀ w ∈ Tk.

Recall from (9) that ψ(s) = f̃(s)+c0s, s ∈ R. Moreover, f and f̃ coincide on [−s̃, s̃]
and ui

k(σ) ∈ [−ak, ak] ⊂ (−s̃, s̃) for a.e. σ ∈ Sd (see Proposition 4.2). Consequently,
the above inequality reduces to

∫

Sd

〈∇ui
k,∇(w − ui

k)〉dσh −

∫

Sd

f(ui
k)(w − ui

k)dσh ≥ 0, ∀ w ∈ Tk. (17)

Let us define the function γ(s) = sgn(s)min(|s|, bk), and fix ε > 0 and v ∈ H2
1 (Sd)

arbitrarily. Since γ is Lipschitz continuous, wk = γ ◦ (ui
k + εv) belongs to H2

1 (Sd),
see Hebey [9, Proposition 2.5, p. 24]. The explicit expression of wk is

wk(σ) =







−bk, if σ ∈ {ui
k + εv < −bk}

ui
k(σ) + εv(σ), if σ ∈ {−bk ≤ ui

k + εv < bk}
bk, if σ ∈ {bk ≤ ui

k + εv}.

Therefore, wk ∈ Tk. Taking w = wk as a test function in (17), we obtain

0 ≤ −

∫

{ui
k
+εv<−bk}

|∇ui
k|

2 +

∫

{ui
k
+εv<−bk}

f(ui
k)(bk + ui

k)

+ε

∫

{−bk≤ui
k
+εv<bk}

〈∇ui
k,∇v〉 − ε

∫

{−bk≤ui
k
+εv<bk}

f(ui
k)v

−

∫

{bk≤ui
k
+εv}

|∇ui
k|

2 −

∫

{bk≤ui
k
+εv}

f(ui
k)(bk − ui

k).

After a suitable rearrangement of the terms in this inequality, we obtain that

0 ≤ ε

∫

Sd

〈∇ui
k,∇v〉 − ε

∫

Sd

f(ui
k)v

−

∫

{ui
k
+εv<−bk}

|∇ui
k|

2 −

∫

{bk≤ui
k
+εv}

|∇ui
k|

2

+

∫

{ui
k
+εv<−bk}

f(ui
k)(bk + ui

k + εv) +

∫

{bk≤ui
k
+εv}

f(ui
k)(−bk + ui

k + εv)

−ε

∫

{ui
k
+εv<−bk}

〈∇ui
k,∇v〉 − ε

∫

{bk≤ui
k
+εv}

〈∇ui
k,∇v〉.

Let Mk = max[−ak,ak] |f |. Since ui
k(σ) ∈ [−ak, ak] ⊂ [−bk, bk] for a.e. σ ∈ Sd, we

have
∫

{ui
k
+εv<−bk}

f(ui
k)(bk + ui

k + εv) ≤ −εMk

∫

{ui
k
+εv<−bk}

v

and
∫

{bk≤ui
k
+εv}

f(ui
k)(−bk + ui

k + εv) ≤ εMk

∫

{bk≤ui
k
+εv}

v.
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Using the above estimates and dividing by ε > 0, we obtain

0 ≤

∫

Sd

〈∇ui
k,∇v〉dσh −

∫

Sd

f(ui
k)vdσh

−Mk

∫

{ui
k
+εv<−bk}

vdσh +Mk

∫

{bk≤ui
k
+εv}

vdσh

−

∫

{ui
k
+εv<−bk}

〈∇ui
k,∇v〉dσh −

∫

{bk≤ui
k
+εv}

〈∇ui
k,∇v〉dσh.

Now, letting ε→ 0+, and taking into account Proposition 4.2 (i.e., −ak ≤ ui
k(σ) ≤

ak for a.e. σ ∈ Sd), we have

meas({ui
k + εv < −bk}) → 0 and meas({bk ≤ ui

k + εv}) → 0,

respectively. Consequently, the above inequality reduces to

0 ≤

∫

Sd

〈∇ui
k,∇v〉dσh −

∫

Sd

f(ui
k)vdσh.

Putting (−v) instead of v, we see that ui
k is a weak solution of (P), which completes

the proof. �

Proof of Theorem 2.1. Fix i ∈ {1, ..., sd}. Combining Propositions 4.1 and 4.3,
one can see that there are infinitely many distinct elements in the sequence {ui

k}k.
These elements are weak solutions of (P) as Proposition 4.4 shows, and they change
sign, see Remark 1. Moreover, due to Theorem 3.1 b), solutions in different spaces
HG

τi
d,i

(Sd), i ∈ {1, ..., sd}, cannot be compared from symmetrical point of view. The

L∞– and H2
1–asymptotic behaviour of the sequences of solutions are described in

Proposition 4.3. �

5. Proof of Theorem 2.2. Certain parts of the proof are similar to that of The-
orem 2.1; so, we present only the differences. We assume throughout of this section
that the hypotheses of Theorem 2.2 are fulfilled. Due to (f∞

2 ), one can fix c∞ > 0
such that

lim inf
s→∞

f(s)

s
< −c∞ < 0.

Let {sk} ⊂ (0,∞) be a sequence converging (increasingly) to +∞, such that f(sk) <
−c∞sk. We define the functions

ψ(s) = f(s) + c∞s and Ψ(s) =

∫ s

0

ψ(t)dt = F (s) +
c∞
2
s2, s ∈ R. (18)

By construction, ψ(sk) < 0; consequently, there are two sequences {ak}k, {bk}k ⊂
(0,∞), both converging to ∞, such that ak < sk < bk < ak+1 for every k ∈ N and

ψ(s) ≤ 0 for every s ∈ [ak, bk]. (19)

Since c∞ > 0, the norm ‖ · ‖c∞ defined in the same way as (11) with c∞ instead of
c0, is equivalent to the standard norm ‖ · ‖H2

1
. Now, we define the energy functional

E : H2
1 (Sd) → R associated with (P) by

E(u) =
1

2
‖u‖2

c∞ −

∫

Sd

Ψ(u(σ))dσh.

Since H2
1 (Sd) is continuously embedded into Lp(Sd), 1 ≤ p ≤ 2∗, see [9, Corollary

2.1, p. 33]), using hypothesis (f∞
3 ), the functional E is well-defined, and it belongs
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to C1(H2
1 (Sd)). Moreover, since f is odd on the whole R, the functional E is even.

We fix i ∈ {1, ..., sd} and the subspace HG
τi
d,i

(Sd) of H2
1 (Sd). Let Ei be the

restriction of the functional E to HG
τi
d,i

(Sd) and for every k ∈ N, define the set

Zi
k = {u ∈ HG

τi
d,i

(Sd) : ‖u‖∞ ≤ bk},

where bk is from (19).

Proposition 5.1. The functional Ei is bounded from below on Zi
k and its infimum

m̃i
k on Zi

k is attained at ũi
k ∈ Zi

k. Moreover, limk→∞ m̃i
k = −∞.

Proof. It is easy to check that Ei is bounded from below on Zi
k. In order to see

that it attains its infimum on Zi
k we show that the function u 7→

∫

Sd Ψ(u(σ))dσh,

u ∈ HG
τi
d,i

(Sd) is sequentially weak continuous; in such case, Ei is sequentially weak

lower semicontinuous and we may proceed in the standard way. On one hand, due
to (f∞

3 ), (18) and the oddness of ψ, one can find c1 > 0 such that

|ψ(s)| ≤ c1(1 + |s|2
∗−1), s ∈ R. (20)

On the other hand, the definition of Gd,i shows that the Gd,i-orbit of every point
σ ∈ Sd has at least dimension 1, i.e., dim(Gd,iσ) ≥ 1 for every σ ∈ Sd. Thus

dG = min{dim(Gd,iσ) : σ ∈ Sd} ≥ 1.

Applying [2, Lemma 3.2], we conclude in particular that HGd,i
(Sd) is compactly

embedded into Lq(Sd), whenever q ∈
[

1, 2d−2
d−3

)

. Since 2d−2
d−3 > 2∗, the embedding

HG
τi
d,i

(Sd) ⊂ HGd,i
(Sd) →֒ L2∗

(Sd) is compact. Combining (20) with the above

compactness property, we conclude the sequentially weak continuity of the function
u 7→

∫

Sd Ψ(u(σ))dσh, u ∈ HG
τi
d,i

(Sd). Consequently, we may assert that the infimum

m̃i
k on Zi

k is attained at the point ũi
k ∈ Zi

k.
We will prove limk→∞ m̃i

k = −∞. First, due to (18) and (f∞
1 ), we have

−∞ < lim inf
s→∞

Ψ(s)

s2
≤ lim sup

s→∞

Ψ(s)

s2
= +∞. (21)

The left inequality of (21) and the evenness of Ψ implies the existence of l, ̺ > 0
such that

Ψ(s) ≥ −ls2 for every |s| > ̺. (22)

Let Di ⊂ Sd and Ci > 0 be from Proposition 3.2 (which depend only on Gd,i

and τi), and fix a number l > 0 large enough such that

lVolh(Di) >
(

l +
c∞
2

)

Volh(Sd) +
C2

i

2
. (23)

Taking into account the right-hand side of (21), there is a sequence {s̃k}k ⊂ (0,∞)

such that limk→∞ s̃k = ∞ and Ψ(s̃k) = Ψ(−s̃k) > ls̃2k for every k ∈ N.
Let {bnk

}k be an increasing subsequence of {bk}k such that s̃k ≤ bnk
for every k ∈

N. Let w̃k := ws̃k
∈ HG

τi
d,i

(Sd) be the function from Proposition 3.2 corresponding
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to the value s̃k > 0. Then w̃k ∈ Zi
nk

and one has

Ei(w̃k) =
1

2
‖w̃k‖

2
c∞ −

∫

Sd

Ψ(w̃k(σ))dσh

≤
1

2

(

C2
i + c∞Volh(Sd)

)

s̃2k −

∫

Di

Ψ(w̃k(σ))dσh −

∫

Sd\Di

Ψ(w̃k(σ))dσh.

On account of Proposition 3.2 iii), we have
∫

Di

Ψ(w̃k(σ))dσh = Ψ(s̃k)Volh(Di) > lVolh(Di)s̃
2
k.

Due to Proposition 3.2 i) and (22), we have
∫

Sd\Di

Ψ(w̃k(σ))dσh =

∫

(Sd\Di)∩{|w̃k|≤̺}

Ψ(w̃k(σ))dσh

+

∫

(Sd\Di)∩{|w̃k|>̺}

Ψ(w̃k(σ))dσh

≥ −

(

max
[−̺,̺]

|Ψ| + ls̃2k

)

Volh(Sd).

Combining these estimates, we obtain that

Ei(w̃k) ≤ s̃2k

(

−lVolh(Di) +
(

l +
c∞
2

)

Volh(Sd) +
C2

i

2

)

+ max
[−̺,̺]

|Ψ|Volh(Sd).

Taking into account (23) and that limk→∞ s̃k = ∞, we obtain limk→∞ Ei(w̃k) =
−∞. Since m̃i

nk
= Ei(ũ

i
nk

) = infZi
nk

Ei ≤ Ei(w̃k), then limk→∞ m̃i
nk

= −∞. Since

the sequence {m̃i
k}k is non-increasing, the claim follows. �

Proposition 5.2. limk→∞ ‖ũi
k‖∞ = limk→∞ ‖ũi

k‖H2
1

= ∞.

Proof. Assume first by contradiction that there exists a subsequence {ũi
nk
}k of

{ũi
k}k such that ‖ũi

nk
‖∞ ≤M for some M > 0. In particular, {ũi

nk
} ⊂ Zi

l for some
l ∈ N. Therefore, for every nk ≥ l, we have

m̃i
l ≥ m̃i

nk
= inf

Zi
nk

Ei = Ei(ũ
i
nk

) ≥ inf
Zi

l

Ei = m̃i
l .

Consequently, m̃nk
= m̃l for every nk ≥ l, and since the sequence {m̃i

k}k is non-
increasing, there exists k0 ∈ N such that for every k ≥ k0 we have m̃i

k = m̃i
l ,

contradicting Proposition 5.1.
It remains to prove that limk→∞ ‖ũi

k‖H2
1

= ∞. Note that (20) and the continuity

of the embedding H2
1 (Sd) into L2∗

(Sd) implies that for come C > 0 we have
∣

∣

∣

∣

∫

Sd

Ψ(u(σ))dσh

∣

∣

∣

∣

≤ C(‖u‖H2
1

+ ‖u‖2∗

H2
1

), ∀u ∈ H2
1 (Sd).

Similarly as above, we assume that there exists a subsequence {ũi
nk
}k of {ũi

k}k

such that for some M > 0, we have ‖ũi
nk
‖H2

1
≤ M . Since ‖ · ‖c∞ is equivalent

with ‖ · ‖H2
1
, due to the above inequality, the sequence {Ei(ũ

i
nk

)}k is bounded. But

m̃i
nk

= Ei(ũ
i
nk

), thus, the sequence {m̃i
nk
} is also bounded. This fact contradicts

Proposition 5.1. �

Proof of Theorem 2.2. Due to Proposition 5.1, we can find infinitely many distinct
elements ũi

k; similar reasoning as in Propositions 4.2 and 4.4 show that ũi
k are weak
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solutions of (P) for every k ∈ N. The L∞– and H2
1–asymptotic behaviour of the

sequences of solutions are described in Proposition 5.2. The rest is similar as in
Theorem 2.1. �

6. Final remarks. A. (Asymptotically critical problems on R
d+1) Theorems 2.1

and 2.2 can be successfully applied to treat equations of the form

− ∆v = |x|α−2f(|x|−αv), x ∈ R
d+1 \ {0} (α < 0) (24)

whenever f : R → R is enough smooth and oscillates either at zero or at infinity
having an asymptotically critical growth. Finding solutions of (24) in the form
v(x) = v(r, σ) = rαu(σ), (r, σ) = (|x|, x/|x|) ∈ (0,∞) × Sd being the spherical
coordinates, we obtain

− ∆hu+ α(1 − d− α)u = f(u) on Sd. (25)

Assuming (fL
1 ) and lim infs→L

f(s)
s < α(1 − d − α) with L ∈ {0+,+∞}, and (f∞

3 )
whenever L = +∞, we may formulate multiplicity results for (25), so for (24). Note
that the obtained solutions of (24) are sign-changing and non-radial.

B. The minimal number of those sequences of solutions of (P) which contain
mutually symmetrically distinct elements is sd = [d/2] + (−1)d+1 − 1. Note that
sd ∼ d/2 as d→ ∞. However, in lower dimensions, our results are not spectacular.
For instance, s4 = 0; therefore, on S4 we have no analogous results as Theorems
2.1 and 2.2. Note that s3 = 1; in fact, for G3,1 = O(2) × O(2) we may apply
our arguments. Hence, on S3 one can find a sequence of solutions of (P) with the
described properties in our theorems.

We may compare our results with that of Bartsch-Willem [3]; they studied the
lower bound of those sequences of solutions for a Schrödinger equation on R

d+1

which contain elements in different O(d + 1)-orbits. Due to [3, Proposition 4.1, p.
457], we deduce that their lower bound is s′d =

[

log2
d+3
3

]

whenever d ≥ 3 and
d 6= 4.

C. Let α, β ∈ L∞(Sd) be two Gd,i-invariant functions such that essinfSdβ > 0
and consider the problem

− ∆hu+ α(σ)u = β(σ)f(u) on Sd. (26)

If f : R → R has an asymptotically critical growth fulfilling (fL
1 ) and

lim inf
s→L

f(s)

s
< essinfSd

α

β
,

problem (26) admits a sequence of Gd,i-invariant (perhaps not sign-changing) weak
solutions in both cases, i.e. L ∈ {0+,∞}. The proofs can be carried out follow-
ing Theorems 2.1 and 2.2, respectively, considering instead of HG

τi
d,i

(Sd) the space

HGd,i
(Sd). Note that α : Sd → R may change its sign. In particular, this type of

result complements the paper of Cotsiolis-Iliopoulos [5].
D. The symmetry and compactness of the sphere Sd have been deeply ex-

ploited in our arguments. We intend to study a challenging problem related to (P)
which is formulated on non-compact Riemannian symmetric spaces (for instance,
on the hyperbolic space Hd = SO0(d, 1)/SO(d) which is the dual companion of
Sd = SO(d+ 1)/SO(d)). In order to handle this kind of problem, the action of the
isometry group of the symmetric space seems to be essential, as shown by Hebey
[9, Chapter 9], Hebey-Vaugon [10]. This problem will be treated in a forthcoming
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paper.
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