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Preface

For since the fabric of the
universe is most perfect and
the work of a most wise
Creator, nothing at all takes
place in the universe in which
some rule of maximum or
minimum does not appear.

Leonhard Euler (1707–1783)

The roots of the calculus of variations go back to the 17th century.
Indeed, Johann Bernoulli raised as a challenge the “Brachistochrone
Problem” in 1696. The same year, when he heard of this problem,
Sir Isaac Newton found that he could not sleep until he had solved
it. Having done so, he published the solution anonymously. Bernoulli,
however, knew at once that the author of the solution was Newton and,
cf. [291], in a famous remark asserted that he “recognized the Lion by
the print of its paw”.

However, the modern calculus of variations appeared in the middle of
the 19th century, as a basic tool in the qualitative analysis of models
arising in physics. Indeed, it was Riemann who aroused great inter-
est in them [problems of the calculus of variations] by proving many
interesting results in function theory by assuming Dirichlet’s principle
(Charles B. Morrey Jr., [219]). The characterization of phenomena by
means of variational principles has been a cornerstone in the transition
from classical to contemporary physics. Since the middle part of the
twentieth century, the use of variational principles has developed into
a range of tools for the study of nonlinear partial differential equations
and many problems arising in applications. Cf. Ioffe and Tikhomirov
[143], the term “variational principle” refers essentially to a group of re-

vii



viii Preface

sults showing that a lower semi-continuous, lower bounded function on a
complete metric space possesses arbitrarily small perturbations such that
the perturbed function will have an absolute (and even strict) minimum.

This monograph is an original attempt to develop the modern theory
of the calculus of variations from the points of view of several disciplines.
This theory is one of the twin pillars on which nonlinear functional
analysis is built. The authors of this volume are fully aware of the limited
achievements of this volume as compared with the task of understanding
the force of variational principles in the description of many processes
arising in various applications. Even though necessarily limited, the
results in this book benefit from many years of work by the authors and
from interdisciplinary exchanges between them and other researchers in
this field.

One of the main objectives of this book is to let physicists, geometers,
engineers, and economists know about some basic mathematical tools
from which they might benefit. We would also like to help mathemati-
cians learn what applied calculus of variations is about, so that they can
focus their research on problems of real interest to physics, economics,
engineering, as well as geometry or other fields of mathematics. We
have tried to make the mathematical part accessible to the physicist
and economist, and the physical part accessible to the mathematician,
without sacrificing rigor in either case. The mathematical technicalities
are kept to a minimum within the book, enabling the discussion to be
understood by a broad audience. Each problem we develop in this book
has its own difficulties. That is why we intend to develop some standard
and appropriate methods that are useful and that can be extended to
other problems. However, we do our best to restrict the prerequisites
to the essential knowledge. We define as few concepts as possible and
give only basic theorems that are useful for our topic. The authors use
a first-principles approach, developing only the minimum background
necessary to justify mathematical concepts and placing mathematical
developments in context. The only prerequisite for this volume is a stan-
dard graduate course in partial differential equations, drawing especially
from linear elliptic equations to elementary variational methods, with a
special emphasis on the maximum principle (weak and strong variants).
This volume may be used for self-study by advanced graduate students
and as a valuable reference for researchers in pure and applied mathe-
matics and related fields. Nevertheless, both the presentation style and
the choice of the material make the present book accessible to all new-
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comers to this modern research field which lies at the interface between
pure and applied mathematics.

Each chapter gives full details of the mathematical proofs and sub-
tleties. The book also contains many exercises, some included to clarify
simple points of exposition, others to introduce new ideas and tech-
niques, and a few containing relatively deep mathematical results. Each
chapter concludes with historical notes. Five appendices illustrate some
basic mathematical tools applied in this book: elements of convex anal-
ysis, function spaces, category and genus, Clarke and Degiovanni gradi-
ents, and elements of set–valued analysis. These auxiliary chapters deal
with some analytical methods used in this volume, but also include some
complements. This unique presentation should ensure a volume of inter-
est to mathematicians, engineers, economists, and physicists. Although
the text is geared toward graduate students at a variety of levels, many
of the book’s applications will be of interest even to experts in the field.

We are very grateful to Diana Gillooly, Editor for Mathematics, for
her efficient and enthusiastic help, as well as for numerous suggestions
related to previous versions of this book. Our special thanks go also
to Clare Dennison, Assistant Editor for Mathematics and Computer
Science, and to the other members of the editorial technical staff of
Cambridge University Press for the excellent quality of their work.

Our vision throughout this volume is closely inspired by the follow-
ing prophetic words of Henri Poincaré on the role of partial differential
equations in the development of other fields of mathematics and in appli-
cations: A wide variety of physically significant problems arising in very
different areas (such as electricity, hydrodynamics, heat, magnetism, op-
tics, elasticity, etc...) have a family resemblance and should be treated
by common methods. (Henri Poincaré, [245]).

Alexandru Kristály, Vicenţiu D. Rădulescu, Csaba Varga
July 2009

alexandrukristaly@yahoo.com

vicentiu.radulescu@imar.ro

varga gy csaba@yahoo.com
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1

Variational Principles

A man is like a fraction whose
numerator is what he is and
whose denominator is what he
thinks of himself. The larger
the denominator the smaller
the fraction.

Leo Tolstoy (1828–1910)

Variational principles are very powerful techniques at the interplay
between nonlinear analysis, calculus of variations, and mathematical
physics. They have been inspired and have important applications in
modern research fields such as geometrical analysis, constructive quan-
tum field theory, gauge theory, superconductivity, etc.

In this chapter we shortly recall the main variational principles which
will be used in the sequel, as Ekeland and Borwein-Preiss variational
principles, minimax- and minimization-type principles (mountain pass
theorem, Ricceri-type multiplicity theorems, Brézis-Nirenberg minimiza-
tion technique), the principle of symmetric criticality for non-smooth
Szulkin-type functionals, as well as the Pohozaev’s fibering method.

1.1 Minimization techniques and Ekeland variational
principle

Many phenomena arising in applications (such as geodesics or minimal
surfaces) can be understood in terms of the minimization of an energy
functional over an appropriate class of objects. For the problems of
mathematical physics, phase transitions, elastic instability, and diffrac-
tion of the light are among the phenomena that can be studied from this
point of view.

2



1.1 Minimization techniques and Ekeland variational principle 3

A central problem in many nonlinear phenomena is if a bounded from
below and lower semi-continuous functional f attains its infimum. A
simple function when the above statement clearly fails is f : R → R
defined by f(s) = e−s. Nevertheless, further assumptions either on f or
on its domain may give a satisfactory answer. In the sequel, we give two
useful forms of the well-known Weierstrass theorem.

Theorem 1.1 [Minimization; compact case] Let X be a compact topo-
logical space and f : X → R∪{+∞} a lower semi-continuous functional.
Then f is bounded from below and its infimum is attained on X.

Proof The set X can be covered by the open family of sets Sn :=
{u ∈ X : f(u) > −n}, n ∈ N. Since X is compact, there exists a
finite number of sets Sn0 , . . . , Snl

which also cover X. Consequently,
f(u) > −max{n0, . . . , nl} for all u ∈ X.

Let s = infX f > −∞. Arguing by contradiction, we assume that s is
not achieved which means in particular that X = ∪∞n=1{u ∈ X : f(u) >

s+1/n}. Due to the compactness of X, there exists a number n0 ∈ N such
that X = ∪n0

n=1{u ∈ X : f(u) > s + 1/n}. In particular, f(u) > s + 1/n1

for all u ∈ X which is in contradiction with s = infX f > −∞.

The following result is a very useful tool in the study of various partial
differential equations where no compactness is assumed on the domain
of the functional.

Theorem 1.2 [Minimization; noncompact case] Let X be a reflexive
Banach space, M be a weakly closed, bounded subset of X, and f : M →
R be a sequentially weak lower semi-continuous function. Then f is
bounded from below and its infimum is attained on M .

Proof We argue by contradiction, that is, we assume that f is not
bounded from below on M . Then, for every n ∈ N there exists un ∈ M

such that f(un) < −n. Since M is bounded, the sequence {un} ⊂ M

is so. Due to the reflexivity of X, one may subtract a subsequence
{unk

} of {un} which weakly converges to an element x̃ ∈ X. Since
M is weakly closed, x̃ ∈ M . Since f : M → R is sequentially weak
lower semi-continuous, we obtain that f(x̃) ≤ lim infk→∞ f(unk

) = −∞,
contradiction. Therefore, f is bounded from below.

Let {un} ⊂ M be a minimizing sequence of f over M , that is,
limn→∞ f(un) = infM f > −∞. As before, there is a subsequence
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{unk
} of {un} which weakly converges to an element x ∈ M. Due to

the sequentially weak lower semi-continuity of f , we have that f(x) ≤
lim infk→∞ f(unk

) = infM f, which concludes the proof.

For any bounded from below, lower semi-continuous functional f ,
Ekeland’s variational principle provides a minimizing sequence whose
elements minimize an appropriate sequence of perturbations of f which
converges locally uniformly to f . Roughly speaking, Ekeland’s varia-
tional principle states that there exist points which are almost points
of minima and where the “gradient” is small. In particular, it is not
always possible to minimize a nonnegative continuous function on a
complete metric space. Ekeland’s variational principle is a very basic
tool that is effective in numerous situations, which led to many new
results and strengthened a series of known results in various fields of
analysis, geometry, the Hamilton-Jacobi theory, extremal problems, the
Ljusternik-Schnirelmann theory, etc.

Its precise statement is as follows.

Theorem 1.3 [Ekeland’s variational principle] Let (X, d) be a complete
metric space and let f : X → R ∪ {∞} be a lower semi-continuous,
bounded from below functional with D(f) = {u ∈ X : f(u) < ∞} 6= ∅.
Then for every ε > 0, λ > 0, and u ∈ X such that

f(u) ≤ inf
X

f + ε

there exists an element v ∈ X such that

a) f(v) ≤ f(u);
b) d(v, u) ≤ 1

λ
;

c) f(w) > f(v)− ελd(w, v) for each w ∈ X \ {v}.

Proof It is sufficient to prove our assertion for λ = 1. The general case
is obtained by replacing d by an equivalent metric λd. We define the
relation on X:

w ≤ v ⇐⇒ f(w) + εd(v, w) ≤ f(v).

It is easy to see that this relation defines a partial ordering on X. We
now construct inductively a sequence {un} ⊂ X as follows: u0 = u, and
assuming that un has been defined, we set

Sn = {w ∈ X : w ≤ un}
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and choose un+1 ∈ Sn so that

f(un+1) ≤ inf
Sn

f +
1

n + 1
.

Since un+1 ≤ un then Sn+1 ⊂ Sn and by the lower semi-continuity of f ,
Sn is closed. We now show that diamSn → 0. Indeed, if w ∈ Sn+1, then
w ≤ un+1 ≤ un and consequently

εd(w, un+1) ≤ f(un+1)− f(w) ≤ inf
Sn

f +
1

n + 1
− inf

Sn

f =
1

n + 1
.

This estimate implies that

diamSn+1 ≤ 2
ε(n + 1)

and our claim follows. The fact that X is complete implies that
⋂

n≥0

Sn =

{v} for some v ∈ X. In particular, v ∈ S0, that is, v ≤ u0 = u and hence

f(v) ≤ f(u)− εd(u, v) ≤ f(u)

and moreover

d(u, v) ≤ 1
ε
(f(u)− f(v)) ≤ 1

ε
(inf

X
f + ε− inf

X
f) = 1.

Now, let w 6= v. To complete the proof we must show that w ≤ v

implies w = v. If w ≤ v, then w ≤ un for each integer n ≥ 0, that is
w ∈ ∩n≥0Sn = {v}. So, w � v, which is actually c).

In RN with the Euclidean metric, properties a) and c) in the statement
of Ekeland’s variational principle are completely intuitive as Figure 1.1
shows. Indeed, assuming that λ = 1, let us consider a cone lying below
the graph of f , with slope +1, and vertex projecting onto u. We move
up this cone until it first touches the graph of f at some point (v, f(v)).
Then the point v satisfies both a) and c).

In the particular case X = RN we can give the following simple al-
ternative proof to Ekeland’s variational principle, due to Hiriart-Urruty,
[139]. Indeed, consider the perturbed functional

g(w) := f(w) + ελ ‖w − u‖ , w ∈ RN .

Since f is lower semi-continuous and bounded from below, then g is lower
semi-continuous and lim‖w‖→∞ g(w) = +∞. Therefore there exists v ∈
RN minimizing g on RN such that for all w ∈ RN

f(v) + ελ ‖v − u‖ ≤ f(w) + ελ ‖w − u‖ . (1.1)
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!

u v
X

y=f(x
)

Fig. 1.1. Geometric illustration of Ekeland’s variational principle.

By letting w = u we find

f(v) + ελ ‖v − u‖ ≤ f(u)

and a) follows. Now, since f(u) ≤ infRN f + ε, we also deduce that
‖v − u‖ ≤ 1/λ.

We infer from relation (1.1) that for any w,

f(v) ≤ f(w) + ελ [‖w − u‖ − ‖v − u‖] ≤ f(w) + ελ ‖w − u‖ ,

which is the desired inequality c).

Taking λ = 1√
ε

in the above theorem we obtain the following property.

Corollary 1.1 Let (X, d) be a complete metric space and let f : X →
R ∪ {∞} be a lower semi-continuous, bounded from below and D(f) =
{u ∈ X : f(u) < ∞ } 6= ∅. Then for every ε > 0 and every u ∈ X such
that

f(u) ≤ inf
X

f + ε

there exists an element uε ∈ X such that

a) f(uε) ≤ f(u);
b) d(uε, u) ≤ √

ε;
c) f(w) > f(uε)−

√
εd(w, uε) for each w ∈ X \ {uε}.



1.1 Minimization techniques and Ekeland variational principle 7

Let (X, ‖ · ‖) be a real Banach space, X? its topological dual endowed
with its natural norm, denoted for simplicity also by ‖ · ‖. We denote by
〈·, ·〉 the duality mapping between X and X?, that is, 〈x?, u〉 = x?(u)
for every x? ∈ X?, u ∈ X. Theorem 1.3 readily implies the following
property, which asserts the existence of almost critical points. In order
words, Ekeland’s variational principle can be viewed as a generalization
of the Fermat theorem which establishes that interior extrema points of
a smooth functional are, necessarily, critical points of this functional.

Corollary 1.2 Let X be a Banach space and let f : X → R be a lower
semi-continuous functional which is bounded from below. Assume that
f is Gâteaux differentiable at every point of X. Then for every ε > 0
there exists an element uε ∈ X such that

(i) f(uε) ≤ inf
X

f + ε;

(ii) ‖f ′(uε)‖ ≤ ε.

Letting ε = 1/n, n ∈ N, Corollary 1.2 gives rise a minimizing sequence
for the infimum of a given function which is bounded from below. Note
however that such a sequence need not converge to any point. Indeed, let
f : R→ R defined by f(s) = e−s. Then, infR f = 0, and any minimizing
sequence fulfilling (a) and (b) from Corollary 1.2 tends to +∞. The
following definition is dedicated to handle such situations.

Definition 1.1 (a) A function f ∈ C1(X,R) satisfies the Palais-Smale
condition at level c ∈ R (shortly, (PS)c-condition) if every sequence
{un} ⊂ X such that limn→∞ f(un) = c and limn→∞ ‖f ′(un)‖ = 0,
possesses a convergent subsequence.

(b) A function f ∈ C1(X,R) satisfies the Palais-Smale condition
(shortly, (PS)-condition) if it satisfies the Palais-Smale condition at ev-
ery level c ∈ R.

Combining this compactness condition with Corollary 1.2, we obtain the
following result.

Theorem 1.4 Let X be a Banach space and a function f ∈ C1(X,R)
which is bounded from below. If f satisfies the (PS)c-condition at level
c = infX f , then c is a critical value of f , that is, there exists a point
u0 ∈ X such that f(u0) = c and u0 is a critical point of f , that is,
f ′(u0) = 0.
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1.2 Borwein-Preiss variational principle

The Borwein-Preiss variational principle [44] is an important tool in
infinite dimensional nonsmooth analysis. This basic result is strongly
related with Stegall’s variational principle [278], smooth bumps on Ba-
nach spaces, Smulyan’s test describing the relationship between Fréchet
differentiability and the strong extremum, properties of continuous con-
vex functions on separable Asplund spaces, variational characterizations
of Banach spaces, the Bishop-Phelps theorem or Phelps’ lemma [239].
The generalized version we present here is due to Loewen and Wang
[195] and enables us to deduce the standard form of the Borwein-Preiss
variational principle, as well as other related results.

Let X be a Banach space and assume that ρ : X→[0,∞) is a contin-
uous function satisfying

ρ(0) = 0 and ρM := sup{‖x‖; ρ(x) < 1} < +∞ . (1.2)

An example of function with these properties is ρ(x) = ‖x‖p with
p > 0.

Given the families of real numbers µn ∈ (0, 1) and vectors en ∈ X

(n ≥ 0), we associate to ρ the penalty function ρ∞ defined for all x ∈ X,

ρ∞(x) =
∞∑

n=0

ρn(x− en), where ρn(x) := µnρ((n + 1)x) . (1.3)

Definition 1.2 For the function f : X→R∪{+∞}, a point x0 ∈ X is a
strong minimizer if f(x0) = infX f and every minimizing sequence (zn)
of f satisfies ‖zn − x0‖→0 as n→∞.

We observe that any strong minimizer of f is, in fact, a strict mini-
mizer, that is f(x) > f(x0) for all x ∈ X \ {x0}. The converse is true,
as shown by f(x) = x2ex, x ∈ R, x0 = 0.

The generalized version of the Borwein-Preiss variational principle due
to Loewen and Wang is the following.

Theorem 1.5 Let f : X→R ∪ {+∞} be a lower semi-continuous func-
tion. Assume that x0 ∈ X and ε > 0 satisfy

f(x0) < ε + inf
X

f .

Let (µn)n≥0 be a decreasing sequence in (0, 1) such that the series∑∞
n=0 µn is convergent. Then for any continuous function ρ satisfying

(1.2), there exists a sequence (en)n≥0 in X converging to e such that
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(i) ρ(x0 − e) < 1;
(ii) f(e) + ερ∞(e) ≤ f(x0);
(iii) e is a strong minimizer of f + ερ∞. In particular, e is a strict

minimizer of f + ερ∞, that is,

f(e) + ερ∞(e) < f(x) + ερ∞(x) for all x ∈ X \ {e}.

Proof Define the sequence (fn)n≥0 such that f0 = f and for any n ≥ 0,

fn+1(x) := fn(x) + ερn(x− en) .

Then fn ≤ fn+1 and fn is lower semi-continuous.
Set e0 = x0. We observe that for any n ≥ 0,

inf
X

fn+1 ≤ fn+1(en) = fn(en) . (1.4)

If this inequality is strict, then there exists en+1 ∈ X such that

fn+1(en+1) ≤ µn+1

2
fn(en) +

(
1− µn+1

2

)
inf
X

fn+1 ≤ fn(en) . (1.5)

If equality holds in relation (1.4) then (1.5) also holds, but for en+1

replaced with en. Consequently, there exists a sequence (en)n≥0 in X

such that relation (1.5) holds true.
Set

Dn :=
{

x ∈ X; fn+1(x) ≤ fn+1(en+1) +
εµn

2

}
.

Then Dn is not empty, since en+1 ∈ Dn. By the lower semi-continuity of
functions fn we also deduce that Dn is a closed set. Since µn+1 ∈ (0, 1),
relation (1.5) implies

fn+1(en+1)− inf
X

fn+1 ≤ µn+1

2
[fn(en)− inf

X
fn+1]

≤ fn(en)− inf
X

fn .
(1.6)

We also observe that

f0(e0)− inf
X

f0 = f(x0)− inf
X

f < ε .

Next, we prove that

the sequence (Dn)n≥0 is decreasing (1.7)

and

diam (Dn)→0 as n→∞. (1.8)
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In order to prove (1.7), assume that x ∈ Dn, n ≥ 1. Since the sequence
(µn)n≥0 is decreasing, relation (1.5) implies

fn(x) ≤ fn+1(x) ≤ fn+1(en+1) +
εµn

2
≤ fn(en) +

εµn−1

2
,

hence x ∈ Dn−1.
Since fn ≥ fn−1, relations (1.5) and (1.6) imply

fn(en)− inf
X

fn ≤ µn

2
[fn−1(en−1)− inf

X
fn]

≤ µn

2
[fn−1(en−1)− inf

X
fn−1] <

εµn

2
.

(1.9)

For any x ∈ Dn, combining relation (1.9) and the definitions of fn+1

and Dn we obtain

εµnρ((n + 1)(x− en)) ≤ fn+1(en+1)− fn(x) +
εµn

2
≤ fn+1(en+1)− inf

X
fn +

εµn

2
≤ fn(en)− inf

X
fn +

εµn

2
< εµn .

(1.10)

Therefore ρ((n + 1)(x− en)) < 1. So, by (1.2),

(n + 1)‖x− en‖ ≤ ρM ,

which shows that diam (Dn) ≤ 2ρM/(n + 1). This implies (1.8).
Since Dn is a closed set for any n ≥ 1, then (1.7) and (1.8) imply that

∩∞n=1Dn contains a single point, denoted by e. Then en→e as n→∞.
Thus, using ρ((n + 1)(x− en)) < 1 for all n ≥ 0 and x ∈ X, we deduce
that ρ(x0 − e) < 1.

Since the sequence (fn(en))n≥0 is nonincreasing and f0(e0) = f(x0)
it follows that, in order to prove (ii), it is enough to deduce that

f(e) + ερ∞(e) ≤ fn(en) . (1.11)

For this purpose we define the nonempty closed sets

Cn := {x ∈ X; fn+1(x) ≤ fn+1(en+1)} .

Since fn ≤ fn+1 and fn(en) ≥ fn+1(en+1) for all n, it follows that the
sequence (Cn)n≥0 is nested and Cn ⊂ Dn for all n. Therefore ∩∞n=0Cn =
{e} and

fm(e) ≤ fm(em) ≤ fn(en) ≤ f(x0) provided that m > n. (1.12)

Taking m→∞ we obtain (1.11).
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It remains to argue that e is a strong minimizer of fε := f + ερ∞.
Since

fε(x) ≤ inf
X

fε +
εµn

2
,

relation (1.12) yields

fn+1(x) ≤ fε(x) ≤ fε(e) +
εµn

2
≤ fn+1(en+1) +

εµn

2
.

Setting

An :=
{

x ∈ X; fε(x) ≤ εµn

2
+ inf

X
f
}

,

the above relation shows that An ⊂ Dn. So, by (1.8), we deduce that
diam (An)→0 as n→∞ which shows that e is a strong minimizer of
fε := f + ερ∞.

Assume that p ≥ 1 and λ > 0. Taking

ρ(x) =
‖x‖p

λp
and µn =

1
2n+1(n + 1)

we obtain the initial smooth version of the Borwein-Preiss variational
principle. Roughly speaking, it asserts that the Lipschitz perturbations
obtained in Ekeland’s variational principle can be replaced by superlinear
perturbations in a certain class of admissible functions.

Theorem 1.6 Given f : X→R∪{+∞} lower semi-continuous function,
x0 ∈ X, ε > 0, λ > 0, and p ≥ 1, suppose

f(x0) < ε + inf
X

f .

Then there exists a sequence (µn)n≥0 with µn ≥ 0,
∑∞

n=0 µn = 1, and
a point e in X, expressible as the limit of some sequence (en), such that
for all x ∈ X,

f(x) +
ε

λp

∞∑
n=0

µn ‖x− en‖p ≥ f(e) +
ε

λp

∞∑
n=0

µn ‖e− en‖p .

Moreover, ‖x0 − e‖ < λ and f(e) ≤ ε + infX f .

We have seen in Corollary 1.2 of Ekeland’s variational principle that
any smooth bounded from below functional on a Banach space admits a
sequence of “almost critical points”. The next consequence of Borwein-
Preiss’ variational principle asserts that, in the framework of Hilbert
spaces, such a functional admits a sequence of stable “almost critical
points”.
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Corollary 1.3 Let f be a real-valued C2-functional that is bounded from
below on a Hilbert space X. Assume that (un) is a minimizing sequence
of f . Then there exists a minimizing sequence (vn) of f such that the
following properties hold true:

(i) limn→∞ ‖un − vn‖ = 0;
(ii) limn→∞ ‖f ′(vn)‖ = 0;
(iii) lim infn→∞〈f ′′(vn)w,w〉 ≥ 0 for any w ∈ X.

1.3 Minimax principles

In this section we are interested in some powerful techniques for finding
solutions of some classes of stationary nonlinear boundary value prob-
lems. These solutions are viewed as critical points of a natural func-
tional, often called the energy associated to the system. The critical
points obtained in this section by means of topological techniques are
generally nonstable critical points which are neither maxima nor minima
of the energy functional.

1.3.1 Mountain pass type results

In many nonlinear problems we are interested in finding solutions as
stationary points of some associated “energy” functionals. Often such a
mapping is unbounded from above and below, so that it has no maximum
or minimum. This forces us to look for saddle points, which are obtained
by minimax arguments. In such a case one maximizes a functional f over
a closed set A belonging to some family Γ of sets and then one minimizes
with respect to the set A in the family. Thus we define

c = inf
A∈Γ

sup
u∈A

f(u) (1.13)

and one tries to prove, under various hypotheses, that this number c is
a critical value of f , hence there is a point u such that f(u) = c and
f ′(u) = 0. Indeed, it seems intuitively obvious that c defined in (1.13)
is a critical value of f . However, this is not true in general, as showed
by the following example in the plane: let f(x, y) = x2 − (x − 1)3y2.
Then (0, 0) is the only critical point of f but c is not a critical value.
Indeed, looking for sets A lying in a small neighborhood of the origin,
then c > 0. This example shows that the heart of the matter is to find
appropriate conditions on f and on the family Γ.

One of the most important minimax results is the so-called mountain
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pass theorem whose geometrical interpretation will be roughly described
in the sequel. Denote by f the function which measures the altitude of a
mountain terrain and assume that there are two points in the horizontal
plane L1 and L2, representing the coordinates of two locations such
that f(L1) and f(L2) are the deepest points of two separated valleys.
Roughly speaking, our aim is to walk along an optimal path on the
mountain from the point (L1, f(L1)) to (L2, f(L2)) spending the least
amount of energy by passing the mountain ridge between the two valleys.
Walking on a path (γ, f(γ)) from (L1, f(L1)) to (L2, f(L2)) such that
the maximal altitude along γ is the smallest among all such continuous
paths connecting (L1, f(L1)) and (L2, f(L2)), we reach a point L on γ

passing the ridge of the mountain which is called a mountain pass point.
As pointed out by Brezis and Browder [47], the mountain pass theorem
“extends ideas already present in Poincaré and Birkhoff”.

In the sequel, we give a first formulation of the mountain pass theorem.

Theorem 1.7 [Mountain pass theorem; positive altitude] Let X be a
Banach space, f : X → R be a function of class C1 such that

inf
‖u−e0‖=ρ

f(u) ≥ α > max{f(e0), f(e1)}

for some α ∈ R and e0 6= e1 ∈ X with 0 < ρ < ‖e0 − e1‖. If f satisfies
the (PS)c-condition at level

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = e0, γ(1) = e1},
then c is a critical value of f with c ≥ α.

There are two different ways to prove Theorem 1.7; namely, via Eke-
land’s variational principle, or by using a sort of deformation lemma. We
present its proof by means of the latter argument. We refer to Figure
1.3.1 for a geometric illustration of Theorem 1.7.

Proof of Theorem 1.7. We may assume that e0 = 0 and let e := e1.

Since f(u) ≥ α for every u ∈ X with ‖u‖ = ρ and ρ < ‖e‖, the definition
of the number c shows that α ≤ c.

It remains to prove that c is a critical value of f . Arguing by con-
tradiction, assume Kc = ∅. Thus, on account of Remark D.1, we may
choose O = ∅ in Theorem D.1, see Appendix D, and ε > 0 such that
ε < min{α − f(0), α − f(e)}. Consequently, there exist ε > 0 and a
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Fig. 1.2. Mountain pass landscape between “villages” e0 and e1.

continuous map η : X × [0, 1] → X verifying the properties (i)-(iv) from
Theorem D.1.

From the definition of the number c, there exists γ ∈ Γ such that

max
t∈[0,1]

f(γ(t)) ≤ c + ε. (1.14)

Let γ1 : [0, 1] → X defined by γ1(t) = η(γ(t), 1), ∀t ∈ [0, 1].
We prove that γ1 ∈ Γ. The choice of ε > 0 gives that max{f(0), f(e)} <

α − ε ≤ c − ε, thus 0, e /∈ f−1(]c − ε, c + ε[). Consequently, due
to Theorem D.1 (iii), we have γ1(0) = η(γ(0), 1) = η(0, 1) = 0 and
γ1(1) = η(γ(1), 1) = η(e, 1) = e. Therefore, γ1 ∈ Γ.

Note that (1.14) means that γ(t) ∈ f c+ε = {u ∈ X : f(u) ≤ c + ε} for
all t ∈ [0, 1]. Then by Theorem D.1 (iv) and the definition of γ1 we have

c ≤ max
t∈[0,1]

f(γ1(t)) = max
t∈[0,1]

f(η(γ(t), 1)) ≤ c− ε,

contradiction.

Remark 1.1 Using Theorem D.1, we can provide an alternative proof
to Theorem 1.4. Indeed, if we suppose that Kc = ∅, with c = infX f >

−∞, one may deform continuously the level set fc+ε (for ε > 0 small
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enough) into a subset of f c−ε, see Theorem D.1 (iv). But, f c−ε = ∅,
contradiction.

Remark 1.2 Note that the choice of 0 < ε < min{α − f(0), α − f(e)}
with inf‖u‖=ρ f(u) ≥ α is crucial in the proof of Theorem 1.7. Actually,
it means that the ridge of the mountain between the two valleys has a
positive altitude. However, a more involved proof allows us to handle
the so-called ”zero altitude” case. More precisely, the following result
holds.

Theorem 1.8 [Mountain pass theorem; zero altitude] Let X be a Ba-
nach space, f : X → R be a function of class C1 such that

inf
‖u−e0‖=ρ

f(u) ≥ max{f(e0), f(e1)}

for some e0 6= e1 ∈ X with 0 < ρ < ‖e0 − e1‖. If f satisfies the (PS)c-
condition at level

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = e0, γ(1) = e1},
then c is a critical value of f with c ≥ max{f(e0), f(e1)}.

Remark 1.3 In both Theorems 1.7 and 1.8 the Palais-Smale condition
may be replaced by a weaker one, called the Cerami compactness condi-
tion. More precisely, a function f ∈ C1(X,R) satisfies the Cerami condi-
tion at level c ∈ R (shortly, (C)c-condition) if every sequence {un} ⊂ X

such that limn→∞ f(un) = c and limn→∞(1 + ‖un‖)‖f ′(un)‖ = 0, pos-
sesses a convergent subsequence.

1.3.2 Minimax results via Ljusternik-Schnirelmann category

A very useful method to find multiple critical points for a given func-
tional is related to the notion of Ljusternik-Schnirelmann category. In
the case of variational problems on finite dimensional manifolds, this
notion is useful to find a lower bound for the number of critical points
in terms of topological invariants. In this subsection we present a gen-
eral form of this approach. We first present some basic properties of
Finsler-Banach manifolds.

Let M be a Banach manifold of class C1 and let TM be the usual
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tangent bundle, TpM the tangent space at the point p ∈ M . A Finsler
structure on the Banach manifold M can be introduced as follows.

Definition 1.1 A Finsler structure on TM is a continuous function
‖ · ‖ : TM → [0,∞) such that

(a) for each p ∈ M the restriction ‖ · ‖p = ‖ · ‖|TpM is a norm on
TpM .

(b) for each p0 ∈ M and k > 1, there is a neighborhood U ⊂ M of
p0 such that

1
k
‖ · ‖p ≤ ‖ · ‖p0 ≤ k‖ · ‖p

for all p ∈ U .

The Banach manifold M of class C1 endowed with a Finsler structure
is called Banach-Finsler manifold M of class C1.

Definition 1.2 Let M be a Banach-Finsler manifold of class C1 and σ :

[a, b] → M a C1-path. The length of σ is defined by l(σ) =
∫ b

a

‖σ′(t)‖dt.

If p and q are in the same component of M we define the distance from
p to q by

ρ(p, q) = inf{l(σ) : σ is a C1 − path from p to q}.

Definition 1.3 A Banach-Finsler manifold M of class C1 is said to be
complete if the metric space (M,ρ) is complete.

Theorem 1.1 If M is a Banach-Finsler manifold of class C1 then the
function ρ : M × M → R (from Definition 1.2) is a metric function
for each component of M . Moreover, this metric is consistent with the
topology of M .

Theorem 1.2 If M is a Banach-Finsler manifold of class C1 and N

is a C1 submanifold of M , then ‖ · ‖ |T (N) is a Finsler structure for N

(called the Finsler structure induced from M). If M is complete and N

is a closed C1 submanifold of M , then N is a complete Banach-Finsler
manifold in the induced Finsler structure.

On a Banach-Finsler manifold M the cotangent bundle TM? has a
dual Finsler structure defined by

‖y‖ = sup{〈y, v〉 : v ∈ TpM, ‖v‖p = 1},



1.3 Minimax principles 17

where y ∈ TpM
? and 〈·, ·〉 denotes the duality pairing between TpM

?

and TpM. Consequently, for a functional f : M → R of class C1, the
application p 7→ ‖f ′(p)‖ is well-defined and continuous. These facts
allow to introduce the following definition.

Definition 1.3 Let M be a Banach-Finsler manifold of class C1.
(a) A function f ∈ C1(M,R) satisfies the Palais-Smale condition

at level c ∈ R (shortly, (PS)c-condition) if every sequence {un} ⊂ M

such that limn→∞ f(un) = c and limn→∞ ‖f ′(un)‖ = 0, possesses a
convergent subsequence.

(b) A function f ∈ C1(M,R) satisfies the Palais-Smale condition
(shortly, (PS)-condition) if it satisfies the Palais-Smale condition at ev-
ery level c ∈ R.

Let M be a Banach-Finsler manifold of class C1. For h ≥ 1, we
introduce the set

Γh = {A ⊆ M : catM (A) ≥ h, A compact}.
Here, catM (A) denotes the Ljusternik-Schnirelmann category of the set
A relative to M, see Appendix C.

If h ≤ catM (M) = cat(M), then Γh 6= ∅. Moreover, if cat(M) = +∞,
we may take any positive integer h in the above definition. If f : M → R
is a functional of class C1, we denote by K the set of all critical points
of f on M , that is, K = {u ∈ M : f ′(u) = 0} and Kc = K ∩ f−1(c).
Finally, for every h ≤ cat(M) we define the number

ch = inf
A∈Γh

max
u∈A

f(u).

Proposition 1.1 Let f : X → R be a functional of class C1. Using the
above notations, we have

a) c1 = infM f.

b) ch ≤ ch+1.

c) ch < ∞ for every h ≤ cat(M).
d) If c := ch = ch+m−1 for some h, m ≥ 1, and f satisfies the (PS)c-

condition, then catM (Kc) ≥ m. In particular, Kc 6= ∅.

Proof Properties a)-c) are obvious. To prove d), we argue by con-
tradiction. Thus, we assume that catM (Kc) ≤ m − 1. Since M is
an ANR , there exists a neighborhood O of Kc such that catM (O) =
catM (Kc) ≤ m − 1. By using Theorem D.1, there exists a continuous
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map η : X × [0, 1] → X and ε > 0 such that η(f c+ε \ O, 1) ⊂ f c−ε and
η(u, 0) = u for all u ∈ X. Let A1 ∈ Γh+m−1 such that maxu∈A1 f(u) ≤
c + ε. Considering the set A2 = A1 \ O, we obtain that

catM (A2) ≥ catM (A1)− catM (O) ≥ h + m− 1− (m− 1) = h.

Therefore, A2 ∈ Γh. Moreover, maxu∈A2 f(u) ≤ max
u∈A1

f(u) ≤ c + ε and

A2 ∩ O = ∅. In conclusion, we have A2 ⊂ f c+ε \ O. Due to Theorem
D.1 (iv), η(A2, 1) ⊂ f c−ε. Moreover, catM (η(A2, 1)) ≥ catM (A2) ≥ h,
thus η(A2, 1) ∈ Γh. But c = inf

A∈Γh

max
u∈A

f(u) ≤ max f(η(A2, 1)) ≤ c − ε,

contradiction.

The main result of the present subsection is the following theorem.

Theorem 1.9 Let M be a complete Banach-Finsler manifold of class
C1, and f : M → R a functional of class C1 which is bounded from
below on M . If f satisfies the (PS)-condition then f has at least cat(M)
critical points.

Proof Since f is bounded from below, every ch is finite, h = 1, . . . , cat(M),
see Proposition 1.1 c). To prove the statement, it is enough to show that

card(K ∩ f ch) ≥ h, h = 1, . . . , cat(M). (1.15)

We proceed by induction. For h = 1, relation (1.15) is obvious since
the global minimum belongs to K. Now, we assume that (1.15) holds for
h = 1, . . . , k. We will prove that (1.15) also holds for k + 1. There are
two cases:

I) ck 6= ck+1. Due to Proposition 1.1 d), we have that Kck+1 6= ∅.
Consequently, each element of the set Kck+1 clearly differs from those of
the set K ∩ f ck . Therefore, K ∩ fck+1 contains at least k + 1 points.

II) ck = ck+1 := c. Let m be the least positive integer such that
cm = ck+1. Due to Proposition 1.1 d), we have catM (Kc) ≥ k + 1−m +
1 = k−m + 2. In particular, card(Kc) = card(Kck+1) ≥ k−m + 2. Two
distinguish again two subcases:

IIa) m = 1. The claim easily follows.
IIb) m > 1. Since m ≤ k, then card(K∩f cm−1) ≥ m−1. Consequently,

card(K ∩ f ck+1) ≥ card(K ∩ f cm−1) + card(Kck+1)

≥ (m− 1) + (k −m + 2)

= k + 1,
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which complete the proof of (1.15), thus the theorem.

Let X be an infinite dimensional, separable real Banach space and
S = {u ∈ X : ‖u‖ = 1} its unit sphere. Important questions appear
when the study of some classes of nonlinear elliptic problems reduce to
finding critical points of a given functional on S. Note that cat(S) = 1;
therefore, Theorem 1.9 does not give multiple critical points on S. How-
ever, exploiting the symmetric property of S, by means of the Krasnosel-
ski genus, see Appendix C, a multiplicity result may be given, similar to
Theorem 1.9. In order to state this result, we put ourselves to a general
framework.

Let X be a real Banach space, and we denote the family of sets

A = {A ⊂ X \ {0} : A = −A, A is closed}.
Assume that M = G−1(0) ∈ A is a submanifold of X, where G : X → R
is of class C1 with G′(u) 6= 0 for every u ∈ M.

For any h ≤ γ0(M) := sup{γ(K) : K ⊆ M, K ∈ A, K compact}, we
introduce the set

Ah = {A ⊆ M : A ∈ A, γ(A) ≥ h, A compact}.
Here, γ(A) denotes the Krasnoselski genus of the set A, see Appendix
C. Finally, if f : X → R is an even function, we denote

c̃h = inf
A∈Ah

max
u∈A

f(u).

Proposition 1.2 Let f : X → R be an even functional of class C1.
Using the above notations, we have

a) c̃1 > −∞ whenever f is bounded from below on M .
b) c̃h ≤ c̃h+1.

c) c̃h < ∞ for every h ≤ γ0(M).
d) If c := c̃h = c̃h+m−1 for some h, m ≥ 1, and f satisfies the (PS)c-

condition on M , then γ(Kc) ≥ m. In particular, Kc 6= ∅.
The following result may be stated.

Theorem 1.10 Let M = G−1(0) ⊂ X be a submanifold of a real Banach
space, where G : X → R is of class C1 with G′(u) 6= 0 for every u ∈ M.

Assume that M ∈ A and let f : X → R be a functional of class C1

which is bounded from below on M and even. If γ(M) = +∞ and f

satisfies the (PS)-condition on M then f has infinitely many critical
points {uk} ⊂ M with limk→∞ f(uk) = supM f.
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1.4 Ricceri’s variational results

The main part of the present section is dedicated to Ricceri’s recent mul-
tiplicity results. First, several three critical points results with one/two
parameter are stated. In the second subsection a general variational
principle of Ricceri is presented. Finally, in the last subsection a new
kind of multiplicity result of Ricceri is given which guarantees the exis-
tence of k ≥ 2 distinct critical points for a fixed functional.

1.4.1 Three critical point results

It is a simple exercise to show that a function f : R → R of class C1

having two local minima has necessarily a third critical point. However,
once we are dealing with functions defined on a multi-dimensional space,
the problem becomes much deeper. The well-known form of the three
critical point theorem is due to Pucci-Serrin [246, 247] and it can be
formulated as follows.

Theorem 1.11 A function f : X → R of class C1 satisfies the (PS)-
condition and it has two local minima. Then f has at least three distinct
critical points.

Proof Without loss of generality we may assume that 0 and e ∈ X \{0}
are the two local minima of f and f(e) ≤ f(0) = 0. We face two cases:

I) If there exist constants α, ρ > 0 such that ‖e‖ > ρ and inf‖u‖=ρ f(u) ≥
α, then the existence of a critical point of f at a minimax level c with
c ≥ α is guaranteed by Theorem 1.7. Consequently, this critical point
certainly differs from 0 and e.

II) Assume now that such constants do not exist as in I). Since 0 is
a local minima of f , we may choose r < ‖e‖ such that f(u) ≥ 0 for
every u ∈ X with ‖u‖ ≤ r. We apply Ekeland’s variational principle,

see Theorem 1.3 with ε =
1
n2

, λ = n and f restricted to the closed ball

B[0, r] = {u ∈ X : ‖u‖ ≤ r}. Let us fix 0 < ρ < r small enough. Since
inf‖u‖=ρ f(u) = 0, there exist zn ∈ X with ‖zn‖ = ρ and un ∈ B[0, r]
such that

0 ≤ f(un) ≤ f(zn) ≤ 1
n2

, ‖un − zn‖ ≤ 1
n

and

f(w)− f(un) ≥ − 1
n
‖w − un‖
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for all w ∈ B[0, r]. Since ρ < r, for n enough large, we have ‖un‖ < r.
Fix v ∈ X arbitrarily and let w = un + tv. If t > 0 is small enough then
w ∈ B[0, r]. Therefore, with this choice, the last inequality gives that
‖f ′(un)‖ ≤ 1

n . Since 0 ≤ f(un) ≤ 1
n2 and f satisfies the (PS)-condition,

we may assume that un → u ∈ X which is a critical point of f . Since
|‖un‖ − ρ| = |‖un‖ − ‖zn‖| ≤ 1

n , we actually have that ‖u‖ = ρ, thus
0 6= u 6= e.

Let f : X × I → X be a function such that f(·, λ) is of class C1 for
every λ ∈ I ⊂ R. In view of Theorem 1.11, the main problem Ricceri
dealt with is the stability of the three critical points of f(·, λ) with respect
to the parameters λ ∈ I. Ricceri’s main three critical point theorem is
the following.

Theorem 1.12 Let X be a separable and reflexive real Banach space,
I ⊆ R be an interval, and f : X × I → R be a function satisfying the
following conditions:

(α1) for each u ∈ X, the function f(u, ·) is continuous and concave;
(β1) for each λ ∈ I, the function f(·, λ) is sequentially weakly lower

semi-continuous and Gâteaux differentiable, and lim
‖u‖→+∞

f(u, λ) = +∞;

(γ1) there exists a continuous concave function h : I → R such that

sup
λ∈I

inf
u∈X

(f(u, λ) + h(λ)) < inf
u∈X

sup
λ∈I

(f(u, λ) + h(λ)).

Then, there exist an open interval J ⊆ I and a positive real number ρ,
such that, for each λ ∈ J , the equation

f ′u(u, λ) = 0

has at least two solutions in X whose norms are less than ρ. If, in
addition, the function f is (strongly) continuous in X× I, and, for each
λ ∈ I, the function f(·, λ) is of class C1 and satisfies the (PS)-condition,
then the above conclusion holds with ”three” instead of ”two”.

The proof of Theorem 1.12 is quite involved combining deep arguments
from nonlinear analysis as a topological minimax result of Saint Ray-
mond [264], a general selector result of Kuratowski and Ryll-Nardzewski
[182], [145], and the mountain pass theorem. Instead of its proof, we give
a useful consequence of Theorem 1.12.

Corollary 1.4 Let X be a separable and reflexive real Banach space,
Φ : X → R a continuously Gâteaux differentiable and sequentially weakly
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lower semi-continuous functional whose Gâteaux derivative admits a
continuous inverse on X?, Ψ : X → R a continuously Gâteaux dif-
ferentiable functional whose Gâteaux derivative is compact, and I ⊆ R
an interval. Assume that

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞

for all λ ∈ I, and that there exists a continuous concave function h :
I → R such that

sup
λ∈I

inf
u∈X

(Φ(u)− λΨ(u) + h(λ)) < inf
u∈X

sup
λ∈I

(Φ(u)− λΨ(u) + h(λ)).

Then, there exist an open interval J ⊆ I and a positive real number ρ

such that, for each λ ∈ J , the equation

Φ′(u)− λΨ′(u) = 0

has at least three solutions in X whose norms are less than ρ.

Proof We may apply Theorem 1.12 to the function f : X×I → R defined
by f(u, λ) = Φ(u) − λΨ(u) for each (u, λ) ∈ X × I. In particular, the
fact that Ψ′ is compact implies that Ψ is sequentially weakly continuous.
Moreover, our assumptions ensure that, for each λ ∈ I, the function
f(·, λ) satisfies the (PS)-condition.

In the sequel we point out a useful result concerning the location of
parameters in Corollary 1.4. Actually, this location result is an improved
version of Theorem 1.12 given by Bonanno [41].

Theorem 1.13 Let X be a separable and reflexive real Banach space,
and let Φ, Ψ : X → R be two continuously Gâteaux differentiable func-
tionals. Assume that there exists u0 ∈ X such that Φ(u0) = Ψ(u0) = 0
and Φ(u) ≥ 0 for every u ∈ X and that there exists u1 ∈ X, r > 0 such
that

(i) r < Φ(u1);

(ii) sup
Φ(u)<r

Ψ(u) < r
Ψ(u1)
Φ(u1)

.

Further, put

a =
ζr

r
Ψ(u1)
Φ(u1)

− sup
Φ(u)<r

Ψ(u)
,
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with ζ > 1, and assume that the functional Φ−λΨ is sequentially weakly
lower semi-continuous, satisfies the (PS)-condition and

(iii) lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞ for every λ ∈ [0, a].

Then, there exists an open interval Λ ⊂ [0, a] and a positive real num-
ber ρ such that, for each λ ∈ Λ, the equation

Φ′(u)− λΨ′(u) = 0

admits at least three solutions in X whose norms are less than ρ.

Proof We prove the minimax inequality from Corollary 1.4 whit I =
[0, a] and the function h suitable chosen. Fix ζ > 1. Due to (ii), there
exists σ ∈ R such that

sup
Φ(u)<r

Ψ(u) +

r
Ψ(u1)
Φ(u1)

− sup
Φ(u)<r

Ψ(u)

ζ
< σ < r

Ψ(u1)
Φ(u1)

. (1.16)

Due to (i) and (1.16) we obtain that 0 < σ < Ψ(u1); thus, introducing
the notation A := σ Φ(u1)

Ψ(u1)
, we clearly have

A− Φ(u1)
σ −Ψ(u1)

=
A

σ
. (1.17)

Let λ ∈ R. Due to (1.17), one has either λ ≥ A−Φ(u1)
σ−Ψ(u1)

or λ < A
σ . When

λ ≥ A−Φ(u1)
σ−Ψ(u1)

we have that

inf
u∈X

(Φ(u) + λ(σ −Ψ(u))) ≤ Φ(u1) + λ(σ −Ψ(u1)) ≤ A.

When λ < A
σ , we have

inf
u∈X

(Φ(u) + λ(σ −Ψ(u))) ≤ Φ(u0) + λ(σ −Ψ(u0)) = λσ < A.

Consequently,

sup
λ∈[0,a]

inf
u∈X

(Φ(u) + λ(σ −Ψ(u))) ≤ sup
λ∈R

inf
u∈X

(Φ(u) + λ(σ −Ψ(u))) ≤ A. (1.18)

Set k = [rΨ(u1)/Φ(u1) − sup
Φ(u)<r

Ψ(u)]/ζ > 0. On account of (1.16),

one has sup
Φ(u)<r

Ψ(u) < σ − k. In particular, we have

inf
Ψ(u)>σ−k

Φ(u) ≥ r. (1.19)
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By (1.16) again, we have r > σ Φ(u1)
Ψ(u1)

= A. Consequently, from (1.19)
one has

inf
Ψ(u)>σ−k

Φ(u) > A.

Moreover, we also have

ak = r > A.

After combining these facts, we obtain that

inf
u∈X

sup
λ∈[0,a]

(Φ(u) + λ(σ −Ψ(u))) = inf
u∈X

(Φ(u) + a max{0, σ −Ψ(u)})

≥ min
{

inf
Ψ(u)>σ−k

Φ(u); inf
Ψ(u)≤σ−k

Φ(u) + ak

}
> A.

Combining this estimate with (1.18), the minimax inequality from Corol-
lary 1.4 holds with the choices I = [0, a] and h(λ) = λσ. The proof is
complete.

We conclude the present subsection with a double eigenvalue problem.
More precisely, we are interested in the minimal number of critical points
of the functional Φ−λΨ (from Theorem 1.13) which is perturbed by an
arbitrarily functional of class C1. To state this result, we are going to
apply a pure topological result due to Ricceri [262].

Theorem 1.14 Let X be a reflexive real Banach space, I ⊆ R an inter-
val, and ϕ : X × I → R a function such that ϕ(u, ·) is concave in I for
all u ∈ X, while ϕ(·, λ) is continuous, coercive and sequentially weakly
lower semi-continuous in X for all λ ∈ I. Further, assume that

sup
I

inf
X

ϕ < inf
X

sup
I

ϕ.

Then, for each η > supI infX ϕ, there exists a non-empty open set A ⊆ I

with the following property: for every λ ∈ A and every sequentially
weakly lower semi-continuous functional Υ : X → R, there exists δ > 0
such that for each µ ∈ [0, δ], the functional ϕ(·, λ) + µΥ(·) has at least
two local minima lying in the set {u ∈ X : ϕ(u, λ) < η}.

Now we prove another variant of Corollary 1.4 which appears in Ric-
ceri [263].

Theorem 1.15 Let X be a separable and reflexive real Banach space,
I ⊆ R an interval, Φ : X → R a sequentially weakly lower semi-
continuous functional of class C1 whose derivative admits a continuous
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inverse on X? and Ψ : X → R a functional of class C1 with compact
derivative. Assume that

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞

for all λ ∈ I, and that there exists σ ∈ R such that

sup
λ∈I

inf
u∈X

(Φ(u) + λ(σ −Ψ(u))) < inf
u∈X

sup
λ∈I

(σ −Ψ(u))). (1.20)

Then, there exist a non-empty open set A ⊆ I and a positive real number
ρ with the following property: for every λ ∈ A and every functional
Υ : X → R of class C1 with compact derivative, there exists δ > 0 such
that, for each µ ∈ [0, δ], the equation

Φ′(u)− λΨ′(u) + µΥ′(u) = 0

has at least three solutions in X whose norms are less than ρ.

Proof Note that any functional on X of class C1 with compact derivative
is sequentially weakly continuous; in particular, it is bounded on each
bounded subset of X, due to the reflexivity of X. Consequently, the
function ϕ : X × I → R defined by

ϕ(u, λ) = Φ(u) + λ(σ −Ψ(u))

satisfies all the hypotheses of Theorem 1.14. Fix η > supI infX ϕ and
consider a non-empty open set A with the property stated in Theorem
1.14. Fix also a compact interval [a, b] ⊂ A. We have

⋃

λ∈[a,b]

{u ∈ X : ϕ(u, λ) < η}

⊆ {u ∈ X : Φ(u)− aΨ(u) < η− aσ}∪ {u ∈ X : Φ(u)− bΨ(u) < η− bσ}.

Note that the set on the right-hand side is bounded, due to the coercivity
assumption. Consequently, there is some η̃ > 0 such that

⋃

λ∈[a,b]

{u ∈ X : ϕ(u, λ) < η} ⊆ Bη̃, (1.21)

where Bη̃ = {u ∈ X : ‖u‖ < η̃}. Now, set

c? = sup
Bη̃

Φ + max{|a|, |b|} sup
Bη̃

|Ψ|
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and fix ρ > η̃ such that
⋃

λ∈[a,b]

{u ∈ X : Φ(u)− λΨ(u) ≤ c? + 2} ⊆ Bρ. (1.22)

Now, let Υ : X → R be any functional of class C1 with compact deriva-
tive. Let us choose a bounded function g : R→ R of class C1 such that
g(t) = t for all t ∈ [− supBρ

|Υ|, supBρ
|Υ|]. Put Ψ̃(u) = g(Ψ(u)) for all

u ∈ X. So, Ψ̃ is a bounded functional on X of class C1 such that

Υ̃(u) = Υ(u) for all x ∈ Bρ. (1.23)

For any set Y ⊂ X, we have

Υ̃′(Y ) ⊆ g′(Υ(Y ))Υ′(Y )

and hence it is clear that the derivative of Υ̃ is compact. Now, fix
λ ∈ [a, b]. Then, taking (1.21) into account, there exists δ̃ > 0 such that,
for each µ ∈ [0, δ̃], the functional Φ − λΨ + µΥ̃ has two local minima,
say e0, e1 belonging to Bη̃. Further, set

δ = min



δ̃,

1
1 + sup

R
|g|





and fix µ ∈ [0, δ]. Note that the functional Φ − λΨ + µΥ̃ is coercive;
moreover, an easy argument shows that this functional satisfies also the
(PS)-condition. Consequently, if we denote by Γ the set of all continuous
paths γ : [0, 1] → X such that γ(0) = e0, γ(1) = e1, and set

cλ,µ = inf
γ∈Γ

max
t∈[0,1]

(Φ(γ(t))− λΨ(γ(t)) + µΥ̃(γ(t))),

by the mountain pass theorem for zero altitude (see Theorem 1.8), there
exists e ∈ X such that

Φ′(e)− λΨ′(e) + µΥ̃′(e) = 0 and Φ(e)− λΨ(e) + µΥ̃(e) = cλ,µ.

Now, choosing in particular γ(t) = e0 + t(e1 − e0), we observe that

cλ,µ ≤ max
t∈[0,1]

(Φ(e0 + t(e1 − e0))

−λΨ(e0 + t(e1 − e0)) + µΥ̃(e0 + t(e1 − e0)))
≤ supBη̃

Φ + max{|a|, |b|} supBη̃
|Ψ|+ δ supR |g| ≤ c? + 1.

Consequently, we have

Φ(e)− λΨ(e) ≤ c? + 2.
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By (1.22), it then follows that e ∈ Bρ and so, by (1.23), one has Υ̃′(ei) =
Υ′(ei) for i = 0, 1 and Υ̃′(e) = Υ′(e). In conclusion, e0, e1 and e are
three distinct solutions of the equation Φ′(u) − λΨ′(u) + µΥ′(u) = 0
lying in Bρ. The proof is complete.

1.4.2 A general variational principle

The general variational principle of Ricceri gives alternatives for the mul-
tiplicity of critical points of certain functions depending on a parameter.
It can be stated in a following way, see Ricceri [256].

Theorem 1.16 Let X be a reflexive real Banach space, Φ, Ψ : X → R
be two sequentially weakly lower semi-continuous, continuously Gâteaux
differentiable functionals. Assume that Ψ is strongly continuous and
coercive. For each s > infX Ψ, set

ϕ(s) := inf
u∈Ψs

Φ(u)− infclwΨs Φ
s−Ψ(u)

, (1.24)

where Ψs := {u ∈ X : Ψ(u) < s} and clwΨs is the closure of Ψs in the
weak topology of X. Furthermore, set

δ := lim inf
s→(infX Ψ)+

ϕ(s), γ := lim inf
s→+∞

ϕ(s). (1.25)

Then, the following conclusions hold.

(A) If δ < +∞ then, for every λ > δ, either

(A1) there is a global minimum of Ψ which is a local minimum of
Φ + λΨ, or

(A2) there is a sequence {uk} of pairwise distinct critical points of
Φ + λΨ, with limk→∞Ψ(uk) = infX Ψ, weakly converging to a
global minimum of Ψ.

(B) If γ < +∞ then, for every λ > γ, either

(B1) Φ + λΨ possesses a global minimum, or
(B2) there is a sequence {uk} of critical points of the functional

Φ + λΨ such that limk→∞Ψ(uk) = +∞.

In order to prove Theorem 1.16, we recall without proof a topological
result of Ricceri [256].
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Theorem 1.17 Let X be a topological space, and let Φ,Ψ : X → R be
two sequentially lower semi-continuous functions. Denote by I the set
of all s > inf

X
Ψ such that the set Ψs := {u ∈ X : Ψ(u) < s} is contained

in some sequentially compact subset of X. Assume that I 6= ∅. For each
s ∈ I, denote by Fs the family of all sequentially compact subsets of X

containing Ψs, and put

α(s) = sup
K∈Fs

inf
K

Φ.

Then, for each s ∈ I and each λ satisfying

λ > inf
u∈Ψs

Φ(u)− α(s)
s−Ψ(u)

the restriction of the function Φ + λΨ to Ψs has a global minimum.

Proof of Theorem 1.16. Endowing the space X with the weak topol-
ogy, it is easy to verify that clwΨs is the smallest sequentially weakly
compact subset of X containing the set Ψs. Due to this observation, we
also have that the function α and the interval I from Theorem 1.17 have
the form α(s) = infu∈clwΨs Φ(u) and I =] infX Ψ,∞[, respectively.

(A) We assume that δ < +∞; let λ > δ. We may choose a sequence
{sk} ⊂ I with the properties that lim

k→∞
sk = inf

X
Ψ and

λ > inf
u∈Ψsk

Φ(u)− α(sk)
sk −Ψ(u)

for all k ∈ N. Thanks to Theorem 1.17, for each k ∈ N, the restriction of
Φ + λΨ to Ψsk

has a global minimum in the weak topology; we denote
it by uk. Consequently, uk ∈ Ψsk

is a local minimum of Φ + λΨ in
the strong topology too. Moreover, if s = maxk∈N sk, we clearly have
that {uk} ⊂ Ψs. On the other hand, the set Ψs is contained in a
sequentially compact subset of X. Therefore, the sequence {uk} admits
a subsequence, denoted in the same way, which converges weakly to an
element u ∈ X. We claim that u is a global minimum of Ψ. Indeed,
since Ψ is sequentially weakly lower semi-continuous, we have that

Ψ(u) ≤ lim inf
k→∞

Ψ(uk) ≤ lim
k→∞

sk = inf
X

Ψ.

Taking a subsequence if necessary, we have that

lim
k→∞

Ψ(uk) = Ψ(u) = inf
X

Ψ.

Now, if u = uk for some k ∈ N then (A1) holds; otherwise, we have
(A2).
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(B) We assume that γ < +∞; let λ > γ. We fix a sequence {sk} ⊂ I

with the properties that lim
k→∞

sk = +∞ and

λ > inf
u∈Ψsk

Φ(u)− α(sk)
sk −Ψ(u)

for all k ∈ N. Due to Theorem 1.17, for each k ∈ N, there exists uk ∈ Ψsk

such that

Φ(uk) + λΨ(uk) = min
Ψsk

(Φ + λΨ). (1.26)

We have basically two different cases.
When lim

k→∞
Ψ(uk) = ∞, the proof is complete, since every set Ψsk

is

open, thus uk are different critical points of Φ+λΨ, that is, (B2) holds.
Now, we suppose that lim inf

k→∞
Ψ(uk) < ∞. Let us fix the number

r = max{infX Ψ, lim inf
k→∞

Ψ(uk)}. For k ∈ N large enough, we clearly have

that {uk} ⊂ Ψr+1. In particular, since Ψr+1 is contained in a sequentially
compact subset of X, the sequence {uk} admits a subsequence, denoted
in the same way, converging weakly to an element u ∈ X. We claim that
u is a global minimum of Ψ. To see this, we fix v ∈ X. Since {sk} tends
to +∞, there exists k0 ∈ N such that Ψ(v) < sk0 , that is, v ∈ Ψsk0

. Due
to the sequentially weakly lower semi-continuity of Φ + λΨ (note that
λ ≥ 0), relation (1.26), we have that

Φ(u) + λΨ(u) ≤ lim inf
k→∞

(Φ(uk) + λΨ(uk) ≤ Φ(uk0) + λΨ(uk0)

= min
Ψsk0

(Φ + λΨ) ≤ Φ(v) + λΨ(v).

Consequently, u ∈ X is a global minimum of Φ+λΨ, that is, (B1) holds.
This completes the proof of Theorem 1.16.

The general variational principle of Ricceri (Theorem 1.16) implies
immediately the following assertion: if Φ and Ψ are two sequentially
weakly lower semi-continuous functionals on a reflexive Banach space
X and if Ψ is also continuous and coercive, then the functional Ψ + λΦ
has at least one local minimum for each λ > 0 small enough.

A deep topological argument developed by Ricceri [260] shows a more
precise conclusion. We present here this result without proof.

Theorem 1.18 Let X be a separable and reflexive real Banach space,
and let Φ, Ψ : X → R be two sequentially weakly lower semi-continuous
and continuously Gâteaux differentiable functionals, with Ψ coercive.
Assume that the functional Ψ+λΦ satisfies the (PS)-condition for every
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λ > 0 small enough and that the set of all global minima of Ψ has at
least k connected components in the weak topology, with k ≥ 2.

Then, for every s > infX Ψ, there exists λ > 0 such that for every
λ ∈]0, λ[, the functional Ψ + λΦ has at least k + 1 critical points, k of
which are lying in the set Ψs = {u ∈ X : Ψ(u) < s}.

Remark 1.4 The first k critical points of Ψ + λΦ are actually local
minima of the same functional which belong to the level set Ψs while the
(k + 1)th critical point is of mountain pass type where the assumption
of the (PS)-condition is exploited. The mountain pass type point is
located by means of the classification result of Ghoussoub-Preiss [128].

1.5 H1 versus C1 local minimizers

The result contained in this section establishes a surprising property of
local minimizers, due to H. Brezis and L. Nirenberg [51].

Let Ω be a bounded open set in RN with smooth boundary. Assume
that f : Ω× R→R is a Lipschitz continuous function in u, uniformly in
x such that for all (x, u) ∈ Ω× R,

|f(x, u)| ≤ C(1 + |u|p) , (1.27)

where 1 < p ≤ (N + 2)/(N − 2). We point out that the exponent p can
attain the critical Sobolev exponent (N + 2)/(N − 2). Set F (x, u) :=∫ u

0
f(x, s) ds and define on H1

0 (Ω) the energy functional

E(u) :=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx .

Definition 1.4 We say that u0 ∈ C1
0 (Ω) is a local minimizer of E in

the C1 topology if there exists r > 0 such that

E(u0) ≤ E(u) for every u ∈ C1
0 (Ω) with ‖u− u0‖C1 ≤ r.

We say that u0 ∈ H1
0 (Ω) is a local minimizer of E in the H1

0 topology
if there exists ε0 > 0 such that

E(u0) ≤ E(u) for every u ∈ H1
0 (Ω) with ‖u− u0‖H1 ≤ ε0.

The main result of this section is the following.

Theorem 1.19 Any local minimizer of E in the C1 topology is also a
local minimizer of E in the H1

0 topology.
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Proof We can assume without loss of generality that 0 is a local mini-
mizer of E in the C1 topology.

Subcritical case: p < (N + 2)/(N − 2). Arguing by contradiction, we
deduce that for any ε > 0, there exists uε ∈ H1

0 (Ω) such that

‖uε‖H1 ≤ ε and E(uε) < E(0) . (1.28)

This enables us to apply a standard lower semi-continuity argument
to deduce that minu∈Bε

E(u) is attained by some point uε, where

Bε := {u ∈ H1
0 (Ω); ‖u‖H1 < ε} .

We claim that

uε→0 in C1(Ω).

Thus, by (1.28), we contradict the hypothesis that 0 is a local minimizer
of E in the C1 topology.

In order to prove our claim, let µε ≤ 0 be a Lagrange multiplier of the
corresponding Euler equation for uε, that is,

〈E′(uε), v〉H−1,H1
0

= µε (uε, v)H1
0

for all v ∈ H1
0 (Ω).

Therefore∫

Ω

[∇uε · ∇v − f(x, uε)v] dx = µε

∫

Ω

∇uε · ∇v dx for all v ∈ H1
0 (Ω).

This can be rewritten as

−(1− µε)∆uε = f(x, uε) in Ω. (1.29)

Since uε→0 in H1(Ω) it follows that, in order to deduce our claim, it is
enough to apply the Arzelà–Ascoli theorem, after observing that

‖uε‖C1,α ≤ C .

This uniform estimate follows by a standard bootstrap argument. In-
deed, assuming that uε ∈ Lq1(Ω) for some q1 ≥ 2N/(N − 2), then
f(x, uε) ∈ Lr(Ω), where r = q1/p. Thus, by Schauder elliptic estimates,
uε ∈ W 2,r(Ω) ⊂ Lq2(Ω), with

1
q2

=
p

q1
− 2

N
,

provided that the right hand-side is positive. In the remaining case we
have uε ∈ Lq(Ω) for any q > 1. Since p < (N + 2)/(N − 2), we deduce
that q2 > q1. Starting with q1 = 2N/(N − 2) and iterating this process,
we obtain an increasing divergent sequence (qm)m≥1. This shows that
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uε ∈ Lq(Ω) for any q > 1. Returning now to (1.29) we deduce that uε ∈
W 2,r(Ω) for any r > 1. Thus, by Sobolev embeddings, uε ∈ C1,α(Ω)
for any α ∈ (0, 1). This concludes the proof in the subcritical case
corresponding to p < (N + 2)/(N − 2).

Critical case: p = (N +2)/(N − 2). We argue again by contradiction.
Thus, for all ε > 0, there exists uε ∈ H1

0 (Ω) such that relation (1.28)
holds. For any positive integer m we define the truncation map

Tm(t) =





−m if t ≤ −m

t if −m ≤ t ≤ m

m if t ≥ m.

For any integer m ≥ 1, define the energy functional

Em(u) :=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

Fm(x, u) dx ,

where fm(x, t) := f(x, Tm(t)) and Fm(x, u) :=
∫ u

0
fm(x, t) dt.

We first observe that for all u ∈ H1
0 (Ω), Em(u)→E(u) as m→∞.

Thus, for each ε > 0, there exists an integer m(ε) such that Em(ε)(uε) <

E(0). Let vε ∈ H1
0 (Ω) be such that

Em(ε)(vε) = min
u∈Bε

Eε(u) .

Therefore

Em(ε)(vε) ≤ Em(ε)(uε) < E(0) .

We claim that vε ∈ C1
0 (Ω) and that vε→0 in C1(Ω). The, if ε > 0 is

sufficiently small, we have

E(vε) = Em(ε)(vε) < E(0) ,

which contradicts our assumption that 0 is a local minimizer of E in the
C1 topology.

Returning to the proof of our claim, we observe that vε satisfies the
Euler equation

−(1− µε)∆vε = fm(x, vε) , (1.30)

where

|fm(x, u)| ≤ C (1 + |u|p) (1.31)

with p = (N + 2)/(N − 2) and C not depending on m. Since vε→0 in
H1

0 (Ω) ⊂ L2N/(N−2)(Ω), Theorem IV.9 in [46] implies that there exists
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h ∈ L2N/(N−2)(Ω) such that, up to a subsequence still denoted by (vε),
we have |vε| ≤ h in Ω. Thus, by relation (1.31),

|fm(x, vε)| ≤ C (1 + a |vε|)

with a = h4/(N−2) ∈ LN/2(Ω). Using a bootstrap argument as in the
proof of the subcritical case p < (N + 2)/(N − 2), we deduce that (vε)
is bounded in Lq(Ω), for any 1 < q < ∞. Returning now to relation
(1.30) and using (1.31) we obtain that (vε) is bounded in C1,α(Ω) for
any α ∈ (0, 1). Now, since vε→0 in H1

0 (Ω), the Arzelà–Ascoli theorem
implies that vε→0 in C1,α(Ω). This concludes our proof.

1.5.1 Application to sub and supersolutions

Consider the nonlinear elliptic problem
{ −∆u = f(x, u) in Ω

u = 0 on ∂Ω ,
(1.32)

where f : Ω × R→R is a Lipschitz continuous function in u, uniformly
in x.

The method of sub and supersolutions is a very useful tool in nonlinear
analysis which asserts that if u, u ∈ C2(Ω) ∩ C1(Ω) satisfy u ≤ u and

{ −∆u− f(x, u) ≤ 0 ≤ −∆u− f(x, u) in Ω
u ≤ 0 ≤ u on ∂Ω ,

(1.33)

then problem (1.32) has at least a solution. The standard proof of
this result relies on the maximum principle. By means of Theorem
1.19 we are able to give a variational proof to the following qualitative
result which guarantees the existence of a local minimizer between a
subsolution and a supersolution.

Theorem 1.20 Assume that functions u, u ∈ C2(Ω)∩C1(Ω) with u ≤ u

satisfy (1.33). In addition, we suppose that neither u nor u is a solution
of (1.32). Then there exists a solution u0 of problem (1.32) such that
u < u0 < u in Ω and u0 is a local minimum of the associated energy
functional E in H1

0 (Ω), where

E(u) :=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

F (x, u) dx .
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Proof Define the truncated continuous function

f0(x, t) :=





f(x, u(x)) if t < u(x)
f(x, t) if u(x) ≤ t ≤ u(x)
f(x, u(x)) if t > u(x) .

Set F0(x, u) :=
∫ u

0
f0(x, t) dt and

E0(u) :=
1
2

∫

Ω

|∇u|2 dx−
∫

Ω

F0(x, u) dx .

Then f0 is bounded on Ω × R, hence E0 is bounded from below
on H1

0 (Ω). Thus, by semi-continuity arguments, infu∈H1
0 (Ω) E0(u) is

achieved at some point u0 and

−∆u0 = f0(x, u0) in Ω.

Bootstrap techniques (as developed in the proof of Theorem 1.19) imply
that u0 ∈ W 2,p(Ω) for any p < ∞. So, by Sobolev embeddings, u0 ∈
C1,α(Ω) for all α ∈ (0, 1).

Next, we prove that u < u0 < u in Ω. Indeed, multiplying by (u−u0)+

the inequality

−∆(u− u0) ≤ f(x, u)− f(x, u0)

and integrating on Ω, we find (u − u0)+ = 0. Thus, u ≤ u − 0 in Ω.
In fact, the strong maximum principle implies that this inequality is
strict. With a similar argument we deduce that u0 < u in Ω. Using now
u < u0 < u and applying again the strong maximum principle, we find
ε.0 such that for all x ∈ Ω,

u(x) + εdist (x, ∂Ω) ≤ u0(x) ≤ u(x)− εdist (x, ∂Ω) .

We observe that the mapping [u(x), u(x)] 3 x 7−→ F0(x, u) − F (x, u)
is a function depending only on x. This shows that E(u) − E0(u) is
constant, provided that ‖u−u0‖C1 is small enough. Since u0 is a global
minimum of E0, we deduce that u0 is a local minimum of E on C1

0 (Ω).
Using now Theorem 1.19 we conclude that u0 is also a local minimum
of E in H1

0 (Ω).

1.6 Szulkin type functionals

Let X be a real Banach space and X? its dual and we denote by 〈·, ·〉
the duality pair between X and X?. Let E : X → R be a functional
of class C1 and let ζ : X → R ∪ {+∞} be a proper (that is, 6≡ +∞),
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convex, lower semi-continuous function. Then, I = E + ζ is a Szulkin-
type functional, see Szulkin [282]. An element u ∈ X is called a critical
point of I = E + ζ if

〈E′(u), v − u〉+ ζ(v)− ζ(u) ≥ 0 for all v ∈ X. (1.34)

The number I(u) is a critical value of I.
For u ∈ D(ζ) = {u ∈ X : ζ(u) < ∞} we consider the set

∂ζ(u) = {x? ∈ X? : ζ(v)− ζ(u) ≥ 〈x?, v − u〉, ∀ v ∈ X }.
The set ∂ζ(u) is called the subdifferential of ζ at u. Note that an equiv-
alent formulation for (1.34) is

0 ∈ E′(u) + ∂ζ(u) in X?. (1.35)

Proposition 1.3 Every local minimum point of I = E + ζ is a critical
point of I in the sense of (1.34).

Proof Let u ∈ D(ζ) be a local minimum point of I = E + ζ. Due to the
convexity of ζ, for every t > 0 small we have

0 ≤ I((1− t)u + tv)− I(u) ≤ E(u + t(v − u))− E(u) + t(ζ(v)− ζ(u)).

Dividing by t > 0 and letting t → 0+, we obtain (1.34).

Definition 1.5 The functional I = E + ζ satisfies the Palais-Smale
condition at level c ∈ R, (shortly, (PSZ)c-condition) if every sequence
{un} ⊂ X such that limn→∞ I(un) = c and

〈E′(un), v − un〉X + ζ(v)− ζ(un) ≥ −εn‖v − un‖ for all v ∈ X,

where εn → 0, possesses a convergent subsequence.

Remark 1.5 When ζ = 0, (PSZ)c-condition is equivalent to the stan-
dard (PS)c-condition.

1.6.1 Minimax results of Szulkin type

Theorem 1.21 Let X be a Banach space, I = E + ζ : X → R ∪ {+∞}
a Szulkin-type functional and we assume that

(i) I(u) ≥ α for all ‖u‖ = ρ with α, ρ > 0, and I(0) = 0;
(ii) there is e ∈ X with ‖e‖ > ρ and I(e) ≤ 0.
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If I satisfies the (PSZ)c-condition for

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},
then c is a critical value of I and c ≥ α.

Theorem 1.22 Let X be a separable and reflexive Banach space, let
I1 = E1 + ζ1 Szulkin-type functionals and I2 = E2 : X → R a function
of class C1 and let Λ ⊆ R be an interval. Suppose that

(i) E1 is weakly sequentially lower semi-continuous and E2 is weakly
sequentially continuous;

(ii) for every λ ∈ Λ the function I1 + λI2 fulfils (PSZ)c, c ∈ R, with

lim
‖u‖→+∞

(I1(u) + λI2(u)) = +∞;

(iii) there exists a continuous concave function h : Λ → R satisfying

sup
λ∈Λ

inf
u∈X

(I1(u)+λI2(u)+h(λ)) < inf
u∈X

sup
λ∈Λ

(I1(u)+λI2(u)+h(λ)).

Then there is an open interval Λ0 ⊆ Λ, such that for each λ ∈ Λ0 the
function I1 + λI2 has at least three critical points in X.

In the next, we give a variant of Ricceri variational principle for
Szulkin type functionals which will be used in the study of the exis-
tence of scalar systems.

Suppose now that X and Y are real Banach spaces such that X is
compactly embedded in Y . Let E1 : Y → R and E2 : X → R be C1

functions, and let ζ1 : X →] − ∞, +∞] be convex, proper, and lower
semi-continuous. Define the maps I1 : X →]−∞, +∞] and I2 : X → R
as

I1(u) = E1(u) + ζ1(u), I2(u) = E2(u), for all x ∈ X.

Denote by D(ζ1) := {u ∈ X | ζ1(u) < +∞} and assume that

I−1
2 (]−∞, ρ[) ∩D(ζ1) 6= ∅, for all ρ > inf

X
I2. (1.36)

For every ρ > inf
X

I2 put

ϕ(ρ) := inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(I−1

2 (]−∞,ρ[))
w

Φ(v)

ρ− I2(u)
, (1.37)



1.6 Szulkin type functionals 37

where (I−1
2 (]−∞, ρ[))w is the weak closure of I−1

2 (]−∞, ρ[),

γ := lim inf
ρ→+∞

ϕ(ρ), (1.38)

δ := lim inf
ρ→(infX I2)+

ϕ(ρ). (1.39)

Theorem 1.23 Suppose that X is reflexive, I2 is weakly sequentially
lower semi-continuous and coercive, and (1.36) is fulfilled. Then the
following assertions hold:

(a) For every ρ > inf
X

I2 and every λ > ϕ(ρ) the function I1 + λI2

has a critical point (more exactly: a local minimum) lying in
I−1
2 (]−∞, ρ[) ∩D(ζ1).

(b) If γ < +∞ then, for each λ > γ, either

(b1) I1 + λI2 has a global minimum, or
(b2) there is a sequence {un} of critical points (more exactly: local

minima) of I1+λI2 lying in D(ζ1) and such that limn→∞ I2(un) =
+∞.

(c) If δ < +∞ then, for every λ > δ, either

(c1) I1 + λI2 has a local minimum which is also a global minimum
of I2, or

(c2) there is a sequence {un} of pairwise distinct critical points
(more exactly: local minima) of I1 + λI2 lying in D(ζ1) and
such that {un} converges weakly to a global minimum of I2

and limn→∞ I2(un) = inf
X

I2.

1.6.2 Principle of symmetric criticality

The principle of symmetric criticality plays a central role in many prob-
lems from the differential geometry, physics and in partial differential
equations. First it was proved by Palais [232] for functionals of class
C1. In this subsection we recall this principle for functionals of class
C1 defined on Banach spaces and we state its version for Szulkin type
functionals, based on the paper of Kobayashi-Otani [158].

Let X be a Banach space and let X? its dual. The norms of X and
X? will be denoted by ‖ · ‖ and ‖ · ‖?, respectively. We shall denote by
〈·, ·, 〉 the duality pairing between X and X?.

Let G be a group, e its identity element, and let π a representation of
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G over X, that is π(g) ∈ L(X) for each g ∈ G (where L(X) denotes the
set of the linear and bounded operator from X into X), and

a) π(e)u = u, ∀ u ∈ X;
b) π(g1g2)u = π(g1)(π(g2u)), ∀ g1, g2 ∈ G and u ∈ X.

The representation π? of G over X? is naturally induced by π by the
relation

〈π?(g)v?, u〉 = 〈v?, π(g−1)u〉,∀ g ∈ G, v? and u ∈ X. (1.40)

We often write gu or gv? instead of π(g)u or π?(g)v?, respectively.
A function h : X → R (respectively, h : X? → R) is called G-invariant

if h(gu) = h(u) (respectively, h(gu?) = h(u?)) for every u ∈ X (respec-
tively, u? ∈ X?) and g ∈ G. A subset M of X is called G-invariant
(respectively, M? of X?) if

gM = {gu : u ∈ M} ⊆ M (respectively, gM? ⊆ M?) ∀ g ∈ G.

The fixed point sets of the group action G on X and X? (some authors
call them G-symmetric points) are defined as

Σ = XG = {u ∈ X : gu = u ∀ g ∈ G},

Σ? = (X?)G = {v? ∈ X? : gv? = v? ∀ g ∈ G}.
Hence, by (1.40), we can see that v? ∈ X? is symmetric if and only

if v? is a G-invariant functional. The sets Σ and Σ? are closed linear
subspaces of X and X?, respectively. So Σ and Σ? are regarded as
Banach spaces with their induced topologies. We introduce the notation

C1
G(X) = {f : X → R : f is G− invariant and of class C 1}.

We consider the following statement, called as principle of symmetric
criticality (shortly, (PSC)):

• If f ∈ C1
G(X) and (f |Σ)′(u) = 0, then f ′(u) = 0.

Theorem 1.24 (PSC) is valid if and only if Σ? ∩ Σ⊥ = {0}, where
Σ⊥ = {v? ∈ X? : 〈v?, u〉 = 0, ∀ u ∈ Σ}.

Proof ” ⇒ ” Suppose that Σ? ∩ Σ⊥ = {0} and let u0 ∈ Σ be a crit-
ical point of f |Σ. We show that f ′(u0) = 0. Since f(u0) = f |Σ(u0)
and f(u0 + v) = f |Σ(u0 + v) for all v ∈ Σ, we obtain 〈f ′(u0), v〉 =
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〈(f |Σ)′(u0), v〉Σ for every v ∈ Σ, where 〈·, ·〉Σ denotes the duality pair-
ing between Σ and its dual Σ?. This implies that f ′(u0) ∈ Σ⊥. On the
other hand, from the G-invariance of f follows that

〈f ′(gu), v〉 = lim
t→0

f(gu + tv)− f(gu)
t

= lim
t→0

f(u + tg−1v)− f(u)
t

= 〈f ′(u), g−1v〉 = 〈gf ′(u), v〉
for all g ∈ G and u, v ∈ X. This means that f ′ is G-equivariant, that
is, f ′(gu) = gf ′(u) for every g ∈ G and u ∈ X. Since u0 ∈ Σ, we obtain
gf ′(u0) = f ′(u0) for all g ∈ G, that is, f ′(u0) ∈ Σ?. Thus we conclude
f ′(u0) ∈ Σ? ∩ Σ⊥ = {0}. Therefore f ′(u0) = 0.

” ⇐ ” Suppose that there exists a non-zero element v? ∈ Σ? ∩ Σ⊥

and define f?(·) by f?(u) = 〈v?, u〉. It is clear that f? ∈ C1
G(X) and

(f?)′(·) = v? 6= 0, so f? has no critical point in X. On the other hand
v? ∈ Σ⊥ implies v?|Σ = 0, thus (f?|Σ)′(u) = 0 for every u ∈ Σ which
contradicts (PSC).

In the sequel, we are interested to find conditions in order to have
Σ? ∩ Σ⊥ = {0}, that is, (PSC) to be verified. There are two ways to
achieve this purpose, the so-called “compact” as well as the “isometric”
cases. We are dealing now with the first one whose original form has
been given by Palais [232].

Theorem 1.25 Let G be a compact topological group and the represen-
tation π of G over X is continuous, that is, (g, u) → gu is a continuous
function G×X into X. Then (PSC) holds.

In order to prove this theorem, we recall that for each u ∈ X, there
exists a unique element Au ∈ X such that

〈v?, Au〉 =
∫

G

〈v?, gu〉dg, ∀ v? ∈ X?, (1.41)

where dg is the normalized Haar measure on G. The mapping A : X → Σ
is called the averaging operator on G.

Proof of Theorem 1.25. On account of Theorem 1.24, it is enough to
verify the condition Σ?∩Σ⊥ = {0}. Let v? ∈ Σ?∩Σ⊥ fixed and suppose
that v? 6= 0. Let us define the hyperplane Hv? = {u ∈ X : 〈v?, u〉 = 1}
which is a non-empty, closed, convex subset of X. For any u ∈ Hv? ,
since v? ∈ Σ?, we have

〈v?, Au〉 =
∫

G

〈v?, gu〉dg =
∫

G

〈g−1v?, u〉dg =
∫

G

〈v?, u〉dg =
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= 〈v?, u〉
∫

G

dg = 〈v?, u〉 = 1.

Note however that v? ∈ Σ⊥, thus 〈v?, Au〉 = 0 for any u ∈ Hv? , contra-
diction.

Another possibility for (PSC) to be valid is the following one which
will be given without proof.

Theorem 1.26 Assume that X is a reflexive and strictly convex Banach
space and G acts isometrically on X, that is, ‖gu‖ = ‖u‖ for all g ∈ G

and u ∈ X. Then (PSC) holds.

We conclude this subsection with a non-smooth version of (PSC). On
account of relation (1.35), we are entitled to consider the following form
of the principle of symmetric criticality for Szulkin functionals (shortly,
(PSCSZ)):

• If I = E +ζ : X → R∪{+∞} is a G-invariant Szulkin type functional
and 0 ∈ (E|Σ)′(u) + ∂(ζ|Σ)(u) in Σ? then 0 ∈ E′(u) + ∂ζ(u) in X?.

Although a slightly more general version is proven by Kobayashi-Otani
[158], we recall the following form of the principle of symmetric criticality
for Szulkin functionals which will be applied in the next chapters.

Theorem 1.27 [158, Theorem 3.16] Let X be a reflexive Banach space
and let I = E + ζ : X → R ∪ {+∞} be a Szulkin-type functional on
X. If a compact group G acts linearly and continuously on X, and the
functionals E and ζ are G-invariant, then (PSCSZ) holds.

The proof of Theorem 1.27 is quite involved, it combines in an ingenious
way various methods and notions from convex and functional analysis.
The interested reader may consult the paper of Kobayashi-Otani [158].

1.7 Pohozaev’s fibering method

The fibering scheme was introduced by S.I. Pohozaev in [243], [244].
Although there are various versions of it, we present the so-called one-
parametric fibering method.

Let X be a real Banach space, f : X → R be a functional such that
f is of class C1 on X \ {0}. By means of f we define the function
f̃ : (R \ {0})×X → R by

f̃(λ, v) = f(λv), (λ, v) ∈ (R \ {0})×X. (1.42)
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Let S = {u ∈ X : ‖u‖ = 1}.

Definition 1.6 A point (λ, v) ∈ (R \ {0}) × S is conditionally critical
of the function f̃ if

−f̃ ′(λ, v) ∈ N(R\{0})×S(λ, v),

where N(R\{0})×S(λ, v) is the normal cone to the set (R\{0})×S at the
point (λ, v).

We have the following result, proved by Pohozaev [244].

Theorem 1.28 Let X be a real Banach space with differentiable norm
on X \ {0} and let (λ, v) ∈ (R \ {0})×S be a conditionally critical point
of f̃ : (R \ {0})×X → R. Then u = λv ∈ X \ {0} is a critical point of
f : X → R, that is, f ′(u) = 0.

Proof Due to the hypothesis, we have that

−f̃ ′(λ, v) ∈ N(R\{0})×S(λ, v).

On account of Proposition A.2, see Appendix A, we obtain

(−f̃ ′λ(λ, v),−f̃ ′v(λ, v)) ∈ NR\{0}(λ)×NS(v).

Here, f̃ ′v denotes the differential of f̃ with respect to v in the whole space
X, while f̃ ′λ is the derivative of f̃ with respect to the variable λ.

Note that NR\{0}(λ) = {0}, thus

f̃ ′λ(λ, v) = 0. (1.43)

Moreover, since TS(v) is a linear space, the condition −f̃ ′v(λ, v) ∈ NS(v)
reduces to the fact that

〈f̃ ′v(λ, v), w〉 = 0 for all w ∈ TS(v).

Since TS(v) = Ker‖ · ‖′(v), see Zeidler [296, Theorem 43.C], there are
κ, µ ∈ R such that κ2 + µ2 6= 0 and

κf̃ ′v(λ, v) = µ‖ · ‖′(v). (1.44)

From (1.44) it follows that for every v ∈ X,

κ〈f̃ ′v(λ, v), v〉 = µ〈‖ · ‖′(v), v〉. (1.45)

A simple calculation shows that

f̃ ′v(λ, v) = λf ′(λv). (1.46)
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Moreover, we have

〈f̃ ′v(λ, v), v〉 = λ〈f ′(λv), v〉 = λf̃ ′λ(λ, v).

Consequently, from (1.45) and the above relation we obtain that

λκf̃ ′λ(λ, v) = µ〈‖ · ‖′(v), v〉 = µ.

From this equality and (1.43) we get µ = 0. Then, we necessarily have
κ 6= 0. Combining (1.44) with (1.46), we have that

λf ′(u) = f̃ ′v(λ, v) = 0

for u = λv. Since λ 6= 0, we obtain f ′(u) = 0 which concludes the proof.

1.8 Historical comments

Ekeland’s variational principle [100] was established in 1974 and is the
nonlinear version of the Bishop–Phelps theorem [239, 240], with its main
feature of how to use the norm completeness and a partial ordering to
obtain a point where a linear functional achieves its supremum on a
closed bounded convex set. A major consequence of Ekeland’s varia-
tional principle is that even if it is not always possible to minimize a
nonnegative C1 functional Φ on a Banach space; however, there is al-
ways a minimizing sequence (un)n≥1 such that Φ′(un)→0 as n→∞.

Sullivan [281] observed that Ekeland’s variational principle character-
izes complete metric spaces in the following sense.

Theorem 1.29 Let (M,d) be a metric space. Then M is complete if
and only if the following holds: For every application Φ : M→(−∞,∞],
Φ 6≡ ∞, which is bounded from below, and for every ε > 0, there exists
zε ∈ M such that

(i) Φ(zε) ≤ infM Φ + ε ;
(ii) Φ(x) > Φ(zε)− ε d(x, zε), for any x ∈ M \ {zε}.
The mountain pass theorem was established by Ambrosetti and Ra-

binowitz in [7]. Their original proof relies on some deep deformation
techniques developed by Palais and Smale [231], [234], who put the main
ideas of the Morse theory into the framework of differential topology on
infinite dimensional manifolds. In this way, Palais and Smale replaced
the finite dimensionality assumption with an appropriate compactness
hypothesis.
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The main underlying ideas of the fibering methods are the following:
1. Let X,Y be two real Banach spaces and A : X → Y be a nonlinear

operator. Fix an element h ∈ Y and consider the equation

A(u) = h. (1.47)

We also consider the wider Banach space X̃, Ỹ such that X ⊂ X̃ and
Y ⊂ Ỹ . Now let Ã : X̃ → Ỹ be a nonlinear operator such that Ã|X = A.
Instead of (1.47) we consider the extended equation

Ã(ũ) = h̃. (1.48)

2. We equip X̃ with a nonlinear structure associated to the nonlinear
operator A.

For given spaces X,Y and a nonlinear operator A : X → Y , that is,
for the triple (X,A, Y ) we construct a triple (ξ, α, η), where ξ : X̃ → X

and η : Ỹ → Y are fibrations and α = (Ã, A) : (X̃, X) → (Ỹ , Y ) is a
morphism of fibrations, that is, η ◦ Ã = A ◦ ξ. If we take X̃ = Rk ×X,
then we obtain the k-parametric fibering methods. If k = 1 we get
the one-parametric fibering methods. The basic idea in one parametric
fibering methods is the representation of solutions for A(u) = h in the
form

u = tv, (1.49)

where ∈ R \ {0} is a real parameter and v ∈ X \ {0} satisfying the
fibering constraint

H(t, v) = c. (1.50)

The function H will be said fibering functional. In particular case, when
H(t, v) ≡ ‖v‖, the condition (1.50) becomes ‖v‖ = 1 and it is called
spherical fibering.
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Variational Inequalities

Just as houses are made of
stones, so is science made of
facts; but a pile of stones is
not a house and a collection of
facts is not necessarily science.

Henri Poincaré (1854–1912)

2.1 Introduction

The theory of variational inequalities appeared in the middle 1960’s, in
connection with the notion of subdifferential in the sense of convex anal-
ysis. All the inequality problems treated to the beginning 1980’s were
related to convex energy functionals and therefore strictly connected
to monotonicity: for instance, only monotone (possibly multivalued)
boundary conditions and stress-strain laws could be studied. Noncon-
vex inequality problems first appeared in [203] in the setting of global
analysis and were related to the subdifferential introduced in [82] (see
Marino [202] for a survey of the developments in this direction). A typ-
ical feature of nonconvex problems is that, while in the convex case the
stationary variational inequalities give rise to minimization problems for
the potential or for the energy, in the nonconvex case the problem of the
stationarity of the potential emerges and therefore it becomes reasonable
to expect results also in the line of critical point theory.

2.2 Variational inequalities on Ω = ω × Rl

44
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2.2.1 Case l ≥ 2

Let Ω = ω × Rl be an unbounded strip (or, in other words, a strip-like
domain), where ω ⊂ Rm is open bounded, and l ≥ 2, m ≥ 1. Let
f : Ω × R → R be a continuous function, which satisfies the following
condition:
(f1) there exist c1 > 0 and p ∈ (2, 2?) such that

|f(x, s)| ≤ c1(|s|+ |s|p−1), for every (x, s) ∈ Ω× R.

Here, we denoted by 2∗ = 2(m + l)(m + l − 2)−1 the critical Sobolev
exponent.

As usual, H1
0 (Ω) is the Sobolev space endowed with the inner prod-

uct

〈u, v〉H1
0

=
∫

Ω

∇u∇vdx

and norm ‖·‖H1
0

=
√
〈·, ·〉H1

0
, while the norm of Lα(Ω) will be denoted by

‖ · ‖α. It is well-known that the embedding H1
0 (Ω) ↪→ Lα(Ω), α ∈ [2, 2∗],

is continuous, that is, there exists kα > 0 such that ‖u‖α ≤ kα‖u‖H1
0

for
every u ∈ H1

0 (Ω).
Consider finally the closed convex cone

K = {u ∈ H1
0 (Ω) : u ≥ 0 a.e. in Ω}.

The aim of this section is to study the following (eigenvalue) problem
for variational inequality (denoted by (P)):

Find (u, λ) ∈ K × (0,∞) such that
∫

Ω

∇u(x)(∇v(x)−∇u(x))dx− λ

∫

Ω

f(x, u(x))(v(x)− u(x))dx ≥ 0, ∀v ∈ K.

We say that a function h : Ω → R is axially symmetric, if h(x, y) =
h(x, gy) for all x ∈ ω, y ∈ Rl and g ∈ O(l). In particular, we denote by
H1

0,s(Ω) the closed subspace of axially symmetric functions of H1
0 (Ω).

Define F : Ω× R→ R by F (x, s) =
∫ s

0

f(x, t)dt and beside of (f1), we

make the following assumptions:

(f2) lim
s→0

|f(x, s)|
s

= 0 uniformly for every x ∈ Ω.
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(f3) There exist q ∈]0, 2[, ν ∈ [2, 2?], α ∈ Lν/(ν−q)(Ω), β ∈ L1(Ω) such
that

F (x, s) ≤ α(x)|s|q + β(x).

(f4) There exists u0 ∈ H1
0,s(Ω) ∩ K such that

∫

Ω

F (x, u0(x))dx > 0.

The main result of this section can be formulated as follows.

Theorem 2.1 Let f : Ω : R→ R be a continuous function which satisfies
(f1)-(f4) and F (·, s) is axially symmetric for every s ∈ R. Then there
is an open interval Λ0 ⊂ (0,∞) such that for every λ ∈ Λ0 there are
at least three distinct elements uλ

i ∈ K (i ∈ {1, 2, 3}) which are axially
symmetric, having the property that (uλ

i , λ) are solutions of (P) for every
i ∈ {1, 2, 3}.

From now on, we assume that the hypotheses of Theorem 2.1 are
fulfilled. Before to prove Theorem 2.1, some preliminary results will be
given.

Remark 2.1 For every ε > 0 there exists c(ε) > 0 such that

(i) |f(x, s)| ≤ ε|s|+ c(ε)|s|p−1 for every (x, s) ∈ Ω× R.

(ii) |F (x, s)| ≤ εs2 + c(ε)|s|p for every (x, s) ∈ Ω× R.

Let us define F : H1
0 (Ω) → R by F(u) =

∫

Ω

F (x, u(x))dx. From condi-

tion (f1) follows that F is of class C1 and F ′(u)(v) =
∫

Ω

f(x, u(x))v(x)dx.

We consider the indicator function of the set K, ζK : H1
0 (Ω) →] −

∞,∞], i.e.,

ζK(u) =
{

0, if u ∈ K
+∞, if u /∈ K,

which is clearly convex, proper and lower semi-continuous. Moreover,
define for λ > 0 the function Iλ : H1

0 (Ω) →]−∞,∞] by

Iλ(u) =
1
2
‖u‖2H1

0
− λF(u) + ζK(u). (2.1)

It is easily seen that Iλ is a Szulkin-type functional. Furthermore, one
has

Remark 2.2 If u ∈ H1
0 (Ω) is a critical point of Iλ, then (u, λ) is a

solution of (P).
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Let G = idRm × O(l) ⊂ O(m + l). Define the action of G on H1
0 (Ω)

by gu(x) = u(g−1x) for every g ∈ G, u ∈ H1
0 (Ω) and x ∈ Ω. Since K

is a G-invariant set, then ζK is a G-invariant function. Since F (·, s) is
axially symmetric for every s ∈ R, then F is also a G-invariant function.
The norm ‖ · ‖H1

0
is a G-invariant function as well. In conclusion, if we

consider the set

Σ = H1
0,s(Ω) = {u ∈ H1

0 (Ω) : gu = u for every g ∈ G},

then, in view of Theorem 1.27, every critical point of Iλ|Σ becomes as
well critical point of Iλ.

We will apply Theorem 1.22

X = Σ = H1
0,s(Ω), E1 =

1
2
‖ ·‖2Σ, ζ1 = ζK|Σ, E2 = −F|Σ, Λ = [0,∞[.

As usual, ‖ · ‖Σ, ζK|Σ and F|Σ denote the restrictions of ‖ · ‖H1
0
, ζK and

F to Σ, respectively. We will use also the notation 〈·, ·〉Σ for the restric-
tion of 〈·, ·〉H1

0
to Σ and also we denote by 〈·, ·〉Σ the duality mapping

restricted to Σ× Σ?.
Now, we are going to verify the hypotheses (i)-(iii) of Theorem 1.22.

Step 1. (Verification of (i)). The weakly sequentially lower semi-
continuity of E1 is standard. We prove that E2 is weakly sequentially
continuous.

Let {un} be a sequence from Σ which converges weakly to some
u ∈ Σ. In particular, {un} is bounded in Σ and by virtue of Lemma 2.1,
F (x, s) = o(s2) as s → 0, and F (x, s) = o(s2∗) as s → +∞, uniformly
for every x ∈ Ω. But, from [107, Lemma 4, p. 368] follows that E2(un) →
E2(u) as n →∞, that is, E2 is weakly sequentially continuous.

Step 2. (Verification of (ii)). Fix λ ∈ Λ. First, we will prove that
I1 + λI2 ≡ E1 + ζ1 + λE2 is coercive. Indeed, due to (f3), by Hölder’s
inequality we have for every u ∈ Σ that

I1(u) + λI2(u) ≥ 1
2
‖u‖2Σ − λ

∫

Ω

α(x)|u(x)|qdx− λ

∫

Ω

β(x)dx

≥ 1
2
‖u‖2Σ − λ‖α‖ν/(ν−q)k

q
ν‖u‖q

Σ − λ‖β‖1.

Since q < 2, it is clear that ‖u‖Σ → +∞ implies I1(u) + λI2(u) → +∞,

as claimed.
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Now, we will prove that I1 +λI2 verifies (PSZ)c, c ∈ R. Let {un} ⊂
Σ be a sequence such that

I1(un) + λI2(un) → c (2.2)

and for every v ∈ Σ we have

〈un, v−un〉Σ+λ〈E′
2(un), v−un〉Σ+ζ1(v)−ζ1(un) ≥ −εn‖v−un‖Σ, (2.3)

for a sequence {εn} in [0,+∞[ with εn → 0. In particular, (2.2) shows
that {un} ⊂ K. Moreover, the coerciveness of the function I1 + λI2

implies that the sequence {un} is bounded in Σ ∩ K. Therefore, there
exists an element u ∈ K∩Σ such that {un} converges weakly to u in Σ.

(Note that K is convex and closed, thus, weakly closed.) Moreover, since
the embedding Σ ↪→ Lp(Ω) is compact (see [107]), up to a subsequence,
{un} converges strongly to u in Lp(Ω). Choosing in particular v = u in
(2.3), we have

‖un − u‖2Σ ≤ λ〈E′
2(un), u− un〉Σ + 〈u, u− un〉Σ + εn‖u− un‖Σ.

The last two terms tend to zero as n → ∞. Thus, in order to prove
‖un − u‖Σ → 0, it is enough to show that the first term in the right
hand side tends to zero as well. From Remark 2.1 a), we obtain

〈E′
2(un), u− un〉Σ =

∫

Ω

f(x, un(x))(−u(x) + un(x))dx

≤
∫

Ω

[
ε|un(x)|+ c(ε)|un(x)|p−1

] |un(x)− u(x)|dx

≤ εk2
2‖un‖Σ‖un − u‖Σ + c(ε)‖un‖p−1

p ‖un − u‖p.

Due to the arbitrariness of ε > 0, the last term tends to zero, therefore,
‖un − u‖Σ → 0 as n →∞.

Step 3. (Verification of (iii)). Let us define the function γ : [0,∞[→ R
by

γ(s) = sup{−E2(u) : ‖u‖2Σ ≤ 2s}.
Due to Remark 2.1 (ii), one has

γ(s) ≤ 2εk2
2s + 2pc(ε)kp

ps
p
2 .

On the other hand, we know that γ(s) ≥ 0 for s ≥ 0. Due to the
arbitrariness of ε > 0, we deduce

lim
s→0+

γ(s)
s

= 0.
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By (f4) it is clear that u0 6= 0 (E2(0) = 0). Therefore it is possible to
choose a number η such that

0 < η < −2E2(u0)‖u0‖−2
Σ .

From lim
s→0+

γ(s)/s = 0 follows the existence of a number s0 ∈]0, ‖u0‖2Σ/2[

such that γ(s0) < ηs0. Therefore,

γ(s0) < −2E2(u0)‖u0‖−2
Σ s0.

Choose ρ0 > 0 such that

γ(s0) < ρ0 < −2E2(u0)‖u0‖−2
Σ s0. (2.4)

Due to the choice of t0 and (2.4) we have

ρ0 < −E2(u0). (2.5)

Define h : Λ = [0, +∞[→ R by h(λ) = ρ0λ. We prove that the
function h satisfies the inequality

sup
λ∈Λ

inf
u∈Σ

(I1(u) + λI2(u) + ρ0λ) < inf
u∈Σ

sup
λ∈Λ

(I1(u) + λI2(u) + ρ0λ).

Note, that in the previous inequality we can put Σ ∩ K instead of Σ;
indeed, if u ∈ Σ \ K, then I1(u) = +∞.

The function

Λ 3 λ 7→ inf
u∈Σ∩K

[‖u‖2Σ/2 + λ(ρ0 + E2(u))]

is upper semi-continuous on Λ. Relation (2.5) implies that

lim
λ→+∞

inf
u∈Σ∩K

[I1(u) + λI2(u) + ρ0λ] ≤ lim
λ→+∞

[‖u0‖2Σ/2 + λ(ρ0 + E2(u0))
]

= −∞.

Thus we find an element λ ∈ Λ such that

sup
λ∈Λ

inf
u∈Σ∩K

(I1(u) + λI2(u) + ρ0λ) = inf
u∈Σ∩K

[‖u‖2Σ/2 + λ(ρ0 + E2(u))
]
.

(2.6)
Since γ(s0) < ρ0, for all u ∈ Σ such that ‖u‖2Σ ≤ 2s0, we have

E2(u) > −ρ0. Thus, we have

s0 ≤ inf{‖u‖2Σ/2 : E2(u) ≤ −ρ0} ≤ inf{‖u‖2Σ/2 : u ∈ K, E2(u) ≤ −ρ0}.
(2.7)

On the other hand

inf
u∈Σ∩K

sup
λ∈Λ

(I1(u)+λI2(u)+ρ0λ) = inf
u∈Σ∩K

[
‖u‖2Σ/2 + sup

λ∈Λ
(λ(ρ0 + E2(u)))

]
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= inf
u∈Σ∩K

{‖u‖2Σ/2 : E2(u) ≤ −ρ0

}
.

Therefore, relation (2.7) can be written as

s0 ≤ inf
u∈Σ∩K

sup
λ∈Λ

(I1(u) + λI2(u) + ρ0λ). (2.8)

There are two distinct cases:
(A) If 0 ≤ λ < s0/ρ0, we have

inf
u∈Σ∩K

[‖u‖2Σ/2 + λ(ρ0 + E2(u))
] ≤ λ(ρ0 + E2(0)) = λρ0 < s0.

Combining this inequality with (2.6) and (2.8) we obtain the desired
inequality.

(B) If s0/ρ0 ≤ λ, from ρ0 < −E2(u0) and (2.4) follows

inf
u∈Σ∩K

[‖u‖2Σ/2 + λ(ρ0 + E2(u))
] ≤ ‖u0‖2Σ/2 + λ(ρ0 + E2(u0))

≤ ‖u0‖2Σ/2 + s0(ρ0 + E2(u0))/ρ0 < s0.

Now, we will repeat the last part of (A), which concludes Step 3.

Proof of Theorem 2.1. Due to the above three steps, Theorem 1.22
implies the existence of an open interval Λ0 ⊂ [0,∞[, such that for each
λ ∈ Λ0, the function Iλ|Σ ≡ I1 + λI2 has at least three critical points in
Σ ∩ K. It remains to apply Theorem 1.27 and Remark 2.2. ¤

2.2.2 Case l = 1

In this section we will continue our studies on the strip-like domains,
but contrary to the previous section, we consider domains of the form
Ω = ω × R, where ω ⊂ Rm(m ≥ 1) is a bounded open subset.

J.-L. Lions [98] observed that defining the closed convex cone

K = {u ∈ H1
0 (ω × R) : u is nonnegative,

y 7→ u(x, y) is nonincreasing for x ∈ ω, y ≥ 0, and
y 7→ u(x, y) is nondecreasing for x ∈ ω, y ≤ 0},

(K)
the bounded subsets of K are relatively compact in Lp(ω×R) whenever
p ∈ (2, 2∗). Note that 2? = ∞, if m = 1.

The main goal of this section is to give a new approach to treat elliptic
(eigenvalue) problems on domains of the type Ω = ω × R. The genesis
of our method relies on the Szulkin-type functionals. Indeed, since the
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indicator function of a closed convex subset of a vector space (so, in
particular K in H1

0 (ω×R)) is convex, lower semi-continuous and proper,
this approach arises in a natural manner. In order to formulate our
problem, we shall consider a continuous function f : (ω × R) × R → R
such that

(F1) f(x, 0) = 0, and there exist c1 > 0 and p ∈ (2, 2∗) such that

|f(x, s)| ≤ c1(|s|+ |s|p−1), ∀ (x, s) ∈ (ω × R)× R.

Let a ∈ L1(ω×R)∩L∞(ω×R) with a ≥ 0, a 6≡ 0, and q ∈ (1, 2). For
λ > 0, we denote by (Pλ) the following variational inequality problem:
Find u ∈ K such that∫

ω×R
∇u(x)∇(v(x)− u(x))dx +

∫

ω×R
f(x, u(x))(−v(x) + u(x))dx

≥ λ

∫

ω×R
a(x)|u(x)|q−2u(x)(v(x)− u(x))dx, ∀v ∈ K.

For the sake of notation, we introduce Ω = ω × R.

Define F : Ω × R → R by F (x, s) =
∫ s

0

f(x, t)dt and beside of (F1)

we make the following assumptions:

(F2) lim
s→0

f(x, s)
s

= 0 uniformly for every x ∈ Ω;

(F3) There exists ν > 2 such that

νF (x, s)− sf(x, s) ≤ 0, ∀(x, s) ∈ Ω× R;

(F4) There exists R > 0 such that

inf{F (x, s) : (x, |s|) ∈ ω × [R,∞)} > 0.

Lemma 2.1 If the functions f, F : Ω× R→ R satisfies (F1), (F3) and
(F4) then there exist c2, c3 > 0 such that

F (x, s) ≥ c2|s|ν − c3s
2, ∀(x, s) ∈ Ω× R.

Proof First, for arbitrary fixed (x, u) ∈ Ω× R we consider the function
g : (0,+∞) → R defined by

g(s) = s−νF (x, su).

Clearly, g is a function of class C1 and we have

g′(s) = −νs−ν−1F (x, su) + s−νuf(x, su), s > 0.



52 Variational Inequalities

Let s > 1 and by mean value theorem, there exist τ = τ(x, u) ∈ (1, s)
such that g(s)−g(1) = g′(τ)(s−1). Therefore, g′(τ) = −ντ−ν−1F (x, τu)+
τ−νuf(x, τu), thus

g(s)− g(1) = −τ−ν−1[νF (x, τu)− τuf(x, τu)](s− 1).

By (F3) one has g(s) ≥ g(1), i.e. F (x, su) ≥ sνF (x, u), for every s ≥ 1.

Let cR = inf{F (x, s) : (x, |s|) ∈ ω × [R,∞)}, which is a strictly positive
number, due to (F4). Combining the above facts we derive

F (x, s) ≥ cR

Rν
|s|ν , ∀(x, s) ∈ Ω× R with |s| ≥ R. (2.9)

On the other hand, by ((F1)) we have |F (x, s)| ≤ c1(s2 + |s|p) for every
(x, s) ∈ Ω× R. In particular, we have

−F (x, s) ≤ c1(s2 + |s|p) ≤ c1(1 + Rp−2 + Rν−2)s2 − c1|s|ν

for every (x, s) ∈ Ω × R with |s| ≤ R. Combining the above inequality
with (2.9), the desired inequality yields if one chooses c2 = min{c1, cR/Rν}
and c3 = c1(1 + Rp−2 + Rν−2).

Remark 2.3 In particular, from Lemma 2.1 we observe that 2 < ν < p.

To investigate the existence of solutions of (Pλ) we shall construct a
functional Iλ : H1

0 (Ω) → R associated to (Pλ) which is defined by

Iλ(u) =
1
2

∫

Ω

|∇u|2 −
∫

Ω

F (x, u(x))dx− λ

q

∫

Ω

a(x)|u|q + ζK(u),

where ζK is the indicator function of the set K.

If we consider the function F : H1
0 (Ω) → R defined by

F(u) =
∫

Ω

F (x, u(x))dx,

then F is of class C1 and

〈F ′(u), v〉H1
0

=
∫

Ω

f(x, u(x))v(x)dx, ∀ u, v ∈ H1
0 (Ω).

By standard arguments we have that the functionals A1, A2 : H1
0 (Ω) →

R, defined by A1(u) = ‖u‖2
H1

0
and A2(u) =

∫
Ω

a(x)|u|qdx are of class C1

with derivatives

〈A′1(u), v〉H1
0

= 2〈u, v〉H1
0

and

〈A′2(u), v〉H1
0

= q

∫

Ω

a(x)|u|q−2uvdx.
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Therefore the function

Eλ(u) =
1
2
‖u‖2H1

0
− λ

q

∫

Ω

a(x)|u|q −F(u)

on H1
0 (Ω) is of class C1. On the other hand, the indicator function of

the set K, i.e.

ζK(u) =
{

0, if u ∈ K,

+∞, if u /∈ K,

is convex, proper, and lower semi-continuous. In conclusion, Iλ = Eλ +
ζK is a Szulkin-type functional.

Moreover, one easily obtain the following

Proposition 2.1 Fix λ > 0 arbitrary. Every critical point u ∈ H1
0 (Ω)

of Iλ = Eλ + ζK (in the sense of Szulkin) is a solution of (Pλ).

Proof Since u ∈ H1
0 (Ω) is a critical point of Iλ = Eλ + ζK, one has

〈E′
λ(u), v − u〉H1

0
+ ζK(v)− ζK(u) ≥ 0, ∀v ∈ H1

0 (Ω).

We have immediately that u belongs to K. Otherwise, we would have
ζK(u) = +∞ which led us to a contradiction, letting for instance v =
0 ∈ K in the above inequality. Now, we fix v ∈ K arbitrary and we
obtain the desired inequality.

Remark 2.4 It is easy to see that 0 ∈ K is a trivial solution of (Pλ) for
every λ ∈ R.

Proposition 2.2 If the conditions (F1)− (F3) hold, then Iλ = Eλ + ζK
satisfies (PSZ)c-condition for every c ∈ R and λ > 0.

Proof Let λ > 0 and c ∈ R be some fixed numbers and let {un} be a
sequence from H1

0 (Ω) such that

Iλ(un) = Eλ(un) + ζK(un) → c; (2.10)

〈E′
λ(un), v − un〉H1

0
+ ζK(v)− ζK(un) ≥ −εn‖v − un‖H1

0
, ∀v ∈ H1

0 (Ω),
(2.11)

for a sequence {εn} in [0,∞) with εn → 0. By (2.10) one concludes that
the sequence {un} belongs entirely to K. Setting v = 2un in (2.11), we
obtain

〈E′
λ(un), un〉H1

0
≥ −εn‖un‖H1

0
.
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From the above inequality we derive

‖un‖2H1
0
−λ

∫

Ω

a(x)|un|q−
∫

Ω

f(x, un(x))un(x)dx ≥ −εn‖un‖H1
0
. (2.12)

By (2.10) one has for large n ∈ N that

c + 1 ≥ 1
2
‖un‖2H1

0
− λ

q

∫

Ω

a(x)|un|q −
∫

Ω

F (x, un(x))dx (2.13)

Multiplying (2.12) by ν−1 and adding this one to (2.13), by Hölder’s
inequality we have for large n ∈ N

c + 1 +
1
ν
‖un‖H1

0
≥ (

1
2
− 1

ν
)‖un‖2H1

0
− λ(

1
q
− 1

ν
)
∫

Ω

a(x)|un|q

−1
ν

∫

Ω

[νF (x, un(x))− un(x)f(x, un(x))]dx

(F3)≥ (
1
2
− 1

ν
)‖un‖2H1

0
− λ(

1
q
− 1

ν
)‖a‖ν/(ν−q)‖un‖q

ν

≥ (
1
2
− 1

ν
)‖un‖2H1

0
− λ(

1
q
− 1

ν
)‖a‖ν/(ν−q)k

q
ν‖un‖q

H1
0
.

In the above inequalities we used the Remark 2.3 and the hypothesis
a ∈ L1(Ω)∩L∞(Ω) thus, in particular, a ∈ Lν/(ν−q)(Ω). Since q < 2 < ν,

from the above estimation we derive that the sequence {un} is bounded
in K. Therefore, {un} is relatively compact in Lp(Ω), p ∈ (2, 2∗). Up to
a subsequence, we can suppose that

un → u weakly in H1
0 (Ω); (2.14)

un → u strongly in Lµ(Ω), µ ∈ (2, 2∗). (2.15)

Since K is (weakly) closed then u ∈ K. Setting v = u in (2.11), we
have

〈un, u− un〉H1
0

+
∫

Ω

f(x, un(x))(un(x)− u(x))dx

−λ

∫

Ω

a(x)|un|q−2un(u− un) ≥ −εn‖u− un‖H1
0
.
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Therefore, in view of Remark 2.1 (i) we derive

‖u− un‖2H1
0

≤ 〈u, u− un〉H1
0

+
∫

Ω

f(x, un(x))(un(x)− u(x))dx

−λ

∫

Ω

a(x)|un|q−2un(u− un) + εn‖u− un‖H1
0

≤ 〈u, u− un〉H1
0

+ λ‖a‖ν/(ν−q)‖un‖q−1
ν ‖u− un‖ν + εn‖u− un‖H1

0

+ε‖un‖H1
0
‖un − u‖H1

0
+ c(ε)‖un‖p−1

p ‖un − u‖p,

where ε > 0 is arbitrary small. Taking into account relations (2.14)
and (2.15), the facts that ν, p ∈ (2, 2∗), the arbitrariness of ε > 0 and
εn → 0+, one has that {un} converges strongly to u in H1

0 (Ω). This
completes the proof.

Proposition 2.3 If the conditions (F1) − (F4) are verified, then there
exists a λ0 > 0 such that for every λ ∈ (0, λ0) the function Iλ satisfies
the Mountain Pass Geometry, i.e. the following assertions are true:

(i) there exist constants αλ > 0 and ρλ > 0 such that Iλ(u) ≥ αλ for
all ‖u‖H1

0
= ρλ;

(ii) there exists eλ ∈ H1
0 (Ω) with ‖eλ‖H1

0
> ρλ and Iλ(eλ) ≤ 0.

Proof (i). Due to Remark 2.1 (ii), for every ε > 0 there exists c(ε) > 0
such that F(u) ≤ ε‖u‖2

H1
0

+ c(ε)‖u‖p
p for every u ∈ H1

0 (Ω). It suffices to
restrict our attention to elements u which belong to K; otherwise Iλ(u)
will be +∞, i.e. (i) holds trivially. Fix ε0 ∈ (0, 1

2 ). One has

Iλ(u) ≥ (
1
2
− ε0)‖u‖2H1

0
− kp

pc(ε0)‖u‖p
H1

0
− λkq

p

q
‖a‖p/(p−q)‖u‖q

H1
0

(2.16)

= (A−B‖u‖p−2
H1

0
− λC‖u‖q−2

H1
0

)‖u‖2H1
0
,

where A = ( 1
2 − ε0) > 0, B = kp

pc(ε0) > 0 and C = kq
p‖a‖p/(p−q)/q > 0.

For every λ > 0, let us define a function gλ : (0,∞) → R by

gλ(s) = A−Bsp−2 − λCsq−2.

Clearly, g′λ(sλ) = 0 if and only if sλ = (λ 2−q
p−2

C
B )

1
p−q . Moreover, gλ(sλ) =

A − Dλ
p−2
p−q , where D = D(p, q, B, C) > 0. Choosing λ0 > 0 such that

gλ0(sλ0) > 0, one clearly has for every λ ∈ (0, λ0) that gλ(sλ) > 0.

Therefore, for every λ ∈ (0, λ0), setting ρλ = sλ and αλ = gλ(sλ)s2
λ, the

assertion from (i) holds true.
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ii). By Lemma 2.1 we have F(u) ≥ c2‖u‖ν
ν − c3‖u‖22 for every u ∈

H1
0 (Ω). Let us fix u ∈ K. Then we have

Iλ(u) ≤ (
1
2

+ c3k
2
2)‖u‖2H1

0
− c2‖u‖ν

ν +
λ

q
‖a‖ν/(ν−q)k

q
ν‖u‖q

H1
0
. (2.17)

Fix arbitrary u0 ∈ K \ {0}. Letting u = su0 (s > 0) in (2.17), we have
that Iλ(su0) → −∞ as s → +∞, since ν > 2 > q. Thus, for every
λ ∈ (0, λ0), it is possible to set s = sλ so large that for eλ = sλu0, we
have ‖eλ‖H1

0
> ρλ and Iλ(eλ) ≤ 0. This ends the proof of the proposition.

The main result of this section can be read as follows.

Theorem 2.2 Let f : Ω × R → R be a function which satisfies (F1)-
(F4). Then there exists λ0 > 0 such that (Pλ) has at least two nontrivial,
distinct solutions u1

λ, u2
λ ∈ K whenever λ ∈ (0, λ0).

Proof In the first step we prove the existence of the first nontrivial
solution of (Pλ). By Proposition 2.2, the functional Iλ satisfies (PSZ)c-
condition for every c ∈ R and clearly Iλ(0) = 0 for every λ > 0.

Let us fix λ ∈ (0, λ0), λ0 being from Proposition 2.3. It follows that
there are constants αλ, ρλ > 0 and eλ ∈ H1

0 (Ω) such that Iλ fulfills
the properties (i) and (ii) from Theorem 1.21. Therefore, the number
c1
λ = infγ∈Γ supt∈[0,1] Jλ(γ(t)), where Γ = {γ ∈ C([0, 1],H1

0 (Ω)) : γ(0) =
0, γ(1) = eλ}, is a critical value of Iλ with c1

λ ≥ αλ > 0. It is clear that
the critical point u1

λ ∈ H1
0 (Ω) which corresponds to c1

λ cannot be triv-
ial since Iλ(u1

λ) = c1
λ > 0 = Iλ(0). It remains to apply Proposition 2.1

which concludes that u1
λ is actually an element of K and it is a solution

of (Pλ).
In the next step we prove the existence of the second solution of the

problem (Pλ). For this let us fix λ ∈ (0, λ0) arbitrary, λ0 being from the
first step. By Proposition 2.3, there exists ρλ > 0 such that

inf
‖u‖

H1
0
=ρλ

Iλ(u) > 0. (2.18)

On the other hand, since a ≥ 0, a 6≡ 0, there exists u0 ∈ K such that∫
Ω

a(x)|u0(x)|qdx > 0. Thus, for t > 0 small one has

Iλ(tu0) ≤ t2(
1
2

+ c3k
2
2)‖u0‖2H1

0
− c2t

ν‖u0‖ν
ν −

λ

q
tq

∫

Ω

a(x)|u0(x)|qdx < 0.

For r > 0, let us denote by Br = {u ∈ H1
0 (Ω) : ‖u‖H1

0
≤ r} and
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Sr = {u ∈ H1
0 (Ω) : ‖u‖H1

0
= r}. With these notations, relation (2.18)

and the above inequality can be summarized as

c2
λ = inf

u∈Bρλ

Iλ(u) < 0 < inf
u∈Sρλ

Iλ(u). (2.19)

We point out that c2
λ is finite, due to (2.16). Moreover, we will show

that c2
λ is another critical point of Iλ. To this end, let n ∈ N \ {0} such

that
1
n

< inf
u∈Sρλ

Iλ(u)− inf
u∈Bρλ

Iλ(u). (2.20)

By Ekeland’s variational principle, applied to the lower semi-continuous
functional Iλ|Bρλ

, which is bounded below (see (2.19)), there is uλ,n ∈
Bρλ

such that

Iλ(uλ,n) ≤ inf
u∈Bρλ

Iλ(u) +
1
n

; (2.21)

Iλ(w) ≥ Iλ(uλ,n)− 1
n
‖w − uλ,n‖H1

0
, ∀w ∈ Bρλ

. (2.22)

By (2.20) and (2.21) we have that Iλ(uλ,n) < infu∈Sρλ
Iλ(u); therefore

‖uλ,n‖H1
0

< ρλ.

Fix an element v ∈ H1
0 (Ω). It is possible to choose t > 0 so small that

w = uλ,n + t(v − uλ,n) ∈ Bρλ
. Putting this element into (2.22), using

the convexity of ζK and dividing by t > 0, one concludes

Eλ(uλ,n + t(v − uλ,n))− Eλ(uλ,n)
t

+ζK(v)−ζK(uλ,n) ≥ − 1
n
‖v−uλ,n‖H1

0
.

Letting t → 0+, we derive

〈E′
λ(uλ,n), v−uλ,n〉H1

0 (Ω) +ζK(v)−ζK(uλ,n) ≥ − 1
n
‖v−uλ,n‖H1

0
. (2.23)

By (2.19) and (2.21) we obtain that

Iλ(uλ,n) = Eλ(uλ,n) + ζK(uλ,n) → c2
λ (2.24)

as n → ∞. Since v was arbitrary fixed in (2.23), the sequence {uλ,n}
fulfills (2.10) and (2.11), respectively. Hence, it is possible to prove in a
similar manner as in Proposition 2.2 that {uλ,n} contains a convergent
subsequence; denote it again by {uλ,n} and its limit point by u2

λ. It is
clear that u2

λ belongs to Bρλ
. By the lower semi-continuity of ζK we

have ζK(u2
λ) ≤ lim infn→∞ ζK(uλ,n). Combining this inequality with

limn→∞〈E′
λ(uλ,n), v−uλ,n〉H1

0
= 〈E′

λ(u2
λ), v−u2

λ〉H1
0

and (2.23) we have

〈E′
λ(u2

λ), v − u2
λ〉H1

0
+ ζK(v)− ζK(u2

λ) ≥ 0, ∀v ∈ H1
0 (Ω),
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i.e. u2
λ is a critical point of Iλ. Moreover,

c2
λ

(2.19)
= inf

u∈Bρλ

Iλ(u) ≤ Iλ(u2
λ) ≤ lim inf

n→∞
Iλ(uλ,n)

(2.24)
= c2

λ,

i.e. Iλ(u2
λ) = c2

λ. Since c2
λ < 0, it follows that u2

λ is not trivial. We apply
again Proposition 2.1, concluding that u2

λ is a solution of (Pλ) which
differs from u1

λ. This completes the proof of Theorem 2.2.

2.3 Area–type variational inequalities

In this section we are interested to obtain existence and multiplicity
results for hemivariational inequalities associated with energies which
come from the relaxation of functionals

f(u) =
∫

Ω

√
1 + |∇u|2 dx +

∫

Ω

G(x, u) dx ,

where u ∈ W 1,1
0 (Ω;RN ), Ω open in Rn, n ≥ 2. The first feature is that

the functional f does not satisfy the Palais-Smale condition in the space
of functions of bounded variations

BV (Ω;RN ) :=
{

u ∈ L1(Ω);
∂u

∂xi
is a measure, for all i = 1, 2, . . . , n

}
,

which is the natural domain of f . Therefore we extend f to Ln/(n−1)(Ω;RN )
with value +∞ outside BV (Ω;RN ). This larger space is better behaved
for the compactness properties, but the nonsmoothness of the functional
increases. The second feature is that the assumptions we impose on G

imply the second term of f to be continuous on Ln/(n−1)(Ω;RN ), but
not locally Lipschitz. More precisely, the function {s 7→ G(x, s)} is sup-
posed to be locally Lipschitz for a.e. x ∈ Ω, but the growth conditions
we impose do not ensure the corresponding property for the integral on
Ln/(n−1)(Ω;RN ).

After recalling the main tools we need in the sequel, we establish
some general results for a class of lower semicontinuous functionals f :
Lp(Ω;RN ) → R ∪ {+∞}. Next, we show that the area-type integrals
fall into the class considered in this section. By the way, we also prove a
relation between the convergence in the so-called intermediate topologies
of BV (Ω;RN ) and the convergence in Ln/(n−1)(Ω;RN ). Finally, we
obtain multiplicity results of Clark and Ambrosetti-Rabinowitz type.

We start with some notions and properties on nonsmooth analysis.
We refer to Appendix D for basic definitions and related results.
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Definition 2.1 Let c ∈ R. We say that f satisfies condition (epi)c, if
there exists ε > 0 such that

inf {|dGf |(u, λ) : f(u) < λ, |λ− c| < ε} > 0 .

The next two results are useful in dealing with condition (epi)c.

Proposition 2.4 Let (u, λ) ∈ epi (f). Assume that there exist positive
numbers %, σ, δ, ε and a continuous map

H : {w ∈ Bδ(u) : f(w) < λ + δ} × [0, δ] → X

satisfying

d(H(w, t), w) ≤ %t , f(H(w, t)) ≤ max{f(w)− σt, λ− ε}
whenever w ∈ Bδ(u), f(w) < λ + δ and t ∈ [0, δ].

Under these assumptions,

|dGf |(u, λ) ≥ σ√
%2 + σ2

.

If, moreover, X is a normed space, f is even, u = 0 and H(−w, t) =
−H(w, t), then

|dZ2Gf |(0, λ) ≥ σ√
%2 + σ2

.

Proof Let δ′ ∈]0, δ] be such that δ′ + σδ′ ≤ ε and let

K : (Bδ′(u, λ) ∩ epi (f))× [0, δ′] → epi (f)

be defined by K(
(w, µ), t

)
=

(H(w, t), µ − σt
)
. If (w, µ) ∈ Bδ′(u, λ) ∩

epi (f) and t ∈ [0, δ′], we have

λ− ε ≤ λ− δ′ − σδ′ < µ− σt , f(w)− σt ≤ µ− σt ,

hence

f(H(w, t)) ≤ max{f(w)− σt, λ− ε} ≤ µ− σt .

Therefore K actually takes its values in epi (f). Furthermore, it is

d
(K(

(w, µ), t
)
, (w, µ)

) ≤
√

%2 + σ2 t ,

Gf

(K(
(w, µ), t

))
= µ− σt = Gf (w, µ)− σt .

Taking into account Definition D.6, the first assertion follows.
In the symmetric case, K automatically satisfies the further condition

required in Definition D.14.
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Corollary 2.1 Let (u, λ) ∈ epi (f) with f(u) < λ. Assume that for
every % > 0 there exist δ > 0 and a continuous map

H : {w ∈ Bδ(u) : f(w) < λ + δ} × [0, δ] → X

satisfying

d(H(w, t), w) ≤ %t , f(H(w, t)) ≤ f(w) + t
(
f(u)− f(w) + %

)

whenever w ∈ Bδ(u), f(w) < λ + δ and t ∈ [0, δ].
Then we have |dGf |(u, λ) = 1. If moreover X is a normed space, f is

even, u = 0 and H(−w, t) = −H(w, t), then |dZ2Gf |(0, λ) = 1.

Proof Let ε > 0 with λ− 2ε > f(u), let 0 < % < λ− f(u)− 2ε and let δ

and H be as in the hypothesis. By reducing δ, we may also assume that

δ ≤ 1 , δ
(|λ− 2ε|+ |f(u) + %|) ≤ ε .

Now consider w ∈ Bδ(u) with f(w) < λ + δ and t ∈ [0, δ]. If f(w) ≤
λ− 2ε, we have

f(w) + t(f(u)− f(w) + %) = (1− t)f(w) + t(f(u) + %) ≤
≤ (1− t)(λ− 2ε) + t(f(u) + %) ≤
≤ λ− 2ε + t|λ− 2ε|+ t|f(u) + %| ≤ λ− ε ,

while, if f(w) > λ− 2ε, we have

f(w) + t(f(u)− f(w) + %) ≤ f(w)− (λ− f(u)− 2ε− %)t .

In any case it follows

f(H(w, t)) ≤ max {f(w)− (λ− f(u)− 2ε− %)t, λ− ε} .

From Proposition 2.4 we get

|dGf |(u, λ) ≥ λ− f(u)− 2ε− %√
%2 + (λ− f(u)− 2ε− %)2

and the first assertion follows by the arbitrariness of %.
The same proof works also in the symmetric case.

2.3.1 Statement of the problem

Let n ≥ 1, N ≥ 1, Ω be an open subset of Rn and 1 < p < ∞. In the
following, we denote by ‖ · ‖q the usual norm in Lq (1 ≤ q ≤ ∞). We
now define the functional setting we are interested in.

Let E : Lp(Ω;RN ) → R ∪ {+∞} be a functional such that:
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(E1) E is convex, lower semicontinuous and 0 ∈ D(E), where

D(E) =
{
u ∈ Lp(Ω;RN ) : E(u) < +∞}

;

(E2) there exists ϑ ∈ Cc(RN ) with 0 ≤ ϑ ≤ 1 and ϑ(0) = 1 such that

(E2.1) ∀u ∈ D(E), ∀v ∈ D(E) ∩ L∞(Ω;RN ), ∀c > 0 :

lim
h→∞


 sup
‖z−u‖p≤c

E(z)≤c

E
(
ϑ

( z

h

)
v
)

 = E(v) ;

(E2.2) ∀u ∈ D(E) : lim
h→∞

E
(
ϑ

(u

h

)
u
)

= E(u) .

Moreover, let G : Ω× RN → R be a function such that

(G1) G(·, s) is measurable for every s ∈ RN ;
(G2) for every t > 0 there exists αt ∈ L1(Ω) such that

|G(x, s1)−G(x, s2)| ≤ αt(x)|s1 − s2|
for a.e. x ∈ Ω and every s1, s2 ∈ RN with |sj | ≤ t; for a.e. x ∈ Ω we
set

G◦(x, s; ŝ) = γ◦(s; ŝ) , ∂sG(x, s) = ∂γ(s) ,

where γ(s) = G(x, s);
(G3) there exist a0 ∈ L1(Ω) and b0 ∈ R such that

G(x, s) ≥ −a0(x)− b0|s|p for a.e. x ∈ Ω and every s ∈ RN ;

(G4) there exist a1 ∈ L1(Ω) and b1 ∈ R such that

G◦(x, s;−s) ≤ a1(x) + b1|s|p for a.e. x ∈ Ω and every s ∈ RN .

Because of (E1) and (G3), we can define a lower semicontinuous func-
tional f : Lp(Ω;RN ) → R ∪ {+∞} by

f(u) = E(u) +
∫

Ω

G(x, u(x)) dx .

Remark 2.1 According to (E1), the functional E is lower semicontin-
uous. Condition (E2) ensures that E is continuous at least on some
particular restrictions.
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Remark 2.2 If {s 7→ G(x, s)} is of class C1 for a.e x ∈ Ω, the estimates
in (G2) and in (G4) are respectively equivalent to

|s| ≤ t =⇒ |DsG(x, s)| ≤ αt(x) ,

DsG(x, s) · s ≥ −a1(x)− b1|s|p .

Because of (G2), for a.e. x ∈ Ω and any t > 0 and s ∈ RN with |s| < t

we have

∀ŝ ∈ RN : |G◦(x, s; ŝ)| ≤ αt(x)|ŝ| ; (2.25)

∀s∗ ∈ ∂sG(x, s) : |s∗| ≤ αt(x) . (2.26)

In the following, we set ϑh(s) = ϑ(s/h), where ϑ is a function as in (E2),
and we fix M > 0 such that ϑ = 0 outside BM (0). Therefore

∀s ∈ RN : |s| ≥ hM =⇒ ϑh(s) = 0 . (2.27)

Our first result concerns the connection between the notions of gener-
alized directional derivative and subdifferential in the functional space
Lp(Ω;RN ) and the more concrete setting of hemivariational inequalities,
which also involves the notion of generalized directional derivative, but
in RN .

If u, v ∈ Lp(Ω;RN ), we can define
∫
Ω

G◦(x, u; v) dx as
∫

Ω

G◦(x, u; v) dx = +∞ whenever
∫

Ω

[G◦(x, u; v)]+ dx =
∫

Ω

[G◦(x, u; v)]− dx = +∞ .

With this convention,
{
v 7→ ∫

Ω
G◦(x, u; v) dx

}
is a convex functional

from Lp(Ω;RN ) into R.

Theorem 2.3 Let u ∈ D(f). Then the following facts hold:

(a) for every v ∈ D(E) there exists a sequence (vh) in D(E)∩L∞(Ω;RN )
satisfying [G◦(x, u; vh−u)]+ ∈ L1(Ω), ‖vh−v‖p → 0 and E(vh) →
E(v);

(b) for every v ∈ D(E) we have

f◦(u; v − u) ≤ E(v)− E(u) +
∫

Ω

G◦(x, u; v − u) dx ; (2.28)

(c) if ∂f(u) 6= ∅, we have G◦(x, u;−u) ∈ L1(Ω) and

E(v)− E(u) +
∫

Ω

G◦(x, u; v − u) dx ≥
∫

Ω

u∗ · (v − u) dx (2.29)
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for every u∗ ∈ ∂f(u) and v ∈ D(E) (the dual space of Lp(Ω;RN )
is identified with Lp′(Ω;RN ) in the usual way);

(d) if N = 1, we have [G◦(x, u; v − u)]+ ∈ L1(Ω) for every v ∈
L∞(Ω;RN ).

Proof
(a) Given ε > 0, by (E2.2) we have ‖ϑh(v)v − v‖p < ε and |E(ϑh(v)v)−
E(v)| < ε for h large enough. Then, by (E2.1) we get ‖ϑk(u)ϑh(v)v −
v‖p < ε and |E(ϑk(u)ϑh(v)v)− E(v)| < ε for k large enough. Of course
ϑk(u)ϑh(v)v ∈ L∞(Ω;RN ) and by (2.25) we have

G◦(x, u; ϑk(u)ϑh(v)v − u) ≤ ϑk(u)ϑh(v)G◦(x, u; v − u) +

+(1− ϑk(u)ϑh(v))G◦(x, u;−u) ≤
≤ (h + k)MαkM (x) + [G◦(x, u;−u)]+ .

From (G4) we infer that [G◦(x, u;−u)]+ ∈ L1(Ω) and assertion (a) fol-
lows.
(b) Without loss of generality, we may assume that [G◦(x, u; v − u)]+ ∈
L1(Ω). Suppose first that v ∈ D(E) ∩ L∞(Ω;RN ) and take ε > 0.

We claim that for every z ∈ Lp(Ω;RN ), t ∈]0, 1/2] and h ≥ 1 with
hM > ‖v‖∞, we have

G(x, z + t(ϑh(z)v − z))−G(x, z)
t

≤ 2 (‖v‖∞ αhM + a1 + b1(|z|+ |v|)p) .

(2.30)
In fact, for a.e. x ∈ Ω, by Lebourg’s theorem (see Appendix D) there
exist t ∈]0, t[ and u∗ ∈ ∂sG(x, z + t(ϑh(z)v − z)) such that

G(x, z + t(ϑh(z)v − z))−G(x, z)
t

= u∗ · (ϑh(z)v − z) =

=
1

1− t

[
ϑh(z)u∗ · v − u∗ · (z + t(ϑh(z)v − z))

]
.

By (2.26) and (2.27), it easily follows that

|ϑh(z)u∗ · v|
1− t

≤ 2 ‖v‖∞ αhM .

On the other hand, from (G4) we deduce that for a.e. x ∈ Ω

u∗ · (z + t(ϑh(z)v − z))
1− t

≥ − 1
1− t

G◦(x, z+t(ϑh(z)v−z);−(z+t(ϑh(z)v−z)) ≥

≥ − 1
1− t

(a1 + b1|z + t(ϑh(z)v − z)|p) ≥ −2 (a1 + b1(|z|+ |v|)p) .
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Then (2.30) easily follows.
For a.e. x ∈ Ω we have

G◦(x, u; ϑh(u)v − u) ≤ ϑh(u)G◦(x, u; v − u) + (1− ϑh(u))G◦(x, u;−u) ≤
≤ [G◦(x, u; v − u)]+ + [G◦(x, u;−u)]+ .

Furthermore, for a.e. x ∈ Ω and every s ∈ RN , (G2) implies G◦(x, s; ·)
to be Lipschitz continuous, so in particular

lim
h

G◦(x, u;ϑh(u)v − u) = G◦(x, u; v − u) a.e. in Ω .

Then, given

λ >

∫

Ω

G◦(x, u; v − u) dx ,

by Fatou’s lemma there exists h ≥ 1 such that

∀h ≥ h :
∫

Ω

G◦(x, u; ϑh(u)v − u) dx < λ and ‖ϑh(u)v − v‖p < ε .

(2.31)
By the lower semicontinuity of G, there exists δ ∈]0, 1/2] such that

for every z ∈ Bδ(u) it is G(z) ≥ G(u) − 1
2 . Then for every (z, µ) ∈

Bδ(u, f(u)) ∩ epi (f) it follows

E(z) ≤ µ− G(z) ≤ µ +
1
2
− G(u) ≤ f(u) + δ − G(u) +

1
2
≤ E(u) + 1 .

Let now σ > 0. By assumptions (E1) and (E2.1) there exist h ≥ h and
δ ≤ δ such that

‖v‖∞ < hM ,

E(z) > E(u)−σ , E(ϑh(z)v) < E(v)+σ , ‖(ϑh(z)v−z)−(v−u)‖p < ε ,

for any z ∈ Bδ(u) with E(z) ≤ E(u) + 1.
Taking into account (D.1), (2.30) and (2.31), we deduce by Fatou’s

lemma that, possibly reducing δ, for any t ∈]0, δ] and for any z ∈ Bδ(u)
we have ∫

Ω

G(x, z + t(ϑh(z)v − z))−G(x, z)
t

dx < λ .

Now let V : (Bδ(u, f(u)) ∩ epi (f))×]0, δ] → Bε(v − u) be defined
setting

V((z, µ), t) = ϑh(z)v − z .
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Since V is evidently continuous and

f(z + tV((z, µ), t)) = f(z + t(ϑh(z)v − z)) ≤
≤ E(z) + t (E(ϑh(z)v)− E(z)) + G(z + t(ϑh(z)v − z) ≤
≤ E(z) + (E(v)− E(u) + 2σ)t + G(z) + λt =

= f(z) + (E(v)− E(u) + λ + 2σ)t ,

we have

f◦ε (u; v − u) ≤ E(v)− E(u) + λ + 2σ .

By the arbitrariness of σ > 0 and λ >

∫

Ω

G◦(x, u; v − u) dx, it follows

f◦ε (u; v − u) ≤ E(v)− E(u) +
∫

Ω

G◦(x, u; v − u) dx .

Passing to the limit as ε → 0+, we get (2.28) when v ∈ D(E)∩L∞(Ω;RN ).
Let us now treat the general case. If we set vh = ϑh(v)v, we have

vh ∈ L∞(Ω;RN ). Arguing as before, it is easy to see that

G◦(x, u; vh − u) ≤ [G◦(x, u; v − u)]+ + [G◦(x, u;−u)]+ ,

so that

lim sup
h

∫

Ω

G◦(x, u; vh − u) dx ≤
∫

Ω

G◦(x, u; v − u) dx .

On the other hand, by the previous step it holds

f◦(u; vh − u) ≤ E(vh)− E(u) +
∫

Ω

G◦(x, u; vh − u) dx .

Passing to the lower limit as h →∞ and taking into account the lower
semicontinuity of f◦(u, ·) and (E2.2), we get (2.28).
(c) We already know that [G◦(x, u;−u)]+ ∈ L1(Ω). If we choose v = 0
in (2.28), we obtain

f◦(u;−u) ≤ E(0)− E(u) +
∫

Ω

G◦(x, u;−u) dx .

Since ∂f(u) 6= ∅, it is f◦(u;−u) > −∞, hence
∫

Ω

[G◦(x, u;−u)]− dx < +∞ .

Finally, if u∗ ∈ ∂f(u) we have by definition that

f◦(u; v − u) ≥
∫

Ω

u∗ · (v − u) dx
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and (2.29) follows from (2.28).
(d) From (2.25) it readily follows that G◦(x, u; v−u) is summable where
|u(x)| ≤ ‖v‖∞. On the other hand, where |u(x)| > ‖v‖∞ we have

G◦(x, u; v − u) =
(
1− v

u

)
G◦(x, u;−u)

and the assertion follows from (G4).

Since f is only lower semicontinuous, we are interested in the verification
of the condition (epi)c. For this purpose, we consider an assumption
(G′3) on G stronger than (G3).

Theorem 2.4 Assume that

(G′3) there exist a ∈ L1(Ω) and b ∈ R such that

|G(x, s)| ≤ a(x) + b|s|p for a.e. x ∈ Ω and every s ∈ RN .

Then for every (u, λ) ∈ epi (f) with λ > f(u) it is |dGf |(u, λ) =
1. Moreover, if E and G(x, ·) are even, for every λ > f(0) we have
|dZ2Gf |(0, λ) = 1.

Proof Let % > 0. Since

∀τ ∈ [0, 1] : G◦(x, u; τu− u) = (1− τ)G◦(x, u;−u) ≤ [G◦(x, u;−u)]+ ,

by (E2.2) and (G4) there exists h ≥ 1 such that

‖ϑh(u)u− u‖p < % , E(ϑh(u)u) < E(u) + % ,

∀h ≥ h :
∫

Ω

G◦(x, u; ϑh(u)ϑh(u)u− u) dx < % .

Set v = ϑh(u)u.
By (E2.1) there exist h ≥ h and δ ∈]0, 1] such that

‖ϑh(z)v − z‖p < % , E(ϑh(z)v) < E(u) + % ,

whenever ‖z − u‖p < δ and E(z) ≤ λ + 1− G(u) + %.
By decreasing δ, from (G′3), (2.30) and (D.1) we deduce that

|G(z)− G(u)| < % ,

∫

Ω

G(x, z + t(ϑh(z)v − z))−G(x, z)
t

dx < %

whenever ‖z − u‖p < δ and 0 < t ≤ δ.
Define a continuous map

H : {z ∈ Bδ(u) : f(z) < λ + δ} × [0, δ] → X
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by H(z, t) = z+t(ϑh(z)v−z). It is readily seen that ‖H(z, t)−z‖p ≤ %t.
If z ∈ Bδ(u), f(z) < λ + δ and 0 ≤ t ≤ δ, we have

E(z) = f(z)− G(z) < λ + δ − G(u) + % ≤ λ + 1− G(u) + % ,

hence, taking into account the convexity of E ,

E(z+t(ϑh(z)v−z)) ≤ E(z)+t(E(ϑh(z)v)−E(z)) ≤ E(z)+t(E(u)−E(z)+%) .

Moreover, we also have

G(z + t(ϑh(z)v − z)) ≤ G(z) + t% ≤ G(z) + t(G(u)− G(z) + 2%) .

Therefore

f(z + t(ϑh(z)v − z)) ≤ f(z) + t(f(u)− f(z) + 3%) .

and the first assertion follows by Corollary 2.1.
Now assume that E and G(x, ·) are even and that u = 0. Then, in the

previous argument, we have v = 0, so that H(−z, t) = −H(z, t) and the
second assertion also follows.

Now we want to provide a criterion which helps in the verification of the
Palais-Smale condition. For this purpose, we consider further assump-
tions on E , which ensure a suitable coerciveness, and a new condition
(G′4) on G, stronger than (G4), which is a kind of one-sided subcritical
growth condition.

Theorem 2.5 Let c ∈ R. Assume that

(E3) for every (uh) bounded in Lp(Ω;RN ) with (E(uh)) bounded, there
exists a subsequence (uhk

) and a function u ∈ Lp(Ω;RN ) such
that

lim
k→∞

uhk
(x) = u(x) for a.e. x ∈ Ω ;

(E4) if (uh) is a sequence in Lp(Ω;RN ) weakly convergent to u ∈ D(E)
and E(uh) converges to E(u), then (uh) converges to u strongly
in Lp(Ω;RN );

(G′4) for every ε > 0 there exists aε ∈ L1(Ω) such that

G◦(x, s;−s) ≤ aε(x)+ε|s|p for a.e. x ∈ Ω and every s ∈ RN .

Then any (PS)c-sequence (uh) for f bounded in Lp(Ω;RN ) admits a
subsequence strongly convergent in Lp(Ω;RN ).
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Proof From (G3) we deduce that (G(uh)) is bounded from below. Taking
into account (E1), it follows that (E(uh)) is bounded. By (E3) there exists
a subsequence, still denoted by (uh), converging weakly in Lp(Ω;RN )
and a.e. to some u ∈ D(E).

Given ε > 0, by (E2.2) and (G4) we may find k0 ≥ 1 such that

E(ϑk0(u)u) < E(u) + ε ,

∫

Ω

(1− ϑk0(u))G◦(x, u;−u) dx < ε .

Since ϑk0(u)u ∈ D(E) ∩ L∞(Ω;RN ), by (E2.1) there exists k1 ≥ k0 such
that

∀h ∈ N : E(ϑk1(uh)ϑk0(u)u) < E(u) + ε , (2.32)

∫

Ω

(1− ϑk1(u)ϑk0(u))G◦(x, u;−u) dx < ε .

It follows that ϑk1(uh)ϑk0(u)u ∈ D(E). Moreover, from (2.25) and (G′4)
we get

G◦(x, uh; ϑk1(uh)ϑk0(u)u− uh) ≤
≤ ϑk1(uh)G◦(x, uh;ϑk0(u)u− uh) + (1− ϑk1(uh))G◦(x, uh;−uh) ≤

≤ αk1M (x)(k0M + k1M) + aε(x) + ε|uh|p .

From (D.2) and Fatou’s Lemma we deduce that

lim sup
h→∞

∫

Ω

[G◦(x, uh; ϑk1(uh)ϑk0(u)u− uh)− ε|uh|p] dx ≤

≤
∫

Ω

[G◦(x, u; ϑk1(u)ϑk0(u)u− u)− ε|u|p] dx ≤

≤
∫

Ω

(1− ϑk1(u)ϑk0(u))G◦(x, u;−u) dx < ε ,

hence

lim sup
h→∞

∫

Ω

G◦(x, uh;ϑk1(uh)ϑk0(u)u− uh) dx < ε sup
h
‖uh‖p

p + ε . (2.33)

Since (uh) is a (PS)c-sequence, by Theorem D.2 there exists u∗h ∈ ∂f(uh)
with ‖u∗h‖p′ ≤ |df |(uh), so that lim

h→∞
‖u∗h‖p′ = 0. Applying (c) of Theo-
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rem 2.3, we get

E(ϑk1(uh)ϑk0(u)u) ≥ E(uh)−
∫

Ω

G◦(x, uh; ϑk1(uh)ϑk0(u)u− uh) dx+

+
∫

Ω

u∗h · (ϑk1(uh)ϑk0(u)u− uh) dx .

Taking into account (2.32), (2.33) and passing to the upper limit, we
obtain

lim sup
h→∞

E(uh) ≤ E(u) + 2ε + ε sup
h
‖uh‖p

p .

By the arbitrariness of ε > 0, we finally have

lim sup
h→∞

E(uh) ≤ E(u)

and the strong convergence of (uh) to u follows from (E4).

2.3.2 Area type functionals

Let n ≥ 2, N ≥ 1, Ω be a bounded open subset of Rn with Lipschitz
boundary and let

Ψ : RnN → R

be a convex function satisfying

(Ψ)

{
Ψ(0) = 0, Ψ(ξ) > 0 for any ξ 6= 0 and

there exists c > 0 such that Ψ(ξ) ≤ c|ξ| for any ξ ∈ RnN .

We want to study the functional E : L
n

n−1 (Ω;RN ) → R∪ {+∞} defined
by

E(u) =





∫

Ω

Ψ(Dua) dx+
∫

Ω

Ψ∞
(

Dus

|Dus|
)

d|Dus|(x)+

+
∫

∂Ω

Ψ∞(u⊗ ν) dHn−1(x) if u ∈ BV (Ω;RN ),

+∞ if u ∈ L
n

n−1 (Ω;RN )\BV (Ω;RN ),

where Du = Dua dx+Dus is the Lebesgue decomposition of Du, |Dus| is
the total variation of Dus, Dus/|Dus| is the Radon-Nikodym derivative
of Dus with respect to |Dus|, Ψ∞ is the recession functional associated
with Ψ, ν is the outer normal to Ω and the trace of u on ∂Ω is still
denoted by u (see e.g. [?, ?]).
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Theorem 2.6 The functional E satisfies conditions (E1), (E2), (E3) and
(E4).

The section will be devoted to the proof of this result. We begin estab-
lishing some technical lemmas. For notions concerning the space BV ,
such as those of ũ, Su, u+ and u−, we refer the reader to [?, ?].

In BV (Ω;RN ) we will consider the norm

‖u‖BV =
∫

Ω

|Dua| dx + |Dus|(Ω) +
∫

∂Ω

|u| dHn−1(x) ,

which is equivalent to the standard norm of BV (Ω;RN ).

Lemma 2.2 For every u ∈ BV (Ω;RN ) and every ε > 0 there exists
v ∈ C∞c (Ω;RN ) such that

‖v−u‖ n
n−1

< ε ,

∣∣∣∣∣∣

∫

Ω

|Dv| dx− ‖u‖BV

∣∣∣∣∣∣
< ε , |E(v)−E(u)| < ε , ‖v‖∞ ≤ esssupΩ|u| .

Proof Let δ > 0, let R > 0 with Ω ⊆ BR(0) and let

ϑh(x) = 1−min
{

max
{

h + 1
h

[1− h d(x,Rn \ Ω)], 0
}

, 1
}

.

Define û ∈ BV (BR(0);RN ) by

û(x) =
{

u(x) if x ∈ Ω ,

0 if x ∈ BR(0) \ Ω .

According to [?, Lemma 7.4 and formula (7.2)], if h is sufficiently large,
we have that ϑhu ∈ BV (Ω;RN ), ‖ϑhu− u‖ n

n−1
< δ and

∫

Ω

√
1 + |D(ϑhu)a|2 dLn + |D(ϑhu)s|(Ω) <

<

∫

Ω

√
1 + |Dua|2 dLn + |Dus|(Ω) +

∫

∂Ω

|u| dHn−1 + δ =

=
∫

BR(0)

√
1 + |Dûa|2 dLn + |Dûs|(BR(0)) + δ .

Moreover, ϑhu has compact support in Ω and esssupΩ|ϑhu| ≤ esssupΩ|u|.
If we regularize ϑhu by convolution, we easily get v ∈ C∞c (Ω;RN )

with

‖v‖∞ ≤ esssupΩ|u| , ‖v − u‖ n
n−1

< δ
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and
∫

Ω

√
1 + |Dv|2 dLn <

∫

BR(0)

√
1 + |Dûa|2 dLn + |Dûs|(BR(0)) + δ .

Since

‖u‖BV =
∫

BR(0)

|Dûa| dx + |Dûs|(BR(0)) ,

E(u) =
∫

BR(0)

Ψ(Dûa) dx +
∫

BR(0)

Ψ∞
(

Dûs

|Dûs|
)

d|Dûs| ,

by the results of [?] the assertion follows (see also [?, Fact 3.1]).

Lemma 2.3 The following facts hold:

(a) Ψ : RnN → R is Lipschitz continuous of some constant Lip(Ψ) >

0;
(b) for any ξ ∈ RnN and s ∈ [0, 1] we have Ψ(sξ) ≤ sΨ(ξ);
(c) for every σ > 0 there exists dσ > 0 such that

∀ξ ∈ RnN : Ψ(ξ) ≥ dσ(|ξ| − σ) ;

(d) E : BV (Ω;RN ) → R is Lipschitz continuous of constant Lip(Ψ);
(e) if σ and dσ are as in (c), we have

∀u ∈ BV (Ω;RN ) : E(u) ≥ dσ

(
‖u‖BV − σLn(Ω)

)
.

Proof Properties (a) and (b) easily follow from the convexity of Ψ and
assumption (Ψ).

To prove (c), assume by contradiction that σ > 0 and (ξh) is a se-
quence with Ψ(ξh) < 1

h (|ξh| − σ). If |ξh| → +∞, we have eventually

Ψ
(

ξh

|ξh|
)
≤ Ψ(ξh)

|ξh| <
1
h

(
1− σ

|ξh|
)

.

Up to a subsequence, (ξh/|ξh|) is convergent to some η 6= 0 with Ψ(η) ≤
0, which is impossible. Since |ξh| is bounded, up to a subsequence we
have ξh → ξ with |ξ| ≥ σ and Ψ(ξ) ≤ 0, which is again impossible.

Finally, (d) easily follows from (a) and the definition of ‖ · ‖BV , while
(e) follows from (c) (see e.g. [?, Lemma 4.1]).
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Let now ϑ ∈ C1
c (RN ) with 0 ≤ ϑ ≤ 1, ‖∇ϑ‖∞ ≤ 2, ϑ(s) = 1 for |s| ≤ 1

and ϑ(s) = 0 for |s| ≥ 2. Define ϑh : RN → R and Th, Rh : RN → RN

by

ϑh(s) = ϑ
( s

h

)
, Th(s) = ϑh(s)s , Rh(s) = (1− ϑh(s))s .

Lemma 2.4 There exists a constant cΨ > 0 such that

E
(
ϑ

(u

h

)
v
)
≤ E(v) +

cΨ

h
‖v‖∞‖u‖BV ,

E(Th ◦ u) ≤ E(u) + cΨ

[
|Du|({x ∈ Ω \ Su : |ũ(x)| > h})+

+
∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+−u−| dHn−1(x)+

∫

{x∈∂Ω:|u(x)|>h}
|u| dHn−1(x)

]
,

E(Th ◦ w) + E(Rh ◦ w) ≤ E(w) + cΨ

∫

{x∈Ω:h<|w(x)|<2h}
|Dw| dx

whenever h ≥ 1, u ∈ BV (Ω;RN ), v ∈ BV (Ω;RN ) ∩ L∞(Ω;RN ) and
w ∈ C∞c (Ω;RN ).

Proof Suppose first that u, v ∈ C∞c (Ω;RN ). Then, since

D
[
ϑ

(u

h

)
v
]

= ϑ
(u

h

)
Dv +

1
h

v ⊗
[
Dϑ

(u

h

)
Du

]
,

by (Ψ) and Lemma 2.3 it follows that

E
(
ϑ

(u

h

)
v
)
≤ E(v) + Lip(Ψ)

‖Dϑ‖∞
h

‖v‖∞
∫

Ω

|Du| dx . (2.34)

In the general case, let us consider two sequences (uk), (vk) in C∞c (Ω;RN )
converging to u, v in L1(Ω;RN ) with

∫
Ω
|Duk| dx → ‖u‖BV , E(vk) →

E(v) and ‖vk‖∞ ≤ ‖v‖∞. Passing to the lower limit in (2.34), we obtain
the first inequality in the assertion.

To prove the second inequality, we first observe that by Lemma 2.3
we have

E(Th ◦ u) ≤ E(u) + Lip(Ψ)‖Rh ◦ u‖BV . (2.35)

In order to estimate the last term in (2.35), we apply the chain rule of
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[?, ?]. Since Rh(s) = 0 if |s| ≤ h and ‖DRh‖∞ ≤ kϑ for some kϑ > 0,
we have∫

Ω

|D(Rh(u))a| dx ≤
∫

Ω\Su

|DRh(ũ)||Dua| dx ≤ kϑ

∫

{x∈Ω\Su:|ũ(x)|>h}
|Dua| dx ,

∣∣∣D(Rh(u))s
∣∣∣(Ω) ≤

∫

Ω\Su

|DRh(ũ)| d|Dus|(x)+
∫

Su

|Rh(u+)−Rh(u−)| dHn−1(x) ≤

≤ kϑ

(
|Dus| ({x ∈ Ω \ Su : |ũ(x)| > h})+

∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+−u−| dHm−1(x)

)

and ∫

∂Ω

|Rh(u)| dHn−1(x) ≤ kϑ

∫

{x∈∂Ω:|u(x)|>h}
|u| dHn−1(x) .

Combining these three estimates, we get

‖Rh◦u‖BV ≤ kϑ

(∫

{x∈Ω\Su:|ũ(x)|>h}
|Dua| dx+|Dus|({x ∈ Ω\Su : |ũ(x)| > h})+

(2.36)

+
∫

{x∈Su:|u+(x)|>h or |u−(x)|>h}
|u+−u−| dHm−1(x)+

∫

{x∈∂Ω:|u(x)|>h}
|u| dHn−1(x)

)
.

Then the second inequality follows from (2.35) and (2.36).
Again, since Ψ is Lipschitz continuous, we have

∣∣∣∣
∫

Ω

Ψ(D(Th ◦ w)) dx−
∫

Ω

Ψ(ϑh(w)Dw) dx

∣∣∣∣ ≤ Lip(Ψ)
h

∫

Ω

∣∣∣Dϑ
(w

h

)
Dw

∣∣∣ |w| dx ≤

≤ 2Lip(Ψ)‖∇ϑ‖∞
∫

{h<|w|<2h}
|Dw| dx .

In a similar way, it is also
∣∣∣∣
∫

Ω

Ψ(D(Rh ◦ w)) dx−
∫

Ω

Ψ((1− ϑh(w))Dw) dx

∣∣∣∣ ≤ 2 Lip(Ψ)‖∇ϑ‖∞
∫

{h<|w|<2h}
|Dw| dx .

Hence, combining the last two estimates and taking into account (b) of
Lemma 2.3, we get

∫

Ω

Ψ
(
D(Th ◦ w)

)
dx +

∫

Ω

Ψ
(
D(Rh ◦ w)

)
dx ≤

≤
∫

Ω

Ψ(Dw) dx + 4Lip(Ψ)‖∇ϑ‖∞
∫

{h<|w|<2h}
|Dw| dx

and the proof is complete.
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Lemma 2.5 Let (uh) be a sequence in C∞c (Ω;RN ) and assume that (uh)
is bounded in BV (Ω;RN ).

Then for every ε > 0 and every k ∈ N there exists k ≥ k such that

lim inf
h→∞

∫

{k<|uh|<2k}

|Duh| dx < ε .

Proof Let m ≥ 1 be such that

sup
h

∫

Ω

|Duh| dx ≤ mε

2

and let i0 ∈ N with 2i0 ≥ k. Then, since

i0+m−1∑

i=i0

∫

{2i<|uh|<2i+1}
|Duh| dx ≤

∫

Ω

|Duh| dx ≤ mε

2
,

there exists ih between i0 and i0 + m− 1 such that
∫

{2ih <|uh|<2ih+1}
|Duh| dx ≤ ε

2
.

Passing to a subsequence (ihj ), we can suppose ihj ≡ i ≥ i0, and setting
k = 2i we get

∀j ∈ N :
∫

{k<|uhj
|<2k}

|Duhj | dx ≤ ε

2
.

Then the assertion follows.

Lemma 2.6 Let (uh) be a sequence in C∞c (Ω;RN ) and let u ∈ BV (Ω;RN )
with ‖uh − u‖1 → 0 and E(uh) → E(u).

Then for every ε > 0 and every k ∈ N there exists k ≥ k such that

lim inf
h→∞

‖Rk ◦ uh‖BV < ε .

Proof Given ε > 0, let d > 0 be such that

∀ξ ∈ RnN : Ψ(ξ) ≥ d

(
|ξ| − ε

3Ln(Ω)

)
,

according to Lemma 2.3. Let also cΨ > 0 be as in Lemma 2.4. By (2.36)
and Lemma 2.5, there exists k ≥ k such that

‖Rk ◦ u‖BV <
dε

3Lip(Ψ)
,



2.3 Area–type variational inequalities 75

lim inf
h→∞

∫

{k<|uh|<2k}

|Duh| dx <
dε

3cΨ
.

From Lemma 2.4 we deduce that

E(Tk ◦ u) + lim inf
h→∞

E(Rk ◦ uh) ≤ lim inf
h→∞

E(Tk ◦ uh) + lim inf
h→∞

E(Rk ◦ uh) ≤

≤ lim inf
h→∞

(
E(Tk ◦ uh) + E(Rk ◦ uh)

)
≤

≤ E(u) + cΨ lim inf
h→∞

∫

{k<|uh|<2k}

|Duh| dx <

< E(u) +
dε

3
≤ E(Tk ◦ u) + Lip(Ψ)‖Rk ◦ u‖BV +

dε

3
<

< E(Tk ◦ u) +
2
3
dε ,

whence

lim inf
h→∞

E(Rk ◦ uh) <
2
3
dε .

On the other hand, by Lemma 2.3 we have

E(Rk ◦ uh) ≥ d
(
‖Rk ◦ uh‖BV − ε

3

)

and the assertion follows.

Now we can prove the main auxiliary result we need for the proof of
Theorem 2.6. It is a property of the space BV which could be interesting
also in itself.

Theorem 2.7 Let (uh) be a sequence in BV (Ω;RN ) and let u ∈ BV (Ω;RN )
with ‖uh − u‖1 → 0 and E(uh) → E(u).

Then (uh) is strongly convergent to u in L
n

n−1 (Ω;RN ).

Proof By Lemma 2.2 we may find vh ∈ C∞c (Ω;RN ) with

‖vh − uh‖1 <
1
h

, ‖vh − uh‖ n
n−1

<
1
h

, |E(vh)− E(uh)| < 1
h

.

Therefore it is sufficient to treat the case in which uh ∈ C∞c (Ω;RN ).
By contradiction, up to a subsequence we may assume that there

exists ε > 0 such that ‖uh − u‖ n
n−1

≥ ε. Let c̃ be a constant such that
‖w‖ n

n−1
≤ c̃‖w‖BV for any w ∈ BV (Ω;RN ) (see [?, Theorem 1.28]).

According to Lemma 2.6, let k ∈ N be such that

‖Rk ◦ u‖ n
n−1

<
ε

2
, lim inf

h→∞
‖Rk ◦ uh‖ n

n−1
≤ c̃ lim inf

h→∞
‖Rk ◦ uh‖BV <

ε

2
.
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Then we have

‖uh−u‖ n
n−1

≤ ‖Rk◦uh‖ n
n−1

+‖Tk◦uh−Tk◦u‖ n
n−1

+‖Rk◦u‖ n
n−1

. (2.37)

Since Tk ◦ uh → Tk ◦ u in L
n

n−1 (Ω;RN ) as h →∞, passing to the lower
limit in (2.37) we get

lim inf
h→∞

‖uh − u‖ n
n−1

< ε ,

whence a contradiction.

Proof of Theorem 2.6. It is well known that E satisfies condition (E1).
Conditions (E2) are an immediate consequence of Lemma 2.4. From (e)
of Lemma 2.3 and Rellich’s Theorem (see [?, Theorem 1.19]) it follows
that E satisfies condition (E3). To prove (E4), let (uh) be a sequence
in L

n
n−1 (Ω;RN ) weakly convergent to u ∈ BV (Ω;RN ) such that E(uh)

converges to E(u). Again by (e) of Lemma 2.3 and Rellich’s Theorem
we deduce that (uh) is strongly convergent to u in L1(Ω;RN ). Then the
assertion follows from Theorem 2.7.

2.3.3 A result of Clark type

Let n ≥ 2 and Ω be a bounded open subset of Rn with Lipschitz bound-
ary, let Ψ : RnN → R be an even convex function satisfying (Ψ) and let
G : Ω × RN → R be a function satisfying (G1), (G2), (G′3), (G′4) with
p = n

n−1 and the following conditions:
{

there exist ã ∈ L1(Ω) and b̃ ∈ Ln(Ω) such that

G(x, s) ≥ −ã(x)− b̃(x)|s| for a.e. x ∈ Ω and every s ∈ RN ;
(2.38)

lim
|s|→∞

G(x, s)
|s| = +∞ for a.e. x ∈ Ω ; (2.39)

{s 7−→ G(x, s)} is even for a.e. x ∈ Ω . (2.40)

Finally, define E as in Section 4. The main result of this section is:

Theorem 2.8 For every k ∈ N there exists Λk such that for any λ ≥ Λk

the problem




u ∈ BV (Ω;RN )

E(v)− E(u) +
∫

Ω

G◦(x, u; v−u) dx ≥ λ

∫

Ω

u√
1 + |u|2 · (v−u) dx ∀v ∈ BV (Ω;RN )
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admits at least k pairs (u,−u) of distinct solutions.

For the proof we need the following

Lemma 2.7 Let (uh) be a bounded sequence in L
n

n−1 (Ω;RN ), which is
convergent a.e. to u, and let (%h) be a positively divergent sequence of
real numbers.

Then we have

lim
h

∫

Ω

G(x, %huh)
%h

dx = +∞ if u 6= 0 ,

lim inf
h

∫

Ω

G(x, %huh)
%h

dx ≥ 0 if u = 0 .

Proof If u = 0, the assertion follows directly from (2.38). If u 6= 0, we
have
∫

Ω

G(x, %huh)
%h

dx ≥
∫

{u 6=0}

G(x, %huh)
%h

dx− 1
%h

∫

{u=0}
ã dx−

∫

{u=0}
b̃|uh| dx .

From (2.38), (2.39) and Fatou’s Lemma, we deduce that

lim
h

∫

{u 6=0}

G(x, %huh)
%h

dx = +∞ ,

whence the assertion.

Proof of Theorem 2.8. First of all, set

G̃(x, s) = G(x, s)− λ
(√

1 + |s|2 − 1
)
.

It is easy to see that also G̃ satisfies (G1), (G2), (G′3), (G′4), (2.38),
(2.39), (2.40) and that

G̃◦(x, s; ŝ) = G◦(x, s; ŝ)− λ
s√

1 + |s|2 · ŝ .

Now define a lower semicontinuous functional f : L
n

n−1 (Ω;RN ) → R ∪
{+∞} by

f(u) = E(u) +
∫

Ω

G̃(x, u) dx .

Then f is even by (2.40) and satisfies condition (epi)c by Theorem 2.4.
We claim that

lim
‖u‖ n

n−1
→∞

f(u) = +∞ . (2.41)
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To prove it, let (uh) be a sequence in BV (Ω;RN ) with ‖uh‖ n
n−1

= 1 and
let %h → +∞. By (e) of Lemma 2.3 there exist c̃ > 0 and d̃ > 0 such
that

∀u ∈ BV (Ω;RN ) : E(u) ≥ d̃
(
‖u‖BV − c̃Ln(Ω)

)
.

If ‖uh‖BV → +∞, it readily follows from (2.38) that f(%huh) → +∞.
Otherwise, up to a subsequence, uh is convergent a.e. and the assertion
follows from the previous Lemma and the inequality

f(%huh) ≥ %h

[
d̃

(
‖uh‖BV − c̃

%h
Ln(Ω)

)
+

∫

Ω

G̃(x, %huh)
%h

dx

]
.

Since f is bounded below on bounded subsets of L
n

n−1 (Ω;RN ), it fol-
lows from (2.41) that f is bounded below on all L

n
n−1 (Ω;RN ); further-

more, it also turns out from (2.41) that any (PS)c sequence is bounded,
hence f satisfies (PS)c by Theorem 2.5.

Finally, let k ≥ 1, let w1, . . . , wk be linearly independent elements
of BV (Ω;RN ) and let ψ : Sk−1 → L

n
n−1 (Ω;RN ) be the odd continuous

map defined by

ψ(ξ) =
k∑

j=1

ξjwj .

Because of (G′3), it is easily seen that

sup
{
E(u) +

∫

Ω

G(x, u) dx : u ∈ ψ(Sk−1)
}

< +∞

and

inf
{∫

Ω

(√
1 + |u|2 − 1

)
dx : u ∈ ψ(Sk−1)

}
> 0 .

Therefore there exists Λk > 0 such that sup
ξ∈Sk−1

f(ψ(ξ)) < 0 whenever

λ ≥ Λk.
Next, we recall the following result which is due to Clark. We refer to

Theorem 2.5 in [84] for a nonsmooth version and complete proof.

Theorem 2.9 Let X be a Banach space and f : X → R ∪ {+∞} an
even lower semicontinuous function. Assume that

(a) f is bounded from below;
(b) for every c < f(0), the function f satisfies (PS)c and (epi)c;
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(c) there exist k ≥ 1 and an odd continuous map ψ : Sk−1 → X such
that

sup
{
f(ψ(x)) : x ∈ Sk−1

}
< f(0) ,

where Sk−1 denotes the unit sphere in Rk.

Then f admits at least k pairs (u1,−u1), . . . , (uk,−uk) of critical
points with f(uj) < f(0).

Applying now Theorem 2.9, it follows that f admits at least k pairs
(uk,−uk) of critical points. Therefore, by Theorem D.2, for any uk it is
possible to apply Theorem 2.3 (with G̃ instead of G), which completes
the proof.

2.3.4 A superlinear potential

Let n ≥ 2 and Ω be a bounded open subset of Rn with Lipschitz bound-
ary, let Ψ : RnN → R be an even convex function satisfying (Ψ) and let
G : Ω×RN → R be a function satisfying (G1), (G2), (G′3), (G′4), (2.40)
with p = n

n−1 and the following condition:

{
there exist q > 1 and R > 0 such that

G◦(x, s; s) ≤ qG(x, s) < 0 for a.e. x ∈ Ω and every s ∈ RN with |s| ≥ R .
(2.42)

Define E as in section 4 and an even lower semicontinuous functional
f : L

n
n−1 (Ω;RN ) → R ∪ {+∞} by

f(u) = E(u) +
∫

Ω

G(x, u) dx .

Theorem 2.10 There exists a sequence (uh) of solutions of the problem




u ∈ BV (Ω;RN )

E(v)− E(u) +
∫

Ω

G◦(x, u; v − u) dx ≥ 0 ∀v ∈ BV (Ω;RN )

with f(uh) → +∞.

Proof According to (2.25), we have

|s| < R =⇒ |G◦(x, s; s)| ≤ αR(x)|s| .
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Combining this fact with (2.42) and (G′3), we deduce that there exists
a0 ∈ L1(Ω) such that

G◦(x, s; s) ≤ qG(x, s) + a0(x) for a.e. x ∈ Ω and every s ∈ RN .

(2.43)
Moreover, from (2.42) and Lebourg’s mean value theorem it follows that
for every s ∈ RN with |s| = 1 the function {t → t−qG(x, ts)} is nonin-
creasing on [R, +∞[. Taking into account (G′3) and possibly substituting
a0 with another function in L1(Ω), we deduce that

G(x, s) ≤ a0(x)− b0(x)|s|q for a.e. x ∈ Ω and every s ∈ RN ,

(2.44)
where

b0(x) = inf
|s|=1

(−R−qG(x,Rs)) > 0 for a.e. x ∈ Ω .

Finally, since {ŝ → G◦(x, s; ŝ)} is a convex function vanishing at the ori-
gin, we have G◦(x, s; s) ≥ −G◦(x, s;−s). Combining (2.43) with (G′4),
we deduce that for every ε > 0 there exists ãε ∈ L1(Ω) such that

G(x, s) ≥ −ãε(x)− ε|s| n
n−1 for a.e. x ∈ Ω and every s ∈ RN .

(2.45)
By Theorem 2.4 we have that f satisfies (epi)c for any c ∈ R and that

|dZ2Gf |(0, λ) = 1 for any λ > f(0).
We also recall that, since Ψ is Lipschitz continuous, there exists M ∈ R

such that

(q + 1)Ψ(ξ)−Ψ(2ξ) ≥ q − 1
2

Ψ(ξ)−M , (2.46)

(q + 1)Ψ∞(ξ)−Ψ∞(2ξ) ≥ q − 1
2

Ψ∞(ξ) (2.47)

(see also [?]).
We claim that f satisfies the condition (PS)c for every c ∈ R. Let

(uh) be a (PS)c-sequence for f . By Theorem D.2 there exists a sequence
(u∗h) in Ln(Ω;RN ) with u∗h ∈ ∂f(uh) and ‖u∗h‖n → 0. According to
Theorem 2.3 and (2.43), we have

E(2uh) ≥ E(uh)−
∫

Ω

G◦(x, uh;uh) dx +
∫

Ω

u∗h · uh dx ≥

≥ E(uh)− q

∫

Ω

G(x, uh) dx +
∫

Ω

u∗h · uh dx−
∫

Ω

a0(x) dx .
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By the definition of f , it follows

qf(uh) + ‖u∗h‖n‖uh‖ n
n−1

+
∫

Ω

a0(x) dx ≥ (q + 1)E(uh)− E(2uh) .

Finally, applying (2.46) and (2.47) we get

qf(uh) + ‖u∗h‖n‖uh‖ n
n−1

+
∫

Ω

a0(x) dx ≥ q − 1
2

E(uh)−MLn(Ω) .

By (e) of Lemma 2.3 we deduce that (uh) is bounded in BV (Ω;RN ),
hence in L

n
n−1 (Ω;RN ). Applying Theorem 2.5 we get that (uh) admits

a strongly convergent subsequence and (PS)c follows.
By [?, Lemma 3.8], there exist a strictly increasing sequence (Wh) of

finite-dimensional subspaces of BV (Ω;RN ) ∩ L∞(Ω;RN ) and a strictly
decreasing sequence (Zh) of closed subspaces of L

n
n−1 (Ω;RN ) such that

L
n

n−1 (Ω;RN ) = Wh ⊕Zh and
∞⋂

h=0

Zh = {0}. By (e) of Lemma 2.3 there

exists % > 0 such that

∀u ∈ L
n

n−1 (Ω;RN ) : ‖u‖ n
n−1

= % =⇒ E(u) ≥ 1 .

We claim that

lim
h

(
inf{f(u) : u ∈ Zh, ‖u‖ n

n−1
= %}

)
> f(0) .

Actually, assume by contradiction that (uh) is a sequence with uh ∈ Zh,
‖uh‖ n

n−1
= % and

lim sup
h

f(uh) ≤ f(0) .

Taking into account (G′3) and Lemma 2.3, we deduce that (E(uh)) is
bounded, so that (uh) is bounded in BV (Ω;RN ). Therefore, up to a
subsequence, (uh) is convergent a.e. to 0. From (2.45) it follows that

lim inf
h

∫

Ω

(
G(x, uh) + ε|uh|

n
n−1

)
dx ≥

∫

Ω

G(x, 0) dx ,

hence

lim inf
h

∫

Ω

G(x, uh) dx ≥
∫

Ω

G(x, 0) dx

by the boundedness of (uh) in L
n

n−1 (Ω;RN ) and the arbitrariness of ε.
Therefore

lim sup
h

E(uh) ≤ E(0) = 0

which contradicts the choice of %.
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Now, fix h with

inf{f(u) : u ∈ Zh, ‖u‖ n
n−1

= %}
)

> f(0)

and set Z = Zh and Vh = Wh+h. Then Z satisfies assumption (a) of
Theorem D.3 for some α > f(0).

Finally, since Vh is finite-dimensional,

‖u‖G :=
(∫

Ω

b0|u|qdx

) 1
q

is a norm on Vh equivalent to the norm of BV (Ω;RN ). Then, combin-
ing (2.44) with (d) of Lemma 2.3, we see that also assumption (b) of
Theorem D.3 is satisfied.

Therefore there exists a sequence (uh) of critical points for f with
f(uh) → +∞ and, by Theorems D.2 and 2.3, the result follows.

2.4 Historical notes and comments

The space of functions of bounded variations is very useful in the cal-
culus of variations (geometric measure theory, fracture mechanics and
image processing), as well as in the study of shock waves for nonlinear
hyperbolic conservation laws.



3

Nonlinear Eigenvalue Problems

All truths are easy to
understand once they are
discovered; the point is to
discover them.

Galileo Galilei (1564–1642)

The study of nonlinear eigenvalue problems for quasilinear operators
on unbounded domains involving the p-Laplacian is motivated by var-
ious applications, for instance, in Fluid Mechanics, in mathematical
models of the torsional creep, in nonlinear field equations from quan-
tum mechanics. For instance, in fluid mechanics, the shear stress ~τ

and the velocity gradient ∇pu of certain fluids obey a relation of the
form ~τ(x) = a(x)∇pu(x), where ∇pu = |∇u|p−2∇u and p > 1 is an
arbitrary real number. The case p = 2 (respectively p < 2, p > 2)
corresponds to a Newtonian (respectively pseudo-plastic, dilatant) fluid.
Then the resulting equations of motion involve div (a∇pu), which re-
duces to a∆pu = adiv (∇pu), provided that a is a constant. The p-
Laplace operator appears in the study of flows through porous media
(p = 3/2, see Showalter-Walkington [275]) or glacial sliding (p ∈ (1, 4/3],
see Pélissier-Reynaud [236]). We also refer to Aronsson-Janfalk [13] for
the mathematical treatment of the Hele-Shaw flow of “power-law flu-
ids”. The concept of Hele-Shaw flow corresponds to a flow between
two closely-spaced parallel plates, where the gap between the plates is
small compared to the dimension of the plates. Quasilinear problems
with a variable coefficient also appear in mathematical models of tor-
sional creeps (elastic for p = 2, plastic as p → ∞, see Bhattacharya-
DiBenedetto-Manfredi [38] and Kawohl [155]). This study is based on
the observation that a prismatic material rod subject to a torsional mo-
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ment, at sufficiently high temperature and for an extended period of
time, exhibits a permanent deformation, called creep. The correspond-
ing equations are derived under the assumptions that the components of
strain and stress are linked by a power law referred to as the creep-law
see Kachanov [151, Chapters IV, VIII], [152], and Findley-Lai-Onaran
[120]). A nonlinear field equation in quantum mechanics involving the
p-Laplacian, for p = 6, has been proposed in Benci-Fortunato-Pisani
[34].

In this chapter we are concerned to study the following quasilinear
eigenvalue problem

(Pλ,µ)
{ −div (a(x)|∇u|p−2∇u) = λα(x, u) + β(x, u) in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = µh(x, u) on Γ ,

where Ω ⊂ RN is an unbounded domain with (possible noncompact)
smooth boundary Γ, n denotes the unit outward normal on Γ, a ∈
L∞(Ω), b : Γ → R, α, β : Ω × R → R and h : Γ × R → R are functions
which satisfy some growth conditions and λ, µ ∈ R are parameters. Our
aim is to study the existence and multiplicity of the solutions of problem
(Pλ,µ) for different values of the parameters λ, µ ∈ R and for various
functions α, β and h. Eigenvalue problems involving the p-Laplacian
have been the subject of much recent interest, see for example the pa-
pers of Allegretto-Huang [4], Anane [11], Drábek [92], Drábek-Pohozaev
[94], Drábek-Simader [95], Garćıa-Montefusco-Peral [122], Garćıa-Peral
[123].

In the first section we describe the weighted Sobolev spaces, where we
define the energy functional associated to the problem (Pλ,µ). In the
next section our attention is focused to prove existence and multiplicity
result for problem (Pλ,µ), when µ = 1, using the Mountain Pass The-
orem, and Ljusternik-Schnirelmann theory. In the following section we
study the problem (Pλ,µ), when λ = µ. Using the Mountain Pass type
result proved by Motreanu, we prove the problem has a nontrivial solu-
tions. In the last parts of this chapter we prove that the problem (Pλ,µ)
has two nontrivial weak solutions if the parameters λ and µ belongs to
some interval.
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3.1 Weighted Sobolev spaces

Let Ω ⊂ RN be an unbounded domain with smooth boundary Γ. We
assume that p, q and m are real numbers satisfying

1 < p < N, p < q < p∗ =
Np

N − p
, (p∗ = +∞, if p ≥ N), (3.1)

and

q ≤ m <
p(N − 1)
N − p

if p < N (q ≤ m < +∞, when p ≥ N). (3.2)

Let C∞δ (Ω) be the space of C∞0 (RN )-functions restricted on Ω.
We define the weighted Sobolev space E as the completion of C∞δ (Ω)

in the norm

‖u‖E =




∫

Ω

(
|∇u(x)|p +

1
(1 + |x|)p

|u(x)|p
)

dx




1/p

.

Denote by Lp(Ω; w1) and Lm(Γ; w2) the weighted Lebesgue spaces with
weight functions

wi(x) = (1 + |x|)βi , (i = 1, 2), (3.3)

and the norms defined by

‖u‖p
p,w1

=
∫

Ω

w1|u(x)|p dx, ‖u‖q
q,w2

=
∫

Γ

w2|u(x)|q dx

where

−N < β1 < −p, if p < N (β1 < −p, when p ≥ N), (3.4)

−N < β2 < q
N − p

p
−N + 1, if p < N (−N < β2 < 0, when p ≥ N).

(3.5)
We have the following weighted Hardy-type inequality.

Lemma 3.1 Let 1 < p < N . Then, there exist positive constants C1

and C2, such that for every u ∈ E it holds
∫

Ω

1
(1 + |x|)p

|u|p dx ≤ C1

∫

Ω

|∇u|p dx + C2

∫

Γ

|n · x|
(1 + |x|)p

|u|p dΓ . (3.6)
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Proof Using the divergence theorem we obtain for u ∈ C∞δ (Ω)
∫

Ω

x·∇
(

1
(1 + |x|)p

|u|p
)

dx =
∫

Γ

(n·x)
1

(1 + |x|)p
|u|p dΓ−N

∫

Ω

1
(1 + |x|)p

|u|p dx .

This implies

N

∫

Ω

1
(1 + |x|)p

|u|p dx ≤
∫

Γ

|n · x|
(1 + |x|)p

|u|p dΓ + p

∫

Ω

1
(1 + |x|)p

|u|p dx

+p

∫

Ω

1
(1 + |x|)p−1

|u|p−1|∇u| dx .

Using Hölder’s and Young’s inequalities, the last term can be estimated
by

p

(∫

Ω

1
(1 + |x|)p

|u|p dx

)(p−1)/p (∫

Ω

|∇u|p dx

)1/p

≤ ε(p− 1)
∫

Ω

1
(1 + |x|)p

|u|p dx + ε1−p

∫

Ω

|∇u|p dx ,

where ε > 0 is an arbitrary real number. It follows that

(N−ε(p−1)−p)
∫

Ω

1
(1 + |x|)p

|u|p dx ≤ ε1−p

∫

Ω

|∇u|p dx+
∫

Γ

|n · x|
(1 + |x|)p

|u|p dΓ ,

and for ε small enough, the desired inequality follows by standard density
arguments.

In this chapter we shall use the following embedding result, see Pflüger
[237] and [238].

Theorem 3.1 If

p ≤ r ≤ pN

N − p
and −N < β1 ≤ r

N − p

p
−N , (3.7)

then the embedding E ↪→ Lr(Ω;w1) is continuous. If the upper bounds
for r in (3.7) are strict, then the embedding is compact. If

p ≤ q ≤ p(N − 1)
N − p

and −N < β2 ≤ q
N − p

p
−N + 1 , (3.8)

then the trace operator E ↪→ Lq(Γ; w2) is continuous. If the upper bounds
for q in (3.8) are strict, then the trace operator is compact.

As a corollary of Lemma 3.1 and Theorem 3.1 we obtain:
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Lemma 3.2 Let b satisfying
c

(1 + |x|)p−1
≤ b(x) ≤ C

(1 + |x|)p−1
for

some constants 0 < c ≤ C. Then

‖u‖p
b =

∫

Ω

a(x)|∇u|p dx +
∫

Γ

b(x)|u|p dΓ

defines an equivalent norm on E.

Proof The inequality ‖u‖E ≤ C1‖u‖b follows directly from Lemma 3.1,
while Theorem 3.1 (for p = q and β2 = −(p− 1)) implies

‖u‖p
b ≤ ‖a‖L∞

∫

Ω

|∇u|pdx + C

∫

Γ

|u|p(1 + |x|)−(p−1)dΓ

≤ ‖a‖L∞

∫

Ω

|∇u|pdx + C2‖u‖p
E ,

which shows the desired equivalence.

We assume that h : Γ × R → R is a Carathéodory function that
satisfies the following conditions:
(H) |h(x, s)| ≤ h0(x) + h1(x)|s|m−1; p ≤ m < p · N − 1

N − p , where hi :
Γ → R are nonnegative, measurable functions such that

0 ≤ hi(x) ≤ Chw2 a.e., h0 ∈ Lm/(m−1)(Γ; w
1/(1−m)
2 ),

where −N < β2 < m · N − p
p −N + 1 and w2 is defined as in (3.3).

Set H(x, s) =
∫ s

0

h(x, t)dt. We denote by Nh, NH the corresponding

Nemytskii operators.

Lemma 3.3 The operators

Nh : Lm(Γ; w2) → Lm/(m−1)(Γ; w
1/(1−m)
2 ), NH : Lm(Γ; w2) → L1(Γ)

are bounded and continuous.
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Proof Let m′ = m/(m− 1) and u ∈ Lm(Γ; w2). Then, by (H),
∫

Γ

|Nh(u)|m′ · w1/(1−m)
2 dΓ ≤

≤ 2m′−1




∫

Γ

hm′
0 · w1/(1−m)

2 dΓ +
∫

Γ

hm′
1 |u|m · w1/(1−m)

2 dΓ


 ≤

≤ 2m′−1


C + Ch ·

∫

Γ

|u|m · w2 dΓ


 ,

which shows that Nh is bounded. In a similar way we obtain
∫

Γ

|NH(u)| dΓ ≤
∫

Γ

h0|u| dΓ +
∫

Γ

h1|u|m dΓ ≤

≤



∫

Γ

hm′
0 · w1/(1−m)

2 dΓ




1/m′

·



∫

Γ

|u|m · w2 dΓ




1/m

+ Cg ·
∫

Γ

|u|m · w2 dΓ,

which imply the boundedness of NH.
From the usual properties of Nemytskii operators we deduce the con-

tinuity of Nh and NH.

3.2 Eigenvalue problems

We suppose that p, q and m are real numbers satisfying the conditions
(3.1) and (3.2). In this section we consider the particular case for (Pλ,µ),
when α(x, u) = f(x)|u|p−2u, β(x, u) = g(x)|u|q−2u and µ = 1. In this
case problem (Pλ,µ) becomes

(Pλ)
{ −div (a(x)|∇u|p−2∇u) = λf(x)|u|p−2u + g(x)|u|q−2u in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = h(x, u) on Γ ,

where n denotes the unit outward normal on Γ, 0 < a0 ≤ a, where
a ∈ L∞(Ω) and b : Γ → R is a continuous function satisfying

c

(1 + |x|)p−1
≤ b(x) ≤ C

(1 + |x|)p−1
,

for some constants 0 < c ≤ C.
We assume that f and g are nontrivial measurable functions satisfying

0 ≤ f(x) ≤ C(1+|x|)α1 and 0 ≤ g(x) ≤ C(1+|x|)α2 , for a.e. x ∈ Ω,
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where the numbers α1, α2 satisfy the conditions

−N < α1 < −p, if p < N(α1 < −p, when p ≥ N), (3.9)

and

−N < α2 < q
N − p

p
−N +1, if p < N (−N < α2 < 0, when p ≥ N).

(3.10)
The mapping h : Γ×R→ R is a Carathéodory function which fulfills

the assumption

(H1) |h(x, s)| ≤ h0(x) + h1(x)|s|m−1,

where hi : Γ → R (i = 0, 1) are measurable functions satisfying

h0 ∈ Lm/(m−1)(Γ; w
1/(1−m)
3 ) and 0 ≤ hi ≤ Chw3 a.e. on Γ,

and w3 = (1 + |x|)α3 , where α3 satisfies the conditions

−N < α3 < m
N − p

p
−N +1, if p < N (−N < α3 < 0 when p ≥ N).

(3.11)
We also assume:

(H2) lim
s→0

h(x, s)
b(x)|s|p−1

= 0 uniformly in x.

(H3) There exists µ ∈ (p, q] such that

µH(x, t) ≤ th(x, t) for a.e. x ∈ Γ and every t ∈ R .

(H4) There exists a nonempty open set U ⊂ Γ with H(x, t) > 0 for

(x, t) ∈ U × (0,∞), where H(x, t) =
∫ t

0

h(x, s) ds.

By a weak solution of problem (Pλ) we mean a function u ∈ E such
that for any v ∈ E it holds

∫

Ω

a(x)|∇u|p−2∇u∇v dx +
∫

Γ

b(x)|u|p−2uv dS

= λ

∫

Ω

f(x)|u|p−2uvdx +
∫

Ω

g(x)|u|q−2uvdx +
∫

Γ

h(x, u)vdS.

The energy functional corresponding to (Pλ) is defined as Eλ : E → R

Eλ(u) =
1
p

∫

Ω

a(x)|∇u|p dx +
1
p

∫

Γ

b(x)|u|p dS

− λ

p

∫

Ω

f(x)|u|p dx−
∫

Γ

H(x, u) dS − 1
q

∫

Ω

g(x)|u|q dx.
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By Lemma 3.2 we have ‖ · ‖b ' ‖ · ‖E . We may write

Eλ(u) =
1
p
‖u‖p

b −
λ

p

∫

Ω

f(x)|u|p dx−
∫

Γ

H(x, u) dS − 1
q

∫

Ω

g(x)|u|q dx.

Since p < q < p∗, −N < α1 < −p and −N < α2 < q N−p
p − N , we

can apply Theorem 3.1 and obtain that the embedding E ↪→ Lp(Ω; w1),
E ↪→ Lq(Ω; w2) and E ↪→ Lq(Γ;ww) are compact. So, the functional Eλ

is well defined.

Lemma 3.4 Under the assumptions (H1)-(H4), the functional Eλ is
Fréchet differentiable on E and satisfies the Palais-Smale condition.

Proof Denote I(u) = 1
p‖u‖p

b , KH(u) =
∫

Γ

H(x, u) dS, KΨ(u) =
∫

Ω

Ψ(x, u) dx

and KΦ(u) =
∫

Ω

Φ(x, u) dx, where Φ(x, u) = 1
pf(x)|u|p and Ψ(x, u) =

1
q g(x)|u|q.

Then the directional derivative of E ′λ in the direction v ∈ E is

〈E ′λ(u), v〉 = 〈I ′(u), v〉 − λ〈K ′
Φ(u), v〉 − 〈K ′

Ψ(u), v〉 − 〈K ′
H(u), v〉,

where

〈I ′(u), v〉 =
∫

Ω

a(x)|∇u|p−2∇u∇v dx +
∫

Γ

b(x)|u|p−2uv dS,

〈K ′
H(u), v〉 =

∫

Γ

h(x, u)v dS,

〈K ′
Ψ(u), v〉 =

∫

Ω

g(x)|u|q−2uv dx,

〈K ′
Φ(u), v〉 =

∫

Ω

f(x)|u|p−2uv dx.

Clearly, I ′ : E → E? is continuous. The operator K
′
H is a composition

of the operators

K
′
H : E → Lm(Γ; w3)

Nh→ Lm/(m−1)(Γ; w
1/(1−m)
3 ) l→ E?

where 〈l(u), v〉 =
∫

Γ

uv dS. Since

∫

Γ

|uv| dS ≤
(∫

Γ

|u|m′
w

1/(1−m)
3 dS

)1/m′

·
(∫

Γ

|v|mw3 dS

)1/m

,
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then by Theorem 3.1 l is continuous. As a composition of continuous
operators, K

′
H is continuous, too. Moreover, by our assumptions on w3,

the trace operator E ↪→ Lm(Γ; w3) is compact and therefore, K
′
H is also

compact.
Set ϕ(u) = f(x) |u|p−2u. Lemma 3.3 implies that that the Nemytskii

operator corresponding to any function which satisfies (H1) is bounded
and continuous. Hence Nh and Nϕ are bounded and continuous. Note
that

K
′
Φ : E ⊂ Lp(Ω; w1)

Nϕ→ Lp/(p−1)(Ω; w
1/(1−p)
1 )

η→ E?,

where 〈η(u), v〉 =
∫

Ω

uv dx. Since

∫

Ω

|uv| dx ≤
(∫

Ω

|u|p/(p−1)w
1/(1−p)
1 dx

)(p−1)/p

·
(∫

Ω

|v|pw1 dx

)1/p

,

it follows that η is continuous. But K
′
Φ is the composition of three

continuous operators and by the assumptions on w1, the embedding
E ↪→ Lp(Ω; w1) is compact. This implies that K

′
Φ is compact. In a sim-

ilar way we obtain that K
′
Ψ is compact and this implies the continuous

Fréchet differentiability of Eλ.
Now, let un ∈ E be a Palais-Smale sequence, that is,

|Eλ(un)| ≤ C for all n (3.12)

and

‖E ′λ(un)‖E? → 0 as n →∞. (3.13)

We first prove that {un} is bounded in E. Remark that (3.13) implies
that

|〈E ′λ(un), un〉| ≤ µ · ‖un‖b for n large enough.

Then by (3.12) we obtain

C + ‖un‖b ≥ Eλ(un)− 1
µ
〈E ′λ(un), un〉. (3.14)

But

〈E ′λ(un), un〉 =
∫

Ω

a(x)|∇un|p dx +
∫

Γ

b(x)|un|p dS

− λ

∫

Ω

f(x)|un|p dx−
∫

Ω

g(x)|un|q dx−
∫

Γ

h(x, un)un dS.
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We have

Eλ(un)− 1
µ
〈E ′λ(un), un〉 =

(
1
p
− 1

µ

)(
‖un‖p

b − λ

∫

Ω

f(x)|u|pdx

)

−
(∫

Γ

H(x, un) dS − 1
µ

∫

Γ

h(x, un)un dS

)
−

(
1
q
− 1

µ

) ∫

Ω

g(x)|un|q dx).

By (H3) we deduce that
∫

Γ

H(x, un) dS ≤ 1
µ

∫

Γ

h(x, un)un dS. (3.15)

Therefore

Eλ(un)− 1
µ
〈E ′λ(un), un〉 ≥

(
1
p
− 1

µ

)
C0‖un‖p

b . (3.16)

Relations (3.14) and (3.16) yield

C + ‖un‖b ≥
(

1
p
− 1

µ

)
C0‖un‖p

b .

This shows that {un} is bounded in E.
To prove that {un} contains a Cauchy sequence we use the following

well-known inequalities:

|ξ − ζ|p ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), for p ≥ 2, (3.17)

|ξ − ζ|2 ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ)(|ξ|+ |ζ|)2−p, for 1 < p < 2,

(3.18)
for every ξ, ζ ∈ RN .

In the case p ≥ 2 we obtain:

‖un − uk‖p
b =

∫

Ω

a(x)|∇un −∇uk|p dx +
∫

Γ

b(x)|un − uk|p dS

≤ C(〈I ′(un), un − uk〉 − 〈I ′(uk), un − uk〉)
= C(〈E ′λ(un), un − uk〉 − 〈E ′λ(uk), un − uk〉

+ λ〈K ′
Φ(un), un − uk〉 − λ〈K ′

Φ(uk), un − uk〉
+ 〈K ′

H(un), un − uk〉 − 〈K
′
H(uk), un − uk〉

+ 〈K ′
Ψ(un), un − uk〉 − 〈K ′

Ψ(uk), un − uk〉)
≤ C(‖E ′λ(un)‖E? + ‖E ′λ(uk)‖E? + |λ| ‖K ′

Φ(un)−K
′
Φ(uk)‖E?

+ ‖K ′
H(un)−K

′
H(uk)‖E? + ‖K ′

Ψ(un)−K
′
Ψ(uk)‖E?)‖un − uk‖b.

Since E ′λ(un) → 0 and K
′
Φ, K ′

Ψ, K ′
H are compact, we conclude (passing

eventually to a subsequence) that {un} converges in E.
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If 1 < p < 2, then we use the estimate

‖un−uk‖2b ≤ C ′|〈I ′(un), un−uk〉−〈I ′(uk), un−uk〉|(‖un‖2−p
b +‖uk‖2−p

b ).
(3.19)

Since ‖un‖b is bounded, the same arguments lead to a convergent
subsequence. In order to prove the estimate (3.19) we recall the following
result: for all s ∈ (0,∞) there is a constant Cs > 0 such that

(x + y)s ≤ Cs(xs + ys) for any x, y ∈ (0,∞). (3.20)

Then we obtain

‖un − uk‖2b =
(∫

Ω

a(x)|∇un −∇uk|p dx +
∫

Γ

b(x)|un − uk|p dS

) 2
p

≤ Cp

[(∫

Ω

a(x)|∇un −∇uk|p dx

) 2
p

+
(∫

Γ

b(x)|un − uk|p dS

) 2
p

]
.

(3.21)
Using (3.18), (3.20) and the Hölder inequality we find



94 Nonlinear Eigenvalue Problems

∫

Ω

a(x)|∇un −∇uk|p dx =
∫

Ω

a(x)(|∇un −∇uk|2)
p
2 dx

≤ C

∫

Ω

a(x)
(
(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk)

) p
2

× (|∇un|+ |∇uk|)
p(2−p)

2 dx

= C

∫

Ω

(
a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk)

) p
2

× (a(x)(|∇un|+ |∇uk|)p)
2−p
2 dx

≤ C

(∫

Ω

a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk) dx

) p
2

×
(∫

Ω

a(x)(|∇un|+ |∇uk|)p dx

) 2−p
2

≤ C̃p

(∫

Ω

a(x)|∇un|p dx +
∫

Ω

a(x)|∇uk|p dx

) 2−p
2

(∫

Ω

a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk) dx

) p
2

≤ Cp

[(∫

Ω

a(x)|∇un|p dx

) 2−p
2

+
(∫

Ω

a(x)|∇uk|p dx

) 2−p
2

]

×
(∫

Ω

a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk) dx

) p
2

≤ Cp

[∫

Ω

a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk) dx

] p
2

×
(
‖un‖

(2−p)p
2

b + ‖uk‖
(2−p)p

2
b

)
.

Using the last inequality and (3.20) we have the estimate

(∫

Ω

a(x)|∇un −∇uk|p dx

) 2
p

(3.22)

≤ C ′p

(∫

Ω

a(x)(|∇un|p−2∇un − |∇uk|p−2∇uk)(∇un −∇uk) dx

)

·(‖un‖2−p
b + ‖uk‖2−p

b ).
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In a similar way we can obtain the estimate

(∫

Γ

b(x)|un − uk|p dS

) 2
p

≤ C
′
p

(∫

Γ

b(x)(|un|p−2un − |uk|p−2uk)(un − uk) dx

)

(3.23)

·(‖un‖2−p
b + ‖uk‖2−p

b ).

It is now easy to observe that the inequalities (3.21), (3.22) and (3.23)
imply the estimate (3.19). The proof of Lemma 3.4 is complete.

Define

λ̃ := inf
u∈E; u 6=0




∫

Ω

a(x)|∇u|p dx +
∫

Γ

b(x)|u|p dS
∫

Ω

f(x)|u|p dx


 .

We have the following existence result.

Theorem 3.2 Assume that the conditions (H1)-(H4) hold. Then, for
every λ < λ̃, problem (Pλ) has a nontrivial weak solution.

Our hypothesis λ < λ̃ implies the existence of some C0 > 0 such that,
for every v ∈ E

‖v‖p
b − λ

∫

Ω

f(x)|v|pdx ≥ C0‖v‖p
b . (3.24)

Proof of Theorem 3.2. We have to verify the geometric assumptions
of the mountain pass theorem, see Theorem 1.7. First we show that
there exist positive constants R and c0 such that

Eλ(u) ≥ c0, for any u ∈ E with ‖u‖ = R. (3.25)

By Theorem 3.1 there exists A > 0 such that

‖u‖q
q,w2

≤ A‖u‖q
b for all u ∈ E.

This inequality together with (3.24) imply that

Eλ(u) =
1
p

(‖u‖p
b − λ‖u‖p

p,w1

)− 1
q

∫

Ω

g(x)|u|q dx−
∫

Γ

H(x, u) dS

≥ C0

p
‖u‖p

b −
A

q
‖u‖q

b −
∫

Γ

H(x, u) dS.
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By (H1) and (H2) we deduce that for every ε > 0 there exists Cε > 0
such that

1
q
|g(x)||u|q ≤ εb(x)|u|p + Cεw3(x)|u|m.

Consequently,

Eλ(u) ≥ C0

p
‖u‖p

b −
A

q
‖u‖q

b −
∫

Γ

(εb(x)|u|p + Cεw3(x)|u|m) dS

≥ C0

p
‖u‖p

b −
A

q
‖u‖q

b − εc1‖u‖p
b − CεC2‖u‖m

b .

For ε > 0 and R > 0 small enough, we deduce that for every u ∈ E with
‖u‖b = R we have Eλ(u) ≥ c0 > 0, which yields (3.25).

In what follows we verify the second geometric assumption of Theorem
1.7, namely

∃v ∈ E with ‖v‖ > R such that Eλ(v) < c0. (3.26)

Choose ψ ∈ C∞δ (Ω), ψ ≥ 0, such that ∅ 6= suppψ ∩ Γ ⊂ U . From

1
q
g(x)uq ≥ c3u

µ − c4 on (u, s) ∈ U × (0,∞)

and (H1) we claim that

Eλ(tψ) =
tp

p

(‖ψ‖p
b − λ‖ψ‖p

p,w1

)− 1
q

∫

Ω

g(x)|tψ|q dx−
∫

Γ

H(x, tψ) dS

≤ tp

p

(‖ψ‖p
b − λ‖ψ‖p

p,w1

)− c3t
µ

∫

U

ψµ dS + c4|U | − tq

q

∫

Ω

w2ψ
q dx.

Since q ≥ µ > p, we obtain Eλ(tψ) → −∞ as t → ∞. It follows that if
t > 0 is large enough, Eλ(tψ) < 0, so v = tψ satisfies (3.26).

By Theorem 1.7 it follows that problem (Pλ) has a nontrivial weak
solution.¤

3.3 Superlinear case

We assume throughout this section that p, q, r and α1 are real numbers
satisfying

1 < p < N, p < q < r < p? =
pN

N − p
, −N < α1 < q

N − p

p
−N.

(3.27)
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Also, we consider a ∈ L∞(Ω) and b ∈ L∞(Γ) such that

a(x) ≥ a0 > 0, for a.e. x ∈ Ω, (3.28)

and

c

(1 + |x|)p−1
≤ b(x) ≤ C

(1 + |x|)p−1
, for a.e. x ∈ Γ, where c, C > 0.

(3.29)
We assume that h : Γ × R → R is a Carathéodory function, which

satisfies the following conditions:
(h1) h(·, 0) = 0, h(x, s) + h(x,−s) ≥ 0, for a.e. x ∈ Γ and for any
s ∈ R;
(h2) h(x, s) ≤ h0(x) + h1(x)|s|m−1, p ≤ m < pN−1

N−p , where hi : Γ →
R, i = 1, 2 are nonnegative, measurable functions such that

0 ≤ hi(x) ≤ Chw2, a.e. g0 ∈ Lm/(m−1)(Γ; w1/(m−1)
2 ),

where −N < α2 < m · N − p

p
−N + 1 and w2 = (1 + |x|)α2 .

Set H(x, s) =
∫ s

0

h(x, t)dt. We denote by Hh, NH the corresponding

Nemytskii operators. From Lemma 3.3 and condition (h2) it follows
that the operators Hh, NH are bounded and continuous.

In this section we consider the following double eigenvalue problem:

(P′λ,µ)





−div (a(x)|∇u|p−2∇u) + h(x)|u|r−2u = λ(1 + |x|)α1 |u|q−2u in Ω ⊂ RN ,

a(x)|∇u|p−2∇u · n + b(x) · |u|p−2u = µg(x, u) on Γ ,

u ≥ 0, u 6≡ 0 in Ω .

Let χ : Ω → R be a positive and continuous function satisfying
∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx < ∞. (3.30)

Define the Banach space

X = {u ∈ E :
∫

Ω

χ(x)|u|r dx < ∞}

endowed with the norm

‖u‖p
X = ‖u‖p

b +




∫

Ω

χ(x)|u(x)|r dx




p/r

.
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The energy functional Φ : X → R corresponding to problem (Pλ,µ) is
given by

Φ(u) =
1
p

∫

Ω

a(x)|∇u|p dx +
1
p

∫

Γ

b(x)|u|p dΓ− λ

q

∫

Ω

w1|u|q dx +

+
1
r

∫

Ω

χ(x)|u|r dx− µ

∫

Γ

H(x, u) dΓ.

Theorem 3.1 implies that Φ is well defined. The solutions of problem
(Pλ,µ) will be found as critical points of Φ. Therefore, a function u ∈ X

is a solution of problem (Pλ,µ) provided that for any v ∈ X it holds
∫

Ω

a|∇u|p−2∇u·∇v+
∫

Γ

b|u|p−2uv = λ

∫

Ω

w1|u|p−2uv−
∫

Ω

χ|u|p−2uv+µ

∫

Γ

hv .

We have the following result.

Theorem 3.3 Assume hypotheses (3.27), (3.28), (3.29), (3.30), (h1)
and (h2) hold. Then there exist real numbers µ∗, µ∗ and λ∗ > 0 such that
problem (P ′λ,µ) has no nontrivial solution, provided that µ∗ < µ < µ∗

and 0 < λ < λ∗.

Proof Suppose that u is a solution in X of (P ′λ,µ). Then u satisfies

∫

Ω

a(x)|∇u|p dx +
∫

Γ

b(x)|u|p dΓ− µ

∫

Γ

h(x, u)u dΓ + (3.31)

+
∫

Ω

χ(x)|u|r dx = λ

∫

Ω

w1|u|q dx.

It follows from Young’s inequality that

λ

∫

Ω

w1|u|q dx =
∫

Ω

λw1

χq/r
·χq/r|u|q dx ≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx+

q

r

∫

Ω

χ|u|r dx.

This combined with (3.31) gives

‖u‖p
b − µ

∫

Γ

h(x, u)u dΓ ≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx +(3.32)

+
q − r

r

∫

Ω

χ|u|r dx ≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx.
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Set

A = {u ∈ X :
∫

Γ

h(x, u)u dΓ < 0}, B = {u ∈ X :
∫

Γ

h(x, u)u dΓ > 0},

µ∗ = sup
u∈A

‖u‖p
b∫

Γ

h(x, u)u dΓ
, µ∗ = inf

u∈B

‖u‖p
b∫

Γ

h(x, u)u dΓ
. (3.33)

We introduce the convention that, if A = ∅, then µ∗ = −∞ and if B = ∅,
then µ∗ = +∞.

We show that, if we take µ? < µ < µ?, then there exists C0 > 0 such
that

C0‖u‖p
b ≤ ‖u‖p

b − µ

∫

Γ

h(x, u)u dΓ for all u ∈ X. (3.34)

If µ < µ∗, then there exists a constant C1 ∈ (0, 1) such that

µ ≤ (1− C1)µ∗ ≤ (1− C1)
‖u‖p

b∫

Γ

h(x, u)u dΓ
for all u ∈ B,

which implies

‖u‖p
b − µ

∫

Γ

h(x, u)u dΓ ≥ C1‖u‖p
b for all u ∈ B. (3.35)

If µ∗ < µ, then there exists a constant C2 ∈ (0, 1) such that

(1− C2)
‖u‖p

b∫

Γ

h(x, u)u dΓ
≤ (1− C2)µ∗ ≤ µ for all u ∈ A,

which yields

‖u‖p
b − µ

∫

Γ

h(x, u)u dΓ ≥ C2‖u‖p
b for all u ∈ A. (3.36)

From (3.35) and (3.36) we conclude that

‖u‖p
b − µ

∫

Γ

h(x, u)u dΓ ≥ min{C1, C2}‖u‖p
b for all u ∈ X

and taking C0 = min{C1, C2} we obtain (3.34).
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By (3.31), (3.34) and Theorem 3.1 we have

C0C




∫

Ω

w1|u|q dx




p/q

≤ C0‖u‖p
b ≤ λ

∫

Ω

w1|u|q dx, (3.37)

for some constant C > 0. This inequality implies

(Cλ−1C0)q/(q−p) ≤
∫

Ω

w1|u|q dx,

which combined with (3.37) yields

C0C(Cλ−1C0)p/(q−p) ≤ C0‖u‖p
b .

Combining this with (3.32) and (3.34) we obtain

C0C(Cλ−1C0)p/(q−p) ≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx.

By taking

λ∗ =


(C0C)q/(q−p) r

r − q




∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx



−1




(r−q)(q−p)
q(r−p)

,

the result follows.

Set

U = {u ∈ X :
∫

Γ

H(x, u) dΓ < 0}, V = {u ∈ X :
∫

Γ

H(x, u) dΓ > 0},

µ− = sup
u∈U

‖u‖p
b

p

∫

Γ

H(x, u) dΓ
, µ+ = inf

u∈V

‖u‖p
b

p

∫

Γ

H(x, u) dΓ
. (3.38)

If U = ∅ (resp. V = ∅), then we set µ− = −∞ (resp. µ+ = +∞).
Proceeding in the same manner as we did for proving (3.34), we can
show that if we take µ− < µ < µ+, then there exists c > 0 such that

1
p
‖u‖p

b − µ

∫

Γ

H(x, u) dΓ ≥ c‖u‖p
b for all u ∈ X. (3.39)
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In what follows we employ the following elementary inequality

k|u|β − χ|u|γ ≤ Cβ,γk

(
k

χ

) β
γ−β

, ∀u ∈ R, ∀χ, k ∈ (0,∞), ∀0 < β < γ .

(3.40)

Proposition 3.1 If µ− < µ < µ+, then the functional Φ is coercive.

Proof By virtue of (3.40) we have

∫

Ω

(
λ

q
|u|qw1 − χ

2r
|u|r

)
dx ≤ Cr,q

∫

Ω

λw1

(
λw1

χ

)q/(r−q)

dx

= Cr,qλ
r/(r−q)

∫

Ω

w
r/(r−q)
1

hq/(r−q)
dx.

Using (3.39) it follows that

Φ(u) =
1
p
‖u‖p

b − µ

∫

Γ

H(x, u) dΓ−
∫

Ω

(
λ

q
|u|qw1 − χ

2r
|u|r

)
dx

+
1
2r

∫

Ω

χ|u|r dx ≥ c‖u‖p
b +

1
2r

∫

Ω

χ|u|r dx− C1

and the coercivity of Φ follows.

Proposition 3.2 Suppose µ− < µ < µ+ and let {un} be a sequence in
X such that Φ(un) is bounded. Then there exists a subsequence of {un},
relabeled again by {un}, such that un ⇀ u0 in X and

Φ(u0) ≤ lim inf
n→∞

Φ(un).

Proof Since Φ is coercive in X we see that the boundedness of {Φ(un)}
implies that ‖un‖b and

∫

Ω

χ|un|r dx are bounded. From Theorem 3.1

we know that the embedding E ↪→ Lq(Ω; w1) is compact and using the
fact that {un} is bounded in E we may assume that un ⇀ u0 in E and
un → u0 in Lq(Ω; w1).

Set F (x, u) = λ
q |u|qw1 − 1

r h|u|r and f(x, u) = Fu(x, u). A simple
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computation yields

fu(x, u) = (q−1)λ|u|q−2w1−(r−1)χ|u|r−2 ≤ Cr,qλw1

(
λw1

χ

)(q−2)/(r−q)

,

(3.41)
where the last inequality follows from (3.40). We obtain

Φ(u0) − Φ(un) =
1
p

∫

Ω

a(x)|∇u0|p dx +
1
p

∫

Γ

b(x)|u0|p dΓ

− 1
p

∫

Ω

a(x)|∇un|p dx− 1
p

∫

Γ

b(x)|un|p dΓ− µ

∫

Γ

G(x, u0) dΓ

+ µ

∫

Γ

H(x, un) dΓ +
∫

Ω

(F (x, un)− F (x, u0)) dx = ‖u0‖p
b − ‖un‖p

b

+ µ




∫

Γ

H(x, un) dΓ−
∫

Γ

H(x, u0) dΓ




+
∫

Ω




1∫

0

s∫

0

fu(x, u0 + t(un − u0)) dt ds


 (un − u0)2 dx

≤ ‖u0‖p
b − ‖un‖p

b + µ




∫

Γ

H(x, un) dΓ−
∫

Γ

H(x, u0) dΓ




+ C2

∫

Ω

(un − u0)2
w

(r−2)/(r−q)
1

χ(q−2)/(r−q)
dx,

where C2 = 1
2Cr,qλ

(r−2)/(r−q).
We show that the last integral tends to 0 as n →∞. Indeed, applying

Hölder’s inequality we obtain

∫

Ω

(un−u0)2
w

(r−2)/(r−q)
1

χ(q−2)/(r−q)
dx ≤




∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx




(q−2)/q

·



∫

Ω

w1|un − u0|q dx




2/q

.

Since un → u0 in Lq(Ω; w1) we have

lim
n→∞

∫

Ω

(un − u0)2
w

(r−2)/(r−q)
1

χ(q−2)/(r−q)
dx = 0. (3.42)

The compactness of the trace operator E → Lm(Γ; w2) and the con-
tinuity of the Nemytskii operator NH : Lm(Γ; w2) → L1(Γ) imply
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NH(un) → NH(u0) in L1(Γ) i.e.
∫

Γ

|NH(un) − NH(u0)| dΓ → 0 as

n →∞. It follows that

lim
n→∞

∫

Γ

H(x, un) dΓ =
∫

Γ

H(x, u0) dΓ. (3.43)

Since the norm in E is lower semicontinuous with respect to the weak
topology our conclusion follows from (3.42) and (3.43).

Proposition 3.3 If µ∗ < µ < µ∗ and u is a solution of problem (P ′λ,µ),
then

C0‖u‖p
b +

r − q

r

∫

Ω

χ|u|r dx ≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx

and

‖u‖b ≥ Kλ−1/(q−p),

where K > 0 is a constant independent of u.

Proof If u is a solution of (P ′λ,µ), then

‖u‖p
b − µ

∫

Γ

h(x, u)u dΓ +
∫

Ω

χ|u|r dx = λ

∫

Ω

w1|u|q dx ≤

≤ r − q

r
λr/(r−q)

∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx +

q

r

∫

Ω

χ|u|r dx.

Using (3.34) we obtain the first part of the assertion.
From Theorem 3.1 we have that there exists Cq > 0 such that

‖u‖q
Lq(Ω; w1)

≤ Cq‖u‖q
b , for all u ∈ E.

The above inequality and (3.34) imply

‖u‖b ≥ C
1/(q−p)
0 C−1/(q−p)

q λ−1/(q−p).

By taking K = C
1/(q−p)
0 C

−1/(q−p)
q the second assertion follows.

Theorem 3.4 Assume that hypotheses (3.27), (3.28), (3.29), (3.30),
(h1) and (h2) hold. Set µ = max{µ∗, µ−}, µ = min{µ∗, µ+} and J =
(µ, µ). Then there exists λ0 > 0 such that the following statements hold:

(i) problem (P ′λ,µ) admits a nontrivial solution, for any λ ≥ λ0 and
every µ ∈ J ;
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(ii) problem (P ′λ,µ) does not have any nontrivial solution, provided that
0 < λ < λ0 and µ ∈ J .

Proof According to Propositions 3.1 and 3.2, Φ is coercive and lower
semicontinuous. Therefore, there exists ũ ∈ X such that Φ(ũ) = inf

X
Φ(u).

To ensure that ũ 6≡ 0, we shall prove that inf
X

Φ < 0. Set

λ̃ := inf
{q

p
‖u‖p

b−qµ

∫

Γ

H(x, u) dΓ+
q

r

∫

Ω

χ|u|r dx : u ∈ X,

∫

Ω

w1|u|q dx = 1
}

.

First we check that λ̃ > 0. For this aim we consider the constrained
minimization problem

M := inf
{ ∫

Ω

a(x)|∇u|p dx +
∫

Γ

b(x)|u|p dΓ : u ∈ E,

∫

Ω

w1|u|q dx = 1
}

.

Clearly, M > 0. Since X is embedded in E, we have
∫

Ω

a(x)|∇u|p dx +
∫

Γ

b(x)|u|p dΓ ≥ M

for all u ∈ X with
∫

Ω

w1|u|q dx = 1. Now, applying the Hölder inequality

we find

1 =
∫

Ω

w1|u|q dx =
∫

Ω

w1

χq/r
hq/r|u|q dx ≤




∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx




(r−q)/r

·



∫

Ω

χ|u|r dx




q/r

.

(3.44)
Relation (3.39) implies

q

p
‖u‖p

b − q µ

∫

Γ

H(x, u) dΓ ≥ q c‖u‖p
b .

By virtue of (3.44) we have

q

p
‖u‖p

b − q µ

∫

Γ

H(x, u) dΓ +
q

r

∫

Ω

χ|u|r dx ≥ qc‖u‖p
b +

q

r

∫

Ω

χ|u|r dx ≥

≥ qcM +
q

r




∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx



−(r−q)/q
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for all u ∈ X with
∫

Ω

w1|u|q dx = 1. Then,

λ̃ ≥ qcM +
q

r




∫

Ω

w
r/(r−q)
1

χq/(r−q)
dx



−(r−q)/q

and our claim follows.
Let λ > λ̃. Then, there exists a function u ∈ X with

∫

Ω

w1|u|q dx = 1

such that

λ >
q

p
‖u‖p

b − qµ

∫

Γ

H(x, u) dΓ +
q

r

∫

Ω

χ|u|r dx.

This can be rewritten as

Φ(u) =
1
p
‖u‖p

b − µ

∫

Γ

H(x, u) dΓ +
1
r

∫

Ω

χ|u|r dx− λ

q

∫

Ω

w1|u|q dx < 0

and consequently inf
u∈X

Φ(u) < 0. By Propositions 3.1 and 3.2 it follows

that problem (P ′λ,µ) has a solution.
We set

λ0 = inf{λ > 0 : (P ′λ,µ) admits a solution}.
Suppose λ0 = 0. Then by taking λ1 ∈ (0, λ∗) (where λ∗ is given by
Theorem 3.3), we have that there exists λ̄ such that problem (P ′̄

λ,µ
)

admits a solution. But this is a contradiction, according to Theorem
3.3. Consequently, λ0 > 0.

We now show that for each λ > λ0 problem (P ′λ,µ) admits a solution.
Indeed, for every λ > λ0 there exists ρ ∈ (λ0, λ) such that problem
(P ′ρ,µ) has a solution uρ which is a subsolution of problem (P ′λ,µ). We
consider the variational problem

inf{Φ(u) : u ∈ X and u ≥ uρ}.
By Propositions 3.1 and 3.2 this problem admits a solution ū. This min-
imizer ū is a solution of problem (P ′λ,µ). Since the hypothesis h(x, s) +
h(x,−s) ≥ 0 for a.e. x ∈ Γ and for all s ∈ R implies that H(x, |ū|) ≥
H(x, ū) (that is, Φ(|ū|) ≤ Φ(ū)), we may assume that ū ≥ 0 on Ω. It
remains to show that problem (P ′λ0,µ) has also a solution. Let λn → λ0

and λn > λ0 for each n. Problem (P ′λn,µ) has a solution un for each n.
By Proposition 3.3 the sequence {un} is bounded in X. Therefore we
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may assume that un ⇀ u0 in X and un → u0 in Lq(Ω; w1). We have
that u0 is a solution of (P ′λ0,µ). Since un and u0 are solutions of (P ′λn,µ)
and (P ′λ0,µ), respectively, we have

∫

Ω

a (x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0) dx

+
∫

Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ

+
∫

Ω

χ(|un|r−2un − |u0|r−2u0)(un − u0) dx

= λn

∫

Ω

w1(|un|q−2un − |u0|q−2u0)(un − u0) dx

+ (λn − λ0)
∫

Ω

w1|u0|q−2u0(un − u0) dx

+ µ

∫

Γ

(h(x, un)− h(x, u0))(un − u0) dΓ = J1,n + J2,n + J3,n,

where

J1,n = λn

∫

Ω

w1(|un|q−2un − |u0|q−2u0)(un − u0) dx,

J2,n = (λn − λ0)
∫

Ω

w1|u0|q−2u0(un − u0) dx,

J3,n = µ

∫

Γ

(h(x, un)− h(x, u0))(un − u0) dΓ.

We have

|J1,n| ≤ sup
n≥1

λn




∫

Ω

w1|un|q−1|un − u0| dx +
∫

Ω

w1|u0|q−1|un − u0| dx




and it follows from Hölder’s inequality that

|J1,n| ≤ sup
n≥1

λn

[



∫

Ω

w1|un|q dx




(q−1)/q

·



∫

Ω

w1|un − u0|q dx




1/q

+
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+




∫

Ω

w1|u0|q dx




(q−1)/q

·



∫

Ω

w1|un − u0|q dx




1/q ]
.

We easily observe that J1,n → 0 as n →∞.
From the estimate

|J2,n| ≤ |λn − λ0|



∫

Ω

w1|u0|q dx




(q−1)/q

·



∫

Ω

w1|un − u0|q dx




1/q

we obtain that J2,n → 0 as n →∞.
Using the compactness of the trace operator E → Lm(Γ; w2), the

continuity of Nemytskii operator Nh : Lm(Γ; w2) → Lm/(m−1)(Γ; w
1/(1−m)
2 )

and the estimate∫

Γ

|h(x, un)− h(x, u0)| · |un − u0| dΓ ≤

≤



∫

Γ

|h(x, un)− h(x, u0)|m/(m−1)w
1/(1−m)
2 dΓ




(m−1)/m

·



∫

Γ

w2|un − u0|m dΓ




1/m

we see that J3,n → 0 as n →∞.
So, we have proved that

lim
n→∞

(∫

Ω

a(x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0) dx+

∫

Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ
)

= 0.

Applying the inequality

|ξ − ζ|p ≤ C(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ), ∀ξ, ζ ∈ RN

we find

‖un − u0‖p
b =

∫

Ω

a(x)|∇un −∇u0|p dx +
∫

Γ

b(x)|un − u0|p dx ≤

≤ C
(∫

Ω

a(x)(|∇un|p−2∇un − |∇u0|p−2∇u0)(∇un −∇u0) dx+

+
∫

Γ

b(x)(|un|p−2un − |u0|p−2u0)(un − u0) dΓ
)
→ 0 as n →∞,
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which shows that ‖un‖b → ‖u0‖b. By Proposition 3.3 we have u0 6≡ 0.
This concludes our proof.

3.4 Sublinear case

In this section we suppose that the conditions (3.27), (3.28) and (3.29)
are fulfilled. For λ, µ > 0, we consider the following double eigenvalue
problem:

(P ′′λ,µ)





−div(a(x)|∇u|p−2∇u) = λf(x, u(x)) in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = µg(x, u(x)) on Γ,

u 6= 0 in Ω.

We consider the following assumptions:

(F1) Let f : Ω × R → R be a Carathéodory function such that f(·, 0) = 0
and

|f(x, s)| ≤ f0(x) + f1(x)|s|r−1,

where p < r <
pN

N − p
, and f0, f1 are measurable functions which

satisfy

0 < f0(x) ≤ Cfw1(x), and 0 ≤ f1(x) ≤ Cfw1(x) a.e. x ∈ Ω,

f0 ∈ L
r

r−1 (Ω; w
1

1−r

1 );

(F2)

lim
s→0

f(x, s)
f0(x)|s|p−1 = 0, uniformly in x ∈ Ω;

(F3) lim sup
s→+∞

1
f0(x)|sp|F (x, s) ≤ 0 uniformly for all x ∈ Ω, max

|s|≤M
F (·, s) ∈

L1(Ω) for all M > 0, where F denotes the primitive function of f with

respect to the second variable, i.e. F (x, u) =
∫ u

0

f(x, s)ds;

(F4) there exist x0 ∈ Ω, R0 > 0 and s0 ∈ R such that min
|x−x0|<R0

F (x, s0) >

0.
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(G1) Let g : Γ×R→ R be a a Carathéodory function such that g(·, 0) = 0
and

|g(x, s)| ≤ g0(x) + g1(x)|s|m−1,

where p ≤ m < p · N − 1
N − p

, and g0, g1 are measurable functions satis-

fying

0 < g0(x) ≤ Cgw2(x) and 0 ≤ g1(x) ≤ Cgw2(x), a.e. x ∈ Γ,

g0 ∈ L
q

q−1 (Γ; w
1

1−q

2 );

(G2)

lim
s→0

g(x, s)
g0(x)|s|p−1 = 0, uniformly in x ∈ Γ;

(G3) lim sup
s→+∞

1
g0(x)|sp|G(x, s) < +∞ uniformly for all x ∈ Γ, max

|s|≤M
G(·, s) ∈

L1(Γ) for all M > 0, where G is the primitive function of g with

respect to the second variable, i.e. G(x, u) =
∫ u

0

g(x, s)ds.

The functions w1 and w2 are defined as in the previous section, that is,

wi = (1 + |x|)αi , i = 1, 2.

The first multiplicity result for problem (P ′′λ,µ) is the following:

Theorem 3.5 Let f : Ω×R→ R be a function satisfying the conditions
(F1)-(F4). Then, there exists a non-degenerate compact interval [a, b] ⊂
]0, +∞[ with the following properties:

1◦ there exists a number σ0 > 0 such that for every λ ∈ [a, b] and for
every function g : Γ×R→ R satisfying the conditions (G1)-(G2),
there exists µ0 > 0 such that for each µ ∈]0, µ0[, the functional
Eλ,µ has at least two critical points with norms less than σ0;

2◦ there exists a number σ1 > 0 such that for every λ ∈ [a, b] and for
every function g : Γ×R→ R satisfying the conditions (G1)-(G3),
there exists µ1 > 0 such that for each µ ∈]0, µ1[, the functional
Eλ,µ has at least three critical points with norms less than σ1.

To prove Theorem 3.5 we use Theorem 1.15. Before we prove this
result, we need some auxiliary results.
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Lemma 3.5 We assume that the conditions (F1) and (F2) are satisfied.
Then, the functional JF is sequentially weakly continuous.

Proof First we observe that, from assumption (F1) and (F2), for every
ε > 0, there exists Cε such that

|F (x, u)| ≤ εf0(x)|u(x)|p + Cε(f0(x) + f1(x))|u(x)|r. (3.45)

Now we prove our assertion, arguing by contradiction: Let {un} be a
sequence in E weakly convergent to u ∈ E, and let d > 0 be such that

|JF (un)− JF (u)| ≥ d for all n ∈ N.

Without loss of generality, we can assume that there is a positive
constant M such that

‖u‖b ≤ M, ‖un‖b ≤ M, ‖un − u‖b ≤ M, for all n ∈ N.

Because the embedding E ↪→ Lr(Ω;w1) is compact, follows ‖un−u‖r,w1 →
0. Using (3.45), Theorem 3.1 and the Hölder inequality we have

|JF (un)− JF (u)| ≤
∫

Ω

|F (x, un(x))− F (x, u(x))|dx

≤ εĉ

∫

Ω

f0(x)|un(x)− u(x)|(|un(x)|p−1 + |u(x)|p−1)dx

+ĉCε

∫

Ω

(f0(x) + f1(x))|un(x)− u(x)|(|un(x)|r−1 + |u(x)|r−1)dx

≤ εĉCf

∫

Ω

w1(x)|un(x)− u(x)|(|un(x)|p−1 + |u(x)|p−1)dx

+2ĉCεCf

∫

Ω

w1(x)|un(x)− u(x)|(|un(x)|r−1 + |u(x)|r−1)dx

≤ εĉCf‖un − u‖p,w1(‖un‖
p
p′
p,w1 + ‖u‖

p
p′
p,w1)

+2ĉCεCf‖un − u‖r,w1(‖un‖
r
r′
r,w1 + ‖u‖

r
r′
r,w1),

where ĉ > 0 is a constant, 1
p + 1

p′
= 1 and 1

r + 1
r′

= 1. By the embedding

results from Theorem 3.1 it follows that

d ≤ |JF (un)−JF (u)| ≤ 2εĉCfCp
p,w1

Mp +4ĉCεCfC
r
r′
r,w1M

r
r′ ‖un−u‖r,w1 .

Therefore, if ε > 0 is sufficiently small and n ∈ N is large enough, we
have

d ≤ |JF (un)− JF (u)| < d,
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which is a contradiction.

Remark 3.1 Note that a similar result holds for the functional JG,
i.e. if the conditions (G1), (G2) are fulfilled, then the functional JG is
sequentially weakly continuous.

Lemma 3.6 There exists u0 ∈ E such that JF (u0) > 0.

Proof Let R0 > 0 and s0 ∈ R from (F4) and fix ε ∈ (0, R0
2 ). We consider

the function uε ∈ C∞0 (Ω) such that

uε(x) =
{

0, if |x− x0| ≥ R0

s0, if |x− x0| ≤ R0 − ε

and ‖uε‖∞ ≤ |s0|. Then, we have uε ∈ E.
We denote by V ol(Br(x0)) the volume of the ball

Br(x0) = {x ∈ RN : |x− x0| ≤ r}.
We have

JF (uε) =
∫

Ω

F (x, uε)dx =
∫

BR0−ε(x0)∩Ω

F (x, uε(x))dx +

+
∫

(RN\BR0 (x0))∩Ω

F (x, uε(x))dx +
∫

(BR0 (x0)\BR0−ε(x0))∩Ω

F (x, uε(x))dx ≥

≥ A0V ol(BR0
2

(x0) ∩ Ω)−B0[V ol(BR0(x0) ∩ Ω)− V ol(BR0−ε(x0) ∩ Ω)],

where A0 = min
|x−x0|≤R0

F (x, s0) > 0 and B0 = max
R0
2 ≤|x−x0|≤R0

max
|s|≤|s0|

F (x, s).

If ε goes to 0, then [V ol(BR0(x0)∩Ω)−V ol(BR0−ε(x0)∩Ω)] → 0 as well,
so we can choose an ε = ε0, such that JF (uε0) > 0. We take u0 = uε0

and the proof is complete.

Lemma 3.7 Suppose that the conditions (F1) and (F3) are satisfied.
Then, for every λ ≥ 0 the functional

u → ‖u‖p
b

p
− λJF (u)

is coercive on E.

Proof If λ = 0, then statement is trivial. Let λ > 0 and a ∈
]
0, 1

λpCp
p,w1

[
.
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There exists a positive function ka ∈ L1(Ω; w1) such that

F (x, s) ≤ af0(x)|s|p + ka(x)w1(x), for all (x, s) ∈ Ω× R.

Then, it follows that

‖u‖p
b

p
− λJF (u) ≥ ‖u‖p

b

p
− λa

∫

Ω

w1(x)|u(x)|pdx− λ

∫

Ω

ka(x)w1(x)dx ≥

≥ ‖u‖p
b

(
1
p
− λaCp

p,w1

)
− λ‖ka‖1,w1 ,

which converges to ∞ as ‖u‖b →∞.

Proof of Theorem 3.5: We define the function h :]0,+∞[→ R by

h(t) = sup
{

JF (u) :
‖u‖p

b

p
≤ t

}
, for all t > 0.

By using (3.45) it follows that

0 ≤ h(t) ≤ εpCfCp
p,w1

t + 2p
r
p CεCfCr

r,w1
t

r
p for all t > 0;

since p < r, this implies

lim
t→0+

h(t)
t

= 0.

By (F4) it is clear that u0 6= 0 (since JF (0) = 0). Therefore, due to the
convergence relation above and Lemma 3.6 it is possible to choose a real

number t0 such that 0 < t0 <
‖u0‖p

b

p
and

h(t0)
t0

<

[‖u0‖p
b

p

]−1

· JF (u0).

We choose ρ0 > 0 such that

h(t0) < ρ0 <

[‖u0‖p
b

p

]−1

· JF (u0)t0. (3.46)

In particular, we get ρ0 < JF (u0).

Now, we are going to apply Theorem 1.15 to the space E, the interval
Λ =]0, +∞[ and the function Ψ : E × Λ → R defined by

Ψ(u, λ) =
‖u‖p

b

p
+ λ (ρ0 − JF (u)) for all (u, λ) ∈ E × Λ

and Φ : E → R by

Φ(u) = −JG(u) for all u ∈ E.
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Let us fix λ ∈]0,+∞[: from Lemma 3.7 it follows that the functional

Ψ(·, λ) is coercive; moreover, Ψ(·, λ) is the sum of u 7→ ‖u‖p
b

p
, which is se-

quentially weakly l.s.c., and of u 7→ λ (ρ0 − JF (u)), which is sequentially
weakly continuous (see Lemma 3.5).

We prove now that Ψ complies with the minimax inequality (1.20)
from Theorem 1.15. The function

λ 7→ inf
u∈E

Ψ(u, λ)

is upper semicontinuous on Λ. Since

inf
u∈E

Ψ(u, λ) ≤ Ψ(u0, λ) =
‖u0‖p

b

p
+ λ(ρ0 − JF (u0))

and ρ0 < JF (u0), it follows that

lim
λ→+∞

inf
u∈E

Ψ(u, λ) = −∞.

Thus we can find λ ∈ Λ such that

β1 = sup
λ∈Λ

inf
u∈E

Ψ(u, λ) = inf
u∈E

Ψ(u, λ).

In order to prove that β1 < t0, we distinguish two cases:
I. If 0 ≤ λ < t0

ρ0
, we have

β1 ≤ Ψ(0, λ) = λρ0 < t0.

II. If λ ≥ t0
ρ0

, then we use ρ0 < JF (u0) and the inequality (3.46) to get

β1 ≤ Ψ(u0, λ) ≤ ‖u0‖p
b

p
+

t0
ρ0

(ρ0 − JF (u0)) < t0.

Let us focus next on the right hand side of the inequality (1.20) of
Theorem 1.15. Clearly,

β2 = inf
u∈E

sup
λ∈Λ

Ψ(u, λ) = inf
{‖u‖p

b

p
: JF (u) ≥ ρ0

}
.

On the other hand, by applying again (3.46) we easily get

t0 ≤ inf
{‖u‖p

b

p
: JF (u) ≥ ρ0

}
.

We conclude that

β1 < t0 ≤ β2,
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i.e., condition (1.20) from Theorem 1.15 holds .

Thus, we can apply Theorem 1.15. Fix δ > β1, and for every λ ∈ Λ
denote

Sλ = {u ∈ E : Ψ(u, λ) < δ} .

There exists a non-empty open set Λ0 ⊂]0, +∞[ with the following prop-
erty: for every λ ∈ Λ0 and every sequentially weakly l.s.c. Φ : E → R,
there exists µ0 > 0, such that for each µ ∈]0, µ0[, the functional

u → Ψ(u, λ) + µΦ(u)

has at least two local minima lying in the set Sλ. Let [a, b] ⊂ Λ0 be a
non–degenerate compact interval.

We prove now the two assertions of our theorem:
1◦ Let λ ∈ [a, b] be a real number, and let g : Γ × R → R satisfying
the conditions (G1)-(G2), and let Φ = −JG. Then, by Remark 3.1, Φ
is sequentially weakly continuous. From what stated above, there exists
µ0 > 0 such that for all µ ∈]0, µ0[ the functional Eλ,µ admits at least
two local minima u1

λ,µ, u2
λ,µ ∈ Sλ, therefore these are critical points of

Eλ,µ.
Observe that

S :=
⋃

λ∈[a,b]

Sλ ⊆ Sa ∪ Sb.

Since Ψ(·, λ) is coercive for all λ ≥ 0, the latter sets are bounded, hence
S is bounded as well. Chosen σ0 > sup

u∈S
‖u‖b, we get

‖u1
λ,µ‖b, ‖u2

λ,µ‖b < σ0.

2◦ Let λ ∈ [a, b] be a real number, and let g : Γ × R → R satisfying
the conditions (G1)-(G3): as above, there exists µ0 > 0 such that for all
µ ∈]0, µ0[ the functional Eλ,µ has at least two local minima u1

λ,µ, u2
λ,µ ∈

E with norms less than σ0. To prove the existence of a third critical
point for Eλ,µ, we are going to apply Theorem 1.8. For this, it is enough
to prove that the functional Eλ,µ satisfies the (PS) condition for µ > 0
small enough. Since (G3) holds, arguing as in Lemma 3.7, it is easy to
prove that there exists µ1 ∈]0, µ0[ such that Eλ,µ is coercive in E for all
µ ∈ [0, µ1]. Let {un} be a sequence such that {Eλ,µ(un)} is bounded and
E ′λ,µ(un) → 0 holds. The coercivity of Eλ,µ implies that {un} is bounded
E. Because E is a reflexive Banach space we can find a subsequence,
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which we still denote by {un}, weakly convergent to a point u? ∈ E.
We denote I(u) = 1

p‖u‖p
b . Then the directional derivative of Eλ,µ in the

direction h ∈ E is

〈E ′λ,µ(u), h〉 = 〈I ′(u), h〉 − λ〈J ′F (u), h〉 − µ〈J ′G(u), h〉,
where

〈I ′(u), h〉 =
∫

Ω

a(x)|∇u|p−2∇u(x)∇h(x)dx+
∫

Γ

b(x)|u(x)|p−2u(x)h(x)dΓ,

〈J ′F (u), h〉 =
∫

Ω

f(x, u(x))h(x)dx and 〈J ′G(u), h〉 =
∫

Γ

g(x, u(x))h(x)dΓ.

To show that un → u? strongly in E we use the inequalities (3.17) and
(3.18).

In the case p ≥ 2 we use (3.17) and we obtain:

‖un − u?‖p
b =

∫

Ω

a(x)|∇un(x)−∇u?(x)|pdx +
∫

Γ

b(x)|un(x)− u?(x)|pdΓ

≤ C
(
〈I ′(un), un − u?〉 − 〈I ′(u?), un − u?〉

)

= C
(
〈E ′λ,µ(un), un − u?〉 − 〈E ′λ,µ(u?), un − u?〉+ 〈λJ ′F (un)

+µJ ′G(un), un − u?〉 − 〈λJ ′F (u?) + µJ ′G(u?), un − u?〉
)

≤ C
(
‖E ′λ,µ(un)‖E′ + λ‖J ′F (un)− J ′F (u?)‖E′

+µ‖J ′G(un)− J ′G(u?)‖E′
)
‖un − u?‖b − C〈E ′λ,µ(u?), un − u?〉 .

Since E ′λ,µ(un) → 0 and J ′F , J ′G are compact, it follows that un → u?

converges strongly in E.
In the case 1 < p < 2, we use (3.18) and Hölder’s inequality to obtain
the estimate

‖un−u?‖p
b ≤ Ĉ

∣∣∣〈I ′(un), un−u?〉−〈I ′(u?), un−u?〉
∣∣∣
(
‖un‖p

b+‖u?‖p
b

)(2−p)/p

,

where Ĉ > 0 is a positive constant depending on p and C.
Thus, the condition (PS) is fulfilled for all µ ∈ [0, µ1]. This concludes

our proof.

Corollary 3.1 Let f : Ω × R → R be a function satisfying conditions
(F1)-(F4). Then, there exists a non-degenerate compact interval [a, b] ⊂
]0, +∞[ with the following properties:
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I. there exists a number σ0 > 0 such that for every λ ∈ [a, b] and
for every function g : Γ×R→ R satisfying conditions (G1)-(G2),
there exists µ0 > 0 such that for each µ ∈]0, µ0[, problem (P ′′λ,µ)
has at least one non–trivial solution in E with norm less than σ0;

II. for every λ ∈ [a, b] and for every function g : Γ×R→ R satisfying
conditions (G1)-(G3), there exists µ1 > 0 such that for each µ ∈
]0, µ1[, problem (P ′′λ,µ) has at least two non–trivial solutions in E.

In the last part of this section we consider for λ > 0 and µ ∈ R the
following double eigenvalue problem:

(P ′′′λ,µ)





−div(a(x)|∇u|p−2∇u) = λf(x, u) in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = λµg(x, u) on Γ

u 6= 0 in Ω,

where we use the same notations as in the case of problem (P ′′λ,µ).

The energy functional Fλ,µ : E → R corresponding to (P ′′′λ,µ) is given
by:

Fλ,µ(u) =
1
p

∫

Ω

a(x)|∇u(x)|pdx +
1
p

∫

Γ

b(x)|u(x)|pdΓ− λJµ(u),

where Jµ(u) = JF (u) + µJG(u).

Lemma 3.8 Suppose that the conditions (F1), (F3), (G1) and (G3) are
satisfied. Then, for every λ ≥ 0 and µ ∈ R the functional Fλ,µ is coercive
on E and satisfies the (PS) condition.

Proof If λ = 0, then the statement is trivial.

Let λ > 0, µ ∈ R and a, b > 0 such that λaCfCp
p,w1

+ λ|µ|bCgC
p
p,w2

<
1
p
. There exist positive functions ka ∈ L1(Ω; w1), kb ∈ L1(Γ; w2) such

that

F (x, s) ≤ af0(x)|s|p + ka(x)w1(x), for all (x, s) ∈ Ω× R,

G(x, s) ≤ bg0(x)|s|p + kb(x)w2(x), for all (x, s) ∈ Γ× R.
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Then, it follows that

Fλ,µ(u) =
‖u‖p

b

p
− λJµ(u) =

‖u‖p
b

p
− λ

( ∫

Ω

F (x, u(x))dx + µ

∫

Γ

G(x, u(x))dΓ
)
≥

≥ ‖u‖p
b

p
− λaCf

∫

Ω

w1(x)|u(x)|pdx− λ

∫

Ω

ka(x)w1(x)dx−

− λ|µ|bCg

∫

Γ

w2(x)|u(x)|pdΓ− λ|µ|
∫

Γ

kb(x)w2(x)dΓ ≥

≥ ‖u‖p
b

(
1
p
− λaCfCp

p,w1
− λ|µ|bCgC

p
p,w2

)
− λ‖ka‖1,w1 − λ|µ|‖kb‖1,w2

which goes to ∞ as ‖u‖b →∞. We omit to prove that Fλ,µ satisfies the
(PS) condition, since it is likewise to the proof given in Lemma 3.4.

Theorem 3.6 We suppose that the functions f : Ω × R → R and
g : Γ × R → R satisfy the conditions (F1) − (F4) and (G1) − (G3)
respectively. Then, there exists λ0 > 0 such that to every λ ∈]λ0,+∞[ it
corresponds a nonempty open interval Iλ ⊂ R such that for every µ ∈ Iλ

problem (P ′′′λ,µ) has at least two distinct, nontrivial weak solutions uλ,µ

and vλ,µ, with the property

Fλ,µ(uλ, µ) < 0 < Fλ,µ(vλ, µ).

Lemma 3.9 For λ > λ0 and |µ| ∈]0, µ∗λ] we have

inf
u∈E

Fλ,µ(u) < 0.

Proof. It is sufficient to prove, that for λ > λ0 and |µ| ∈]0, µ∗λ] we have
Fλ,µ(u0) < 0. Indeed,

Fλ,µ(u0) = I(u)− λJf (u0)− λµJG(u0) ≤
≤ λ0JF (u0)− λJF (u0) + λ|µ|m =

= (λ0 − λ)JF (u0) + λ|µ|m =

= (λ0 − λ)
λ(1 + c)µ∗λ

λ− λ0
+ λ|µ|m =

= −(1 + m)λµ∗λ + λ|µ|m =

= −λµ∗λ −mλ(|µ| − µ∗λ) < 0

for all λ > λ0 and |µ| ∈]0, µ∗λ]. ¤

Lemma 3.10 For every λ > λ0 and µ ∈]0, µ∗λ], the functional Fλ,µ

satisfies the mountain pass geometry.
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Proof. The assumptions (F1),(F2), (G1) and (G2) imply for every
ε > 0 the existence of c1(ε), c2(ε) > 0 such that

|F (x, u(x))| ≤ εf0(x)|u(x)|p + c1(ε)(f0(x) + f1(x))|u(x)|r, (3.47)

|G(x, u(x))| ≤ εg0(x)|u(x)|p + c2(ε)(g0(x) + g1(x))|u(x)|m, (3.48)

where r ∈]p, p∗[ and m ∈
[
p, pN−1

N−p

]
. Using again (F1) and (G1), we get

|F (x, u(x))| ≤ εw1(x)Cf |u(x)|p + 2c1(ε)Cfw1(x))|u(x)|r, (3.49)

|G(x, u(x))| ≤ εw2(x)Cg|u(x)|p + 2c2(ε)Cgw2(x)|u(x)|m. (3.50)

Fix λ > λ0 and µ ∈]0, µ∗λ[, then by using the inequalities from (3.49)
and (3.50) we have for every u ∈ E

Fλ,µ(u) =
1
p
‖u‖p

b − λJµ(u) ≥

≥ 1
p
‖u‖p

b − λ

∫

Ω

|F (x, u(x))|dx− λ|µ|
∫

Γ

|G(x, u(x))|dΓ ≥

≥ 1
p
‖u‖p

b − λεCf

∫

Ω

w1(x)|u(x)|pdx− 2λc1(ε)Cf

∫

Ω

w1(x)|u(x)|rdx

−λ|µ|εCg

∫

Γ

w2(x)|u(x)|pdΓ− 2λ|µ|c2(ε)Cg

∫

Γ

w2(x)|u(x)|mdΓ =

=
1
p
‖u‖p

b − λεCf‖u‖p
p,w1

− 2λc1(ε)Cf‖u‖r
r,w1

−
−λ|µ|εCg‖u‖p

p,w2
− 2λ|µ|c2(ε)Cg‖u‖m

m,w2
≥

≥
(

1
p
− λεCfCp

p,w1
− λ|µ|εCgC

p
p,w2

)
‖u‖p

b −
− 2λc1(ε)CfCr

r,w1
‖u‖r

b − 2λ|µ|c2(ε)CgC
m
m,w2

‖u‖m
b .

Using the notations

A =
(

1
p
− λεCfCp

p,w1
− λ|µ|εCgC

p
p,w2

)
,

B = 2λc1(ε)CfCr
r,w1

, C = 2λ|µ|c2(ε)CgC
m
m,w2

,

we get

Fλ,µ(u) ≥ (A−B‖u‖r−p
b − C‖u‖m−p

b )‖u‖p
b .

We choose ε ∈
]
0, 1

2p
1

λ(Cf Cp
p,w1+|µ|CgCp

p,w2 )

[
, then A > 0. Let l :

R+ → R be defined by l(t) = A − Btr−p − Ctm−p. We can see, that
l(0) = A > 0, so there exists ε∗ > 0 such that l(t) > 0 for every t ∈
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]0, ε∗[. Then, for every u ∈ E, with ‖u‖ = ε∗∗ < min{ε∗, ‖u0‖}, we have
Fλ,µ(u) ≥ η(λ, µ, ε∗) > 0. From Lemma 3.9 we obtain Fλ,µ(u0) < 0.

Therefore, the functional Fλ,µ satisfies the hypotheses of Theorem 1.7.
¤

Proof of Theorem 3.6: Fix λ > λ0 and µ ∈]0, µ∗λ[= Iλ. From
Lemma 3.8 we have that the functional Fλ,µ is coercive and satisfies
the (PS) condition. Then, there exists an element uλ,µ ∈ E such that
Eλ,µ(uλ,µ) = inf

v∈E
Fλ,µ(v) (see [249]). By using Lemma 3.9 we obtain

Fλ,µ(uλ,µ) < 0. On the other hand, by Lemma 3.10 and Theorem 1.8,
it follows that there exists an element vλ,µ ∈ E such that F ′λ,µ(vλ,µ) = 0
and Fλ,µ(vλ,µ) ≥ η(λ, µ, ε∗) > 0. ¤

3.5 Comments and further perspectives

A. Comments. The problems considered in this chapter extend in a
quasilinear framework the stationary Schrödinger equation

−∆u + V (x)u = au in Ω .

This equation describes the motion of a particle interacting with a force
field F (x) = −∇V (x), where the function V : Ω→R is called a potential.
The associated energy functional is

E(u) = E1(u) + E2(u) ,

where

E1(u) =
1
2

∫

Ω

|∇u|2 dx and E2(u) =
1
2

∫

Ω

[
V (x)u2 − au2

]
dx .

Physically, E1(u) is called the kinetic energy of the particle u, E2(u) is
its potential energy, while E(u) is the total energy of u.

In some situations (see, e.g., Proposition 3.1), the kinetic energy dom-
inates the potential energy. Any inequality in which the kinetic energy
dominates some kind of integral of u (but not depending on ∇u) is called
an uncertainty principle. As stated in [189], “the historical reason for
this strange appellation is that such an inequality implies that one can-
not make the potential energy very negative without also making the
kinetic energy large”.

In this chapter we have been interested in the qualitative analysis of
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weak solutions to the quasilinear mixed boundary value problem

(Pλ,µ)
{ −div (a(x)|∇u|p−2∇u) = λα(x, u) + β(x, u) in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = µh(x, u) on Γ ,

where Ω ⊂ RN is an unbounded domain with (possible noncompact)
smooth boundary Γ. In our treatment a central role is played by the
compact embedding result Theorem 3.1, due to Pflüger [237], [238]. In
our results, the functions α, β and h satisfies subcritical growth condi-
tion, which implies that the energy functional associated to the problem
(Pλ,µ) satisfies the (PS) condition. The (PS) condition play a key place
in the mountain pass theorem and Ricceri type results used in the proof
of our results. The results of this chapter are based on the papers Mon-
tefusco and Radulescu [218], Cârstea and Rădulescu [70], Lisei, Varga,
and Horváth [192], and Mezei and Varga [210].

B. Further perspectives. In the last years the fibering method intro-
duced and developed by Pohozaev [241], [242], [243] can be applied with
success in the study of existence and multiplicity of solutions for bi-
furcation equations, homogenous Dirichlet or Neumann problems which
contain p-Laplacian (see [244]). El Hamidi in the paper [102] use this
method to study mixed homogeneous problems. Mitidieri and Bozhkov
in [212] use an early modified version of fibering method and prove the
existence and multiplicity results for quasilinear system, which contains
p, q-Laplacians. In [142] the authors study positive solutions for indefi-
nite inhomogeneous Neumann elliptic problems using this methods. Us-
ing the concentration compactness principle [191] combined with fibering
method we propose the following problem:

(P ?
λ,µ)

{ −div (a(x)|∇u|p−2∇u) = λK(x)|u|r + k(x)|u|p−2u in Ω,

a(x)|∇u|p−2∇u · n + b(x)|u|p−2u = µL(x)|u|q on Γ ,
,

where r = p? = pN
N−p , q < p? = p(N−1)

N−p or r < p? = pN
N−p , q =

p? = p(N−1)
N−p or r = p? = pN

N−p , q = p? = p(N−1)
N−p or p? = pN

N−p , p? =
p(N−1)

N−p represent the critical Sobolev exponent for the embedding E ↪→
Lr(Ω;w1) and E ↪→ Lq(Γ; w2).

The problem (P ?
λ,µ) is similar with Yamabe problem on manifold with

boundary, see the papers of Escobar [104], [105] and [106].
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Elliptic Systems of Gradient Type

Rigor is to the mathematician
what morality is to men.

André Weil (1906–1998)

4.1 Introduction

In this chapter we are concerned to study the existence and multiplicity
results for eigenvalue problems for elliptic systems of gradient type. On
of the main results mathematical development was initiated by Esteban
[107], Grossinho and Tersian [132], Fan and Zhao [110]. In this chapter
we present some new results in this direction using results of Bartolo,
Benci and Fortunato [24], and some recent results of Ricceri [255], [259],
[257], [261] and Tsar’kov [285].

4.2 Formulation of the problems

Let Ω ⊆ RN a stripe-like domain, i.e. Ω = ω × Rl, ω ⊂ Rm is bounded
with smooth boundary and m ≥ 1, l ≥ 2, 1 < p, q < N = m + l. Let
F : Ω × R2 → R be a function of class C1. We consider the following
problem:

(Sλ
p,q)




−4pu = λFu(x, u, v) in Ω,

−4qv = λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

We suppose that the function F : Ω × R2 → R satisfies the following
condition:

121
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(F1) F : Ω×R2 → R is continuous, (s, t) 7→ F (x, s, t) is of class C1 and
F (x, 0, 0) = 0 for every x ∈ Ω.

(F2) There exist c1 > 0 and r ∈ (p, p∗), s ∈ (q, q∗) such that

|Fu(x, u, v)| ≤ c1(|u|p−1 + |v|(p−1)q/p + |u|r−1), (4.1)

|Fv(x, u, v)| ≤ c1(|v|q−1 + |u|(q−1)p/q + |v|s−1) (4.2)

for every x ∈ Ω and (u, v) ∈ R2.

We consider the Sobolev space W 1,α
0 (Ω)(α ∈ {p, q}) endowed with the

norm

‖u‖1,α = (
∫

Ω

|∇u|α)1/α,

with α ∈ {p, q}.
We say that (u, v) ∈ W 1,p

0 ×W 1,q
0 is a weak solutions of the problem

(Sp,q,Ω) if





∫

Ω

|∇u|p−2∇u∇w1dx− λ

∫

Ω

F ′u(x; u(x), v(x))w1(x))dx = 0

∫

Ω

|∇v|q−2∇v∇w2dx− λ

∫

Ω

F ′v(x; u(x), v(x))w2(x)dx = 0,

for every (w1, w2) ∈ W 1,p
0 ×W 1,q

0 .
The product space W 1,p

0 (Ω) × W 1,q
0 (Ω) is endowed with the norm

‖(u, v)‖1,p,q = ‖u‖1,p + ‖v‖1,q. We define the function F : W 1,p
0 (Ω) ×

W 1,q
0 (Ω) → R by

F(u, v) =
∫

Ω

F (x;u, v)dx

for u ∈ W 1,p
0 (Ω), v ∈ W 1,q

0 (Ω). The energy functional associated to
problem (Sλ

p,q) is given by

E(u, v) =
1
p
||u||p1,p +

1
q
||v||q1,q −

∫

Ω

F (x; u, v)dx

and taking into account the conditions (F1) and (F2) follows that E

is of class C1 and its critical points are weak solutions of the problem
(Sλ

p,q).
The embedding W 1,α

0 (Ω) ↪→ Lβ(Ω) for β ∈ [α, α∗] (α ∈ {p, q}) are
continuous, and we denote by cβ,α > 0 be the embedding constant, i.e.
‖u‖β ≤ cβ,α‖u‖1,α for all u ∈ W 1,α

0 (Ω). Since the embedding W 1,α
0 (Ω) ↪→
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Lβ(Ω) for β ∈ [α, α∗] (α ∈ {p, q}) are not compact, we introduce the
action of G = idm ×O(N −m) on W 1,α

0 (Ω) as

gu(x, y) = u(x, g−1
0 y)

for all (x, y) ∈ ω × RN−m, g = idm × g0 ∈ G and u ∈ W 1,α
0 (Ω), α ∈

{p, q}. Moreover, the action G on W 1,α
0 (Ω) is isometric, that is ‖gu‖1,α =

‖u‖1,α for all g ∈ G, u ∈ W 1,α
0 (Ω), α ∈ {p, q}. Let us denote by

W 1,α
0,G(Ω) = {u ∈ W 1,α

0 (Ω) : gu = u for all g ∈ G}, α ∈ {p, q},
which is exactly the closed subspace of axially symmetric functions of
W 1,α

0 (Ω). The embeddings W 1,α
0,G(Ω) ↪→ Lβ(Ω), α < β < α∗, α ∈ {p, q},

are compact see Appendix Sobolev space. The fixed points set of the
action G on W 1,p

0 (Ω)×W 1,q
0 (Ω) is W 1,p,q

0,G (Ω) = W 1,p
0,G(Ω)×W 1,q

0,G(Ω). To
be possible to use the Principle of symmetric criticality, i.e. Theorem
... , we introduce an invariance condition for the function F , i.e. we
suppose that:

(FI) F (gx, u, v) = F (x, u, v) for every x ∈ Ω, g ∈ G and (u, v) ∈ R2.

Therefore to study the weak solutions of the problem (Sλ
p,q) it is suf-

ficient to study the existence of critical points of the function EG =
E|W 1,p,q

0,G (Ω). To manipulate easier the problem (Sλ
p,q) we introduce the

following notations:

〈Apu,w1〉p =
∫

Ω

|∇u|p−2∇u∇w1dx

and

〈Aqv, w2〉q =
∫

Ω

|∇v|p−2∇v∇w1dx,

where 〈·, ·〉p ( 〈·, ·〉q) means the duality between W 1,p
0 (Ω) and (W 1,p

0 (Ω))?

(W 1,q
0 (Ω) and (W 1,q

0 (Ω))?) respectively. Also we denote in the same way
the restriction of the norms ‖ · ‖1,p, ‖ · ‖1,q and 〈·, ·〉p, 〈·, ·〉q restricted to
W 1,p,q

0,G (Ω).

With the above notations we have Ap : W 1,p
0 (Ω) → (W 1,p

0 (Ω))? and
Aq : W 1,q

0 (Ω) → (W 1,q
0 (Ω))? are the duality mappings induced by the

the functions t ∈ [0,+∞[ 7→ tp−1 ∈ [0, +∞[, and t ∈ [0,+∞[ 7→ tq−1 ∈
[0, +∞[, respectively.

This chapter is divided in three sections. In the first section we study
the case when the function F is superlinear at infinity, the second section
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contain the case when F is sublinear, while the section three contains a
special class of system.

4.3 Systems with superlinear potential

In this section we prove an existence result for problem ((Sλ
p,q) in the case

when λ = 1 and the function F is independent of x, i.e. F : R2 → R and
satisfies the conditions (F1), (F2). In this case we have the following
problem:

(Sp,q)




−4pu = Fu(u, v) in Ω,

−4qv = Fv(u, v) in Ω,

u = v = 0 on ∂Ω,

This problem consists in finding (u, v) ∈ W 1,p
0 (Ω)×W 1,p

0 (Ω) such that





〈Ap(u), w1〉 −
∫

Ω

F ′u(u(x), v(x))w1(x))dx = 0

〈Aq(v), w2〉 −
∫

Ω

F ′v(u(x), v(x))w2(x)dx = 0,

for every (w1, w2) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω).
In this case the energy functional associated to the problem (Sp,q) is

given by

E(u, v) =
1
p
||u||p1,p +

1
q
||v||q1,q −F(u, v), (4.3)

where F(u, v) =
∫

Ω

F (u(x), v(x))dx. Its derivative in (u, v) ∈ W 1,p
0 (Ω)×

W 1,q
0 (Ω) is given by

E′(u, v)(w1, w2) = 〈Ap(u), w1〉p+〈Aq(u), w2〉q−F ′(u, v)(w1, w2), (4.4)

for every (w1, w2) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω), where

F ′(u, v)(w1, w2) =
∫

Ω

[Fu(u, v)w1 + Fv(u, v)w2]dx. (4.5)

As in introduction we denote by EG = E|W 1,p,q
0,G (Ω) and FG = F|W 1,p,q

0,G (Ω).
In the following we study the only the existence of critical points of the
functional EG.

In the next we suppose that the function F : R2 → R beside of
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conditions (F1), (F2) satisfies the following assumptions:
(F3) there exist c2 > 0 and µ, ν ≥ 1 such that

−c2(|u|µ + |v|ν) ≥ F (u, v)− 1
p
F ′u(u, v)u− 1

q
F ′v(u, v)v, (4.6)

for all (u, v) ∈ R2.

(F4) lim
u,v→0

F ′u(u, v)
|u|p−1

= lim
u,v→0

F ′v(u, v)
|v|q−1

= 0,

The main result of this section can be formulated as follows:

Theorem 4.1 We suppose that the function F : Ω × R2 → R satisfies
the conditions (F1)-(F4) with ps = qr and

µ > max {p,N(r − p)/p} and ν > max {q,N(s− q)/q} . (4.7)

Then, (S) admits at least one nonzero solution.

We will use the following inequality:

Proposition 4.1 For all t > 1 and (u, v) ∈ R2 we have

F (t
1
p u, t

1
q v) ≥ tF (u, v) + c2

[
p

µ− p
(t

µ
p − t)|u|µ +

q

ν − q
(t

ν
q − t)|v|ν

]
.

(4.8)

Proof We fix an element (u, v) ∈ R2 arbitrary. We define the function
g :]0,∞[→ R by

g(t) = t−1F (t
1
p u, t

1
q v)− c2

p

µ− p
t

µ
p−1|u|µ − c2

q

ν − q
t

ν
q−1|v|ν .

Since g is of class C1, due to the Mean Value Theorem, for a fixed t > 1
there exists τ = τ(t, u, v) ∈]1, t[ such that

g(t)− g(1) = g′(τ)(t− 1).

We have

∂tF (t
1
p u, t

1
q v) =

1
p
F ′u(t

1
p u, t

1
q v)t

1
p−1u +

1
q
F ′v(t

1
p u, t

1
q v)t

1
q−1v.

Hence,

g′(t) = −t−2F (t
1
p u, t

1
q v) + t−1

[
1
p
F ′u(t

1
p u, t

1
q v)t

1
p−1u

+
1
q
F ′v(t

1
p u, t

1
q v)t

1
q−1v

]
− c2

[
t

µ
p−2|u|µ + t

ν
q−2|v|ν

]
.
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Therefore,

g(t)− g(1) = −τ−2[F (τ
1
p u, τ

1
q v)− 1

p
F ′u(τ

1
p u, τ

1
q v)τ

1
p u

− 1
q
F ′v(τ

1
p u, τ

1
q v)τ

1
q v + c2(|τ

1
p u|µ + |τ 1

q v|ν)](t− 1).

Due to (4.6), we have g(t) ≥ g(1). Thus,

F (t
1
p u, t

1
q v) ≥ tF (u, v) + c2

[
p

µ− p
(t

µ
p − t)|u|µ +

q

ν − q
(t

ν
q − t)|v|ν

]

for all t > 1 and (u, v) ∈ R2.

Proposition 4.2 If the assumptions of Theorem 4.1 are satisfied, then
the functional EG satisfies the Cerami (C)c condition for all c > 0.

Proof The norm of the Banach space W 1,p,q
0,G (Ω) is ||(u, v)||1,p.q = ||u||1,p+

||v||1,q. We denote the norm on the dual space (W 1,p,q
0,G (Ω))? by || · ||?.

Now, let (un, vn) ∈ W 1,p,q
0,G (Ω) be such that

EG(un, vn) → c > 0, (4.9)

and

(1 + ||(un, vn)||1,p,q)||E′
G(un, vn)||? → 0, (4.10)

as n → +∞. Moreover, we have
〈

E′
G(un, vn)(

1
p
un,

1
q
vn)

〉
≥ −(1 + ‖(un, vn)‖‖E′

G(un, vn)‖?. (4.11)

Using (4.9), (4.10) and (4.6) one has for n large enough that

c + 1 ≥ EG(un, vn)− E′
G(un, vn)(

1
p
un,

1
q
vn)

= −FG(un, vn) + F ′G(un, vn)(
1
p
un,

1
q
vn)

= −
∫

Ω

[F (un, vn)− 1
p
F ′u(un, vn)un

−1
q
F ′v(un, vn)vn]dx ≥ c2

∫

Ω

[|un|µ + |vn|ν ]dx.

From the previous inequality we obtain that

{(un, vn)} is bounded in Lµ(Ω)× Lν(Ω). (4.12)
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By (F4) we have that for all ε > 0 there exists δ(ε) > 0 such that, if
|u|p−1 + |v|(p−1)q/p < δ(ε), then

|F ′u(u, v)| < ε
(
|u|p−1 + |v|(p−1)q/p

)
.

If |u|p−1 + |v|(p−1)q/p ≥ δ(ε), by using (4.1), we have

|F ′u(u, v)| ≤ c1[(|u|p−1 + |v|(p−1)q/p)
r−1
p−1 (δ(ε))

p−r
p−1 + |u|r−1]

≤ c(ε)(|u|r−1 + |v|(r−1)q/p).

Combining the above relations, we have that for all ε > 0 there exists
c1(ε) > 0 such that

|F ′u(u, v)| < ε
(
|u|p−1 + |v|(p−1)q/p

)
+ c1(ε)

(
|u|r−1 + |v|(r−1)q/p

)

(4.13)
for all (u, v) ∈ R2. A similar calculation shows that for all ε > 0 there
exists c2(ε) > 0 such that

|F ′v(u, v)| < ε
(
|v|q−1 + |u|(q−1)p/q

)
+ c2(ε)

(
|v|s−1 + |u|(s−1)p/q

)

(4.14)
for all (u, v) ∈ R2.

Using (4.13), (4.14), and keeping in mind that F (0, 0) = 0, for all
ε > 0 there exists c(ε) = c(c1(ε), c2(ε)) > 0 such that

F (u, v) ≤ ε(|u|p + |v|(p−1)q/p|u|+ |v|q + |u|(q−1)p/q|v|) (4.15)

+ c(ε)(|u|r + |v|(r−1)q/p|u|+ |v|s + |u|(s−1)p/q|v|)
for all (u, v) ∈ R2.

After integration we use the relation ps = qr, as well as Young’s
inequality and Hölder’s inequality to obtain

FG(un, vn) ≤ ε

[
(2 +

1
p
− 1

q
)‖un‖p

p + (2 +
1
q
− 1

p
)‖vn‖q

q

]

+ c(ε)
[
(2 +

1
r
− 1

s
)‖un‖r

r + (2 +
1
s
− 1

r
)‖vn‖s

s

]
.

Therefore, one has
[
1
p
− ε(2 +

1
p
− 1

q
)cp

p,p

]
‖un‖p

1,p +
[
1
q
− ε(2 +

1
q
− 1

p
)cq

q,q

]
‖vn‖q

1,q ≤

≤ EG(un, vn) + c(ε)
[
(2 +

1
r
− 1

s
)‖un‖r

r + (2 +
1
s
− 1

r
)‖vn‖s

s

]
.
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Choosing

0 < ε <
1
3

min
{ 1

pcp
p,p

,
1

qcq
q,q

}
, (4.16)

we find c3(ε), c4(ε) > 0 such that

c3(ε)(‖un‖p
1,p + ‖vn‖q

1,q) ≤ c + 1 + c4(ε)(‖un‖r
r + ‖vn‖s

s) (4.17)

for n large enough. Now, we will examine the behaviour of the sequences
{‖un‖r

r} and {‖vn‖s
s}, respectively.

To this end, observe that µ ≤ r and ν ≤ s. From relations (4.1), (4.2)
and from the fact that for all β ∈]0,∞[ there exists a constant c(β) > 0
such that

(x + y)β ≤ c(β)(xβ + yβ), for all x, y ∈ [0,∞[,

we have

|F (u, v)− F (w, y)| ≤ (4.18)

≤ c3[|u− w|(|u|p−1 + |w|p−1 + |v|(p−1)q/p + |y|(p−1)q/p + |u|r−1 + |w|r−1)

+ |v − y|(|v|q−1 + |y|q−1 + |u|(q−1)p/q + |w|(q−1)p/q + |v|s−1 + |y|s−1)],

where c3 = c3(c1, p, q, r, s) > 0.

Keeping in mind the relation ps = qr, taking w = y = 0 and u = ut
1
p ,

v = vt
1
q (t > 1) in (4.18), from (4.8) follow the required relations.

We distinguish two cases:
I) µ = r : From (4.12) we have that {‖un‖r

r} is bounded.
II) µ ∈]max {p,N(r − p)/p} , r[: We have the interpolation inequality

‖u‖r ≤ ‖u‖1−δ
µ ‖u‖δ

p∗ for all u ∈ Lµ(Ω) ∩ Lp∗(Ω)

with δ = p∗

r · r−µ
p∗−µ . From (4.12) and the fact that the embedding

W 1,p
0,G(Ω) ↪→ Lp∗(Ω), is continuous, we have that there exists c5 > 0

such that ‖un‖r
r ≤ c5‖un‖δr

1,p, with δr < p.

Taking into consideration the analogous relations for the sequence
{‖vn‖s

s}, we conclude from (4.17) that the sequences {‖un‖1,p} and
{‖vn‖1,q} are bounded. Because the embeddings W 1,p

0,G(Ω) ↪→ Lr(Ω),
W 1,q

0,G(Ω) ↪→ Ls(Ω) are compact, therefore up to a subsequence, we have

(un, vn) → (u, v) weakly inW 1,p,q
0,G (Ω), (4.19)

un → u strongly in Lr(Ω), (4.20)



4.3 Systems with superlinear potential 129

vn → v strongly in Ls(Ω). (4.21)

Moreover, we have

E′
G(un, vn)(u− un, v − vn) = 〈Ap(un), u− un〉p + 〈Aq(vn), v − vn〉q

− F ′G(un, vn)(u− un, v − vn)

and

E′
G(u, v)(un − u, vn − v) = 〈Ap(u), un − u〉p + 〈Aq(v), vn − v〉q

− F ′G(u, v)(un − u, vn − v).

By adding the above two relations, we obtain

Jn := 〈Ap(u)−Ap(un), u−un〉p+〈Aq(v)−Aq(vn), v−vn〉q = J1
n−J2

n−J3
n,

(4.22)
where

J1
n = F ′G(un, vn)(un − u, vn − v) + F ′G(u, v)(u− un, v − vn),

J2
n = E′

G(un, vn)(u− un, v − vn) and J3
n = E′

G(u, v)(un − u, vn − v).

In the sequel, we will estimate J i
n (i ∈ {1, 2, 3}). Using (4.13), (4.14)

and ps = qr, one has

J1
n =

∫

Ω

[F ′(un(x), vn(x))(un(x)− u(x), vn(x)− v(x))

+F ′(u(x), v(x))(u(x)− un(x), v(x)− vn(x))]dx

≤
∫

Ω

[|F ′u(un(x), vn(x))(un(x)− u(x))|
+|F ′v(un(x), vn(x))(vn(x)− v(x))|+ |F ′u(u(x), v(x))(u(x)− un(x))|
+|F ′v(u(x), v(x))(v(x)− vn(x))|]dx

≤ ε
[
(‖un‖p−1

p + ‖u‖p−1
p + ‖vn‖(p−1)q/p

q + ‖v‖(p−1)q/p
q )‖u− un‖p

+(‖vn‖q−1
q + ‖v‖q−1

q + ‖un‖(q−1)p/q
p + ‖u‖(q−1)p/q

p )‖v − vn‖q

]

+c1(ε)
(
‖un‖r−1

r + ‖u‖r−1
r + ‖vn‖(r−1)s/r

s + ‖v‖(r−1)s/r
s

)
‖u− un‖r

+c2(ε)
(
‖vn‖s−1

s + ‖v‖s−1
s + ‖un‖(s−1)r/s

r + ‖u‖(s−1)r/s
r

)
‖v − vn‖s.

The sequences {un} and {vn} are bounded in W 1,p
0,G(Ω)(↪→ Lp(Ω) ∩

Lr(Ω)) and W 1,q
0,G(Ω)(↪→ Lq(Ω) ∩ Ls(Ω)), respectively, then by using

the relations (4.20) and (4.21), one has

lim sup
n→∞

J1
n ≤ 0, (4.23)
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since ε > 0 was arbitrary chosen.
The convergence in (4.10) implies ||E′

G(un, vn)||? → 0, therefore J2
n →

0. Taking into account that (un, vn) ⇀ W 1,p,q
0,G (Ω) weakly, it follows that

J3
n → 0. Therefore, if n →∞, then

〈Ap(u)−Ap(un), u− un〉p + 〈Aq(v)−Aq(vn), v − vn〉q → 0.

On the other hand, from the inequality

|t−s|α ≤
{

(|t|α−2t− |s|α−2s)(t− s), if α ≥ 2,

((|t|α−2t− |s|α−2s)(t− s))
α
2 (|t|α + |s|α)

2−α
2 , if 1 < α < 2,

for all t, s ∈ RN , we obtain that

lim
n→∞

∫

Ω

(|∇un −∇u|p + |∇vn −∇v|q) = 0,

that is, the sequences {un} and {vn} are strongly convergent in W 1,p
0,G(Ω)

and W 1,q
0,G(Ω), respectively.

To prove Theorem 4.1 we use the following formulation of the Moun-
tain Pass Theorem, see [24] or [174].

Proof of Theorem 4.1 If we combine the Principle of Symmetric
criticality with Theorem Cerami Mountain Pass the assertion follows.
From Proposition 4.2 it follows that the functional EG satisfies the Ce-
rami (C)c condition for every c > 0. We need to verify the conditions
(i) and (ii) from Theorem Cerami Mountain pass. Using (4.15), we
obtain

EG(u, v) =
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q −
∫

Ω

F (u, v)dx ≥
[
1
p
− ε(2 +

1
p
− 1

q
)cp

p,p

]
‖u‖p

1,p +
[
1
q
− ε(2 +

1
q
− 1

p
)cq

q,q

]
‖v‖q

1,q

−c(ε)
[
(2 +

1
r
− 1

s
)‖u‖r

r + (2 +
1
s
− 1

r
)‖v‖s

s

]
.

Choosing ε as in (4.16), we can fix c5(ε), c6(ε) > 0 such that

EG(u, v) ≥ c5(ε)(||u||p1,p + ||v||q1,q)− c6(ε)(||u||r1,p + ||v||s1,q).

Since the function t 7→ (xt + yt)
1
t , t > 0 is non-increasing (x, y ≥ 0),

using again ps = qr, we have

‖u‖r
1,p + ‖v‖s

1,q ≤
[‖u‖p

1,p + ‖v‖q
1,q

] r
p (= s

q )
.
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Therefore,

EG(u, v) ≥
[
c5(ε)− c6(ε)(‖u‖p

1,p + ‖v‖q
1,q)

r
p−1

]
(‖u‖p

1,p + ‖v‖q
1,q).

Let 0 < ρ < 1 and denote

Bρ = {(u, v) ∈ W 1,p,q
0,G (Ω) : ‖(u, v)‖1,p,q = ρ}.

Then, we have (ρ/2)max{p,q} ≤ ‖u‖p
1,p + ‖v‖q

1,q ≤ ρ for all (u, v) ∈ Bρ.

Choosing ρ small enough, there exists η > 0 such that EG(u, v) ≥ η for
all (u, v) ∈ Bρ, due to the fact that r > p. This proves (i) from Theorem
Cerami Mountain Pass.

To prove (ii) from Theorem Cerami Mountain Pass, fix u0 ∈
W 1,p

0,G(Ω) and v0 ∈ W 1,q
0,G(Ω) such that ‖u0‖1,p = ‖v0‖1,q = 1. Then,

for every t > 1 we have

EG(t
1
p u0, t

1
q v0) = (

1
p

+
1
q
)t−

∫

Ω

F (t
1
p u0, t

1
q v0)dx

≤
(

1
p

+
1
q
−

∫

Ω

F (u0, v0)dx

)
t

−c2

[
p

µ− p
(t

µ
p − t)‖u0‖µ

µ +
q

ν − q
(t

ν
q − t)‖v0‖ν

ν

]
.

Therefore, EG(t
1
p u0, t

1
q v0) → −∞ as t → ∞ (recall that µ > p and

ν > q). Choosing t = t0 large enough and denoting by ep = t
1
p

0 u0
p and

eq = t
1
q

0 v0
q , we are led to (ii). This completes the proof. ¤

Example 4.1 Let p = 3/2, q = 9/4, Ω =]a, b[×R2 (a < b) and

F (u, v) = u2 + |v|7/2 + 1/4{|u|5/2 + |v|5/2}.
The conditions (F1) an (F4) can be verified easily. Choosing r = 5/2,

s = 15/4 and µ = 5/2, ν = 7/2, the assumptions (F2) and (F3) hold
too. Therefore we can apply Theorem 4.1 and obtain at least one nonzero
solution for problem (S′3/2,9/4,]a,b[×R2).

4.4 Systems with sublinear potential

In the previous section we studied problem (Sp,q), assuming that the
function F satisfies the condition (F3), which is an Amrosetti-Rabinowitz
type condition and which asserts that the energy functional E satisfies
the Palais-Smale or Cerami compactness condition. This condition im-
plies, in particular, some sort of superlinearity of F . In this section we
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will treat the case when F is sub-(p, q)-linear. We suppose that the con-
ditions (F1)-(F2) are fulfilled as introduction. Also, we impose that the
function F : Ω× R2 → R satisfies the following conditions:

(F’3) lim
u,v→0

Fu(x, u, v)
|u|p−1

= lim
u,v→0

Fv(x, u, v)
|v|q−1

= 0 uniformly for every x ∈
Ω.

(F’4) There exist p1 ∈ (0, p), q1 ∈ (0, q), µ ∈ [p, p∗], ν ∈ [q, q∗] and
a ∈ Lµ/(µ−p1)(Ω), b ∈ Lν/(ν−q1)(Ω), c ∈ L1(Ω) such that

F (x, u, v) ≤ a(x)|u|p1 + b(x)|v|q1 + c(x)

for every x ∈ Ω and (u, v) ∈ R2.

(F’5) There exists (u0, v0) ∈ W p,q
G such that

∫

Ω

F (x, u0(x), v0(x))dx > 0.

In this section we suppose that the function F satisfies the conditions
(F1)-(F2) and (F’3)-(F’5). This section is dedicated to study the prob-
lem (Sλ

p,q) which is equivalent with, find (u, v) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω) such
that





〈Ap(u), w1〉p − λ

∫

Ω

F ′u(x;u(x), v(x))w1(x))dx = 0

〈Aq(v), w2〉q − λ

∫

Ω

F ′v(x; u(x), v(x))w2(x)dx = 0,

for every (w1, w2) ∈ W 1,p
0 (Ω)×W 1,q

0 (Ω), where λ ∈ R is a parameter.
Using the Principle of Symmetric Criticality it is enough to study the

critical points of the functional Eλ,G = Eλ|W 1,p,q
0,G (Ω). The functional

Eλ,G : W 1,p,q
0,G (Ω) → R is given by

Eλ,G(u, v) =
1
p
||u||p1,p +

1
q
||v||q1,q − λFG(u, v), (4.24)

where FG(u, v) =
∫

Ω

F (x; u(x), v(x))dx and its critical points will be

the weak solutions of the problem (Sλ
p,q).

The main result of this section is the following:
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Theorem 4.2 Let F : Ω × R2 → R be a function which satisfies the
conditions (F1)-(F2) and (F’3)-(F’5) and ps = qr. Then, there exist
an open interval Λ ⊂ (0,∞) and σ > 0 such that for all λ ∈ Λ the
system (Sλ) has at least two distinct, nontrivial weak solutions, denoted
by (ui

λ, vi
λ), i ∈ {1, 2} such that ‖ui

λ‖1,p < σ, ‖vi
λ‖1,q < σ, i ∈ {1, 2}.

Further in this section, we suppose that all assumptions of Theorem
4.2 are fulfilled. Before we prove Theorem 4.2, the main result of this
section, we need some auxiliary results.

Lemma 4.1 For every ε > 0 there exists c(ε) > 0 such that
i) |Fu(x, u, v)| ≤ ε(|u|p−1 + |v|(p−1)q/p) + c(ε)(|u|r−1 + |v|(r−1)q/p);
ii) |Fv(x, u, v)| ≤ ε(|v|q−1 + |u|(q−1)p/q) + c(ε)(|v|s−1 + |u|(s−1)p/q);
iii) |F (x, u, v)| ≤ ε(|u|p + |v|(p−1)q/p|u|+ |v|q + |u|(q−1)p/q|v|)

+c(ε)(|u|r + |v|(r−1)q/p|u|+ |v|s + |u|(s−1)p/q|v|)
for every x ∈ Ω and (u, v) ∈ R2.

Proof i) Let ε > 0 be arbitrary. Let us prove the first inequality,
the second one being similar. From the first limit of (F’3) we have in
particular that

lim
u,v→0

Fu(x, u, v)
|u|p−1 + |v|(p−1)q/p

= 0.

Therefore, there exists δ(ε) > 0 such that, if |u|p−1 + |v|(p−1)q/p < δ(ε),
then |Fu(x, u, v)| ≤ ε(|u|p−1 + |v|(p−1)q/p). If |u|p−1 + |v|(p−1)q/p ≥ δ(ε),
then (4.1) implies that

|Fu(x, u, v)| ≤ c1[(|u|p−1 + |v|(p−1)q/p)(r−1)/(p−1)δ(ε)(p−r)/(p−1) + |u|r−1]

+ c(ε)(|u|r−1 + |v|(r−1)q/p).

Combining the above inequalities, we obtain the desired relation. The in-
equality iii) follows from the Mean Value Theorem, i), ii) and F (x, 0, 0) =
0.

Lemma 4.2 FG is a sequentially weakly continuous function on W 1,p,q
0,G (Ω).

Proof Suppose the contrary, i.e., let {(un, vn)} ⊂ W 1,p,q
0,G (Ω) be a se-

quence which converges weakly to (u, v) ∈ W 1,p,q
0,G (Ω) and FG(un, vn) 9

FG(u, v). Therefore, there exists ε0 > 0 and a subsequence of {(un, vn)}
(denoted again by {(un, vn)}) such that

0 < ε0 ≤ |FG(un, vn)−FG(u, v)| for every n ∈ N.
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For some 0 < θn < 1 we have

0 < ε0 ≤ |F ′(un + θn(u− un), vn + θn(v − vn))(un − u, vn − v)| (4.25)

for every n ∈ N. Let us denote by wn = un + θn(u − un) and yn =
vn+θn(v−vn). Since the embeddings W 1,p

0,G ↪→ Lr(Ω) and W 1,q
0,G ↪→ Ls(Ω)

are compact, up to a subsequence, {(un, vn)} converges strongly to (u, v)
in Lr(Ω)×Ls(Ω). By (4.5), Lemma 4.1, Hölder’s inequality and ps = qr

one has

|F ′(wn, yn)(un − u, vn − v)|
≤

∫

Ω

[|Fu(x,wn, yn)||un − u|+ |Fv(x,wn, yn)||vn − v|]dx

≤ ε

∫

Ω

[(|wn|p−1 + |yn|(p−1)q/p)|un − u|+ (|yn|q−1 + |wn|(q−1)p/q)|vn − v|]dx

+c(ε)
∫

Ω

[(|wn|r−1 + |yn|(r−1)q/p)|un − u|+ (|yn|s−1

+|wn|(s−1)p/q)|vn − v|]dx

≤ ε[(‖wn‖p−1
p + ‖yn‖(p−1)q/p

q )‖un − u‖p + (‖yn‖q−1
q +

‖wn‖(q−1)p/q
p )‖vn − v‖q] + c(ε)[(‖wn‖r−1

r + ‖yn‖(r−1)q/p
s )‖un − u‖r

+(‖yn‖s−1
s + ‖wn‖(s−1)p/q

r )‖vn − v‖s].

Since {wn} and {yn} are bounded in W 1,p
0,G ↪→ Lp(Ω) ∩ Lr(Ω) and

W 1,q(Ω) ↪→ Lq(Ω) ∩ Ls(Ω), respectively, while un → u and vn → v

strongly in Lr(Ω) and Ls(Ω), respectively, choosing ε > 0 arbitrarily
small, we obtain that F ′(wn, yn)(un − u, vn − v) → 0, as n → ∞. But
this contradicts (4.25).

Lemma 4.3 Let λ ≥ 0 be fixed and let {(un, vn)} be a bounded sequence
in W 1,p,q

0,G (Ω) such that

‖E′
λ,G(un, vn)‖? → 0

as n → ∞. Then {(un, vn)} contains a strongly convergent subsequence
in W 1,p,q

0,G (Ω).

Proof Because W 1,p,q
0,G (Ω) is a reflexive Banach space and {(un, vn)} is

a bounded sequence, we can assume that

(un, vn) → (u, v) weakly in W 1,p,q
0,G ; (4.26)

(un, vn) → (u, v) strongly in Lr(Ω)× Ls(Ω). (4.27)
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On the other hand, we have

E′
λ,G(un, vn)(u− un, v − vn) =

∫

Ω

|∇un|p−2∇un(∇u−∇un)

+
∫

Ω

|∇vn|q−2∇vn(∇v −∇vn)− λF ′G(un, vn)(u− un, v − vn)

and

E′
λ,G(u, v)(un − u, vn − v) =

∫

Ω

|∇u|p−2∇u(∇un −∇u)

+
∫

Ω

|∇v|q−2∇v(∇vn −∇v)− λF ′G(u, v)(un − u, vn − v).

Adding these two relations, one has

an
not.=

∫

Ω

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)

+
∫

Ω

(|∇vn|q−2∇vn − |∇v|q−2∇v)(∇vn −∇v)

= −E′
λ,G(un, vn)(u− un, v − vn)− E′

λ,G(u, v)(un − u, vn − v)

−λF ′G(un, vn)(u− un, v − vn)− λF ′G(u, v)(un − u, vn − v).

Using (4.26) and (4.27), similar estimations as in Lemma 4.2 show that
the last two terms tends to 0 as n →∞. Due to (4.26), the second terms
tends to 0, while the inequality

|E′
λ,G(un, vn)(u− un, v − vn)| ≤ ‖E′

λ,G(un, vn)‖?‖(u− un, v − vn)‖1,p,q

and the assumption implies that the first term tends to 0 too. Thus,

lim
n→∞

an = 0. (4.28)

From the well-known inequality

|t−s|α ≤
{

(|t|α−2t− |s|α−2s)(t− s), if α ≥ 2,

((|t|α−2t− |s|α−2s)(t− s))α/2(|t|α + |s|α)(2−α)/2, if 1 < α < 2,

for all t, s ∈ RN , and (4.28), we conclude that

lim
n→∞

∫

Ω

(|∇un −∇u|p + |∇vn −∇v|q) = 0,

hence, the sequence {(un, vn)} converges strongly to (u, v) in W p,q
G . ¤
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Theorem 4.3 [255, Theorem 3] Let (Z, ‖·‖) be a separable and reflexive
real Banach space, let I ⊆ R be an interval, and let g : Z × I → R be a
continuous function satisfying the following conditions:

i) for every z ∈ Z, the function g(z, ·) is concave;
ii) for every λ ∈ I, the function g(·, λ) is sequentially weakly lower

semicontinuous and continuously Gâteaux differentiable, and satisfies
the Palais-Smale condition, as well as

lim
‖z‖→+∞

g(z, λ) = +∞;

iii) there exists a continuous concave function h : I → R such that

sup
λ∈I

inf
z∈Z

(g(z, λ) + h(λ)) < inf
z∈Z

sup
λ∈I

(g(z, λ) + h(λ)).

Then, there exist an open interval Λ ⊆ I and a number σ > 0 such that
for each λ ∈ Λ, the function g(·, λ) has at least three critical points in X

having the norms less than σ.

Proof of Theorem 4.2. We will show that the assumptions of The-
orem 4.3 are fulfilled for: Z = W 1,p,q

0,G (Ω), I = [0,∞[ and g = Eλ,G.
We fix λ ≥ 0. It is clear that W 1,p,q

0,G (Ω) 3 (u, v) 7→ 1
p‖u‖p

1,p + 1
q‖v‖q

1,q

is sequentially weakly lower semicontinuous. Thus, from Lemma 4.2 it
follows that Eλ(·, ·) is also sequentially weakly lower semicontinuous.

First we prove that

lim
‖(u,v)‖→∞

Eλ,G(u, v) = +∞. (4.29)

Indeed, from (F’4) ) and Hölder’s inequality, one has

Eλ,G(u, v) ≥ 1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q − λ

∫

Ω

[a(x)|u|p1 + b(x)|v|q1 + c(x)]dx

≥ 1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q − λ[‖a‖µ/(µ−p1)‖u‖p1
µ

+‖b‖ν/(ν−q1)‖v‖q1
ν + ‖c‖1].

Since W 1,p
0,G(Ω) ↪→ Lµ(Ω) and W 1,q

0,G(Ω) ↪→ Lν(Ω) are continuous, p1 < p

and q1 < q, then relation (4.29) yields immediately.
We prove that Eλ,G(·, ·) satisfies the Palais-Smale condition: Let

{(un, vn)} be a sequence in W 1,p,q
0,G (Ω) such that sup

n∈N
|Eλ,G(un, vn)| <

+∞ and
lim

n→∞
‖E′

λ,G(un, vn)‖? = 0. According to (4.29), {(un, vn)}must be bounded

in W 1,p,q
0,G (Ω). The conclusion follows now by Lemma 4.3.
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Now, we deal with iii): Let us define the function f : (0,∞) → R by

f(t) = sup{FG(u, v) :
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q ≤ t}.

After integration in the inequality from Lemma 4.1 iii), then by using
the Young inequality, the fact that the embedding W 1,p

0,G(Ω) ↪→ Lµ(Ω)
and W 1,q

0,G(Ω) ↪→ Lν(Ω) are compact for µ ∈]p, p?[ and ν ∈]q, q?[ and
the relation ps = qr, we have that for an arbitrary ε > 0 there exists
c(ε) > 0 such that

FG(u, v) ≤ ε(‖u‖p
1,p + ‖v‖q

1,q) + c(ε)(‖u‖r
1,p + ‖v‖s

1,q) (4.30)

for every (u, v) ∈ W 1,p,q
0,G (Ω). Since the function x 7→ (ax + bx)1/x, x > 0

is non-increasing (a, b ≥ 0), and by using again ps = qr, one has that

‖u‖r
1,p + ‖v‖s

1,q ≤
[‖u‖p

1,p + ‖v‖q
1,q

]r/p
. (4.31)

Therefore,

f(t) ≤ εmax{p, q}t + c(ε)(max{p, q}t) r
p , t > 0.

On the other hand, it is clear that f(t) ≥ 0, t > 0. Taking into account
the arbitrariness of ε > 0 and the fact that r > p, we conclude that

lim
t→0+

f(t)
t

= 0. (4.32)

By (F’5) it is clear that (u0, v0) 6= (0, 0) (note that FG(0, 0) = 0).
Therefore, it is possible to choose a number η such that

0 < η < FG(u0, v0)
[
1
p
‖u0‖p

1,p +
1
q
‖v0‖q

1,q

]−1

.

Due to (4.32), there exists t0 ∈
(
0, 1

p‖u0‖p
1,p + 1

q‖v0‖q
1,q

)
such that

f(t0) < ηt0. Thus, f(t0) < FG(u0, v0)t0
[

1
p‖u0‖p

1,p + 1
q‖v0‖q

1,q

]−1

. Let
ρ0 > 0 be such that

f(t0) < ρ0 < FG(u0, v0)t0

[
1
p
‖u0‖p

1,p +
1
q
‖v0‖q

1,q

]−1

. (4.33)

Define h : I = [0,∞) → R by h(λ) = ρ0λ. We prove that h fulfils the
inequality iii) from Theorem 4.3.

Due to the choice of t0 and (4.33), one has

ρ0 < FG(u0, v0). (4.34)
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The function

I 3 λ 7→ inf
(u,v)∈W 1,p,q

0,G (Ω)

[
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q + λ(ρ0 −FG(u, v))
]

is clearly upper semicontinuous on I. Thanks to (4.34), we have

lim
λ→∞

inf
(u,v)∈W 1,p,q

0,G (Ω)
(Eλ,G(u, v) + ρ0λ) ≤ lim

λ→∞

[
1
p
‖u0‖p

1,p +
1
q
‖v0‖q

1,q

+λ(ρ0 −FG(u0, v0))] = −∞.

Thus we find an element λ ∈ I such that

sup
λ∈I

inf
(u,v)∈W 1,p,q

0,G (Ω)
(Eλ,G(u, v) + ρ0λ) (4.35)

= inf
(u,v)∈W 1,p,q

0,G (Ω)

[
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q + λ(ρ0 −FG(u, v))
]

.

Since f(t0) < ρ0, for all (u, v) ∈ W 1,p,q
0,G (Ω) such that 1

p‖u‖p
1,p +

1
q‖v‖q

1,q ≤ t0, we have F(u, v) < ρ0. Thus,

t0 ≤ inf
{

1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q : FG(u, v) ≥ ρ0

}
. (4.36)

On the other hand,

inf
(u,v)∈W 1,p,q

0,G (Ω)
sup
λ∈I

(Eλ,G(u, v)+ρ0λ) = inf
(u,v)∈W 1,p,q

0,G (Ω)

[
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q

+sup
λ∈I

(λ(ρ0 −FG(u, v)))
]

= inf
{

1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q : FG(u, v) ≥ ρ0

}
.

Thus, (4.36) is equivalent to

t0 ≤ inf
(u,v)∈W 1,p,q

0,G (Ω)
sup
λ∈I

(Eλ,G(u, v) + ρ0λ). (4.37)

There are two distinct cases:
I) If 0 ≤ λ < t0/ρ0, we have

inf
(u,v)∈W 1,p,q

0,G (Ω)

[
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q + λ(ρ0 −FG(u, v))
]

≤ Eλ,G(0, 0) + ρ0λ = λρ0 < t0.

Combining the above inequality with (4.35) and (4.37), the desired re-
lation from Theorem 4.3 iii) yields immediately.
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II) If t0/ρ0 ≤ λ, from (4.34) and (4.33) we obtain

inf
(u,v)∈W 1,p,q

0,G (Ω)

[
1
p
‖u‖p

1,p +
1
q
‖v‖q

1,q + λ(ρ0 −FG(u, v))
]

≤ 1
p
‖u0‖p

1,p +
1
q
‖v0‖q

1,q + λ(ρ0 −FG(u0, v0))

≤ 1
p
‖u0‖p

1,p +
1
q
‖v0‖q

1,q +
t0
ρ0

(ρ0 −FG(u0, v0)) < t0.

The conclusion holds similarly as in the first case.
Thus, the hypotheses of Theorem 4.3 are fulfilled. This implies the

existence of an open interval Λ ⊂ [0,∞) and σ > 0 such that for all
λ ∈ Λ the function Eλ,G(·, ·) has at least three distinct critical points in
W 1,p,q

0,G (Ω) (denote them by (ui
λ, vi

λ), i ∈ {1, 2, 3}) and ‖(ui
λ, vi

λ)‖ < σ.

Therefore ‖ui
λ‖1,p < σ, ‖vi

λ‖1,q < σ, i ∈ {1, 2, 3}.

Example 4.2 Let Ω = ω × R2, where ω is a bounded open interval in
R. Let γ : Ω → R be a continuous, non-negative, not identically zero,
axially symmetric function with compact support in Ω. Then, there exist
an open interval Λ ⊂ (0,∞) and a number σ > 0 such that for every
λ ∈ Λ, the system



−∆3/2u = 5/2λγ(x)|u|1/2u cos(|u|5/2 + |v|3) in Ω
−∆9/4v = 3λγ(x)|v|v cos(|u|5/2 + |v|3) in Ω
u = v = 0 on ∂Ω,

has at least two distinct, nontrivial weak solutions with the properties
from Theorem ??.

Indeed, let us choose F (x, u, v) = γ(x) sin(|u|5/2 + |v|3), r = 11/4,

s = 33/8. (F1) and (F’3) hold immediately. For (F’4) we choose
a = b = 0, c = γ. Since γ is an axially symmetric function, suppγ

will be an id ×O(2)-invariant set, i.e., if (x, y) ∈ suppγ, then (x, gy) ∈
suppγ for every g ∈ O(2). Therefore, it is possible to fix an element
u0 ∈ W

1,3/2
0,id×O(2)(Ω) such that u0(x) = (π/2)2/5 for every x ∈ suppγ.

Choosing v0 = 0, one has that
∫

Ω

F (x, u0(x), v0(x))dx =
∫

suppγ

γ(x) sin |u0(x)|5/2dx =
∫

suppγ

γ(x)dx > 0.

The conclusion follows from Theorem ??. ¤
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4.5 Shift solutions for gradient systems

In the above two section we was supposed that the function F : Ω×R2 →
R is superlinear in (0, 0). If F is not superlinear in (0, 0) then the
problem (Sλ

p,q) cannot be handled with minimax type results. Using
recent ideas of B. Ricceri [257] it is possible to prove a multiplicity
result obtaining shift solutions for problem (Sλ

p,q). Roughly speaking,
under certain assumptions on the nonlinear term F we are able to show
that the existence of a real parameter λ > 0, and of a pair (u0, v0) ∈
W 1,p

0 (Ω)×W 1,q
0 (Ω) such that the problem

((Sλ
(u0,v0)

) :





−∆p(‖u‖p′(q−1)
1,p u) = λFu(x, u + u0, v + v0)

−∆q(‖u‖q′(p−1)
1,q u) = λFv(x, u + u0, v + v0),

In this section we suppose that the function F has the following form
F (x, u, v) = b(x)G(u, v), where G : R2 → R is of class C1 and b : Ω → R
is such that they fulfil the following conditions:
(G) G(0, 0) = 0 and there exist real numbers k > 0, p1 ∈ ]0, p− 1[, and
q1 ∈ ]0, q − 1[ with the following properties:

(i) For every u, v ∈ R we have |G′u(u, v)| ≤ k|u|p1 ;
(ii) For every u, v ∈ R we have |G′v(u, v)| ≤ k|v|q1 .

(b) b : Ω → [0, +∞[ belongs to L1(Ω)∩L∞(Ω) and is not identically zero
and G = idm ×O(N −m) invariant.

The problem ((Sλ
(u0,v0)

) can be reformulated in the following way:

For (u0, v0) ∈ W 1,p
0 (Ω) × W 1,q

0 (Ω) and λ > 0 we denote by (Sλ
(u0,v0)

)

the problem of finding (u, v) ∈ W 1,p
0 (Ω) ×W 1,q

0 (Ω) such that for every
(w1, w2) ∈ W 1,p

0 (Ω)×W 1,q
0 (Ω) we have:





||u− u0||pq−p
1,p 〈Ap(u− u0)), w1〉p − λ

∫

Ω

b(x)G′u(u(x), v(x))w1(x))dx = 0

||v − v0||pq−q
1,q 〈Aq(v − v0)), w2〉q − λ

∫

Ω

b(x)G′v(u(x), v(x))w2(x))dx = 0.

In this case, the energy functional E(u0,v0),λ : W 1,p
0 (Ω)×W 1,p

0 (Ω) → R

associated to the problem (Sλ
(u0,v0)

) is given by:

E(u0,v0),λ(u, v) =
||u− u0||pq

1,p + ||v − v0||pq
1,q

p q
− λJ(u, v), (4.38)
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where J : W 1,p,q
0,G (Ω) → R is defined by

J(u, v) =
∫

Ω

b(x)G(u(x), v(x))dx.

In standard way from the conditions (G) and (b) it follows that the
function E(u0,v0),λ is of class C1 and its differential is given by:

E′
(u0,v0),λ

(u, v)(w1, w2) = ||u− u0||pq−p
1,p 〈Ap(u− u0), w1〉p +(4.39)

+||v − v0||pq−q
1,q 〈Aq(v − v0), w2〉q − λJ ′(u, v)(w1, w2),

where

J ′(u, v)(w1, w2) =
∫

Ω

[b(x)G′u(u, v)w1(x) + b(x)G′v(u, v)w2(x)]dx,

(4.40)
for all (w1, w2) ∈ W 1,p

0 (Ω) ×W 1,p
0 (Ω). The critical points of the func-

tional E(u0,v0),λ are the solutions of problem ((Sλ
(u0,v0)

).
In the sequel we will use the following notations:

(N1) || · || : W 1,p
0 (Ω) ×W 1,q

0 (Ω) → R denotes the homogenized Minkowski
type norm defined by ||(u, v)|| = (||u||pq

1,p+||v||pq
1,q)

1
pq , for every (u, v) ∈

W 1,p
0 (Ω)×W 1,q

0 (Ω). Throughout in this section the space W 1,p
0 (Ω)×

W 1,q
0 (Ω) is considered to be endowed with this norm. We have that

the space W 1,p
0 (Ω)×W 1,q

0 (Ω) is a separable, uniformly convex, smooth
real Banach space. Note that the following inequality holds for every
(u, v) ∈ W 1,p

0 (Ω)×W 1,q
0 (Ω)

||u||1,p + ||v||1,q ≤ 2||(u, v)||. (4.41)

(N2) According to the Lions compact embedding theorem, for every r ∈
[p, p?] and s ∈ [q, q?] the embedding W 1,p

0 (Ω) ↪→ Lr(Ω) and W 1,q
0 (Ω) ↪→

Ls(Ω) are compact. Therefore for the fixed numbers r ∈ [p, p?] and
s ∈ [q, q?], there exists a positive real number c such that the following
inequalities hold for every (u, v) ∈ W 1,p

0 (Ω)×W 1,q
0 (Ω)

||u||r ≤ c||u||1,p, ||v||s ≤ c||v||1,q. (4.42)

(N3) ν1 := r
r−(p1+1) , ν2 := s

s−(q1+1) .
(N4) From condition (G) it follows the inequaliy:

|F (x, y)−F (x̄, ȳ)| ≤ k(|x|+ |x̄|)p1 |x− x̄|+k(|y|+ |ȳ|)q1 |y− ȳ|, (4.43)

for every (x, y), (x̄, ȳ) ∈ R× R.
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In the next as in above two section we denote with W 1,p,q
0,G (Ω) the fixed

points set of the action G = idm × O(N −m) on W 1,p
0 (Ω) ×W 1,q

0 (Ω).
The norms ‖ · ‖1,p, ‖ · ‖1,q and ‖(·, ·)‖ restricted to W 1,p,q

0,G (Ω) we will
denote in the same way and we introduce the following notations JG =
J |W 1,p,q

0,G (Ω), E(u0,v0),G = E(u0,v0),λ|W 1,p,q
0,G (Ω).

Proposition 4.3 The function JG : W 1,p,q
0,G (Ω) → R has the following

properties:

(a) There exists a positive real number C such that the inequality

|JG(u, v)| ≤ C(||u||p1+1
1,p + ||v||q1+1

1,q )

holds for every pair (u, v) ∈ W 1,p,q
0,G (Ω).

(b) JG is sequentially weakly continuous.
(c) For every (u, v), (w1, w2) ∈ W 1,p,q

0,G (Ω) we have

|J ′G(u, v)(w1, w2)| ≤ k(||b||ν1 ||u||p1
r ||w1||r + ||b||ν2 ||v||q1

s ||w2||s).
(4.44)

Proof (a) From (4.43) it follows that

|F (u(x), v(x))| ≤ k|u(x)|p1+1 + k|v(x)|q1+1

for every x ∈ Ω. Thus

|b(x)F (u(x), v(x))| ≤ k|b(x)||u(x)|p1+1 + k|b(x)||v(x)|q1+1. (4.45)

Using (4.45) and Hölder’s inequality, we get

|JG(u, v)| ≤ k||b||ν1 ||u||p1+1
r + k||b||ν2 ||v||q1+1

s .

Hence, in view of (4.42), we obtain

|JG(u, v)| ≤ k||b||ν1c
p1+1||u||p1+1

1,p + k||b||ν2c
q1+1||v||q1+1

1,q .

By taking C = max{k||b||ν1c
p1+1, k||b||ν2c

q1+1}, we obtain the asserted
inequality.
(b) In view of (4.43), for every (u, v), (ū, v̄) ∈ W 1,p,q

0,G the following in-
equality holds

|JG(u, v)− JG(ū, v̄)| ≤ k

∫

Ω

b(x)(|u(x)|+ |ū(x)|)p1 |u(x)− ū(x)|dx

+k

∫

Ω

b(x)(|v(x)|+ |v̄(x)|)q1 |v(x)− v̄(x)|dx.
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Using Hölder’s inequality (note that 1
ν1

+ p1
r + 1

r = 1 and 1
ν2

+ q1
s + 1

s =
1), we get

|JG(u, v)− JG(ū, v̄)| ≤ k||b||ν1 ||(|u|+ |ū|)||p1
r ||u− ū||r (4.46)

+ k||b||ν2 ||(|v|+ |v̄|)||q1
s ||v − v̄||s.

Now, let (un, vn)i∈N ⊂ W 1,p.q
0,G (Ω) be a sequence which converges weakly

to (u, v) ∈ W 1,p.q
0,G (Ω).

From (4.46) we obtain that the following inequality holds for every
n ∈ N

|JG(un, vn)− JG(u, v)| ≤ k2p1cp1Mp1 ||b||ν1 ||un − u||r (4.47)

+ k2q1cq1Mq1 ||b||ν2 ||vn − v||s.
Because the embedding W 1,p

0,G(Ω) ↪→ Lr(Ω) and W 1,q
0,G(Ω) ↪→ Ls(Ω) are

compact, follow that un → u and vn → v strongly in Lr(Ω) and Ls(Ω)
respectively. From (4.47) follows that lim

n→∞
J(un, vn) = J(u, v), which

prove the assertion.
(c) Pick (u, v), (w1, w2) ∈ W 1,p,q

0,G (Ω). From the Mean Value Theorem
and (G) we have:

|F ′((u(x), v(x))(w1(x), w2(x))| ≤ k|u(x)|p1 |w1(x)|+ k|v(x)|q1 |w2(x)|.
(4.48)

From Hölder’s inequality it follows that

|J ′G(u, v)(w1, w2)| ≤ k(||b||ν1 ||u||p1
r ||w1||r + ||b||ν2 ||v||q1

s ||w2||s).

Proposition 4.4 Let (u0, v0) ∈ W 1,p,q
0,G (Ω) and λ > 0. The energy

functional E(u0,v0),G satisfies the following conditions:

(a) E(u0,v0),G is coercive.
(b) E(u0,v0),G verifies the Palais-Smale condition.
(c) E(u0,v0),G is weakly lower semicontinuous.

Proof (a) According to assertion (a) of Proposition 4.3, the following
inequality holds for every (u, v) ∈ W 1,p,q

0,G (Ω)

||u− u0||pq
1,p

pq
−λC||u||p1+1

1,p +
||v − v0||pq

1,q

pq
−λC||v||q1+1

1,q ≤ E(u0,v0),G(u, v).

(4.49)
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Define g : W 1,p
0,G(Ω) → R and h : W 1,q

0,G(Ω) → R by

g(u) =
||u− u0||pq

1,p

pq
−λC||u||p1+1

1,p and h(v) =
||v − v0||pq

1,q

pq
−λC||v||q1+1

1,q .

Using these notations, (4.49) can be rewritten as

g(u) + h(v) ≤ E(u0,v0),G(u, v), for all (u, v) ∈ W 1,p,q
0,G (Ω). (4.50)

For u 6= 0 we have

g(u) = ||u||p1,p

(
||u− u0||pq

1,p

pq||u||p1,p

− λC||u||p1+1−p
1,p

)

= ||u||p1,p

(
||u− u0||p1,p

pq||u||p1,p

||u− u0||pq−p
1,p − λC||u||p1+1−p

1,p

)
.

Since lim
||u||1,p→∞

||u− u0||p1,p

||u||p1,p

= 1, lim
||u||1,p→∞

||u−u0||pq−p
1,p = +∞ (because

pq − p > 0), and lim
||u||1,p→∞

||u||p1+1−p
1,p = 0 (recall that p1 < p − 1),

we obtain that lim
||u||1,p→∞

g(u) = +∞. Hence, g is coercive. A similar

argument yields that h is coercive. Since g and h are continuous, it
follows from (4.50) that E(u0,v0),G is coercive.
(b) Let {(un, vn)} be a sequence (PS) sequence in W 1,p,q

0,G (Ω) for the
function E(u0,v0),G, that is

(PS1) E(u0,v0),G(un, vn) is bounded,
(PS2) E′

(u0,v0),G
(un, vn) → 0.

From the coercivity of the function E(u0,v0),G follows that the sequence
{(un, vn)} is bounded in W 1,p,q

0,G (Ω). As in Lemma 4.3 with some mirror
modifications we obtain that the function E(u0,v0),G satisfies the (PS)
condition.
(c) The map (u, v) ∈ W 1,p,q

0,G (Ω) 7−→ ||(u,v)−(u0,v0)||pq

pq ∈ R is weakly
lower semicontinuous, since all its lower level sets are weakly closed
(recall that W 1,p,q

0,G (Ω) is reflexive, since it is uniformly convex). The
map (u, v) ∈ W 1,p,q

0,G (Ω) 7−→ −λJG(u, v) ∈ R is sequentially weakly con-
tinuous (according to assertion (b) of Proposition 4.3), hence the map
E(u0,v0),G is sequentially weakly lower semicontinuous. Since E(u0,v0),G

is coercive, the Eberlein-Smulyan theorem implies that E(u0,v0),G is
weakly lower semicontinuous.

T The main result of this section is the following.
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Theorem 4.4 Assume that the hypotheses (G) and (b) hold, and that
the function JG is not constant. Then, for every σ ∈] inf

W 1,p,q
0,G (Ω)

JG, sup
W 1,p,q

0,G (Ω)

JG[

and every (u0, v0) ∈ J−1(]−∞, σ[), one of the following alternatives is
true:

(A1) There exists λ > 0 such that the function E(u0,v0),G has at least
three critical points in W 1,p,q

0,G (Ω).

(A2) There exists (u∗, v∗) ∈ J−1
G (σ) such that, for all (u, v) ∈ J−1

G ([σ, +∞[)\
{(u∗, v∗)}, the inequality

‖(u, v)− (u0, v0)‖ > ||(u∗, v∗)− (u0, v0)||

holds.

Proof Fix σ ∈] inf
W 1,p,q

0,G (Ω)
JG, sup

W 1,p,q
0,G (Ω)

JG[, (u0, v0) ∈ J−1(]−∞, σ[), and

assume that (A1) does not hold. This implies that for every λ > 0
the function E(u0,v0),G has at most one local minimum in W 1,p,q

0,G (Ω).
Indeed, the existence of two local minima of E(u0,v0),G would imply, by
the mountain pass theorem of zero altitude 1.8 (recall that, according
to assertion (b) of Proposition 4.4, the function E(u0,v0),G satisfies the
Palais-Smale condition) that this function has a third critical point. This
would contradict our assumption that (A1) does not hold.

We are going to prove that in this case (A2) is satisfied. For this
purpose we apply the following result that is due to Ricceri ([257], The-
orem 1).

Theorem 4.5 Let X be a topological space, Λ a real interval, and f :
X × Λ → R a function satisfying the following conditions:

(i) For every x ∈ X, the function f(x, ·) is quasi–concave and continuous.
(ii) For every λ ∈ Λ, the function f(·, λ) is lower semicontinuous and each

of its local minima is a global minimum.
(iii) There exist ρ0 > sup

Λ
inf
X

f and λ0 ∈ Λ such that {x ∈ X : f(x, λ0) ≤
ρ0} is compact.

Then,

sup
Λ

inf
X

f = inf
X

sup
Λ

f.
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Set Λ := [0, +∞[ and define the map f : W 1,p,q
0,G (Ω)× Λ → R by

f(u, v, λ) = E(u0,v0),G(u, v)+λσ =
||(u, v)− (u0, v0)||pq

pq
+λ(σ−JG(u, v)).

We consider the space W 1,p,q
0,G (Ω) be equipped with the weak topology.

Our aim is to show that f satisfies the conditions (i), (ii), and (iii)
of Theorem 4.5. Observe that for every (u, v) ∈ W 1,p,q

0,G (Ω) the map
f(u, v, ·) : Λ → R is afine, thus it is quasi-concave and continuous, that is,
condition (i) is fulfilled. Next we prove that condition (ii) is also satisfied.
For this fix a real number λ ≥ 0. By assertion (c) of Proposition 4.4 we
know that f(·, λ) is (weakly) lower semicontinuous. Assume now that
f(·, λ) has a local minimum which is not global. Since f(·, λ) is coercive
(by assertion (a) of Proposition 4.4) and weakly lower semicontinuous,
it has a global minimum. Thus, f(·, λ) has at least two local minima.
It follows that E(u0,v0),G has at least two local minima, too, which is
impossible by the assumption and the remark made at the beginning of
the proof. We conclude that condition (ii) holds. To prove that condition
(iii) is also satisfied we show first that sup

Λ
inf

W 1,p,q
0,G (Ω)

f(u, v, λ) < +∞. For

this choose (u1, v1) ∈ W 1,p,q
0,G (Ω) such that σ < J(u1, v1). For every λ ∈ Λ

we have

inf
W 1,p,q

0,G (Ω)
f(u, v, λ) ≤ f(u1, v1, λ) ≤ ‖(u1, v1)− (u0, v0)‖pq

pq
, (4.51)

hence sup
Λ

inf
W 1,p,q

0,G (Ω)
f(u, v, λ) < +∞. For every ρ0 > sup

Λ
inf

W 1,p,q
0,G (Ω)

f(u, v, λ)

the set {(u, v) ∈ W 1,p,q
0,G (Ω) | f(u, v, 0) ≤ ρ0} is weakly compact, thus

condition (iii) is satisfied. Applying Theorem 4.5, we obtain

α := sup
Λ

inf
W 1,p,q

0,G (Ω)
f = inf

W 1,p,q
0,G (Ω)

sup
Λ

f. (4.52)

Note that the function λ ∈ Λ 7−→ inf
W 1,p,q

0,G (Ω)
f(u, v, λ) is upper semicontin-

uous, since for every (u, v) ∈ W 1,p,q
0,G (Ω) the map f(u, v, ·) is continuous.

Also, the first inequality of (4.51) yields that

lim
λ→+∞

inf
W 1,p,q

0,G (Ω)
f(u, v, λ) = −∞.

Thus, the map λ ∈ Λ 7−→ inf
W 1,p,q

0,G (Ω)
f(u, v, λ) is upper bounded and
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attains its maximum at a point λ∗ ∈ Λ. Hence,

α = sup
Λ

inf
W 1,p,q

0,G (Ω)
f = inf

W 1,p,q
0,G (Ω)

( ||(u, v)− (u0, v0)||pq

pq
+ λ∗(σ − JG(u, v))

)
.

(4.53)
On the other hand, we have for every (u, v) ∈ W 1,p,q

0,G (Ω) that

sup
Λ

f(u, v, λ) =





+∞, if σ > JG(u, v)

||(u,v)−(u0,v0)||pq

pq , if σ ≤ JG(u, v).

In view of (4.52) it follows that

α = inf
J−1

G ([σ,+∞[)

( ||(u, v)− (u0, v0)||pq

pq

)
.

Since the map (u, v) ∈ W 1,p,q
0,G (Ω) 7−→ ||(u,v)−(u0,v0)||pq

pq ∈ R is weakly
lower semicontinuous and coercive, and since the set J−1

G ([σ, +∞[) is
weakly closed and nonempty, there exists a pair (u∗, v∗) ∈ J−1

G ([σ,+∞[)
such that

α =
||(u∗, v∗)− (u0, v0)||pq

pq
. (4.54)

Observe that λ∗ > 0. Otherwise, λ∗ = 0, which implies α = 0, hence
(u0, v0) = (u∗, v∗), which is impossible since JG(u0, v0) < σ.

The relations (4.53) and (4.54) yield that

||(u∗, v∗)− (u0, v0)||pq

pq
≤ ||(u∗, v∗)− (u0, v0)||pq

pq
+ λ∗(σ − JG(u∗, v∗)),

thus JG(u∗, v∗) = σ. This implies (by (4.53)) that (u∗, v∗) is a global
minimum of E(u0,v0),G. By the assumption and the remark at the be-
ginning of the proof this pair is the only global minimum of E(u0,v0),G.
Thus, for every pair (u, v) ∈ J−1

G ([σ,+∞[) \ {(u∗, v∗)}, the inequality
‖(u, v)− (u0, v0)‖ > ||(u∗, v∗)− (u0, v0)|| holds. We conclude that (A2)
is satisfied.

Corollary 4.1 Assume that the hypotheses of Theorem 4.4 are fulfilled.
If S is a convex dense subset of W 1,p,q

0,G (Ω), and if there exists

σ ∈] inf
W 1,p,q

0,G (Ω)
JG, sup

W 1,p,q
0,G (Ω)

JG[

such that the level set J−1
G ([σ,+∞[) is not convex, then there exist

(u0, v0) ∈ J−1
G (]−∞, σ[)∩S and λ > 0 such that the function E(u0,v0),G
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has at least three critical points in W 1,p,q
0,G (Ω), i.e., there exist (u0, v0) ∈

J−1
G (] −∞, σ[) ∩ S and λ > 0 such that problem ((Sλ

(u0,v0)
) has at least

three solutions in W 1,p,q
0,G (Ω).

Proof Since JG is sequentially weakly continuous (by assertion (c) of
Proposition 4.3), the level set M := J−1([σ,+∞[) is sequentially weakly
closed. Theorem A.1 yields the existence of pairwise distinct pairs
(u0, v0) ∈ S, (u1, v1), (u2, v2) ∈ M such that

||(u1, v1)− (u0, v0)|| = ||(u2, v2)− (u0, v0)|| = inf
(u,v)∈M

||(u, v)− (u0, v0)||.

It follows that (u0, v0) /∈ M , that is, JG(u0, v0) < σ. Also, the above re-
lations show that alternative (A2) of Theorem 4.4 does not hold. Hence
(A1) must be satisfied, i.e., there exists λ > 0 such that the function
E(u0,v0),G has at least three critical points in W 1,p,q

0,G (Ω). Using the Prin-
ciple of Symmetric Criticality, we conclude that problem ((Sλ

(u0,v0)
)

has at least three solutions in W 1,p
0 (Ω)×W 1,p

0 (Ω).

Remark. The assumption of Corollary 4.1 stating that there exists
σ ∈] inf

W 1,p,q
0,G (Ω)

J, sup
W 1,p,q

0,G (Ω)

J [ such that the level set J−1([σ,+∞[) is not

convex is equivalent to the fact that J is not qvasi-concave.
A direct application of Corollary 4.1 is the following.

Theorem 4.6 Let G : R2 → [0, +∞[ be a function which is not quasi-
concave and which satisfies condition (G). Let b : Ω → [0,+∞[ be a
G-invariant function with b(0) > 0 and for which condition (b) holds,
and assume that S is a convex dense subset of W 1,p,q

0,G (Ω). Then, there
exist (u0, v0) ∈ S and λ > 0 with the property that problem ((Sλ

(u0,v0)
)

has at least three solutions in W 1,p
0 (Ω)×W 1,p

0 (Ω).

Proof We are going to apply Corollary 4.1 to the spaces W 1,p
0,G(Ω) and

W 1,q
0,G(Ω) and to the map J |W 1,p,q

0,G (Ω). First we prove that J |W 1,p,q
0,G (Ω) is

not constant. For this we assume, by contradiction, that J |W 1,p,q
0,G (Ω)(u, v) =

J |W 1,p,q
0,G (Ω)(0, 0) = 0 for every (u, v) ∈ W 1,p,q

0,G (Ω).
Since b ≥ 0 and F ≥ 0, it follows that b(x)F (u(x), v(x)) = 0 for ev-
ery (u, v) ∈ W 1,p,q

0,G (Ω) and a.e. x ∈ Ω. Since b(0) > 0, there exists
a real number R > 0 such that the closed ball B centered in 0 with
radius R is contained in Ω and b(x) > 0 for a.e. x ∈ B. Consequently,
G(u(x), v(x)) = 0 for every (u, v) ∈ W 1,p,q

0,G (Ω) and a.e. x ∈ B. Since F
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is not constant, there exist s0, t0 ∈ R such that G(s0, t0) > 0. Choosing
u ∈ W 1,p

0,G(Ω) and v ∈ W 1,q
0,G(Ω) such that u(x) = s0 and v(x) = t0 for

every x ∈ B, we get a contradiction.
We show that J |W 1,p,q

0,G (Ω) is not quasi-concave. It follows from above
that

t :=
∫

B

b(x)dx > 0.

The fact that G is not quasi-concave implies the existence of a real
number ρ0 ∈]0, sup

R×R
G[ such that G−1([ρ0, +∞[) is not convex. Thus, we

find ρ ∈ R, α ∈]0, 1[, and (si, ti) ∈ R2, i ∈ {1, 2, 3}, with the following
properties

(s2, t2) = α(s1, t1)+(1−α)(s3, t3), G(s1, t1) > ρ, G(s3, t3) > ρ, G(s2, t2) < ρ.

Let

M := max{F (x, y) | |x| ≤ max{|s1|, |s3|}, |y| ≤ max{|t1|, |t3|}}.
Choose R1 > R and ε > 0 such that

‖b‖∞Mmeas(A) < ε < t|F (si, ti)− ρ|, for i ∈ {1, 2, 3},
where A := {x ∈ Ω : R < |x| < R1} and meas(A) stays for the Lebesgue
measure of A. For i ∈ {1, 3} let ui, vi ∈ C∞c (Ω) be G-invariant functions
such that ||ui||∞ = |si|, ||vi||∞ = |ti|,

ui(x) =





si, |x| ≤ R

0, |x| ≥ R1,

and vi(x) =





ti, |x| ≤ R

0, |x| ≥ R1.

Put (u2, v2) := α(u1, v1)+(1−α)(u3, v3). It follows that u2, v2 ∈ C∞c (Ω),
||u2||∞ ≤ α|s1|+ (1− α)|s3|, ||v2||∞ ≤ α|t1|+ (1− α)|t3|,

u2(x) =





s2, |x| ≤ R

0, |x| ≥ R1,

and v2(x) =





t2, |x| ≤ R

0, |x| ≥ R1.

Let i ∈ {1, 2, 3}. Note that for every x ∈ Ω the following inequalities
hold

|ui(x)| ≤ ||ui||∞ ≤ max{|s1|, |s3|} and |vi(x)| ≤ ||vi||∞ ≤ max{|t1|, |t3|},
thus

0 ≤ b(x)G(ui(x), vi(x)) ≤ ||b||∞M.
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Since

J |W 1,p,q
0,G (Ω)(ui, vi) =

∫

B

b(x)G(ui(x), vi(x))dx +
∫

A

b(x)G(ui(x), vi(x))dx

= G(si, ti)t +
∫

A

b(x)G(ui(x), vi(x))dx,

we conclude that, for i ∈ {1, 3},
J |W 1,p,q

0,G (Ω)(ui, vi) ≥ G(si, ti)t− ||b||∞Mmeas(A) > G(si, ti)t− ε > tρ.

and

J |W 1,p,q
0,G (Ω)(u2, v2) ≤ G(s2, t2)t + ||b||∞Mmeas(A) < G(s2, t2)t + ε < tρ.

Thus J |W 1,p,q
0,G (Ω) is not quasi-concave. Therefore, Corollary 4.1 yields

the existence of a pair (u0, v0) ∈ S and of a real number λ > 0 such
that the function E(u0,v0),G|W 1,p,q

0,G (Ω) has at least three critical points in

W 1,p,q
0,G (Ω). In order to ensure that these points are also critical points of

E(u0,v0),G, we have to show that E(u0,v0),G is G-invariant. For this pick
arbitrary (u, v) ∈ W 1,p,q

0,G (Ω) and g ∈ G. Then,

E(u0,v0),G(g · u, g · v) = ||(g·u,g·v)−(u0,v0)||pq

pq − λJ(g · u, g · v)

= ||(g·u,g·v)−(g·u0,g·v0)||pq

pq − λ

∫

Ω

b(x)G((g · u)(x), (g · v)(x))dx.

Using the formula for the change of variable, and taking into account
that b is G-invariant and that the elements of G are orthogonal maps
(hence the absolute value of the determinant of their matrices is 1), we
conclude that

E(u0,v0),G(g · u, g · v) =
||(u, v)− (u0, v0)||pq

pq
− λ

∫

Ω

b(x)G(u(x), v(x))dx

= E(u0,v0),G(u, v).

So, by Principle of Symmetric criticality, every critical point of E(u0,v0),G

is also a critical point of E(u0,v0),λ. The conclusion follows now from
Corollary 4.1.

Example 4.3 We give an example of a non-constant function F : R2 →
[0, +∞) which satisfies the conditions required in the hypotheses of The-
orem 4.6. Let γ, δ ∈ R be such that 1 < γ < p and 1 < δ < q. Define
F : R2 → R by

F (u, v) = |u|γ + |v|δ.
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Then, F is convex and of class C1 and satisfies the condition (G). The
relations

F (0, 0) = F

(
1
2
(−1, 0) +

1
2
(1, 0)

)
= 0 < 1 = F (−1, 0) = F (1, 0)

show that F is not quasi-concave.

4.6 Comments and historical notes

In the last few years many paper is dedicated to study the existence and
multiplicity of solutions for gradient, Hamiltonian and non-variational
systems on bounded or unbounded domain. For this see the papers of
de Figueiredo and his collaborators.

The motivation to investigate elliptic eigenvalue problems on such
domains arises from Mathematical Physics, see for instance Amick [8],
Amick and Toland [9]; the mathematical development was initiated by
Esteban [107], Grossinho and Tersian [132], Fao and Zhao [110]. Many
papers study the existence and multiplicity of solutions for elliptic sys-
tems defined on unbounded domains, see Bartsch and de Figueiredo
[27], Bartsch and Wang [31], Costa [75], Dinu [90], Grossinho [131] and
Kristály [163], [164], [167]. The main tools used in the aforementioned
papers are based on Mountain Pass Theorems and on the symmetric ver-
sion of Mountain Pass Theorem, when the energy functional associated
to problem (Sλ) satisfies the (PS) condition.



5

Systems with arbitrary growth nonlinearities

The universe is not required to
be in perfect harmony with
human ambition.

Carl Sagan (1934–1996)

In this chapter we are dealing with the elliptic system



−∆u = vp in Ω;
−∆v = f(u) in Ω;
u = v = 0 on ∂Ω,

where 0 < p < 2
N−2 , Ω is a bounded domain in RN , and the continuous

nonlinear term f has an arbitrary growth near the origin or at infinity.
Here and in the sequel, we use the notation sα = sgn(s)|s|α, α > 0.

5.1 Introduction

We consider the elliptic system



−∆u = g(v) in Ω;
−∆v = f(u) in Ω;
u = v = 0 on ∂Ω,

(S)

where Ω ⊂ RN (N ≥ 2) is an open bounded domain with smooth bound-
ary, and f, g : R→ R are continuous functions.

In the particular case when g(s) = sp, f(s) = sq (p, q > 1) and N ≥ 3,
system (S) has been widely studied replacing the usual criticality notion
(i.e., p, q ≤ N+2

N−2 ) by the so-called ”critical hyperbola” which involves

152
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both parameters p and q, i.e., those pairs of points (p, q) ∈ R2
+ which

verify

1
p + 1

+
1

q + 1
= 1− 2

N
. (CH)

Points (p, q) on this curve meet the typical non-compactness phenomenon
of Sobolev embeddings and non-existence of solutions for (S) has been
pointed out by Mitidieri [211] and van der Vorst [287] via Pohozaev-type
arguments. On the other hand, when

1 >
1

p + 1
+

1
q + 1

> 1− 2
N

, (5.1)

the existence of nontrivial solutions for (S) has been proven by de
Figueiredo and Felmer [112], Hulshof, Mitidieri and van der Vorst [141].
Note that the latter results work also for nonlinearities g(s) ∼ sp and
f(s) ∼ sq as |s| → ∞ with (p, q) fulfilling (5.1). The points verifying
(5.1) form a proper region in the first quadrant of the (p, q)-plane situ-
ated below the critical hyperbola (CH). Note that (5.1) is verified for
any p, q > 1 whenever N = 2.

In spite of the aforementioned results, the whole region below (CH)
is far to be understood from the point of view of existence/multiplicity
of solutions for (S). Via a Mountain Pass argument, de Figueiredo and
Ruf [118] proved the existence of at least one nontrivial solution to the
problem




−∆u = vp in Ω;
−∆v = f(u) in Ω;
u = v = 0 on ∂Ω,

(S̃)

when
{

0 < p, if N = 2;
0 < p < 2

N−2 , if N ≥ 3,
(5̃.1)

and f : R→ R has a suitable superlinear growth at infinity, formulated
in the term of the Ambrosetti-Rabinowitz condition. Later, Salvatore
[266] guaranteed via the Pohozaev’s fibering method the existence of a
whole sequence of solutions to (S̃) in a similar context as [118] assuming
in addition that the nonlinear term f is odd. Note that in both papers
(i.e., [118] and [266]) no further growth restriction is required on the
nonlinear term f other than the Ambrosetti-Rabinowitz condition. This
latter fact is not surprising taking into account that (5̃.1) is actually
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equivalent to

1 >
1

p + 1
> 1− 2

N
,

which is nothing but a ”degenerate” case of (5.1) putting formally q =
∞, i.e., the growth of f may be arbitrary large.

This chapter is divided into two parts, in both cases we guarantee the
existence of infinitely many pairs of distinct solutions to the system (S̃)
when (5̃.1) holds. In one hand, in Section 5.2 the nonlinear term f has
an oscillatory behaviour. Moreover, the nonlinear term f may enjoy an
arbitrary growth at infinity (resp., at zero) whenever it oscillates near
the origin (resp., at infinity) in a suitable way. In addition, the size of
our solutions reflects the oscillatory behaviour of the nonlinear term, see
relations (5.6) and (5.12) below; namely, the solutions are small (resp.,
large) in L∞-norm and in a suitably chosen Sobolev space whenever the
nonlinearity f oscillates near the origin (resp., at infinity). We emphasize
that no symmetry condition is required on f . These results are proved by
means of Ricceri’s variational principle, see Theorem 1.16. On the other
hand, in Section 5.3 the odd nonlinear term f fulfills an Ambrosettti-
Rabinowitz type condition and the one-parametric fibering method is
used in order to prove the existence of a whole sequence of solutions to
(S̃).

Note that system (S̃) is equivalent to the Poisson equation
{
−∆(−∆u)

1
p = f(u) in Ω;

u = ∆u = 0 on ∂Ω.
(P )

The suitable functional space where solutions of (P ) is going to be sought
is

X = W 2, p+1
p (Ω) ∩W

1, p+1
p

0 (Ω)

endowed with the norm

‖u‖X =
(∫

Ω

|∆u| p+1
p dx

) p
p+1

.

Due to (5̃.1) one has p+1
p > 1 + N−2

2 = N
2 , therefore W 2, p+1

p (Ω) ⊂⊂
C(Ω), so

X ⊂⊂ C(Ω). (5.2)

For further use, we denote by κ0 > 0 the best embedding constant of
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X ⊂⊂ C(Ω). The energy functional associated to the Poisson problem
(P ) is E : X → R defined by

E(u) =
p

p + 1
‖u‖

p+1
p

X −F(u) where F(u) =
∫

Ω

F (u(x))dx.

Due to (5.2), the functional E is well-defined, is of class C1 on X and

E′(u)(w) =
∫

Ω

(−4u)
1
p (−4w)dx−

∫

Ω

f(u)wdx, u, w ∈ X.

Note that if u ∈ X is a critical point of E then it is a weak solution
of problem (P ); in such a case, the pair (u, (−∆u)

1
p ) ∈ X × X is a

weak solution of system (S̃). See also [118, Subsection 3.1] and [266,
Proposition 2.1]. Moreover, standard regularity arguments show that
the pair (u, (−∆u)

1
p ) ∈ X × X is actually a strong solution of system

(S̃), see [118].

5.2 Elliptic systems with oscillatory terms

First of all, we are going to construct a special element in the space X

which will play a crucial role in our proofs. Let x0 ∈ Ω and R > 0 be
such that B(x0, R) ⊂ Ω; here and in the sequel, B(x0, a) = {x ∈ RN :
|x− x0| < a}, a > 0. Let 0 < r < R be fixed. We consider the function
w : Ω → R defined by

w(x) =

∫ −|x−x0|
−∞ α(t)dt
∫ −r

−R
α(t)dt

, (5.3)

where α : R→ R is given by

α(t) =

{
e

1
(t+R)(t+r) , if t ∈]−R,−r[;

0, if t /∈]−R,−r[.

It is clear that w ∈ C∞0 (Ω) ⊂ X; moreover, w ≥ 0, ‖w‖∞ = 1 and

w(x) =
{

1, if x ∈ B(x0, r);
0, if x ∈ Ω \B(x0, R).

(5.4)

Lemma 5.1 Let {ak}, {bk} ⊂]0,∞[ be two sequences such that ak < bk,

limk→∞ ak/bk = 0, and sgn(s)f(s) ≤ 0 for every |s| ∈ [ak, bk]. Let
sk = (bk/κ0)

p+1
p . Then,

a) max[−bk,bk] F = max[−ak,ak] F ≡ F (sk) with sk ∈ [−ak, ak].

b) ‖skw‖
p+1

p

X < sk for k ∈ N large enough.
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Proof a) It follows from the standard Mean Value Theorem and from
the hypotheses that sgn(s)f(s) ≤ 0 for every |s| ∈ [ak, bk].

b) Since limk→∞ ak/bk = 0, we may fix k0 ∈ N such that ak/bk <

κ−1
0 ‖w‖−1

X for k > k0. Then, one has ‖skw‖
p+1

p

X = |sk|
p+1

p ‖w‖
p+1

p

X ≤
a

p+1
p

k ‖w‖
p+1

p

X < (bk/κ0)
p+1

p = sk.

As we pointed out, the results of this section are based on Ricceri’s
variational principle, see Theorem 1.16. In our framework concerning
problem (P ) (thus, system (S̃)), Ψ, Φ : X → R are defined by

Ψ(u) = ‖u‖
p+1

p

X , Φ(u) = −F(u), u ∈ X.

Standard arguments show that Ψ and Φ are sequentially weakly lower
semicontinuous. The energy functional becomes E = p

p+1Ψ + Φ. More-
over the function from (1.24) takes the form

ϕ(s) = inf
‖u‖p+1

X <sp

sup{F(v) : ‖v‖p+1
X ≤ sp} − F(u)

s− ‖u‖
p+1

p

X

, s > 0. (5.5)

Now, we are in the position to state our first result. Let f ∈ C(R,R)
and F (s) =

∫ s

0
f(t)dt, s ∈ R. We assume that:

(H1
0 ) −∞ < lim infs→0

F (s)

|s|
p+1

p

≤ lim sups→0
F (s)

|s|
p+1

p

= +∞,

(H2
0 ) there exist two sequences {ak} and {bk} in ]0,∞[ with bk+1 <

ak < bk, limk→∞ bk = 0 such that

sgn(s)f(s) ≤ 0 for every |s| ∈ [ak, bk], and

(H3
0 ) limk→∞ ak

bk
= 0 and limk→∞

max[−ak,ak] F

b
p+1

p
k

= 0.

Remark 5.1 Hypotheses (H1
0 ) − (H2

0 ) imply an oscillatory behaviour
of f near the origin while (H3

0 ) is a technical assumption which seems
to be indispensable in our arguments.

In the sequel, we provide a concrete example when hypotheses (H1
0 )−

(H3
0 ) are fulfilled. Let ak = k−kk+1

and bk = k−kk

, k ≥ 2 and a1 =
1, b1 = 2. It is clear that bk+1 < ak < bk, limk→∞ ak/bk = 0, and
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limk→∞ bk = 0. Let f : R→ R be defined by

f(s) =





ϕk

(
s−bk+1

ak−bk+1

)
, s ∈ [bk+1, ak], k ≥ 1;

0, s ∈]ak, bk[, k ≥ 1;
0, s ∈]−∞, 0];
g(s), s ∈ [2,∞[,

where g : [2,∞[→ R is any continuous function with g(2) = 0, and
ϕk : [0, 1] → [0,∞[ is a sequence of continuous functions such that
ϕk(0) = ϕk(1) = 0 and there are some positive constants c1 and c2 such
that

c1(b
2p+2

p

k −b
2p+2

p

k+1 )(ak−bk+1)−1 ≤
∫ 1

0

ϕk(s)ds ≤ c2(b
p+2

p

k −b
p+2

p

k+1)(ak−bk+1)−1.

Note that F (s) = 0 for every s ∈] −∞, 0] and F is non-decreasing on

[0, 2], while c1b
2p+2

p

k ≤ F (ak) = max[−ak,ak] F ≤ c2b
p+2

p

k . Due to these
inequalities, each hypotheses from above are verified.

Theorem 5.1 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1
0 )−

(H3
0 ). Then, system (S̃) possesses a sequence {(uk, vk)} ⊂ X × X of

distinct (strong) solutions which satisfy

lim
k→∞

‖uk‖X = lim
k→∞

‖vk‖X = lim
k→∞

‖uk‖∞ = lim
k→∞

‖vk‖∞ = 0. (5.6)

The proof of Theorem 5.1 is based on the following two lemmas; thus,
we assume the hypotheses of Theorem 5.1 are fulfilled. Let {ak} and {bk}
be as in the hypotheses. We recall from (1.25) that δ = lim infs→0+ ϕ(s)
where ϕ comes from (5.5).

Lemma 5.2 δ = 0.

Proof By definition, δ ≥ 0. Suppose that δ > 0. By the first inequality
of (H1

0 ), there exist two positive numbers `0 and %0 such that

F (s) > −`0|s|
p+1

p for every s ∈]− %0, %0[. (5.7)

Furthermore, let sk, sk be as in Lemma 5.1 and let wk = skw ∈ E,

where w is defined in (5.3). By (H3
0 ) and condition limk→∞ sk

bk
= 0

(|sk| ≤ ak), there exists k0 ∈ N such that for k > k0 we have

m(Ω)
F (sk)

b
p+1

p

k

+
(

δ

2
‖w‖

p+1
p

X + m(Ω)`0

)( |sk|
bk

) p+1
p

<
δ

2κ
p+1

p

0

. (5.8)
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Let v ∈ E be arbitrarily fixed with ‖v‖
p+1

p

X ≤ sk. Thus, due to the
embedding from (5.2), we have ‖v‖∞ ≤ bk. Due to Lemma 5.1 a), we
obtain

F (v(x)) ≤ max
[−bk,bk]

F = F (sk) for every x ∈ Ω.

Since 0 ≤ |wk(x)| ≤ |sk| < %0 for large k ∈ N and for all x ∈ Ω, taking
into account (5.7) and (5.8), it follows that

sup
‖v‖p+1

X ≤sp
k

F(v)−F(wk) = sup

‖v‖
p+1

p
X ≤sk

∫

Ω

F (v)dx−
∫

Ω

F (wk)dx

≤ m(Ω)F (sk) + m(Ω)`0|sk|
p+1

p

<
δ

2
(sk − ‖wk‖

p+1
p

X ).

Since ‖wk‖
p+1

p

X < sk (cf. Lemma 5.1 b)), and sk → 0 as k → ∞, we
obtain

δ ≤ lim inf
k→∞

ϕ(sk) ≤ lim inf
k→∞

sup‖v‖p+1
X ≤sp

k
F(v)−F(wk)

sk − ‖wk‖
p+1

p

X

≤ δ

2
,

contradiction. This proves our claim.

Lemma 5.3 0 is not a local minimum of E = p
p+1Ψ + Φ.

Proof Let `0 > 0 and %0 > 0 from the proof of Lemma 5.2, and x0 ∈ Ω
and r,R > 0 from the definition of the function w, see (5.3). Let L0 > 0
be such that

rNωNL0 − p

p + 1
‖w‖

p+1
p

X − (RN − rn)ωN `0 > 0, (5.9)

where ωN is the volume of the N -dimensional unit ball. By the right
hand side of (H1

0 ) we deduce the existence of a sequence {s0
k} ⊂]−%0, %0[

converging to zero such that

F (s0
k) > L0|s0

k|
p+1

p . (5.10)
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Let w0
k = s0

kw ∈ E. Due to (5.4), (5.7), (5.9) and (5.10), we have

E(w0
k) =

p

p + 1
‖w0

k‖
p+1

p

X −
∫

Ω

F (w0
k)

=
p

p + 1
‖w‖

p+1
p

X |s0
k|

p+1
p −

∫

B(x0,r)

F (w0
k)−

∫

B(x0,R)\B(x0,r)

F (w0
k)

≤ p

p + 1
‖w‖

p+1
p

X |s0
k|

p+1
p − F (s0

k)m(B(x0, r)) + `0(m(B(0, R))−m(B(0, r)))|s0
k|

p+1
p

≤ |s0
k|

p+1
p

(
p

p + 1
‖w‖

p+1
p

X − rNωNL0 + (RN − rn)ωN`0

)

< 0 = E(0).

Since ‖w0
k‖X → 0 as k →∞, 0 is not a local minimum of E, as claimed.

Proof of Theorem 5.1. Applying Theorem 1.16 with λ = p
p+1 (see Lemma

5.2), we can exclude condition (A1) (see Lemma 5.3). Therefore there
exists a sequence {uk} ⊂ X of pairwise distinct critical points of E =

p
p+1Ψ + Φ such that

lim
k→∞

‖uk‖X = 0. (5.11)

Thus, {(uk, vk)} = {(uk, (−∆uk)
1
p )} ⊂ X ×X is a sequence of distinct

pairs of solutions to the system (S̃).
It remains to prove (5.6). First, due to (5.2) and (5.11), we have that

limk→∞ ‖uk‖∞ = 0. For every k ∈ N let mk ∈ [−‖uk‖∞, ‖uk‖∞] =: Jk

such that |f(mk)| = maxs∈Jk
|f(s)|. Note that diamJk → 0 as k → ∞;

thus limk→∞mk = 0 which implies that limk→∞ f(mk) = 0. On the
other hand, from the second equation of system (S̃) we have that

‖vk‖
p+1

p

X =
∫

Ω

|∆vk|
p+1

p dx =
∫

Ω

|f(uk)| p+1
p dx ≤ |f(mk)| p+1

p m(Ω),

which implies that limk→∞ ‖vk‖X = 0. Using again (5.2) we have that
limk→∞ ‖vk‖∞ = 0.

In the sequel, we state a perfect counterpart of Theorem 5.1 when the
nonlinearity f has an oscillation at infinity. We assume that:

(H1
∞) −∞ < lim inf |s|→∞

F (s)

|s|
p+1

p

≤ lim sup|s|→∞
F (s)

|s|
p+1

p

= +∞,

(H2
∞) there exist two sequences {ak} and {bk} in ]0,∞[ with ak < bk <

ak+1 and limk→∞ bk = ∞ such that

sgn(s)f(s) ≤ 0 for every |s| ∈ [ak, bk], and
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(H3
∞) limk→∞ ak

bk
= 0 and limk→∞

max[−ak,ak] F

b
p+1

p
k

= 0.

Remark 5.2 Assumptions (H1
∞)−(H2

∞) imply an oscillatory behaviour
of f at infinity. A concrete example is described in the sequel when
hypotheses (H1

∞) − (H3
∞) are fulfilled. Let ak = kkk

and bk = kkk+1

(k ≥ 2) and a1 = 5, b1 = 10. Clearly, one has ak < bk < ak+1,
limk→∞ ak/bk = 0, and limk→∞ bk = ∞. Let f : R→ R be defined by

f(s) =





ϕk

(
s−bk

ak+1−bk

)
, s ∈ [bk, ak+1], k ≥ 1;

0, s ∈]ak, bk[, k ≥ 1;
g(s), s ∈ [−5, 5];
0, s ∈]−∞,−5[,

where g : [−5, 5] → R is any continuous function with g(±5) = 0, and
ϕk : [0, 1] → [0,∞[ is a sequence of continuous functions such that
ϕk(0) = ϕk(1) = 0 and there are some constants c1, c2 > 0 such that

c1(b
3p+1
3p

k+1 −b
3p+1
3p

k )(ak+1−bk)−1 ≤
∫ 1

0

ϕk(s)ds ≤ c2(b
2p+1
2p

k+1 −b
2p+1
2p

k )(ak+1−bk)−1.

Note that F (s) = 0 for every s ∈]−∞,−5] and F is non-decreasing on
[5,∞[. Moreover, for k ∈ N large enough we have

c1(b
3p+1
3p

k −10
3p+1
3p )+

∫ 5

0

g(s)ds ≤ F (ak) = max
[−ak,ak]

F ≤ c2(b
2p+1
2p

k −10
2p+1
2p )+

∫ 5

0

g(s)ds.

Now, an easy computation shows the hypotheses from above are verified.

Theorem 5.2 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1
∞)−

(H3
∞). Then, system (S̃) possesses a sequence {(uk, vk)} ⊂ X × X of

distinct (strong) solutions which satisfy

lim
k→∞

‖uk‖X = lim
k→∞

‖vk‖X = lim
k→∞

‖uk‖∞ = lim
k→∞

‖vk‖∞ = ∞. (5.12)

The proof of Theorem 5.2 is similar to that of Theorem 5.1. Let {ak}
and {bk} be from Theorem 5.2 and γ = lim infs→+∞ ϕ(s) from (1.25)
where ϕ comes from (5.5).

Lemma 5.4 γ = 0.
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Proof It is clear that γ ≥ 0. Suppose that γ > 0. Due to the left-hand
side of (H1

∞), one can find two positive numbers `∞ and %∞ such that

F (s) > −`∞|s|
p+1

p for every |s| > %∞. (5.13)

Let sk, sk be as in Lemma 5.1. By the fact that limk→∞ bk = ∞,
hypothesis (H3

∞) and condition limk→∞ sk

bk
= 0 (−ak ≤ sk ≤ ak), there

exists k0 ∈ N such that for every k > k0 we have

m(Ω)
max[−%∞,%∞] |F |+ F (sk)

b
p+1

p

k

+
(

γ

2
‖w‖

p+1
p

X + m(Ω)`∞

)( |sk|
bk

) p+1
p

<
γ

2κ
p+1

p

0

.

(5.14)
Let wk = skw ∈ X, where w is defined in (5.3). A similar estimation as
in Lemma 5.2 gives throughout relations (5.13) and (5.14) that

sup
‖v‖p+1

X
≤s

p
k

F(v)−F(wk) = sup

‖v‖
p+1

p
X

≤sk

∫

Ω

F (v)dx−
∫

Ω

F (wk)dx

= sup

‖v‖
p+1

p
X

≤sk

∫

Ω

F (v)dx−
∫

{|wk(x)|>%∞}
F (wk)dx

−
∫

{|wk(x)|≤%∞}
F (wk)dx

≤ m(Ω)F (sk) + m(Ω)`∞|sk|
p+1

p + m(Ω) max
[−%∞,%∞]

|F |

<
γ

2
(sk − ‖wk‖

p+1
p

X ).

Since sk → +∞,

γ ≤ lim inf
k→∞

ϕ(sk) ≤ lim inf
k→∞

sup‖v‖p+1
X ≤sp

k
F(v)−F(wk)

sk − ‖wk‖
p+1

p

X

≤ γ

2
,

which contradicts γ > 0.

Lemma 5.5 E = p
p+1Ψ + Φ is not bounded from below on X.

Proof Let `∞ and %∞ from the proof of Lemma 5.4, and let L∞ > 0 be
such that

rNωNL∞ − p

p + 1
‖w‖

p+1
p

X − (RN − rn)ωN`∞ > 0, (5.15)

where r and R are from the definition of the function w, see (5.3). By the
second part of (H1

∞) we deduce the existence of a sequence {s∞k } ⊂ R
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with limk→∞ |s∞k | = ∞ and

F (s∞k ) > L∞|s∞k |
p+1

p . (5.16)

Let w∞k = s∞k w ∈ X. We clearly have that

E(w∞k ) =
p

p + 1
‖w‖

p+1
p

X |s∞k |
p+1

p −F (s∞k )ωNrN−
∫

B(x0,R)\B(x0,r)

F (w∞k ).

For abbreviation, we choose the set D = B(x0, R) \ B(x0, r). Then, on
account of (5.13) we have
∫

D

F (w∞k ) =
∫

D∩{|w∞k (x)|>%∞}
F (w∞k ) +

∫

D∩{|w∞k (x)|≤%∞}
F (w∞k )

≥ −`∞

∫

D∩{|w∞k (x)|>%∞}
|w∞k |

p+1
p − (Rn − rN )ωN max

[−%∞,%∞]
|F |

≥ −(Rn − rN )ωN

(
`∞|s∞k |

p+1
p + max

[−%∞,%∞]
|F |

)
.

Consequently, due to (5.16) and the above estimation, we have

E(w∞k ) ≤ |s∞k |
p+1

p

(
p

p + 1
‖w‖

p+1
p

X − rNωNL∞ + (RN − rn)ωN `∞

)

+(RN − rn)ωN max
[−%∞,%∞]

|F |.

Since limk→∞ |s∞k | = ∞, due to (5.15), we have limk→∞E(w∞k ) = −∞;
consequently, infX E = −∞.

Proof of Theorem 5.2. In Theorem 1.16 we may choose λ = p
p+1 (see

Lemma 5.4). On account of Lemma 5.5 the alternative (B1) can be
excluded. Therefore, there exists a sequence {uk} ⊂ X of distinct critical
points of E = p

p+1Ψ + Φ such that

lim
k→∞

‖uk‖X = ∞. (5.17)

Thus, {(uk, vk)} = {(uk, (−∆uk)
1
p )} ⊂ X ×X is a sequence of distinct

pairs of solutions to the system (S̃).
We now prove the rest of (5.12). Assume that for every k ∈ N we have

‖vk‖∞ ≤ M for some M > 0. In particular, from the first equation of
system (S̃) we obtain that

‖uk‖
p+1

p

X =
∫

Ω

|∆uk|
p+1

p dx =
∫

Ω

|vk|p+1dx ≤ Mp+1m(Ω),

which contradicts relation (5.17). Consequently, limk→∞ ‖vk‖∞ = ∞.
But, this fact and (5.2) give at once that limk→∞ ‖vk‖X = ∞ as well.
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Assume finally that for every k ∈ N we have ‖uk‖∞ ≤ M ′ for some
M ′ > 0. The second equation of system (S̃) shows that

‖vk‖
p+1

p

X =
∫

Ω

|∆vk|
p+1

p dx =
∫

Ω

|f(uk)| p+1
p dx ≤ m(Ω) max

s∈[−M ′,M ′]
|f(s)| p+1

p ,

which contradicts the fact that limk→∞ ‖vk‖X = ∞. The proof is com-
plete.

5.3 Elliptic systems with mountain pass geometry

Similarly to the previous section, we consider again the system



−∆u = vp in Ω;
−∆v = f(u) in Ω;
u = v = 0 on ∂Ω,

(S̃)

where Ω is a smooth bounded domain in RN . Let f : R → R be a

continuous function and F (s) =
∫ s

0

f(t)dt. We assume that

(H1) there exist constants θ > 1 +
1
p

and s0 ≥ 0 such that

0 < θF (s) ≤ f(s)s for all |s| ≥ s0;

(H2) f(s) = o(s
1
p ) for s → 0.

Remark 5.3 Note that hypothesis (H1) is a sort of Ambrosetti-Rabi-
nowitz condition, see [7]. In particular, (H1) implies that at infinity, |f |
grows faster than s 7→ |s| 1p .

Let S = {u ∈ X : ‖u‖X = 1}. For any v ∈ S, we consider in λ ∈ R
the algebraic equation

|λ| p+1
p −

∫

Ω

f(λv)λvdx = 0. (5.18)

Remark 5.4 Let f(s) = sq with pq 6= 1. A direct calculation implies

that (5.18) has exactly two solutions λ±(v) = ±
(∫

Ω

|v|q+1

)t

, where

t =
(

1
p
− q

)−1

. Moreover, λ±(v) ∈ C1(S).

In view of this remark, for the general case, it is natural to assume that
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(HS) there are selections λ±(v) ∈ C1(S) among the solutions of (5.18).

The main result of this section reads as follows.

Theorem 5.3 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1),
(H2) and (HS). Then, system (S̃) possesses a nontrivial solution. If f

is odd, then (S̃) has infinitely many pairs of solutions.

To prove Theorem 5.3, we first show that (H1) and (H2) imply that
for every v ∈ S, equation (5.18) has at least two opposite sign solutions
λ−(v) < 0 < λ+(v) as we anticipated in Remark 5.4 for the particular
case f(s) = sq with pq 6= 1.

We associate with E a functional Ẽ defined on R×X by

Ẽ(λ, v) = E(λv) =
p

p + 1
|λ| p+1

p

∫

Ω

|∆v| p+1
p dx−

∫

Ω

F (λv)dx.

Clearly, the restriction of Ẽ to R× S, still denoted by Ẽ, becomes

Ẽ(λ, v) =
p

p + 1
|λ| p+1

p −
∫

Ω

F (λv)dx.

On account of Theorem 1.28, one can prove that if (λ, v) ∈ (R\{0})×S

is a conditionally critical point of the functional Ẽ on R × S then the
vector u = λv is a nonzero critical point of the functional E, that is,
E′(u) = 0. In particular, the conditionally critical point of the functional
Ẽ implies that Ẽ′

λ(λ, v) = 0, which takes the form

|λ| p+1
p −2λ−

∫

Ω

f(λv)vdx = 0

or equivalently, for λ 6= 0,

|λ| p+1
p −

∫

Ω

f(λv)λvdx = 0. (5.19)

Setting

ϕv(λ) = 1− |λ|− p+1
p

∫

Ω

f(λv)λvdx,

the following lemma holds.

Lemma 5.6 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1),
(H2). Then, for all v ∈ S

(i) lim
λ→0

ϕv(λ) = 1,
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(ii) lim
|λ|→+∞

ϕv(λ) = −∞.

Proof Fix v ∈ S arbitrarily.
(i) By relation (5.2), v is a nontrivial bounded continuous function.

Thus, there exists M > 0 such that |v(x)| ≤ M for all x ∈ Ω. Now,
by hypothesis (H2), for any ε > 0 there exists δ > 0 such that |s| ≤ δ

implies
|f(s)|
|s| 1p

< ε. Fixing λ small enough, |λ| < δ

M
, it follows that

|f(λv(x))| < ε|λv(x)| 1p for any x ∈ Ω,

hence

lim
λ→0

|λ|− p+1
p

∫

Ω

f(λv)λvdx = 0.

Consequently,

lim
λ→0

ϕv(λ) = 1− lim
λ→0

|λ|− p+1
p

∫

Ω

f(λv)λvdx = 1,

i.e., (i) holds.
(ii) One can write that

|λ|− p+1
p

∫

Ω

f(λv)λvdx = |λ|− p+1
p

{∫

Ω−λ

f(λv)λvdx +
∫

Ω+
λ

f(λv)λvdx

}
,

(5.20)
where Ω−λ = {x ∈ Ω : |λv(x)| < s0} and Ω+

λ = {x ∈ Ω : |λv(x)| ≥ s0},
s0 being the positive constant from (H1). Clearly, the boundedness of
f(λv)λv on Ω−λ implies that

lim
|λ|→+∞

|λ|− p+1
p

∫

Ω−λ

f(λv)λvdx = 0 (5.21)

while by (H1) it follows that

|λ|− p+1
p

∫

Ω+
λ

f(λv)λvdx ≥ θ|λ|− p+1
p

∫

Ω+
λ

F (λv)dx

≥ c1θ|λ|−
p+1

p

∫

Ω+
λ

|λv|θdx.

Denoted by λ∗ a real positive number such that Ω+
λ∗ 6= ∅. For |λ| ≥ λ∗
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it follows that Ω+
λ∗ ⊂ Ω+

λ . Thus, one can fix a positive constant c2 > 0
such that for |λ| ≥ λ∗ we have

|λ|− p+1
p

∫

Ω+
λ

f(λv)λvdx ≥ c1θ|λ|θ−
p+1

p

∫

Ω+
λ∗
|v|θdx ≥ c2|λ|θ−

p+1
p .

As θ >
p + 1

p
, we conclude that

lim
|λ|→+∞

|λ|− p+1
p

∫

Ω+
λ

f(λv)λvdx = +∞. (5.22)

Consequently,

lim
|λ|→+∞

ϕv(λ) = 1− lim
|λ|→+∞

|λ|− p+1
p

∫

Ω

f(λv)λvdx = −∞,

i.e., (ii) holds.

Lemma 5.6 implies that equation ϕv(λ) = 0 has at least two nontrivial
opposite sign solutions for any v ∈ S. By regularity assumption (HS)
there exist two selections λ±(v) which are of class C1 on S. Then, the
functional Ê± : S → R defined by Ê±(v) = Ẽ(λ±(v), v) is of class C1

and on account of (5.19), it becomes

Ê±(v) =
p

p + 1

∫

Ω

f(λ±(v)v)λ±(v)vdx−
∫

Ω

F (λ±(v)v)dx.

Proposition 5.1 Each critical point v ∈ S of Ê± provides a condition-
ally critical point (λ±(v), v) ∈ (R\{0})×S of Ẽ. In particular, for a min-
imum point v ∈ S of Ê± relative to S, the point (λ±(v), v) ∈ (R\{0})×S

is a conditionally critical point of Ẽ.

Proof First of all, we notice that ϕv(λ±(v)) = 0; therefore, Ẽ′
λ(λ±(v), v) =

0. On the other hand, by assumption, we have that

0 ∈ Ê′
±(v) + NS(v). (5.23)

Therefore, a simple calculation shows that −Ẽ′
v(λ±(v), v) ∈ NS(v). Con-

sequently, we have that

−Ẽ′(λ±(v), v) ∈ {0} ×NS(v) = N(R\{0})×S(λ±(v), v),

i.e., (λ±(v), v) ∈ (R \ {0}) × S is a conditionally critical point of the
functional Ẽ.
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Now, let v ∈ S be a relative minimum of Ê± to S. In particular, this
fact implies that

〈Ê′
±(v), w〉 = 0 for all w ∈ Tv(S). (5.24)

Here, 〈·, ·〉 denotes the duality pairing between X and X∗. Note that
relation (5.24) is nothing but relation (5.23), see Appendix A.

In view of Theorem 1.28 and Proposition 5.1, it is enough to find
critical points of Ê± on S. In the sequel, we deal only with the functional
Ê+; analogously, it is possible to consider the functional Ê−.

Due to (H1), the functional Ê+ is bounded from below. Indeed, if
Ω+

λ+
and Ω−λ+

are defined as in Lemma 5.6, by (H1), there exists a real
constant M such that

Ê+(v) =
∫

Ω

(
p

p + 1
f(λ+(v)v)λ+(v)v − F (λ+(v)v)

)
dx

=
∫

Ω−λ+

(
p

p + 1
f(λ+(v)v)λ+(v)v − F (λ+(v)v)

)
dx

+
∫

Ω+
λ+

(
p

p + 1
f(λ+(v)v)λ+(v)v − F (λ+(v)v)

)
dx

≥ M +
(

p

p + 1
θ − 1

) ∫

Ω+
λ+

F (λ+(v)v)dx ≥ M.

Lemma 5.7 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1), (H2)
and (HS). If {vk} ⊂ S is such that the sequence {Ê+(vk)} is bounded
from above, then the sequence {λ+(vk)} is contained in a compact inter-
val [c, C] for some c, C > 0.

Proof Let {vk} ⊂ S be such that {Ê+(vk)} is bounded from above. By
(5.2), up to subsequence,

vk ⇀ v weakly in X and uniformly in Ω. (5.25)

For simplicity, denote by {λk} the sequence {λ+(vk)}.
We first assume by contradiction that, up to subsequence, λk → 0.

By (5.25), λkvk → 0 uniformly in Ω. Arguing as in the proof of (i) of
Lemma 5.6, by (H2) it follows that

lim
k→∞

λ
− p+1

p

k

∫

Ω

f(λkvk)λkvkdx = 0,
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hence, by (5.19) we easily obtain the contradiction, i.e., there exists
c > 0 such that λk ≥ c for every k ∈ N.

Now, we assume by contradiction, passing to a subsequence if neces-
sarily, that λk → +∞ . We introduce the sets

Ω−k = {x ∈ Ω : |λkvk(x)| < s0} and Ω+
k = {x ∈ Ω : |λkvk(x)| ≥ s0}.

By (5.19), for any k ∈ N, we have that

λ
− p+1

p

k

∫

Ω−k

f(λkvk)λkvkdx + λ
− p+1

p

k

∫

Ω+
k

f(λkvk)λkvkdx = 1. (5.26)

Since the sequence {λkvk} is uniformly bounded on the set Ω−k , we have

lim
k→∞

λ
− p+1

p

k

∫

Ω−k

f(λkvk)λkvkdx = 0 (5.27)

and {∫

Ω−k

F (λkvk)dx

}
is bounded. (5.28)

In particular, by (5.26) and (5.27) it follows that

lim
k→∞

λ
− p+1

p

k

∫

Ω+
k

f(λkvk)λkvkdx = 1.

Due to (H1), we have
∫

Ω+
k

f(λkvk)λkvkdx ≥ θ

∫

Ω+
k

F (λkvk)dx.

Consequently, passing to a subsequence if necessarily, we have that

lim
k→∞

λ
− p+1

p

k

∫

Ω+
k

F (λkvk)dx = l, 0 ≤ l ≤ 1
θ
. (5.29)

On the other hand, we may observe that

Ê+(vk) = λ
p+1

p

k

(
p

p + 1
− λ

− p+1
p

k

∫

Ω+
k

F (λkvk)dx

)
−

∫

Ω−λk

F (λkvk)dx.

Therefore, by θ >
p + 1

p
, (5.28) and (5.29) we obtain that lim

k→∞
Ê+(vk) =

+∞ which contradicts the boundedness of the sequence {Ê+(vk)}.

Proposition 5.2 Assume that (5̃.1) holds and f ∈ C(R,R) fulfills (H1),
(H2) and (HS). Then Ê± attains its infimum on S.
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Proof We prove the statement only for Ê+; in a similar way, we can
prove that also the functional Ê− attains its infimum on S.

Let {vk} ⊂ S be a sequence such that Ê+(vk) → m+ = infS Ê+.

There exists v+ ∈ X \ {0} with the property ‖v+‖X ≤ 1 such that, up
to a subsequence, (5.25) holds. Due to Lemma 5.7 the corresponding
sequence {λ+(vk)} converges, up to subsequence, to a real number λ+ >

0. By using (5.25) and passing to the limit in (5.19), the pair (λ+, v+)
still solves (5.19). Thus, λ+ = λ+(v+) with v+ 6= 0. In conclusion, we
have that λ+(vk) → λ+(v+). Moreover, by (5.25), we conclude that

Ê+(vk) → Ê+(v+) = m+.

It remains to prove that ‖v+‖X = 1. To see this, we argue by contradic-
tion, i.e., we assume that ‖v+‖X < 1. For any t > 0, by using relation
(5.19), we deduce that

d

dt
Ê+(tv+) =

d

dt

[
p

p + 1
(λ+(tv+))

p+1
p −

∫

Ω

F (λ+(tv+)tv+)dx

]

=
[
(λ+(tv+))

1
p −

∫

Ω

f(λ+(tv+)tv+)tv+dx

]

× d

dt
λ+(tv+)v+ −

∫

Ω

f(λ+(tv+)tv+)λ+(tv+)v+dx

= −1
t
(λ+(tv+))

p+1
p < 0.

Therefore, the function t 7→ Ê+(tv+) is decreasing with respect to t,
t > 0. Now, let t0 > 1 such that t0‖v+‖X = 1. Then t0v+ ∈ S, but
Ê+(t0v+) < Ê+(v+) = m+ = infS Ê+, contradiction.

Proof of Theorem 5.3. On account of Propositions 5.1, 5.2 and Theo-
rem 1.28, we conclude that u+ = λ+(v+)v+ and u− = λ−(v−)v− are two
nontrivial critical points of E, thus, they correspond to two nontrivial
pairs of solutions of system (S̃). Note that these pairs of solutions may
coincide.

If f is odd, we necessarily have λ+(v+) = −λ−(v−) and Ê := Ê+ =
Ê−. Moreover, v+ = v−; consequently, u+ and u− = −u+ provide
two opposite sign pairs of solutions to system (S̃). Moreover, Ê is even,
bounded from below, of class C1 and it satisfies the (PS)-condition on
S. Then, applying Theorem 1.10 with M = S, together with Example
C.2, we conclude that Ê has infinitely many critical points {vk} ⊂ S

with limk→∞ Ê(vk) = supS Ê = +∞. On account of the first part of
Proposition 5.1, there exists a sequence of different conditionally critical
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points of Ẽ. In view of Theorem 1.28, E has a sequence of geometrically
different critical points ±u1,±u2, . . . ,±uk, . . . with uk(x) = λ(vk)vk

such that E(uk) → +∞. This concludes the proof.

5.4 Comments and perspectives

1. We assume (5̃.1) holds and consider the perturbed system



−∆u = vp in Ω;
−∆v = f(u) + εg(u) in Ω;
u = v = 0 on ∂Ω,

(S̃ε)

where g : R → R is any continuous function with g(0) = 0. We predict
that for every n ∈ N there exists εn > 0 such that for every ε ∈ [−εn, εn],
system (S̃ε) has at least n distinct pairs of solutions whenever f : R→ R
verifies the set of assumptions from Theorems 5.1 or 5.2. This statement
is not unexpected taking into account the recent papers of Anello and
Cordaro [12] and Kristály [168] where a prescribed number of solutions
were guaranteed for certain elliptic problems of scalar type whenever
the parameter in the front of the perturbation is small enough. In both
papers (i.e., [12] and [168]) the uniform Lipschitz truncation function
ha : R→ R (a > 0), ha(s) = min(a,max(s, 0)) plays a key role, fulfilling
as well the so-called Markovian property concerning the superposition
operators: for any u ∈ W 1,r

0 (Ω) one also has ha ◦ u ∈ W 1,r
0 (Ω), where

r > 1. Note however that a similar property is not available any longer
replacing the space W 1,r

0 (Ω) by a higher order Sobolev space W 2,r(Ω);
in particular, the Markovian property is not valid for X = W 2, p+1

p (Ω)∩
W

1, p+1
p

0 (Ω).
2. Based on (5̃.1), the embedding X ⊂⊂ C(Ω) is essential in our

investigations, see the proof of Lemmas 5.2 and 5.4. Is it possible to
obtain similar conclusions as in Theorems 5.1 and 5.2 by omitting (5̃.1)
and considering the whole region below the critical hyperbola?



6

Scalar Field Equations with Oscillatory
Terms

The mathematics are
distinguished by a particular
privilege, that is, in the course
of ages, they may always
advance and can never recede.

Edward Gibbon (1737–1794),
Decline and Fall of the Roman

Empire

In this chapter we study the existence of multiple solutions for two
classes of quasilinear problems: a double eigenvalue problem for a scalar
field equation and a scalar field system with generalized boundary con-
ditions. The nonlinear boundary conditions studied here recover the
standard Dirichlet, Neumann, or periodic boundary conditions.

6.1 Introduction

Let hp : Rn → Rn be the homeomorphism defined by hp(x) = |x|p−2x

for all x ∈ RN , where p > 1 is fixed. Let | · | denote the Euclidean norm
in RN . For T > 0, let F : [0, T ]×RN → R be a Carathéodory mapping
satisfying:

(F1) for a.e. t ∈ [0, T ], the function F (t, ·) is continuously differentiable;
(F2) the mapping F (·, x) : [0, T ] → R is measurable for each x ∈ Rn,
F (·, 0) ∈ L1(0, T ), and for each M > 0 there exists αM ∈ L1(0, T ) such
that for all x ∈ Rn with |x| < M ,

|∇F (t, x)| ≤ αM (t) for a.e. t ∈ [0, T ];

Let j : Rn × Rn →] − ∞,+∞] be a function having the following
properties:

171
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(J1) D(j) = {(x, y) ∈ Rn × Rn : j(x, y) < +∞} 6= ∅ is a closed convex
cone with D(j) 6= {(0, 0)};
(J2) j is a convex and lower semi-continuous (shortly, l.s.c.) function.

The first problem studied in this chapter is the following.
Let γ > 0 be arbitrary. For λ, µ > 0 we consider the following double

eigenvalue problem involving the p-Laplace operator:

(Pλ,µ)




−[hp(u′)]′ + γhp(u) = λ∇F (t, u) a.e. t ∈ [0, T ],

(
hp(u′)(0),−hp(u′)(T )

)
∈ µ∂j(u(0), u(T )),

where u : [0, T ] → Rn is of class C1 and hp(u′) is absolutely continuous.
Note, that ∇F (t, η) denotes the gradient of F (t, ·) at η ∈ Rn, while ∂j

denotes the subdifferential of j in the sense of convex analysis.
Next, we assume that:

(C1) F : Rn → R is of class C1,
(C2) S ⊂ Rn × Rn is a closed convex set wit {(x, x) : x ∈ Rn} ⊂ S,

(C3) γ1, . . . , γn ∈ L∞(]0, T [,R) are so that essinf γi > 0, for i = 1, n

and put γ = (γ1, . . . , γn),
(C4) α ∈ L1(]0, T [,R) is so that α(t) ≥ 0 a.e. in ]0, T [.

The second problem studied in this chapter is the following:

(S)




−[hp(u′)]′ + γ ◦ hp(u) = α(t)∇F (u)

(hp(u′)(0),−hp(u′)(T )) ∈ NS(u(0), u(T )),

where NS(x, y) denotes the normal cone of S at (x, y) ∈ S.

6.2 Multiple solutions of a double eigenvalue problem

In this section we prove a multiplicity result for the problem (Pλ,µ). For
this purpose we suppose that the following conditions are fulfilled:

(F3) lim
|x|→∞

F (t, x)− F (t, 0)
|x|p ≤ 0 uniformly for a.e. t ∈ [0, T ].

(F4) lim
|x|→0

F (t, x)− F (t, 0)
|x|p ≤ 0 uniformly for a.e. t ∈ [0, T ];

(F5) there exists s0 ∈ RN such that

T∫

0

(
F (t, s0)− F (t, 0)

)
dt > 0.
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(J3) j(0, 0) = 0, j(x, y) ≥ 0 for all (x, y) ∈ Rn × Rn.

We consider the Sobolev space W 1,p = W 1,p(0, T ;Rn) equipped with
the norm

‖u‖η =
(
‖u′‖p

Lp + η‖u‖p
Lp

)1/p

,

where η > 0, and denote by ‖ · ‖Lp the norm of Lp = Lp(0, T ;Rn), that
is,

‖u‖Lp =




T∫

0

|u(t)|pdt




1/p

.

We consider the space of continuous functions C = C([0, T ];Rn) en-
dowed with the norm

‖u‖C = max{|u(t)| : t ∈ [0, T ]}.
For γ > 0, we consider ϕγ : W 1,p → R defined by

ϕγ(u) :=
1
p

(
‖u′‖p

Lp + γ‖u‖p
Lp

)
for all u ∈ W 1,p.

Note that ϕγ is convex, ϕγ ∈ C1(W 1,p;R) and for all u, v ∈ W 1,p,

〈ϕ′γ(u), v〉 =

T∫

0

(hp(u′), v′)dt + γ

T∫

0

(hp(u), v)dt , (6.1)

where (·, ·) denotes the usual inner product in Rn.
We define the function J : W 1,p →]−∞, +∞] by

J(u) = j(u(0), u(T )) for all u ∈ W 1,p.

Then J is a proper, convex and l.s.c. function. We also observe that

D(J) = {u ∈ W 1,p : (u(0), u(T )) ∈ D(j)}.
We consider the functional F̂ : C → R defined by

F̂(v) = −
T∫

0

F (t, v)dt +

T∫

0

F (t, 0)dt for all v ∈ C

and F : W 1,p → R defined by F = F̂
∣∣∣
W 1,p

. The functional F is sequen-

tially weakly continuous, since the embedding W 1,p ↪→ C is compact.
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We also have for all u, v ∈ W 1,p,

〈F ′(u), v〉 = −
T∫

0

(∇F (t, u), v)dt . (6.2)

Note that for 1 ≤ r < p and p < q < p∗ the embeddings Lp ↪→
Lr,W 1,p ↪→ Lq, W 1,p ↪→ C are continuous, hence there exist constants
Cr,p, Ĉq,p, ĉ > 0 such that

‖u‖Lr ≤ Cr,p‖u‖Lp , ‖u‖Lq ≤ Ĉq,p‖u‖W 1,p , ‖u‖C ≤ ĉ‖u‖W 1,p

for all u ∈ W 1,p.
The energy functional I : [0,∞)×[0,∞)×W 1,p →]−∞,∞] associated

to the problem (Pλ,µ) is defined by

I(λ, µ, u) = ϕγ(u) + λF(u) + µJ(u).

The functional I is of Szulkin type and J ′ denote the derivative in the
sense of Definition A.4.

The following result is due to Jebelean and Moroşanu [148], Proposi-
tion 3.2.

Proposition 6.1 Assume that F : [0, T ] × Rn → R satisfies (F1) and
(F2) and j : Rn ×Rn →]−∞, +∞] satisfies (J1) and (J2). If u ∈ W 1,p

is a critical point of I(λ, µ, ·), then u is a solution of (Pλ,µ).

Proof Assume that u ∈ W 1,p is a critical point of I(λ, µ, ·). Then, for
all v ∈ W 1,p,

λ〈F ′(u), v − u〉+ ϕγ(v)− ϕγ(u) + µ
(
J(v)− J(u)

)
≥ 0 .

Let w ∈ W 1,p and set v = u + sw, where s > 0. Dividing by s and then
letting s → 0+, we obtain for all w ∈ W 1,p,

λ〈F ′(u), w〉+ 〈ϕ′γ(u), w〉+ µJ ′(u;w) ≥ 0 ,

where J ′(u;w) means the derivative in the sense of Definition A.4.
By the definition of J we deduce that for every w ∈ W 1,p,

λ〈F ′(u), w〉+ 〈ϕ′γ(u), w〉+ µj′((u(0), u(T )); (w(0), w(T ))) ≥ 0 . (6.3)

Since C∞0 (0, T ;Rn) ⊂ W 1,p, it follows that for all w ∈ C∞0 (0, T ;Rn),

λ〈F ′(u), w〉+ 〈ϕ′γ(u), w〉 = 0 .
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Combining relations (6.1) and (6.2) we have for all w ∈ C∞0 (0, T ;Rn),

T∫

0

(hp(u′), w′)dt =

T∫

0

(−γhp(u) +∇F (t, u), w)dt . (6.4)

For any u ∈ W 1,p, we obtain

hp(u), hp(u′) ∈ Lp′(0, T ;Rn) with
1
p

+
1
p′

= 1. (6.5)

But ∇F (·, u) ∈ L1(0, T ) (by (F2)), hence relations (6.4) and (6.5) yield
hp(u′) ∈ W 1,1 and

−
(
hp(u′)

)′
= −γhp(u) +∇F (t, u) for a.e. t ∈ [0, T ]. (6.6)

Since hp is a homeomorphism and hp(u′) ∈ W 1,1, it follows that u is of
class C1.

In order to show that u satisfies the boundary condition of problem
(Pλ,µ) we note that by (6.3) and (6.6) we have for all w ∈ W 1,p,

µj′((u(0), u(T )); (w(0), w(T ))) ≥ (hp(u′)(0), w(0))− (hp(u′)(T ), w(T )) .

Therefore

µj′((u(0), u(T )); (x, y)) ≥ (hp(u′)(0), w(0))− (hp(u′)(T ), w(T )) .

From Lemma A.2 it follows that
(
hp(u′)(0),−hp(u′)(T )

)
∈ µ∂j(u(0), u(T )).

We conclude that u is a solution of problem (Pλ,µ).

We introduce the constant η1 = η1(p, γ) > 0 by setting

η1 = inf
{‖u′‖p

Lp + γ‖u‖p
Lp

‖u‖p
Lp

: u ∈ W 1,p \ {0}, u ∈ D(J)
}

.

Since η1 > 0, we obtain

2−1/p‖u‖η1 ≤ (‖u′‖p
Lp + γ‖u‖p

Lp)1/p ≤ ‖u‖η1 for all u ∈ D(J). (6.7)

Lemma 6.1 [148, Lemma 4.3] Assume that {un} ⊂ D(J) such that
un ⇀ u weakly in W 1,p and

lim inf
n→∞

(
〈ϕ′γ(un), u− un〉+ µJ ′(un; u− un)

)
≥ 0 . (6.8)

Then {un} has a subsequence which converges strongly in W 1,p.
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Proof Note that u ∈ D(J), since the closed convex set D(J) is weakly
closed in (W 1,p, ‖ · ‖η1). Hence, J ′(un; u − un) < ∞ for all n ∈ N.
Combining relation (6.8) and the lower semi-continuity of J , we have

lim sup
n→∞

〈ϕ′γ(un), un − u〉 ≤
− lim inf

n→∞

(
〈ϕ′γ(un), u− un〉+ µJ ′(un; u− un)

)

+µ lim sup
n→∞

J ′(un; u− un)

≤ µ lim sup
n→∞

(J(u)− J(un)) = µ(J(u)− lim inf
n→∞

J(un)) ≤ 0.

Hence,

lim sup
n→∞

〈ϕ′γ(un), un − u〉 ≤ 0. (6.9)

From the expression (6.1) of ϕ′γ we have

〈ϕ′η1
(un), un − u〉 = 〈ϕ′γ(un), un − u〉

+(η1 − γ)

T∫

0

(hp(un), un − u)dt .
(6.10)

Taking into account that un ⇀ u weakly in W 1,p and that the embedding
W 1,p ↪→ C is compact, we obtain for a subsequence of {un} (denoted
again by {un}) that

lim
n→∞

T∫

0

(hp(un), un − u)dt = 0. (6.11)

Then, by relations (6.9), (6.10) and (6.11) we have

lim sup
n→∞

〈ϕ′η1
(un), un − u〉 ≤ 0. (6.12)

On the other hand, for each positive integer n,

0 ≤ (‖un‖p−1
η1

− ‖u‖p−1
η1

)(‖un‖η1 − ‖u‖η1). (6.13)

Using Hölder’s inequality, we obtain

(‖un‖p−1
η1

− ‖u‖p−1
η1

)(‖un‖η1 − ‖u‖η1) ≤ 〈ϕ′η1
(un)− ϕ′η1

(u), un − u〉.
Thus, by relation (6.13) we deduce that

lim
n→∞

‖un‖η1 = ‖u‖η1 .

Since (W 1,p, ‖ · ‖η1) is uniformly convex, it follows that {un} converges
strongly to u.
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Remark 6.1 Let ε > 0 be arbitrary. From (F1), (F2) and (F3) it follows
that there exists δ1 > 0 (depending on ε) such that

F (t, x)− F (t, 0) ≤ ε|x|p + αδ1(t)δ1 for all x ∈ Rn, a.e. t ∈ [0, T ].

Then

F(u) ≥ −ε‖u‖p
Lp − δ1‖αδ1‖L1(0,T ) for all u ∈ W 1,p. (6.14)

Proposition 6.2 Assume that F : [0, T ]× Rn → R satisfies (F1), (F2)
and (F3) and that j : Rn × Rn →] − ∞, +∞] satisfies (J1) and (J2).
Then the following properties hold:

(1) I(λ, µ, ·) is weakly sequentially lower semi-continuous on W 1,p

for each λ > 0, µ ≥ 0;
(2) lim

‖u‖η1→+∞
I(λ, µ, u) = +∞ for each λ > 0, µ ≥ 0;

(3) E(λ, µ, ·) satisfies the (PS) condition for each λ, µ > 0.

Proof (1) The function I(λ, µ, ·) is weakly sequentially l.s.c on W 1,p,
because F is weakly sequentially l.s.c., while ϕγ and J are convex and
l.s.c., hence they are also weakly sequentially l.s.c.

(2) We first observe that

‖u‖p
Lp ≤ 1

η1
‖u‖p

η1
for all u ∈ W 1,p.

In (6.14) we choose ε < η1
2λp . Since the embedding Lp ↪→ L1 is continuous

and (6.7) holds, we have for all u ∈ D(J),

I(λ, µ, u) ≥ 1
p

(
‖u′‖p

Lp + γ‖u‖p
Lp

)
− λε‖u‖p

Lp

− λδ1‖αδ1‖L1(0,T ) + µJ(u)

≥ η1 − 2ελp

2η1p
‖u‖p

η1
− λδ1‖αδ1‖L1(0,T ) + µJ(u).

Since J is convex and l.s.c., it is bounded from below by an affine func-
tional and then there exist constants c1, c2, c3 > 0 such that for all
u ∈ D(J),

I(λ, µ, u) ≥ η1 − 2ελp

2η1p
‖u‖p

η1
− λδ1‖αδ1‖L1(0,T ) − c1|u(0)| − c2|u(T )| − c3.

By the continuity of the embedding W 1,p ↪→ C we have for all u ∈ W 1,p,

I(λ, µ, u) ≥ c4‖u‖p
η1
− c5‖u‖η1 − c6,



178 Scalar Field Equations with Oscillatory Terms

where c4, c5, c6 are positive constants. Since p > 1, it follows that
I(λ, µ, u) → +∞ as ‖u‖η1 → +∞.

(3) Let {un} in W 1,p be a sequence satisfying I(λ, µ, un) → c. Then,
for all v ∈ W 1,p,

λ〈F ′(un), v−un〉+ϕγ(v)−ϕγ(un)+µJ(v)−µJ(un) ≥ −εn‖v−un‖η1 ,

where {εn} ⊂ [0,∞) with εn → 0. We have a subsequence {un} ⊂ D(J)
(we just eliminate the finite number of elements of the sequence which
do not belong to D(J)), since µ > 0 and I(λ, µ, un) → c.

But I(λ, µ, ·) is coercive, hence {un} is bounded in W 1,p. The em-
bedding W 1,p ↪→ C is compact, then we can find a subsequence, still
denoted by {un}, which is weakly convergent to a point u ∈ W 1,p and
strongly in C.

In the above inequality we take v = un + s(u− un), with s > 0, then
divide both sides of the inequality by s and let s ↘ 0. So, for all positive
integer n

λ〈F ′(un), u−un〉+ 〈ϕ′γ(un), u−un〉+µJ ′(un; u−un) ≥ −εn‖u−un‖η1 .

By the upper semi-continuity of F ′, it follows that

lim inf
n→∞

(
〈ϕ′γ(un), u− un〉+ µJ ′(un; u− un)

)
≥ 0.

By Lemma 6.1 we deduce that {un} has a subsequence that converges
strongly to u ∈ W 1,p.

Remark 6.2 From (F1), (F2), (F3) and (F4) it follows that for each
ε > 0 there exist δε, δ̄ε > 0 such that

F (t, x)− F (t, 0) ≤ ε|x|p +
αδε(t)
δ̄r−1
ε

|x|r for all x ∈ Rn, a.e. t ∈ [0, T ],

where r ≥ 1. Then, by using the continuity of the embedding W 1,p ↪→ C,
we obtain

F(u) ≥ −ε‖u‖p
Lp − ĉr‖αδε‖L1(0,T )

δ̄r−1
ε

‖u‖r
γ for all u ∈ W 1,p. (6.15)

Remark 6.3 If F : [0, T ] × Rn → R satisfies (F1) and (F4), then 0 =
∇F (t, 0) for a.e. t ∈ [0, T ].

The main result of this section is the following.
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Theorem 6.1 Let F : [0, T ]×Rn → R be a function satisfying (F1)−(F5)
and let j : Rn × Rn →] −∞, +∞] be a function satisfying (J1) − (J3).
Then for each fixed µ > 0, there exists an open interval Λµ ⊂]0,+∞[
such that for each λ ∈ Λµ, the problem (Pλ,µ) has at least two nontrivial
solutions.

Proof Let µ > 0 be fixed. We define the function g :]0,+∞[→ R by

g(t) = sup {−F(u) : ϕγ(u) + µJ(u) ≤ t } , for all t > 0.

Using (6.15) for r ∈]p, p∗[ it follows that for all u ∈ W 1,p we have

−F(u) ≤ ε

γ
‖u‖p

γ +
ĉr‖αδε‖L1(0,T )

δ̄r−1
ε

‖u‖r
γ .

Since p < r, we have

lim
t→0+

g(t)
t

= 0.

Using (F5) we define u0(t) = s0 for a.e. t ∈ [0, T ]. Then u0 ∈ W 1,p \ {0}
and −F(u0) > 0. Due to the convergence relation above, it is possible
to choose a real number t0 such that 0 < t0 < ϕγ(u0) + µJ(u0) and

g(t0)
t0

< [ϕγ(u0) + µJ(u0)]
−1 · (−F(u0)).

We choose ρ0 > 0 such that

g(t0) < ρ0 < [ϕγ(u0) + µJ(u0)]
−1 · (−F(u0))t0. (6.16)

We apply Theorem 1.22 to the space W 1,p, the interval Λ =]0,+∞[
and the functions E1, E2 : W 1,p → R, h : Λ → R defined by

E1(u) = ϕγ(u), ζ1(u) = µJ(u), I2(u) = E2(u) = F(u), h(λ) = ρ0λ.

By Proposition 6.2, the assumptions (i) and (ii) of Theorem 1.22 are
fulfilled.

We prove now the minimax inequality

sup
λ∈Λ

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)
<

inf
u∈W 1,p

sup
λ∈Λ

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)
.

The function

λ 7→ inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)
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is upper semi-continuous on Λ. Since

inf
u∈W 1,p

(
ϕγ(u)+µJ(u)+λF(u)+ρ0λ

)
≤ ϕγ(u0)+µJ(u0)+λF(u0)+ρ0λ

and ρ0 < −F(u0), it follows that

lim
λ→+∞

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)
= −∞.

Thus we can find λ ∈ Λ such that

β1 := sup
λ∈Λ

inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)

= inf
u∈W 1,p

(
ϕγ(u) + µJ(u) + λF(u) + ρ0λ

)
.

In order to prove that β1 < t0, we distinguish two cases:

I. If 0 ≤ λ < t0
ρ0

, we have

β1 ≤ ϕγ(0) + µJ(0) + λF(0) + ρ0λ = λρ0 < t0.

II. If λ ≥ t0
ρ0

, then we use ρ0 < −F(u0) and the inequality (6.16) to
get

η1 ≤ ϕγ(u0) + µJ(u0) + λF(u0) + ρ0λ

≤ ϕγ(u0) + µJ(u0) +
t0
ρ0

(ρ0 + F(u0)) < t0 .

From g(t0) < ρ0 it follows that for all u ∈ W 1,p with ϕγ(u)+µJ(u) ≤ t0
we have −F(u) < ρ0. Hence

t0 ≤ inf {ϕG(u) + µJ(u) : −F(u) ≥ ρ0} .

On the other hand,

β2 = inf
u∈W 1,p

sup
λ∈Λ

(ϕG(u) + µJ(u) + λF(u) + ρ0λ)

= inf {ϕG(u) + µJ(u) : −F(u) ≥ ρ0} .

We conclude that

β1 < t0 ≤ β2.

Hence, assumption (iii) from Theorem 1.22 holds. Thus, there exists
an open interval Λµ ⊆]0,∞) such that for each λ ∈ Λµ the function
ϕG + µJ + λF has at least three critical points in W 1,p. By Proposition
6.1 it follows that these critical points are solutions of (Pλ,µ). Since
∇F (t, 0) = 0 for a.e. t ∈ [0, T ], we get that at least two of the above
solutions are nontrivial.
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Remark 6.4 The two conditions from (J3) can be replaced by
(J ′3) j(x, y) ≥ j(0, 0) for all (x, y) ∈ Rn × Rn.

Then all the proofs above can be adapted by considering

J(u) = j(u(0), u(T ))− j(0, 0).

Corollary 6.1 Let F : [0, T ]× Rn → R be a function satisfying (F1)−
(F5) and let b : Rn × Rn → R be a positive, convex and Gâteaux dif-
ferentiable function with b(0, 0) = 0. Assume that S ⊂ Rn × Rn is a
nonempty closed convex cone with S 6= {(0, 0)}, whose normal cone we
denote by NS. Then, for each fixed γ, µ > 0, there exists an open interval
Λ0 ⊂]0, +∞[ such that for each λ ∈ Λ0, the following problem
(P̂λ,µ)



−[hp(u′)]′ + γhp(u) = λ∂̄F (t, u) a.e. t ∈ [0, T ],

(u(0), u(T )) ∈ S,

(
hp(u′)(0),−hp(u′)(T )

)
∈ µ∇b(u(0), u(T )) + µNS(u(0), u(T )),

has at least two nontrivial solutions.

Proof The statement follows by applying Theorem 6.1 to the function
F and the convex function j : Rn × Rn →]−∞, +∞] defined by

j(x, y) = b(x, y) + IS(x, y), for all (x, y) ∈ Rn × Rn,

where

IS(x, y) =





0, if (x, y) ∈ S

+∞, if (x, y) ∈ Rn × Rn \ S,

is the indicator function of the cone S.
Note, that in this case D(j) = S and j satisfies the conditions (J1)−

(J3). Moreover,

∂j(x, y) = ∇b(x, y) + ∂IS(x, y) = ∇b(x, y) + NS(x, y) for all (x, y) ∈ S.

Example 6.1 Various possible choices of b and S from Corollary 6.1
recover some classical boundary conditions. For instance:

(a) b = 0 and S = {(x, x) : x ∈ Rn} we get periodic boundary
conditions u(0) = u(T ), u′(0) = u′(T );
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(b) b = 0 and S = Rn × Rn we get Neumann type boundary condi-
tions u′(0) = u′(T ) = 0;

(c) b(z) = 1
2 (Az, z)R2N , z ∈ R2N , where A is a symmetric, positive

2N × 2N real valued matrix, and S = Rn × Rn; we get the
following mixed boundary conditions

(
hp(u′)(0)

−hp(u′)(T )

)
= A

(
u(0)
u(T )

)
.

For these choices of F , b and S it follows by Corollary 6.1 that for
each fixed γ, µ > 0, there exists an open interval Λ0 ⊂]0, +∞[ such that
for each λ ∈ Λ0 the problem (P̂λ,µ) has at least two nontrivial solutions.

6.3 Scalar field systems with nonlinear oscillatory terms

To formulate the second problem we assume that:
(C1) F : Rn → R is of class C1,
(C2) S ⊂ Rn × Rn is a closed convex set wit {(x, x) : x ∈ Rn} ⊂ S,

(C3) γ1, . . . , γn ∈ L∞(]0, T [,R) are so that essinf γi > 0, for all i =
1, . . . , n and put γ = (γ1, . . . , γn),
(C4) α ∈ L1(]0, T [,R) is so that α(t) ≥ 0 a.e. in ]0, T [.

We study the existence and multiplicity of the solutions of the system:

(S)




−[hp(u′)]′ + γ ◦ hp(u) = α(t)∇F (u)

(hp(u′)(0),−hp(u′)(T )) ∈ NS(u(0), u(T )),

where NS(x, y) denotes the normal cone of S at (x, y) ∈ S.
The first step in the study of (S) is to establish the corresponding

energy function. For this some preparation is needed:

• For every i ∈ {1, . . . , n} denote by Xi the Sobolev space W 1,p( ]0, T [ ,R)
equipped with the norm || · ||i, where

||f ||i =

(∫ T

0

γi(t)|f(t)|pdt +
∫ T

0

|f ′(t)|pdt

) 1
p

.

Since essinfγi > 0 it follows that || · ||i is equivalent to the usual norm
on W 1,p( ]0, T [ ,R).
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• X is the Sobolev space W 1,p( ]0, T [ ,Rn) equipped with the usual norm

||u|| =
(∫ T

0

|u(t)|pdt +
∫ T

0

|u′(t)|pdt

)1/p

.

We observe that X is isomorphic to W 1,p( ]0, T [ ,R)n.
• Let Y be the real Banach space C([0, T ],Rn) endowed with the supre-

mum norm || · ||s. For simplicity we will denote the supremum norm
on every space C([0, T ],Rm), m ∈ N, with the same symbol || · ||s.

• Put

Σ := {u ∈ X | (u(0), u(T )) ∈ S}.
Note that Σ is a closed convex subset of X containing the constant
functions.

• Define E1 : Y → R by

E1(u) =
∫ T

0

α(t)F (u(t))dt, for every u ∈ Y,

E2 : X → R by

E2(u) =
1
p
(||u1||p1 + · · ·+ ||un||pn), for every u ∈ X,

and ζ1 : X → ]−∞, +∞] by

ζ1(u) =





0, u ∈ Σ

+∞, u /∈ Σ.

The notations used above are inspired from Theorem 1.23.

Lemma 6.2 The following assertions hold:

(a) The above defined maps E1 : X → R and E2 : X → R are of class

C1 and 〈E′
1(u); v〉 =

∫ T

0

α(t)f(u(t))v(t)dt, for every u, v ∈ X.

(b) The map ζ1 : X → ]−∞, +∞] is convex, proper, and lower semi-
continuous.

Define now I1 : X → ]−∞, +∞] and I2 : X → R by

I1(u) = E1(u) + ζ1(u), I2(u) = E2(u) for every u ∈ X. (6.17)

The energy functional associated to the system (S) is given by I1 + I2 :
X → ]−∞,+∞] is given by I1 + I2 = (E1 + E2) + ζ1.
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Our aim is to apply Theorem 1.23 to the maps I1 and I2 defined in
(6.17). Indeed,

– X, Y are real Banach spaces, X is reflexive, and X is compactly em-
bedded in Y .

– E1 : Y → R, E2 : X → R are locally Lipschitz, and ζ1 is convex,
proper, and lower semi-continuous (according to Lemma 6.2).

– Ψ = E2 : X → R is weakly sequentially lower semi-continuous (being
convex and continuous) and coercive.

– Since infX Ψ = 0 and since Σ contains the constant functions, condi-
tion (1.36) is satisfied.

Furthermore we have to introduce some suitable subsets of Rn. For
this note that, since Xi is embedded in C([0, T ],R), there exist ci > 0,
i = 1, n, such that

||f ||s ≤ ci||f ||i, for every f ∈ Xi. (6.18)

For every r > 0, let

A(r) :=

{
x ∈ Rn :

1
p

n∑

i=1

1
cp
i

|xi|p ≤ r

}

B(r) :=

{
x ∈ Rn :

1
p

n∑

i=1

|xi|p
∫ T

0

γi(t)dt ≤ r

}
.

(6.19)

Remark 6.5 1) For every r > 0 the inclusion B(r) ⊆ A(r) holds. To
see this, we observe that relation (6.18) implies

1 ≤ ci

(∫ T

0

γi(t)dt

)1/p

, for i = 1, n.

Pick now an arbitrary x ∈ B(r). Then

1
p

n∑

i=1

1
cp
i

|xi|p ≤ 1
p

n∑

i=1

|xi|p
∫ T

0

γi(t)dt ≤ r,

hence x ∈ A(r).

2) Since the map x ∈ Rn 7−→
n∑

i=1

|xi|p
∫ T

0

γi(t)dt ∈ R is convex, we

have for every r > 0,

intB(r) =

{
x ∈ Rn :

1
p

n∑

i=1

|xi|p
∫ T

0

γi(t)dt < r

}
.
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Theorem 6.2 Let r > 0 be such that

min
x∈A(r)

F (x) = min
x∈intB(r)

F (x) .

Then the following assertions hold:

(a) ϕ(r) = 0, where ϕ is defined by relation (1.37).
(b) Problem (P ) has a solution u ∈ Σ satisfying Ψ(u) < r.

Proof (a) We have ϕ(r) ≥ 0, by definition. To show the converse
inequality choose x0 ∈ intB(r) so that

F (x0) = min
x∈intB(r)

F (x) = min
x∈A(r)

F (x),

and let u0 : X → Rn be the function taking the constant value x0. For
every i ∈ {1, . . . , n} we have

||u0
i ||i = |x0

i |
(∫ T

0

γi(t)dt

)1/p

.

Therefore

ψ(u0) =
1
p

n∑

i=1

|x0
i |p

∫ T

0

γi(t)dt < r,

hence u0 ∈ I−1
2 ( ]−∞, r[). Since I−1

2 ( ]−∞, r]) is convex and closed in
the norm topology, it is closed also in the weak topology, hence

(I−1
2 (]−∞, r[))w ⊆ I−1

2 ( ]−∞, r]).

Pick now an arbitrary element v ∈ (I−1
2 (]−∞, r[))w. Then I2(v) ≤ r.

Thus, by (6.18), for all t ∈ [0, T ]

1
p

n∑

i=1

1
cp
i

|vi(t)|p ≤ 1
p

n∑

i=1

1
cp
i

||vi||ps ≤
1
p

n∑

i=1

||vi||pi = I2(v) ≤ r .

We conclude that v(t) ∈ A(r) for every t ∈ [0, T ]. Hence

F (x0) ≤ F (v(t)), for every t ∈ [0, T ].

It follows that

E1(u0) =
∫ T

0

α(t)F (x0)dt ≤
∫ T

0

α(t)F (v(t))dt = E1(v) ≤ I1(v).

Since v ∈ (I−1
2 (]−∞, r[))w was chosen arbitrarily, we conclude that

inf
v∈(I−1

2 (]−∞,r[))
w

I1(v) = I1(u0).
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This implies, according to the definition of ϕ in (1.37),

ϕ(r) ≤ I1(u0)− I1(u0)
r − I2(u0)

= 0,

hence ϕ(r) = 0.
(b) Since ϕ(r) = 0, we can apply Theorem 1.23 for λ = 1, and conclude

that the map I1 + I2 has a critical point u lying in Σ and such that
I2(u) < r. The assertion follows from Proposition 6.1.

Theorem 6.3 Assume that:

(1) There exists a sequence (rk)k∈N of positive reals such that lim rk =
+∞ and

min
x∈A(rk)

F (x) = min
x∈intB(rk)

F (x), for every k ∈ N.

(2) The following inequality holds

lim inf
|x|→+∞

F (x)
∫ T

0
α(t)dt

∑n
i=1 |xi|p

∫ T

0
γi(t)dt

< −1
p
.

Then problem (P ) has an unbounded sequence of solutions.

Proof Assumption (1) implies, according to Theorem 6.2(a), that ϕ(rk) =
0, for every k ∈ N. Let γ be defined as in relation (1.38). Since ϕ(r) ≥ 0
for every r > 0, we conclude that

γ = lim inf
r→+∞

ϕ(r) = 0.

Applying Theorem 1.23(a) for λ = 1, we conclude that either assertion
(b1) or (b2) of this theorem must hold. Next we show that (b1) is not
satisfied, that is, we prove that I1 + I2 is unbounded below. For this fix
a real number q such that

lim inf
|x|→+∞

F (x)
∫ T

0
α(t)dt

∑n
i=1 |xi|p

∫ T

0
γi(t)dt

< q < −1
p
.

Choose now a sequence (xk)k∈N in Rn such that lim |xk| = +∞ and

F (xk)
∫ T

0
α(t)dt

∑n
i=1 |xk

i |p
∫ T

0
γi(t)dt

< q, for every k ∈ N.
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For every k ∈ N denote by uk : X → Rn the constant function taking
the value xk. Then the following relations hold for every k ∈ N

I1(uk) + I2(uk) = F (xk)
∫ T

0

α(t)dt +
1
p

n∑

i=1

|xk
i |p

∫ T

0

γi(t)dt

<

(
q +

1
p

) n∑

i=1

|xk
i |p

∫ T

0

γi(t)dt.

Since |xk| → +∞,
∫ T

0
γi(t)dt > 0, for every i ∈ {1, . . . , n}, and q+ 1

p <

0, we conclude that limk→∞(I1(uk) + I2(uk)) = −∞, thus I1 + I2 is
unbounded below. The assertion follows now from Theorem 1.23(b2),
the definition of I2, and Proposition 6.1.

Theorem 6.4 Assume that:

(1) There exists a sequence (rk)k∈N of positive reals such that lim rk =
0 and

min
x∈A(rk)

F (x) = min
x∈intB(rk)

F (x), for every k ∈ N.

(2) The following inequality holds

lim inf
x→0n

F (x)
∫ T

0
α(t)dt

∑n
i=1 |xi|p

∫ T

0
γi(t)dt

< −1
p
.

Then problem (S) has a sequence of pairwise distinct solutions which
converges strongly to the zero function θX ∈ X.

Proof We first observe that θX is the only global minimum of I2. As-
sumption (1) and Theorem 6.2(a) imply that ϕ(rk) = 0, for every k ∈ N.
Let δ be defined as in relation (1.39). Since ϕ(r) ≥ 0 for every r > 0,
we conclude that

δ = lim inf
r→0+

ϕ(r) = 0.

Applying Theorem 1.23(c) for λ = 1, we conclude that either assertion
(c1) or (c2) of this theorem must hold. Next we show that (c1) is not
satisfied, that is, we prove that θX is not a local minimum of I1 + I2.
For this fix a real number q such that

lim inf
x→0n

F (x)
∫ T

0
α(t)dt

∑n
i=1 |xi|p

∫ T

0
γi(t)dt

< q < −1
p
.
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Choose now a sequence (xk)k∈N in Rn such that limxk = 0n and

F (xk)
∫ T

0
α(t)dt

∑n
i=1 |xk

i |p
∫ T

0
γi(t)dt

< q, for every k ∈ N.

For every k ∈ N denote by uk : X → Rn the constant function taking
the value xk. Then the following relations hold for every k ∈ N

I1(uk) + I2(uk) = F (xk)
∫ T

0

α(t)dt +
1
p

n∑

i=1

|xk
i |p

∫ T

0

γi(t)dt

<

(
q +

1
p

) n∑

i=1

|xk
i |p

∫ T

0

γi(t)dt

≤ 0 = I1(θX) + I2(θX).

We have that lim ||uk|| = 0, thus θX is not a local minimum of I1 +
I2. Theorem 1.23(c2) and Proposition 6.1 imply now the existence of a
sequence (ũk) of pairwise distinct solutions of (S) such that lim I2(ũk) =
0. Since I2 is a norm on X which is equivalent to the norm || · ||, we
conclude that (ũk) converges strongly to θX in X.

6.4 Applications

We specialize now some of the data of the previous section in order to
obtain applications of Theorems 6.3 and 6.4. We assume that n ≥ 1 is
a natural number, T = 1, p > 1 is a real number, S ⊆ Rn × Rn is a set
satisfying condition (C2), γi is the function taking the constant value 1,
for every i ∈ {1, . . . , n}, and α ∈ L1( ]0, T [ ,R) is so that

∫ 1

0
α(t) dt > 1

and α(t) ≥ 0 a.e. in ]0, 1[. In this case every norm || · ||i, i = 1, n, reduces
to the usual norm on W 1,p( ]0, 1[ ,R), and all the constants ci, i = 1, n,
in (6.18) can be considered to be equal to a suitable real number c > 0.
Furthermore, we assume in this section that Rn is endowed with the
p-norm

|x| =
(

n∑

i=1

|xi|p
)1/p

.

Thus, for r > 0, the sets A(r) and B(r) defined in (6.19) become

A(r) =
{

x ∈ Rn :
1
p
· 1
cp
|x|p ≤ r

}
B(r) =

{
x ∈ Rn :

1
p
|x|p ≤ r

}
.
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Example 6.2 We give now an application of Theorem 6.3. In order to
define F : Rn → R we consider a function f : [0,+∞[→ [0, +∞[ with the
following properties:

(i) f is bijective,
(ii) f is strictly increasing,

(iii) lim
t→+∞

f(t + π)
f(t)

> cp,

(iv) f−1 is locally Lipschitz.

Note that the above properties imply that f(0) = 0, f−1 is strictly
increasing, and

lim
t→+∞

f(t) = lim
t→+∞

f−1(t) = +∞.

An example of a function f satisfying properties (i)–(iv) is

t ∈ [0,+∞[ 7−→ at − 1 ∈ [0,+∞[,

where the real a > 1 is chosen so that aπ > cp.
Define F : Rn → R by

F (x) =
1
p
|x|p sin f−1 (|x|p) , for every x ∈ Rn.

A straightforward argument yields that F is of class C1 (that is, satisfies
condition (C1)).

We next show that the assumptions (1) and (2) of Theorem 6.3 are
fulfilled. Indeed, to check (1), we observe that by (iii) and for every
sufficiently large k ∈ N,

f((2k + 1)π)
f(2kπ)

> cp. (6.20)

For these values of k put

rk :=
f((2k + 1)π)

pcp
.

Then lim rk = +∞. Furthermore,

min
x∈A(rk)

F (x) = min
|x|p≤f((2k+1)π)

F (x). (6.21)

If f(2kπ) ≤ |x|p ≤ f((2k + 1)π), then

2kπ ≤ f−1 (|x|p) ≤ (2k + 1)π,

hence

sin
(
f−1 (|x|p)) ≥ 0, .
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This means that F ≥ 0. Taking into account that F (0n) = 0, it follows
that

min
|x|p≤f((2k+1)π)

F (x) = min
|x|p≤f(2kπ)

F (x). (6.22)

On the other hand, if x ∈ Rn is so that |x|p ≤ f(2kπ) then, in view of
(6.20), we have

1
p
|x|p ≤ 1

p
f(2kπ) <

f((2k + 1)π)
pcp

= rk. (6.23)

Using (6.21), (6.22), and (6.23), we conclude that

min
x∈A(rk)

F (x) = min
x∈intB(rk)

F (x) ,

hence assumption (1) of Theorem 6.3 is fulfilled. For assumption (2) we
observe that

lim inf
|x|→+∞

F (x)
∫ 1

0
α(t)dt∑n

i=1 |xi|p = lim inf
|x|→+∞

1
p

sin
(
f−1 (|x|p))

∫ 1

0

α(t)dt

= −1
p

∫ 1

0

α(t)dt < −1
p

.

Theorem 6.3 yields now that problem (P ) has an unbounded sequence
of solutions.

Example 6.3 To get an application of Theorem 6.4 consider a function
f : ]0,+∞[→ ]0, +∞[ with the following properties:

(i) f is surjective,
(ii) f is strictly increasing,
(iii) f is differentiable on ]0, +∞[,

(iv) the map t ∈ ]0, +∞[ 7→ f ′( 1
t )

t ∈ R is bounded on every interval
]0, a[, a > 0,

(v) lim
t→+∞

f−1(t + π)
f−1(t)

> cp.

Under these assumptions, f−1 is strictly increasing and lim
t→+∞

f−1(t) =

+∞. An example for a function satisfying properties (i)–(v) is

t ∈ ]0, +∞[ 7−→ loga(t + 1) ∈ ]0,+∞[,

where the real a > 1 is chosen so that aπ > cp.
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Define g : [0, +∞[→ R by

g(t) =





t sin f (1/t) , t 6= 0

0, t = 0.

This map has the following properties:

• g is continuous on [0, +∞[,
• g is differentiable on ]0, +∞[ and g is not differentiable in 0,
• g′ is bounded on every interval ]0, a[, a > 0. This follows from

property (iv) of f and the fact that for every t > 0 we have
g′(t) = sin f (1/t)− cos f (1/t) f ′(1/t)

t .

Define now F : Rn → R by

F (x) =
1
p

g(|x|p), for every x ∈ Rn.

Since p > 1, it follows that F is of class C1.
We next show that F satisfies conditions (1) and (2) of Theorem 6.4.

To verify (1), we observe that (by (v)) and for every sufficiently large
k ∈ N

f−1((2k + 1)π)
f−1(2kπ)

> cp. (6.24)

For these values of k put

rk :=
1

pcp
· 1
f−1(2kπ)

.

Then lim rk = 0. Furthermore,

min
x∈A(rk)

F (x) = min
|x|p≤ 1

f−1(2kπ)

F (x). (6.25)

If 1
f−1((2k+1)π) ≤ |x|p ≤ 1

f−1(2kπ) , then

2kπ ≤ f

(
1
|x|p

)
≤ (2k + 1)π,

hence

sin f

(
1
|x|p

)
≥ 0 .

Therefore F ≥ 0. Taking into account that F (0n) = 0, it follows that

min
|x|p≤ 1

f−1(2kπ)

F (x) = min
|x|p≤ 1

f−1((2k+1)π)

F (x). (6.26)
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On the other hand, if x ∈ Rn is so that |x|p ≤ 1
f−1((2k+1)π) , then, in

view of (6.24), we have that

1
p
|x|p ≤ 1

p

1
f−1((2k + 1)π)

<
1

pcp
· 1
f−1(2kπ)

= rk. (6.27)

Using relations (6.25), (6.26), and (6.27), we conclude that

min
x∈A(rk)

F (x) = min
x∈intB(rk)

F (x),

hence assumption (1) of Theorem 6.4 is fulfilled. For assumption (2) we
observe that

lim inf
x→0n

F (x)
∫ 1

0
α(t)dt∑n

i=1 |xi|p = lim inf
x→0n

1
p

sin f

(
1
|x|p

) ∫ 1

0

α(t)dt

= −1
p

∫ 1

0

α(t)dt < −1
p

.

According to Theorem 6.4, problem (P ) has a sequence of pairwise dis-
tinct solutions which converges strongly to the zero function θX ∈ X.

6.5 Comments and historical notes

In the last few years, many papers were dedicated to the study of p-
Laplacian systems with various types of boundary conditions. We men-
tion here Manásevich and Mawhin [197], [198], Mawhin [205], Gasinski
and Papageorgiu [124], Jebelean and Moroşanu [147], [148]. The meth-
ods used in these papers to prove the existence or multiple solutions of
p-Laplacian systems are based on degree theory, minimax result, fixed
point theorems, or on continuation methods of Leray-Schauder type.
Jebelean [146] used the symmetric version of the mountain pass the-
orem to prove the existence of infinitely many solutions for problem
(Pλ,µ). Proposition 6.1 and Lemma 6.1 appear in the paper by Jebelean
and Moroşanu [148], while Theorem 6.2 is due to Lisei, Moroşanu, and
Varga [193]. The results contained in Section 6.3 are due to Breckner
and Varga [45].



7

Competition Phenomena in Dirichlet
Problems

The purpose of models is not
to fit the data but to sharpen
the questions.

Samuel Karlin (1924–2007)

Having infinitely many solutions for a given equation, after a ‘small’
perturbation of it, one might be expected to find still many solutions
for the perturbed equation; moreover, once the perturbation tends to
zero, the number of solutions for the perturbed equation should tend
to infinity. Such phenomenon is well-known in the case of the equation
sin x = c with c ∈ (−1, 1) fixed, and its perturbation sinx = c + εx, x ∈
R; the perturbed equation has more and more solutions as |ε| decreases
to 0. This natural phenomenon has been first exploited in an abstract
framework by Krasnosel’skii [161]. More precisely, by using topological
methods, Krasnosel’skii asserts the existence of more and more critical
points of an even functional of class C1 perturbed by a non-even term
tending to zero, the critical points of the perturbed functional being the
solutions for the studied equation.

The purpose of this chapter is to study the number and behaviour of
solutions to a Dirichlet problem which involves an oscillatory nonlinear-
ity and a pure power term.

7.1 Introduction

We consider the multiplicity of solutions to the problem



−4u = λa(x)up + f(u) in Ω,

u ≥ 0, u 6≡ 0 in Ω,

u = 0 on ∂Ω,

(Pλ)
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where Ω is a smooth bounded domain in RN (N ≥ 3), f : [0,∞) → R
oscillates near the origin or at infinity, and p > 0, λ ∈ R. Denoting
formally 0+ or +∞ by the common symbol L (standing for a limit point),
we assume on the continuous nonlinearity f that

(fL
1 ) −∞ < lim infs→L

F (s)
s2 ≤ lim sups→L

F (s)
s2 = +∞;

(fL
2 ) lL := lim infs→L

f(s)
s < 0,

where F (s) =
∫ s

0
f(t)dt. One can easily observe that f has an oscillatory

behaviour at L.
While oscillatory right hand sides usually produce infinitely many dis-

tinct solutions, the additional term involving up may alter the situa-
tion radically. Our purpose is to fully describe this phenomenon, show-
ing that the number of distinct nontrivial solutions to problem (Pλ) is
strongly influenced by up and depends on λ whenever one of the follow-
ing two cases holds:
• p ≤ 1 and f oscillates near the origin;
• p ≥ 1 and f oscillates at infinity (p may be critical or even super-

critical). The coefficient a ∈ L∞(Ω) is allowed to change its sign, while
its size is relevant only for the threshold value p = 1 when the behaviour
of f(s)/s also plays a crucial role in both cases.

7.2 Effects of the competition

In this section we present the main results of this chapter, establishing
as well some interesting connections between the behaviour of certain
algebraic equations and PDEs.

We notice that our problem (Pλ) can be compared with elliptic prob-
lems involving the so-called concave-convex nonlinearities, see Ambrosetti-
Brézis-Cerami [5], de Figueiredo-Gossez-Ubilla [117], [116]. In such a
case, the sublinear term up and the superlinear term f(u) = uq compete
with each other, where 0 ≤ p < 1 < q ≤ (N + 2)/(N − 2) = 2∗− 1. As a
consequence of this competition, problem (Pλ) has at least two positive
solutions for small λ > 0 and no positive solution for large λ. Since
u 7→ −∆u is a linear map, the above statement is well reflected by the
algebraic equation

s = λsp + sq, s > 0. (Eλ
p,q)

Indeed, there exists a λ∗ > 0 such that for every λ ∈ (0, λ∗) equation
(Eλ

p,q) has two solutions, (Eλ∗
p,q) has one solution, and for λ > λ∗ equation

(Eλ
p,q) has no solution, see Figure 7.1.
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Fig. 7.1. Let 0 ≤ p < 1 < q. For every λ1 < λ∗ < λ2, the algebraic equation (Eλ1
p,q)

has two solutions, while (Eλ2
p,q) has no solution.

Equations involving oscillatory terms usually give infinitely many dis-
tinct solutions, see Kristály [168], Kristály-Moroşanu-Tersian [173], Omari-
Zanolin [229], Saint Raymond [265]. However, surprising facts may occur
even in simple cases; indeed, if p = 1 and we consider the oscillatory func-
tion f(s) = fµ(s) = µ sin s (µ ∈ R), problem (Pλ) has only the trivial
solution whenever (|λ| · ‖a‖L∞ + |µ|)λ1(Ω) < 1, where λ1(Ω) denotes the
principal eigenvalue of −4 on H1

0 (Ω), and ‖ · ‖L∞ is the L∞(Ω)-norm.
In order to obtain infinitely many distinct solutions for (P0) we have to
consider a class of functions having a suitable oscillatory behaviour; this
class consists from functions which fulfill (fL

1 ) and (fL
2 ), L ∈ {0+,+∞}.

In the sequel, we state our main results, treating separately the two
cases, i.e., when f oscillates near the origin, and at infinity, respec-
tively. The coefficient a ∈ L∞(Ω) is allowed to be indefinite (i.e.,
it may change its sign), suggested by several recent works, including
Alama-Tarantello [3], [2], Berestycki-Cappuzzo Dolcetta-Nirenberg [35],
de Figueiredo-Gossez-Ubilla [117], [116], Servadei [270].

A. Oscillation near the origin. Let f ∈ C([0,∞),R) and F (s) =∫ s

0
f(t)dt, s ≥ 0. We assume
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(f0
1 ) −∞ < lim infs→0+

F (s)
s2 ; lim sups→0+

F (s)
s2 = +∞;

(f0
2 ) l0 := lim infs→0+

f(s)
s < 0.

Remark 7.1 Hypotheses (f0
1 ) and (f0

2 ) imply an oscillatory behaviour
of f near the origin. Let α, β, γ ∈ R such that 0 < α < 1 < α + β,

and γ ∈ (0, 1). The function f0 : [0,∞) → R defined by f0(0) = 0 and
f0(s) = sα(γ + sin s−β), s > 0, verifies (f0

1 ) and (f0
2 ), respectively.

Theorem 7.1 (Case p ≥ 1) Assume a ∈ L∞(Ω) and let f ∈ C([0,∞),R)
satisfy (f0

1 ) and (f0
2 ). If

(i) either p = 1 and λa(x) < λ0 a.e. x ∈ Ω for some 0 < λ0 < −l0,

(ii) or p > 1 and λ ∈ R is arbitrary,
then there exists a sequence {u0

i }i ⊂ H1
0 (Ω) of distinct weak solutions of

problem (Pλ) such that

lim
i→∞

‖u0
i ‖H1

0
= lim

i→∞
‖u0

i ‖L∞ = 0. (7.1)

Remark 7.2 (i) If l0 = −∞, then (i) holds for every λ ∈ R. For instance,
this may happen for f0 from Remark 7.1.

(ii) Notice that p > 1 may be critical or even supercritical in Theorem
7.1(ii). Having a suitable nonlinearity oscillating near the origin, Theo-
rem 7.1 roughly says that the term defined by s 7→ sp (s ≥ 0) does not
affect the number of distinct solutions of (Pλ) whenever p > 1; this is
also the case for certain values of λ ∈ R when p = 1. A similar relation
may be stated as before for both the equation (Eλ

p,q) and the elliptic
problem involving concave-convex nonlinearities. Namely, the thesis of
Theorem 7.1 is nicely illustrated by the equation

s = λsp + f0(s), s ≥ 0, (E0)

where f0 is the function appearing in Remark 7.1. Since l0 = −∞,
for every λ ∈ R and p ≥ 1, equation (E0) has infinitely many distinct
positive solutions.

On the other hand, this phenomenon dramatically changes when p <

1. In this case, the term s 7→ sp (s ≥ 0) may compete with the function
f0 near the origin such that the number of distinct solutions of (E0)
becomes finite for many values of λ; this fact happens when 0 < p < α (α
is the number defined in Remark 7.1). However, the number of distinct
solutions to (E0) becomes greater and greater if |λ| gets smaller and
smaller as a simple (graphical) argument shows. See Figure 7.2.
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Fig. 7.2. For any λ ∈ R and p = p1 > 1, (E0) has infinitely many distinct solutions,
see (a). However, for many λ ∈ R and p = p2 < 1, (E0) has only finitely many
distinct solutions, see (b).

In the language of our Dirichlet problem (Pλ), the latter statement is
perfectly described by the following result.

Theorem 7.2 (Case 0 < p < 1) Assume a ∈ L∞(Ω). Let f ∈
C([0,∞),R) satisfy (f0

1 ) and (f0
2 ), and 0 < p < 1. Then, for every

k ∈ N, there exists λ0
k > 0 such that (Pλ) has at least k distinct weak

solutions {u0
1,λ, ..., u0

k,λ} ⊂ H1
0 (Ω) whenever λ ∈ [−λ0

k, λ0
k]. Moreover,

‖u0
i,λ‖H1

0
< i−1 and ‖u0

i,λ‖L∞ < i−1 for any i = 1, k; λ ∈ [−λ0
k, λ0

k].
(7.2)

B. Oscillation at infinity. Let f ∈ C([0,∞),R). We assume

(f∞1 ) −∞ < lim infs→∞
F (s)
s2 ; lim sups→∞

F (s)
s2 = +∞;

(f∞2 ) l∞ := lim infs→∞
f(s)

s < 0.

Remark 7.3 Hypotheses (f∞1 ) and (f∞2 ) imply an oscillatory behaviour
of f at infinity. Let α, β, γ ∈ R such that 1 < α, |α − β| < 1, and
γ ∈ (0, 1). Then, the function f∞ : [0,∞) → R defined by f∞(s) =
sα(γ + sin sβ) verifies the hypotheses (f∞1 ) and (f∞2 ), respectively.

The counterpart of Theorem 7.1 can be stated as follows.
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Theorem 7.3 (Case p ≤ 1) Assume a ∈ L∞(Ω). Let f ∈ C([0,∞),R)
satisfy (f∞1 ) and (f∞2 ) with f(0) = 0. If

(i) either p = 1 and λa(x) < λ∞ a.e. x ∈ Ω for some 0 < λ∞ < −l∞,

(ii) or p < 1 and λ ∈ R is arbitrary,
then there exists a sequence {u∞i }i ⊂ H1

0 (Ω) of distinct, weak solutions
of problem (Pλ) such that

lim
i→∞

‖u∞i ‖L∞ = ∞. (7.3)

Remark 7.4 If

sup
s∈[0,∞)

|f(s)|
1 + s2∗−1

< ∞ (7.4)

then we also have limi→∞ ‖u∞i ‖H1
0

= ∞ in Theorem 7.3. For details,
see Section 7.5.

Remark 7.5 A similar observation can be made as in Remark 7.2.
Indeed, when f oscillates at infinity, Theorem 7.3 shows that the term
defined by s 7→ sp (s ≥ 0) does not affect the number of distinct solutions
of (Pλ) whenever p < 1. This is also the case for certain values of λ ∈ R
when p = 1. A similar phenomenon occurs in the equation

s = λsp + f∞(s), s ≥ 0, (E∞)

where f∞ is the function defined in Remark 7.3. Since l∞ = −∞, for
every λ ∈ R and p ≤ 1, equation (E∞) has infinitely many distinct
positive solutions.

On the other hand, when p > 1, the term s 7→ sp (s ≥ 0) may
dominate the function f∞ at infinity. In particular, when α < p, the
number of distinct solutions of (E∞) may become finite for many values
of λ (here, α is the number defined in Remark 7.3). The positive finding
is that the number of distinct solutions for (E∞) increases whenever |λ|
decreases to zero. See Figure 7.3.

In view of this observation, we obtain a natural counterpart of Theo-
rem 7.2.

Theorem 7.4 (Case p > 1) Assume a ∈ L∞(Ω). Let f ∈ C([0,∞),R)
satisfy (f∞1 ) and (f∞2 ) with f(0) = 0, and p > 1. Then, for every k ∈ N,
there exists λ∞k > 0 such that (Pλ) has at least k distinct weak solutions
{u∞1,λ, ..., u∞k,λ} ⊂ H1

0 (Ω) whenever λ ∈ [−λ∞k , λ∞k ]. Moreover,

‖u∞i,λ‖L∞ > i− 1 for any i = 1, k; λ ∈ [−λ∞k , λ∞k ]. (7.5)
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Fig. 7.3. For any λ ∈ R and p = p1 < 1, (E∞) has infinitely many distinct solutions,
see (a). However, for many λ ∈ R and p = p2 > 1, (E∞) has only finitely many (or,
even none) distinct solutions, see (b).

Remark 7.6 If f verifies (7.4) and p ≤ 2∗ − 1 in Theorem 7.4, then

‖u∞i,λ‖H1
0

> i− 1 for any i = 1, k; λ ∈ [−λ∞k , λ∞k ].

We conclude this section by stating a result for a model problem
which involves concave-convex nonlinearities and an oscillatory term.
We consider the problem

{ −4u = λup + µuq + f(u), u ≥ 0 on Ω,

u = 0 on ∂Ω,
(Pλ,µ)

where 0 < p < 1 < q, and λ, µ ∈ R. The following result proves that
the number of solutions (Pλ,µ) is influenced

(i) by the sublinear term when f oscillates near the origin (with no
effect of the superlinear term); and alternatively,

(ii) by the superlinear term when f oscillates at infinity (with no
effect of the sublinear term).

More precisely, applying Theorems 7.2 and 7.4, we have
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Theorem 7.5 Let f ∈ C([0,∞),R) and 0 < p < 1 < q.

(i) If (f0
1 ) and (f0

2 ) hold, then for every k ∈ N and µ ∈ R, there exists
λk,µ > 0 such that (Pλ,µ) has at least k distinct weak solutions
in H1

0 (Ω) whenever λ ∈ [−λk,µ, λk,µ].
(ii) If (f∞1 ) and (f∞2 ) hold with f(0) = 0, then for every k ∈ N

and λ ∈ R, there exists µk,λ > 0 such that (Pλ,µ) has at least k

distinct weak solutions in H1
0 (Ω) whenever µ ∈ [−µk,λ, µk,λ].

7.3 A general location result

We consider the problem
{ −4u + K(x)u = h(x, u), u ≥ 0 in Ω,

u = 0 on ∂Ω,
(PK

h )

and assume that

(HK): K ∈ L∞(Ω), essinfΩK > 0;
(H1

h): h : Ω × [0,∞) → R is a Carathéodory function, h(x, 0) = 0 for
a.e. x ∈ Ω, and there is Mh > 0 such that |h(x, s)| ≤ Mh for a.e.
x ∈ Ω and all s ∈ R;

(H2
h): there are 0 < δ < η such that h(x, s) ≤ 0 for a.e. x ∈ Ω and all

s ∈ [δ, η].

We extend the function h by h(x, s) = 0 for a.e. x ∈ Ω and s ≤ 0. We
introduce the energy functional E : H1

0 (Ω) → R associated with problem
(PK

h ), defined by

E(u) =
1
2
‖u‖2H1

0
+

1
2

∫

Ω

K(x)u2dx−
∫

Ω

H(x, u(x))dx, u ∈ H1
0 (Ω),

where H(x, s) =
∫ s

0
h(x, t)dt, s ∈ R. Due to hypothesis (H1

h), it is easy
to see that E is well-defined. Moreover, standard arguments show that
E is of class C1 on H1

0 (Ω).
Finally, considering the number η ∈ R from (H2

h), we introduce the
set

W η = {u ∈ H1
0 (Ω) : ‖u‖L∞ ≤ η}.

Since h(x, 0) = 0, then 0 is clearly a solution of (PK
h ). In the sequel,

under some general assumptions, we guarantee the existence of a (pos-
sible trivial) weak solution of (PK

h ) which is indispensable in our further
investigations (see Sections 7.4 and 7.5).
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Theorem 7.6 Assume that (HK), (H1
h), (H2

h) hold. Then

(i) the functional E is bounded from below on W η and its infimum
is attained at some ũ ∈ W η;

(ii) ũ(x) ∈ [0, δ] for a.e. x ∈ Ω;
(iii) ũ is a weak solution of (PK

h ).

Proof. (i) Due to (H1
h) and by using Hölder’s and Poincaré’s inequali-

ties, the functional E is bounded from below on the whole space H1
0 (Ω).

In addition, one can easily see that E is sequentially weak lower semi-
continuous and the set W η is convex and closed in H1

0 (Ω), thus weakly
closed. Combining these facts, there is an element ũ ∈ W η which is a
minimum point of E over W η.

(ii) Let A = {x ∈ Ω : ũ(x) /∈ [0, δ]} and suppose that m(A) > 0.

Here and in the sequel, m(·) denotes the Lebesgue measure. Define the
function γ : R → R by γ(s) = min(s+, δ), where s+ = max(s, 0). Now,
set w = γ ◦ ũ. Since γ is a Lipschitz function and γ(0) = 0, the theorem
of Marcus-Mizel [201] shows that w ∈ H1

0 (Ω). Moreover, 0 ≤ w(x) ≤ δ

for a.e. Ω. Consequently, w ∈ W η.

We introduce the sets A1 = {x ∈ A : ũ(x) < 0} and A2 = {x ∈ A :
ũ(x) > δ}. Thus, A = A1 ∪ A2, and we have that w(x) = ũ(x) for all
x ∈ Ω \ A, w(x) = 0 for all x ∈ A1, and w(x) = δ for all x ∈ A2.
Moreover, we have

E(w)− E(ũ) =

=
1
2

[
‖w‖2H1

0
− ‖ũ‖2H1

0

]
+

1
2

∫

Ω

K(x)
[
w2 − ũ2

]−
∫

Ω

[H(x, w)−H(x, ũ)]

= −1
2

∫

A

|∇ũ|2 +
1
2

∫

A

K(x)[w2 − ũ2]−
∫

A

[H(x, w)−H(x, ũ)].

Since essinfΩK > 0, one has
∫

A

K(x)[w2 − ũ2] = −
∫

A1

K(x)ũ2 +
∫

A2

K(x)[δ2 − ũ2] ≤ 0.

Due to the fact that h(x, s) = 0 for all s ≤ 0, one has
∫

A1

[H(x, w)−H(x, ũ)] = 0.

By the mean value theorem, for a.e. x ∈ A2, there exists θ(x) ∈
[δ, ũ(x)] ⊆ [δ, η] such that

H(x,w(x))−H(x, ũ(x)) = H(x, δ)−H(x, ũ(x)) = h(x, θ(x))(δ − ũ(x)).
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Thus, on account of (H2
h), one has

∫

A2

[H(x, w)−H(x, ũ)] ≥ 0.

Consequently, every term of the expression E(w)−E(ũ) is non-positive.
On the other hand, since w ∈ W η, then E(w) ≥ E(ũ) = infW η E . So,
every term in E(w)− E(ũ) should be zero. In particular,

∫

A1

K(x)ũ2 =
∫

A2

K(x)[ũ2 − δ2] = 0.

Due to (HK), we necessarily have m(A) = 0, contradicting our assump-
tion.

(iii) Let us fix v ∈ C∞0 (Ω) and let ε0 = (η − δ)/(‖v‖C0 + 1) > 0.

Define the function E : [−ε0, ε0] → R by E(ε) = E(ũ + εv) with
ε ∈ [−ε0, ε0]. Due to (ii), for every ε ∈ [−ε0, ε0], the element ũ + εv

belongs to the set W η. Consequently, due to (i), one has E(ε) ≥ E(0)
for every ε ∈ [−ε0, ε0]. Since E is differentiable at 0 and E′(0) = 0 it
follows that 〈E ′(ũ), v〉H1

0
= 0. Since v ∈ C∞0 (Ω) is arbitrary, and the set

C∞0 (Ω) is dense in H1
0 (Ω), we obtain that ũ is a weak solution of (PK

h ). ¤

We conclude this section by constructing a special function which
will be useful in the proof of our theorems. In the sequel, let B(x0, r) ⊂ Ω
be the N -dimensional ball with radius r > 0 and center x0 ∈ Ω. For
s > 0, define

zs(x) =





0, if x ∈ Ω \B(x0, r);
s, if x ∈ B(x0, r/2);
2s
r (r − |x− x0|), if x ∈ B(x0, r) \B(x0, r/2).

(7.6)

It is clear that zs ∈ H1
0 (Ω). Moreover, we have ‖zs‖L∞ = s and

‖zs‖2H1
0

=
∫

Ω

|∇zs|2 = 4rN−2(1− 2−N )ωNs2 ≡ C(r,N)s2 > 0, (7.7)

where ωN is the volume of B(0, 1) ⊂ RN .

Notation. For every η > 0, we define the truncation function τη :
[0,∞) → R by τη(s) = min(η, s), s ≥ 0.
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7.4 Nonlinearities with oscillation near the origin

Since parts (i) and (ii) of Theorem 7.1 will be treated simultaneously,
we consider again the problem from the previous Section

{ −4u + K(x)u = h(x, u), u ≥ 0 in Ω,

u = 0 on ∂Ω,
(PK

h )

where the potential K : Ω → R fulfills (HK). The function h : Ω ×
[0,∞) → R is Carathéodory, and we assume

(H0
0): h(x, 0) = 0 for a.e. x ∈ Ω, and there exists s0 > 0 such that

sup
s∈[0,s0]

|h(·, s)| ∈ L∞(Ω);

(H0
1): −∞ < lim infs→0+

H(x,s)
s2 and lim sups→0+

H(x,s)
s2 = +∞ uni-

formly for a.e. x ∈ Ω; here, H(x, s) =
∫ s

0
h(x, t)dt;

(H0
2): there are two sequences {δi}, {ηi} with 0 < ηi+1 < δi < ηi,

limi→∞ ηi = 0, and h(x, s) ≤ 0 for a.e. x ∈ Ω and for every
s ∈ [δi, ηi], i ∈ N.

Theorem 7.7 Assume (HK), (H0
0), (H0

1) and (H0
2) hold. Then there

exists a sequence {u0
i }i ⊂ H1

0 (Ω) of distinct weak solutions of problem
(PK

h ) such that

lim
i→∞

‖u0
i ‖H1

0
= lim

i→∞
‖u0

i ‖L∞ = 0. (7.8)

Proof Without any loss of generality, we may assume that {δi}i, {ηi}i ⊂
(0, s0), where s0 > 0 comes from (H0

0). For every i ∈ N, define the
truncation function hi : Ω× [0,∞) → R by

hi(x, s) = h(x, τηi(s)) (7.9)

and let Ei : H1
0 (Ω) → R be the energy functional associated with the

problem (PK
hi

). Let Hi(x, s) =
∫ s

0
hi(x, t)dt.

Due to hypotheses (H0
0) and (H0

2), the function hi verifies the assump-
tions of Theorem 7.6 for every i ∈ N with [δi, ηi]. Consequently, for every
i ∈ N, there exists u0

i ∈ W ηi such that

u0
i is the minimum point of the functional Ei on W ηi , (7.10)

u0
i (x) ∈ [0, δi] for a.e. x ∈ Ω, (7.11)

u0
i is a weak solution of (PK

hi
). (7.12)
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Thanks to (7.9), (7.11) and (7.12), u0
i is a weak solution not only for

(PK
hi

) but also for the problem (PK
h ).

Now, we prove that there are infinitely many distinct elements in the
sequence {u0

i }i. To see this, we first prove that

Ei(u0
i ) < 0 for all i ∈ N; (7.13)

lim
i→∞

Ei(u0
i ) = 0. (7.14)

The left part of (H0
1) implies the existence of some lh0 > 0 and ζ ∈ (0, η1)

such that

essinfx∈ΩH(x, s) ≥ −lh0s2 for all s ∈ (0, ζ). (7.15)

Let Lh
0 > 0 be large enough so that

1
2
C(r,N) +

(
1
2
‖K‖L∞ + lh0

)
m(Ω) < Lh

0 (r/2)NωN , (7.16)

where r > 0 and C(r,N) > 0 come from (7.7). Taking into account the
right part of (H0

1), there is a sequence {s̃i}i ⊂ (0, ζ) such that s̃i ≤ δi

and

essinfx∈ΩH(x, s̃i) > Lh
0 s̃2

i for all i ∈ N. (7.17)

Let i ∈ N be a fixed number and let zs̃i ∈ H1
0 (Ω) be the function from

(7.6) corresponding to the value s̃i > 0. Then zs̃i ∈ W ηi , and on account
of (7.7), (7.17) and (7.15), one has

Ei(zs̃i) =
1
2
‖zs̃i‖2H1

0
+

1
2

∫

Ω

K(x)z2
s̃i
−

∫

Ω

Hi(x, zs̃i(x))dx

=
1
2
C(r,N)s̃2

i +
1
2

∫

Ω

K(x)z2
s̃i

−
∫

B(x0,r/2)

H(x, s̃i)dx−
∫

B(x0,r)\B(x0,r/2)

H(x, zs̃i(x))dx

≤
[
1
2
C(r,N) +

1
2
‖K‖L∞m(Ω)− Lh

0 (r/2)NωN + lh0m(Ω)
]

s̃2
i .

Consequently, using (7.10) and (7.16), we obtain that

Ei(u0
i ) = min

W ηi
Ei ≤ Ei(zs̃i) < 0 (7.18)

which proves in particular (7.13). Now, let us prove (7.14). For every
i ∈ N, by using the mean value theorem, (7.9), (H0

0) and (7.11), we have

Ei(u0
i ) ≥ −

∫

Ω

Hi(x, u0
i (x))dx ≥ −‖ sup

s∈[0,s0]

|h(·, s)|‖L∞m(Ω)δi.
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Due to limi→∞ δi = 0, the above inequality and (7.18) leads to (7.14).
On account of (7.9) and (7.11), we observe that

Ei(u0
i ) = E1(u0

i ) for all i ∈ N.

Combining this relation with (7.13) and (7.14), we see that the sequence
{u0

i }i contains infinitely many distinct elements.
It remains to prove relation (7.8). The former limit easily follows by

(7.11), i.e. ‖u0
i ‖L∞ ≤ δi for all i ∈ N, combined with limi→∞ δi = 0. For

the latter limit, we use (7.18), (H0
0), (7.9) and (7.11), obtaining for all

i ∈ N that

1
2
‖u0

i ‖2H1
0

≤ 1
2
‖u0

i ‖2H1
0

+
1
2

∫

Ω

K(x)(u0
i )

2

<

∫

Ω

Hi(x, u0
i (x)) ≤ ‖ sup

s∈[0,s0]

|h(·, s)|‖L∞m(Ω)δi

which concludes the proof of Theorem 7.7.

Proof of Theorem 7.1. (i) Case p = 1. Let λ ∈ R as in the hypothesis,
i.e., λa(x) < λ0 a.e. x ∈ Ω for some 0 < λ0 < −l0. Let us choose
λ̃0 ∈ (λ0,−l0) and

K(x) = λ̃0 − λa(x) and h(x, s) = λ̃0s + f(s) for all (x, s) ∈ Ω× [0,∞).
(7.19)

Note that essinfΩK ≥ λ̃0 − λ0 > 0, so (HK) is satisfied. Due to (f0
1 )

and (f0
2 ), we have f(0) = 0. Thus, (H0

0) clearly holds. Moreover, since
H(x, s)/s2 = λ̃0/2 + F (s)/s2, s > 0, hypothesis (f0

1 ) implies (H0
1). Fi-

nally, since l0 < −λ̃0, there exists a sequence {si}i ⊂ (0, 1) converging
to 0 such that f(si)/si < −λ̃0 for all i ∈ N. Consequently, by using the
continuity of f , we may choose two sequences {δi}i, {ηi}i ⊂ (0, 1) such
that 0 < ηi+1 < δi < si < ηi, limi→∞ ηi = 0, and λ̃0s + f(s) ≤ 0 for all
s ∈ [δi, ηi] and i ∈ N. Therefore, (H0

2) holds too. It remains to apply
Theorem 7.7, observing that (PK

h ) is equivalent to problem (Pλ) via the
choice (7.19).

(ii) Case p > 1. Let λ ∈ R be arbitrary fixed. Let us also fix a number
λ0 ∈ (0,−l0) and choose

K(x) = λ0 and h(x, s) = λa(x)sp +λ0s+f(s) for all (x, s) ∈ Ω× [0,∞).
(7.20)

Clearly, (HK) is satisfied. Since a ∈ L∞(Ω), a simple argument yields
that (H0

0) also holds. Moreover, since p > 1 and H(x, s)/s2 = λa(x)sp−1/(p+
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1) + λ0/2 + F (s)/s2, s > 0, hypothesis (f0
1 ) implies (H0

1). Note that for
a.e x ∈ Ω and every s ∈ [0,∞), we have

h(x, s) ≤ |λ| · ‖a‖L∞sp + λ0s + f(s) ≡ h̃0(s). (7.21)

Due to (f0
2 ),

lim inf
s→0+

h̃0(s)
s

= λ0 + l0 < 0.

In particular, there exists a sequence {si}i ⊂ (0, 1) converging to 0
such that h̃0(si) < 0 for all i ∈ N. Consequently, by using the conti-
nuity of h̃0, we can choose two sequences {δi}i, {ηi}i ⊂ (0, 1) such that
0 < ηi+1 < δi < si < ηi, limi→∞ ηi = 0, and h̃0(s) ≤ 0 for all s ∈ [δi, ηi]
and i ∈ N. Therefore, by using (7.21), hypothesis (H0

2) holds. Now,
we can apply Theorem 7.7; problem (PK

h ) is equivalent to problem (Pλ)
through the choice (7.20). In both cases (i.e., (i) and (ii)), relation (7.1)
is implied by (7.8). This completes the proof of Theorem 7.1. ¤

Proof of Theorem 7.2. The proof is divided into four steps.
Step 1. Let λ0 ∈ (0,−l0). On account of (f0

1 ), there exists a sequence
{si}i ⊂ (0, 1) converging to 0, such that f(si)/si < −λ0. For every λ ∈ R
define the functions hλ : Ω× R→ R and h̃ : R2 → R by

hλ(x, s) = λa(x)sp + λ0s + f(s) for all (x, s) ∈ Ω× [0,∞);

h̃(λ, s) = |λ| · ‖a‖L∞sp + λ0s + f(s) for all s ∈ [0,∞).

Since h̃(0, si) = λ0si + f(si) < 0 and due to the continuity of h̃, we can
choose three sequences {δi}i, {ηi}i, {λi}i ⊂ (0, 1) such that 0 < ηi+1 <

δi < si < ηi, limi→∞ ηi = 0, and for every i ∈ N,

h̃(λ, s) ≤ 0 for all λ ∈ [−λi, λi] and s ∈ [δi, ηi]. (7.22)

Clearly, we may assume that

δi ≤ min{i−1, 2−1i−2[1 + ‖a‖L1 + m(Ω) max
s∈[0,1]

|f(s)|]−1}, i ∈ N. (7.23)

Since hλ(x, s) ≤ h̃(λ, s) for a.e. x ∈ Ω and all (λ, s) ∈ R × [0,∞), on
account of (7.22), for every i ∈ N, we have

hλ(x, s) ≤ 0 for a.e. x ∈ Ω and all λ ∈ [−λi, λi], s ∈ [δi, ηi]. (7.24)

For every i ∈ N and λ ∈ [−λi, λi], let hλ
i : Ω× [0,∞) → R be defined by

hλ
i (x, s) = hλ(x, τηi(s)) (7.25)
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and K(x) = λ0. Let also Ei,λ : H1
0 (Ω) → R be the energy functional

associated with the problem (PK
hλ

i
), i.e.,

Ei,λ(u) =
1
2
‖u‖2H1

0
+

1
2

∫

Ω

K(x)u2 −
∫

Ω

(∫ u(x)

0

hλ
i (x, s)ds

)
dx. (7.26)

Then, for every i ∈ N and λ ∈ [−λi, λi], the function hλ
i verifies the

hypotheses of Theorem 7.6; see (7.24) for (H2
hλ

i
). Therefore, for every

i ∈ N and λ ∈ [−λi, λi]

there exists u0
i,λ ∈ W ηi such that Ei,λ(u0

i,λ) = min
W ηi

Ei,λ; (7.27)

u0
i,λ(x) ∈ [0, δi] for a.e. x ∈ Ω, (7.28)

u0
i,λ is a weak solution of (PK

hλ
i
). (7.29)

Due to the definition of the functions hλ
i and K, u0

i,λ is a weak solution
not only for (PK

hλ
i
), see (7.25), (7.28) and (7.29), but also for our initial

problem (Pλ) once we guarantee that u0
i,λ 6≡ 0.

Step 2. For λ = 0, the function hλ
i = h0

i verifies the hypotheses of
Theorem 7.7; more precisely, h0

i is precisely the function appearing in
(7.9) and Ei := Ei,0 is the energy functional associated with problem
(PK

h0
i
). Consequently, besides (7.27)-(7.29), the elements u0

i := u0
i,0 also

verify

Ei(u0
i ) = min

W ηi
Ei ≤ Ei(zs̃i) < 0 for all i ∈ N, (7.30)

where zs̃i ∈ W ηi come from the proof of Theorem 7.7, see (7.18).
Step 3. Let {θi}i be a sequence with negative terms such that limi→∞ θi =

0. On account of (7.30), up to a subsequence, we may assume that

θi < Ei(u0
i ) ≤ Ei(zs̃i) < θi+1. (7.31)

Let

λ′i =
(p + 1)(θi+1 − Ei(zs̃i))

‖a‖L1 + 1
and λ′′i =

(p + 1)(Ei(u0
i )− θi)

‖a‖L1 + 1
, i ∈ N.

Fix k ∈ N. On account of (7.31),

λ0
k = min(λ1, ..., λk, λ′1, ..., λ

′
k, λ′′1 , ..., λ′′k) > 0.
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Then, for every i ∈ {1, ..., k} and λ ∈ [−λ0
k, λ0

k] we have

Ei,λ(u0
i,λ) ≤ Ei,λ(zs̃i

) (see (7.27))

=
1
2
‖zs̃i

‖2H1
0
− λ

p + 1

∫

Ω

a(x)zp+1
s̃i

−
∫

Ω

F (zs̃i
(x))dx

= Ei(zs̃i
)− λ

p + 1

∫

Ω

a(x)zp+1
s̃i

< θi+1, (see the choice of λ′i and s̃i ≤ δi <1)

and taking into account that u0
i,λ belongs to W ηi , and u0

i is the minimum
point of Ei over the set W ηi , see relation (7.30), we have

Ei,λ(u0
i,λ) = Ei(u0

i,λ)− λ

p + 1

∫

Ω

a(x)(u0
i,λ)p+1

≥ Ei(u0
i )−

λ

p + 1

∫

Ω

a(x)(u0
i,λ)p+1

> θi. (see the choice of λ′′i and (7.28))

In conclusion, for every for every i ∈ {1, ..., k} and λ ∈ [−λ0
k, λ0

k] we have

θi < Ei,λ(u0
i,λ) < θi+1 < 0,

thus

E1,λ(u0
1,λ) < ... < Ek,λ(u0

k,λ) < 0.

But, u0
i,λ ∈ W η1 for every i ∈ {1, ..., k}, so Ei,λ(u0

i,λ) = E1,λ(u0
i,λ), see

relation (7.25). Therefore, from above, we obtain that for every λ ∈
[−λ0

k, λ0
k],

E1,λ(u0
1,λ) < ... < E1,λ(u0

k,λ) < 0 = E1,λ(0).

These inequalities show that the elements u0
1,λ, ..., u0

k,λ are distinct (and
non-trivial) whenever λ ∈ [−λ0

k, λ0
k].

Step 4. It remains to prove conclusion (7.2). The former relation
follows directly by (7.28) and (7.23). To check the latter, we observe
that for every i ∈ {1, ..., k} and λ ∈ [−λ0

k, λ0
k],

E1,λ(u0
i,λ) = Ei,λ(u0

i,λ) < θi+1 < 0.
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Consequently, for every i ∈ {1, ..., k} and λ ∈ [−λ0
k, λ0

k], by a mean value
theorem we obtain

1
2
‖u0

i,λ‖2H1
0

<
λ

p + 1

∫

Ω

a(x)(u0
i,λ)p+1 +

∫

Ω

F (u0
i,λ(x))dx

≤
[

1
p + 1

‖a‖L1 + m(Ω) max
s∈[0,1]

|f(s)|
]

δi (see (7.28) and δi, λ
0
k ≤ 1)

< 2−1i−2, (see (7.23))

which concludes the proof of Theorem 7.2. ¤

7.5 Nonlinearities with oscillation at infinity

In order to prove Theorems 7.3 and 7.4 we follow more or less the tech-
nique of the previous Section. However, for completeness, we give all the
details. We consider again the problem (PK

h ), where the Carathéodory
function h : Ω× [0,∞) → R fulfills

(H∞0 ): h(x, 0) = 0 for a.e. x ∈ Ω, and for every s ≥ 0,

sup
t∈[0,s]

|h(·, t)| ∈ L∞(Ω);

(H∞1 ): −∞ < lim infs→∞
H(x,s)

s2 and lim sups→∞
H(x,s)

s2 = +∞ uniformly
for a.e. x ∈ Ω; here, H(x, s) =

∫ s

0
h(x, t)dt;

(H∞2 ): there are two sequences {δi}, {ηi} with 0 < δi < ηi < δi+1,
limi→∞ δi = +∞, and h(x, s) ≤ 0 for a.e. x ∈ Ω and for every
s ∈ [δi, ηi], i ∈ N.

Theorem 7.8 Assume (HK), (H∞0 ), (H∞1 ) and (H∞2 ) hold. Then there
exists a sequence {u∞i }i ⊂ H1

0 (Ω) of distinct weak solutions of problem
(PK

h ) such that

lim
i→∞

‖u∞i ‖L∞ = ∞. (7.32)

Proof. For any i ∈ N, we introduce the truncation function hi :
Ω× [0,∞) → R by

hi(x, s) = h(x, τηi(s)). (7.33)

Let Ei : H1
0 (Ω) → R be the energy functional associated with problem

(PK
hi

). As before, let Hi(x, s) =
∫ s

0
hi(x, t)dt.
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On account of hypotheses (H∞0 ) and (H∞2 ), hi fulfills the assumptions
of Theorem 7.6 for every i ∈ N with [δi, ηi]. Thus, for every i ∈ N, there
is an element u∞i ∈ W ηi such that

u∞i is the minimum point of the functional Ei on W ηi , (7.34)

u∞i (x) ∈ [0, δi] for a.e. x ∈ Ω, (7.35)

u∞i is a weak solution of (PK
hi

). (7.36)

Due to (7.36), (7.33) and (7.35), u∞i is also a weak solution to problem
(PK

h ).

We prove that there are infinitely many distinct elements in the se-
quence {u∞i }i. To this end, it is enough to show that

lim
i→∞

Ei(u∞i ) = −∞. (7.37)

Indeed, let us assume that in the sequence {u∞i }i there are only finitely
many distinct elements, say {u∞1 , ..., u∞i0 } for some i0 ∈ N. Consequently,
due to (7.33), the sequence {Ei(u∞i )}i reduces to at most the finite set
{Ei0(u

∞
1 ), ..., Ei0(u

∞
i0

)}, which contradicts relation (7.37).

Now, we prove (7.37). By (H∞1 ), there exist lh∞ > 0 and ζ > 0 such
that

essinfx∈ΩH(x, s) ≥ −lh∞s2 for all s > ζ. (7.38)

Fix Lh
∞ > 0 large enough such that

1
2
C(r,N) +

(
1
2
‖K‖L∞ + lh∞

)
m(Ω) < Lh

∞(r/2)NωN , (7.39)

where r > 0 and C(r,N) > 0 are from (7.7). Due to the right hand side
of (H∞1 ), one can fix a sequence {s̃i}i ⊂ (0,∞) such that limi→∞ s̃i = ∞,
and

essinfx∈ΩH(x, s̃i) > Lh
∞s̃2

i for all i ∈ N. (7.40)

Since limi→∞ δi = ∞, see (H∞2 ), we can choose a subsequence {δmi}i

of {δi}i such that s̃i ≤ δmi for all i ∈ N. Let i ∈ N be fixed and
let zs̃i ∈ H1

0 (Ω) be the function from (7.6) corresponding to the value
s̃i > 0. Then zs̃i ∈ W ηmi , and on account of (7.7), (7.40) and (7.38), we
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have

Emi(zs̃i) =
1
2
‖zs̃i‖2H1

0
+

1
2

∫

Ω

K(x)z2
s̃i
−

∫

Ω

Hmi(x, zs̃i(x))dx

=
1
2
C(r,N)s̃2

i +
1
2

∫

Ω

K(x)z2
s̃i
−

∫

B(x0,r/2)

H(x, s̃i)dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zs̃i
>ζ}

H(x, zs̃i
(x))dx

−
∫

(B(x0,r)\B(x0,r/2))∩{zs̃i
≤ζ}

H(x, zs̃i
(x))dx

≤
[
1
2
C(r,N) +

1
2
‖K‖L∞m(Ω)− Lh

∞(r/2)NωN + lh∞m(Ω)
]

s̃2
i

+‖ sup
s∈[0,ζ]

|h(·, s)|‖L∞m(Ω)ζ.

The above estimate, relation (7.39) and limi→∞ s̃i = ∞ clearly show
that

lim
i→∞

Emi(zs̃i) = −∞. (7.41)

On the other hand, using (7.34), we have

Emi(u
∞
mi

) = min
W ηmi

Emi ≤ Emi(zs̃i). (7.42)

Therefore, on account of (7.41), we have

lim
i→∞

Emi(u
∞
mi

) = −∞. (7.43)

Note that the sequence {Ei(u∞i )}i is non-increasing. Indeed, let i, k ∈ N,
i < k. Then, due to (7.33), we have

Ei(u∞i ) = min
W ηi

Ei = min
W ηi

Ek ≥ min
W ηk

Ek = Ek(u∞k ).

Combining this fact with (7.43), we obtain (7.37).
Now, we prove (7.32). Arguing by contradiction assume there exists a

subsequence {u∞ki
}i of {u∞i }i such that for all i ∈ N, we have ‖u∞ki

‖L∞ ≤
M for some M > 0. In particular, {u∞ki

}i ⊂ W ηl for some l ∈ N. Thus,
for every ki ≥ l, we have

El(u∞l ) = min
W ηl

El = min
W ηl

Eki

≥ min
W

ηki

Eki = Eki(u
∞
ki

)

≥ min
W ηl

Eki (cf. hypothesis, u∞ki
∈ W ηl)

= El(u∞l ).
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As a consequence,

Eki(u
∞
ki

) = El(u∞l ) for all i ∈ N. (7.44)

Since the sequence {Ei(u∞i )}i is non-increasing, on account of (7.44),
one can find a number i0 ∈ N such that Ei(u∞i ) = El(u∞l ) for all i ≥ i0.

This fact contradicts (7.37), which concludes the proof of Theorem 7.8.
¤

Proof of Theorem 7.3. (i) Case p = 1. Let us fix λ ∈ R as in the
hypothesis, i.e., λa(x) < λ∞ a.e. x ∈ Ω for some 0 < λ∞ < −l∞. Fix
also λ̃∞ ∈ (λ∞,−l∞) and let

K(x) = λ̃∞−λa(x) and h(x, s) = λ̃∞s+f(s) for all (x, s) ∈ Ω× [0,∞).
(7.45)

It is clear that essinfΩK ≥ λ̃∞ − λ∞ > 0, so (HK) is satisfied. Since
f(0) = 0, (H∞0 ) holds too. Note that H(x, s)/s2 = λ̃∞/2 + F (s)/s2,
s > 0; thus, hypothesis (f∞1 ) implies (H∞1 ). Since l∞ < −λ̃∞, there is
a sequence {si}i ⊂ (0,∞) converging to +∞ such that f(si)/si < −λ̃∞
for all i ∈ N. By using the continuity of f , we may fix two sequences
{δi}i, {ηi}i ⊂ (0,∞) such that 0 < δi < si < ηi < δi+1, limi→∞ δi = ∞,

and λ̃∞s+f(s) ≤ 0 for all s ∈ [δi, ηi] and i ∈ N. Therefore, (H∞2 ) is also
fulfilled. Now, we are in the position to apply Theorem 7.8. Throughout
the choice (7.45), (PK

h ) is equivalent to problem (Pλ) which concludes
the proof.

(ii) Case p < 1. Let λ ∈ R be fixed arbitrarily and fix also a number
λ∞ ∈ (0,−l∞). Now, let us choose

K(x) = λ∞ and h(x, s) = λa(x)sp+λ∞s+f(s) for all (x, s) ∈ Ω×[0,∞).
(7.46)

Hypothesis (HK) is clearly satisfied. Due to the fact that a ∈ L∞(Ω),
hypothesis (H∞0 ) holds too. Since p < 1 and H(x, s)/s2 = λa(x)sp−1/(p+
1) + λ∞/2 + F (s)/s2, s > 0, hypothesis (f∞1 ) implies (H∞1 ). For a.e.
x ∈ Ω and every s ∈ [0,∞), we have

h(x, s) ≤ |λ| · ‖a‖L∞sp + λ∞s + f(s) ≡ h̃∞(s). (7.47)

Thanks to (f∞2 ), we have

lim inf
s→∞

h̃∞(s)
s

= λ∞ + l∞ < 0.

Therefore, one can fix a sequence {si}i ⊂ (0,∞) converging to +∞ such
that h̃∞(si) < 0 for all i ∈ N. Now, by using the continuity of h̃∞, one
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can fix two sequences {δi}i, {ηi}i ⊂ (0,∞) such that 0 < δi < si < ηi <

δi+1, limi→∞ δi = ∞, and h̃∞(s) ≤ 0 for all s ∈ [δi, ηi] and i ∈ N. Thus,
by using (7.47), hypothesis (H∞2 ) holds. Now, we can apply Theorem
7.8, observing that problem (PK

h ) is equivalent to problem (Pλ) through
the choice (7.46). Finally, in both cases (i.e., (i) and (ii)), (7.32) implies
relation (7.3). This concludes the proof of Theorem 7.3. ¤

Proof of Remark 7.4. Assume that (7.4) holds. By contradiction, let
us assume that there exists a bounded subsequence {u∞ki

}i of {u∞i }i in
H1

0 (Ω). Since H1
0 (Ω) is continuously embedded into Lt(Ω), t ∈ [1, 2∗],

after an elementary estimate, we obtain that the sequence {Eki
(u∞ki

)}i

is bounded. Since the sequence {Ei(u∞i )}i is non-increasing, it will be
bounded as well, which contradicts (7.37). ¤

Proof of Theorem 7.4. The proof is divided into five steps.
Step 1. Let λ∞ ∈ (0,−l∞). Due to (f∞1 ), we may fix a sequence

{si}i ⊂ (0,∞) converging to ∞, such that f(si)/si < −λ∞. For every
λ ∈ R, let us define two functions hλ : Ω× R→ R and h̃ : R2 → R by

hλ(x, s) = λa(x)sp + λ∞s + f(s) for all (x, s) ∈ Ω× [0,∞);

h̃(λ, s) = |λ| · ‖a‖L∞sp + λ∞s + f(s) for all s ∈ [0,∞).

Note that h̃(0, si) = λ∞si + f(si) < 0. Due to the continuity of h̃, we
can fix three sequences {δi}i, {ηi}i ⊂ (0,∞) and {λi}i ⊂ (0, 1) such that
0 < δi < si < ηi < δi+1, limi→∞ δi = ∞, and for every i ∈ N,

h̃(λ, s) ≤ 0 for all λ ∈ [−λi, λi] and s ∈ [δi, ηi]. (7.48)

Without any loss of generality, we may assume that

δi ≥ i, i ∈ N. (7.49)

Note that hλ(x, s) ≤ h̃(λ, s) for a.e. x ∈ Ω and all (λ, s) ∈ R × [0,∞).
Taking into account of (7.48), for every i ∈ N, we have

hλ(x, s) ≤ 0 for a.e. x ∈ Ω and all λ ∈ [−λi, λi], s ∈ [δi, ηi]. (7.50)

For any i ∈ N and λ ∈ [−λi, λi], let hλ
i : Ω× [0,∞) → R be defined by

hλ
i (x, s) = hλ(x, τηi(s)) (7.51)

and K(x) = λ∞. Let Ei,λ : H1
0 (Ω) → R be the energy functional asso-

ciated with the problem (PK
hλ

i
), which is formally the same as in (7.26).

Note that for every i ∈ N and λ ∈ [−λi, λi], the function hλ
i fulfills the
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hypotheses of Theorem 7.6; see (7.50) for (H2
hλ

i
). Consequently, for every

i ∈ N and λ ∈ [−λi, λi]

there exists ũ∞i,λ ∈ W ηi with Ei,λ(ũ∞i,λ) = min
W ηi

Ei,λ; (7.52)

ũ∞i,λ(x) ∈ [0, δi] for a.e. x ∈ Ω, (7.53)

ũ∞i,λ is a weak solution of (PK
hλ

i
). (7.54)

On account of the definition of the functions hλ
i and K, and relations

(7.54) and (7.53), ũ∞i,λ is also a weak solution for our initial problem (Pλ)
once we have ũ∞i,λ 6≡ 0.

Step 2. Note that for λ = 0, the function hλ
i = h0

i verifies the hy-
potheses of Theorem 7.8; in fact, h0

i is the function appearing in (7.33)
and Ei := Ei,0 is the energy functional associated with problem (PK

h0
i
).

Denoting u∞i := ũ∞i,0, we also have

Emi(u
∞
mi

) = min
W ηmi

Emi ≤ Emi(zs̃i); (7.55)

lim
i→∞

Emi(u
∞
mi

) = −∞, (7.56)

where the special subsequence {u∞mi
}i of {u∞i }i and zs̃i ∈ W ηmi appear

in the proof of Theorem 7.8, see relations (7.42) and (7.43), respectively.
Step 3. Let us fix a sequence {θi}i with negative terms such that

limi→∞ θi = −∞. Due to (7.55) and (7.56), up to a subsequence, we
may assume that

θi+1 < Emi(u
∞
mi

) ≤ Emi(zs̃i) < θi. (7.57)

For any i ∈ N, define

λ′i =
(p + 1)(θi − Emi(zs̃i))

δp+1
mi (‖a‖L1 + 1)

and λ′′i =
(p + 1)(Emi(u

∞
mi

)− θi+1)

δp+1
mi (‖a‖L1 + 1)

.

Fix k ∈ N. Thanks to (7.57),

λ∞k = min(λ1, ..., λk, λ′1, ..., λ
′
k, λ′′1 , ..., λ′′k) > 0.

Therefore, for every i ∈ {1, ..., k} and λ ∈ [−λ∞k , λ∞k ] we have

Emi,λ(ũ∞mi,λ) ≤ Emi,λ(zs̃i) (see (7.52))

=
1
2
‖zs̃i‖2H1

0
− λ

p + 1

∫

Ω

a(x)zp+1
s̃i

−
∫

Ω

F (zs̃i(x))dx

= Emi(zs̃i)−
λ

p + 1

∫

Ω

a(x)zp+1
s̃i

< θi, (see the choice of λ′i and s̃i ≤ δmi )
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and since ũ∞mi,λ
belongs to W ηmi , and u∞mi

is the minimum point of Emi

over the set W ηmi , see relation (7.55), we have

Emi,λ(ũ∞mi,λ) = Emi(ũ
∞
mi,λ)− λ

p + 1

∫

Ω

a(x)(ũ∞mi,λ)p+1

≥ Emi
(u∞mi

)− λ

p + 1

∫

Ω

a(x)(ũ∞mi,λ)p+1

> θi+1. (see the choice of λ′′i and (7.53))

Consequently, for every i ∈ {1, ..., k} and λ ∈ [−λ∞k , λ∞k ] we have

θi+1 < Emi,λ(ũ∞mi,λ) < θi < 0, (7.58)

therefore

Emk,λ(ũ∞mk,λ) < ... < Em1,λ(ũ∞m1,λ) < 0. (7.59)

Note that ũ∞mi,λ
∈ W ηmk for every i ∈ {1, ..., k}, so Emi,λ(ũ∞mi,λ

) =
Emk,λ(ũ∞mi,λ

), see relation (7.51). From above, for every λ ∈ [−λ∞k , λ∞k ],
we have

Emk,λ(ũ∞mk,λ) < ... < Emk,λ(ũ∞m1,λ) < 0 = Emk,λ(0).

In particular, the elements ũ∞m1,λ, ..., ũ∞mk,λ are distinct (and non-trivial)
whenever λ ∈ [−λ∞k , λ∞k ].

Step 4. Assume that k ≥ 2 and fix λ ∈ [−λ∞k , λ∞k ]. We prove that

‖ũ∞mi,λ‖L∞ > δmi−1 for all i ∈ {2, ..., k}. (7.60)

Let us assume that there exists an element i0 ∈ {2, ..., k} such that
‖ũ∞mi0 ,λ‖L∞ ≤ δmi0−1 . Since δmi0−1 < ηmi0−1 , then ũ∞mi0 ,λ ∈ W

ηmi0−1 .

Thus, on account of (7.52) and (7.51), we have

Emi0−1,λ(ũ∞mi0−1,λ) = min
W

ηmi0−1
Emi0−1,λ ≤ Emi0−1,λ(ũ∞mi0 ,λ) = Emi0 ,λ(ũ∞mi0 ,λ),

which contradicts (7.59). Therefore, (7.60) holds true.
Step 5. Let u∞i,λ := ũ∞mi,λ

for any i ∈ {1, ..., k} and λ ∈ [−λ∞k , λ∞k ];
these elements verify all the requirements of Theorem 7.4. Indeed, since
Em1,λ(u∞1,λ) = Em1,λ(ũ∞m1,λ) < 0 = Em1,λ(0), then ‖u∞1,λ‖L∞ > 0, which
proves (7.5) for i = 1. If k ≥ 2, then on account of Step 4, (7.49) and
mi ≥ i, for every i ∈ {2, ..., k}, we have

‖u∞i,λ‖L∞ > δmi−1 ≥ mi−1 ≥ i− 1,

i.e., relation (7.5) holds true. This ends the proof of Theorem 7.4. ¤
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Proof of Remark 7.6. Due to (7.4), there exists a C > 0 such that
|f(s)| ≤ C(1 + s2∗−1) for all s ≥ 0. We denote by St > 0 the Sobolev
embedding constant of the continuous embedding H1

0 (Ω) ↪→ Lt(Ω), t ∈
[1, 2∗]. Without any loss of generality, we may assume that for every
i ∈ N,

θi < − 1
p + 1

‖a‖L∞Sp+1
p+1(i− 1)p+1 −C[S1(i− 1) + S2∗

2∗ (i− 1)2
∗
], (7.61)

where the sequence {θi}i comes from Step 3 of the proof of Theorem
7.4.

Fix λ ∈ [−λ∞k , λ∞k ] and assume that there exists i0 ∈ {1, ..., k} such
that ‖u∞i0,λ‖H1

0
≤ i0 − 1. On account of (7.58), we have in particular

Emi0 ,λ(u∞i0,λ) < θi0 . Consequently, we have

1
2
‖u∞i0,λ‖2H1

0
= Emi0 ,λ(u∞i0,λ) +

λ

p + 1

∫

Ω

a(x)(u∞i0,λ)p+1 +
∫

Ω

F (u∞i0,λ(x))dx

< θi0 +
|λ|

p + 1
‖a‖L∞Sp+1

p+1‖u∞i0,λ‖p+1
H1

0

+C[S1‖u∞i0,λ‖H1
0

+ S2∗
2∗ ‖u∞i0,λ‖2

∗
H1

0
]

≤ θi0 +
1

p + 1
‖a‖L∞Sp+1

p+1(i0 − 1)p+1

+C[S1(i0 − 1) + S2∗
2∗ (i0 − 1)2

∗
] (λ∞k ≤ 1)

< 0, (see (7.61))

contradiction. ¤

7.6 Perturbation from symmetry

For details related to the main notions and properties used in this section
we refer to Appendix D.

Let Ω ⊂ RN be a bounded open set. For some fixed r > 0, consider
the following nonlinear eigenvalue problem: find (u, λ) ∈ H1

0 (Ω) × R
such that 




f(x, u) ∈ L1
loc(Ω) ,

−∆u = λf(x, u) in Ω ,∫

Ω

|∇u|2dx = r2 ,

(7.62)

where f : Ω×R→ R is a Carathéodory function such that the following
conditions hold:

(f1) f(x,−s) = −f(x, s), for a.e. x ∈ Ω and every s ∈ R;
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(f2) there exist a ∈ L1(Ω), b ∈ R and 0 ≤ p < 2N
N−2 (if N > 2) such

that

0 < sf(x, s) ≤ a(x) + b|s|p , F (x, s) ≤ a(x) + b|s|p ,

for a.e. x ∈ Ω and every s ∈ R\{0}, where F (x, s) =
∫ s

0
f(x, t)dt;

(f3) sup
|s|≤t

|f(x, s)| ∈ L1
loc(Ω), for every t > 0.

We point out that if N = 1, then in condition (f2) the term b|s|p can
be substituted by any continuous function ϕ(s) of s, while, if N = 2,
the same term can be substituted by exp(ϕ(s)), with ϕ(s)s−2 → 0 as
|s| → ∞.

Our first result in this section is the following.

Theorem 7.9 Assume that hypotheses (f1)− (f3) hold. Then problem
(7.62) admits a sequence (±un, λn) of distinct solutions.

Our main purpose is to study what happens when the energy func-
tional is affected by an arbitrary perturbation which destroys the sym-
metry.

Consider the problem: find (u, λ) ∈ H1
0 (Ω)× R such that





f(x, u), g(x, u) ∈ L1
loc(Ω) ,

−∆u = λ (f(x, u) + g(x, u)) in Ω ,∫

Ω

|∇u|2dx = r2 ,

(7.63)

where g : Ω×R→ R is a Carathéodory function. We make no symmetry
assumption on g, but we impose only

(g1) 0 < sg(x, s) ≤ a(x) + b|s|p for a.e. x ∈ Ω and every s ∈ R \ {0};
(g2) sup

|s|≤t

|g(x, s)| ∈ L1
loc(Ω), for every t > 0;

(g3) G(x, s) ≤ Cg (1 + |s|p), for a.e. x ∈ Ω and every s ∈ R, for some
Cg > 0, where G(x, s) =

∫ s

0
g(x, t)dt.

The next result shows that the number of solutions of problem (7.63)
becomes greater and greater, as the perturbation tends to zero.

Theorem 7.10 Assume that hypotheses (f1)−(f3) and (g1)−(g3) hold.
Then, for every positive integer n, there exists εn > 0 such that problem
(7.63) admits at least n distinct solutions, provided that (g3) holds for
Cg = εn.
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We prove theorems 7.9 and 7.10 by a variational argument. First we
set

Sr =
{

u ∈ H1
0 (Ω) :

∫

Ω

|∇u|2dx = r2

}

and we study the critical points on Sr of the even continuous functional
I : H1

0 (Ω) → R defined by

I(u) = −
∫

Ω

F (x, u)dx .

We point out that if conditions (f2), (f3) are substituted by the more
standard condition 0 < sf(x, s) ≤ a1(x)|s| + b|s|p with a1 ∈ L

2N
N+2 (Ω),

then I is of class C1 and Theorem 7.9 can be found in [249, Theorem
8.17]. Under our assumptions, f could have the form f(x, s) = α(x)γ(s)
with α ∈ L1(Ω), α ≥ 0, γ ∈ Cc(R), γ odd and sγ(s) ≥ 0 for any s ∈ R.
In such a case, I is clearly continuous, but not locally Lipschitz.

When f and g are subjected to the standard condition we have men-
tioned, results like Theorem 7.10 go back to Krasnoselskii [161]. For per-
turbation results, quite different from ours, where the perturbed problem
still has infinitely many solutions, we refer the reader to [249, 280]. In a
nonsmooth setting, a result in the line of Theorem 7.10 has been proved
in [81] when f and g satisfy the standard condition, but the function u

is subjected to an obstacle, so that the equation becomes a variational
inequality.

We first observe that from our assumption (f2) it follows that I(u) < 0
and sup Ir(u) = 0, where Ir = I|Sr

.
We start with the following preliminary result.

Lemma 7.1 The following properties hold true:

(a) if u ∈ Sr satisfies |dIr|(u) < +∞, then f(x, u) ∈ L1
loc(Ω) ∩H−1(Ω)

and there exists µ ∈ R such that

‖µ∆u + f(x, u)‖H−1 ≤ |dIr|(u) ;

(b) the functional Ir satisfies (PS)c for any c < 0;
(c) if u ∈ Sr is a critical point of Ir, then there exists λ > 0 such that

(u, λ) is a solution of problem (7.62).
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Proof (a) Set

Ir,est(w) =

{
I(w) if w ∈ Sr ,

+∞ if w ∈ H1
0 (Ω) \ Sr .

Then |dIr,est|(u) = |dIr|(u). We also deduce that there exists α ∈
∂Ir,est(u) with ‖α‖H−1 ≤ |dIr,est|(u), where ∂ stands for the general-
ized gradient of Ir,est. Taking into account (f2), we obtain

I0(u; 0) ≤ 0 , I0(u; 2u) ≤ −2
∫

Ω

f(x, u)udx < +∞ .

Actually, the same proof shows a stronger fact, namely that

I
0
(u; 0) ≤ 0 , I

0
(u; 2u) ≤ −2

∫

Ω

f(x, u)udx < +∞ .

Thus, there are β ∈ ∂I(u) and µ ∈ R such that α = β − µ∆u. We
conclude that f(x, u) ∈ L1

loc(Ω) ∩H−1(Ω) and β = −f(x, u). Then (a)
follows.

(b) Let c < 0 and let (un) be a (PS)c–sequence for Ir. By the previous
point, we have f(x, un) ∈ L1

loc(Ω)∩H−1(Ω) and there exists a sequence
(µn) in R with

‖µn∆un + f(x, un)‖H−1 → 0 .

Up to a subsequence, (un) is convergent to some u weakly in H1
0 (Ω) and

a.e. From (f2) it follows I(u) = c < 0, hence u 6= 0. Again by (f2) and
Lebesgue’s dominated convergence theorem, we deduce that

0 <

∫

Ω

f(x, u)udx = lim
n

∫

Ω

f(x, un)undx = lim
n

µn

∫

Ω

|∇un|2dx .

Therefore, up to a further subsequence, (µn) is convergent to some µ > 0
and ∥∥∥∥∆un +

1
µ

f(x, un)
∥∥∥∥

H−1

→ 0 .

This shows that (un) is precompact in H1
0 (Ω) and (b) follows.

(c) Arguing as in (b), we find that f(x, u) ∈ L1
loc(Ω) ∩ H−1(Ω) and

that there exists µ > 0 with µ∆u + f(x, u) = 0. This concludes the
proof.

Lemma 7.2 There exists a sequence (bn) of essential values of Ir strictly
increasing to 0.
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Proof Let ψ :] − ∞, 0[→ R be an increasing diffeomorphism. From
Lemma 7.1 it follows that ψ ◦ Ir satisfies condition (PS)c for every
c ∈ R. Then the set {u ∈ Sr : ψ ◦ Ir(u) ≤ b} has finite genus for every
b ∈ R. For any integer n ≥ 1, set

cn := inf
S∈Γn

sup
u∈S

ψ ◦ Ir(u) ,

where Γn := {S|subsetSr; S ∈ F , γ(S) ≥ n} and F denotes the family
of closed and symmetric subsets of Sr with respect to the origin. Since
cn → +∞ as n → ∞, it follows that there exists a sequence (b′n) of
essential values of ψ ◦ Ir strictly increasing to +∞. Then bn = ψ−1(b′n)
has the required properties.

Proof of Theorem 7.9. Using Lemma 7.1, we deduce that each bn is a
critical value of Ir. Again from Lemma 7.1, we conclude that there exists
a sequence (±un, λn) of solutions of problem (7.62) with I(un) = bn

strictly increasing to 0. This concludes the proof of Theorem 7.9.

Let us now introduce the continuous functional Jr : Sr → R defined
by

J(u) = I(u)−
∫

Ω

G(x, u)dx .

Lemma 7.3 For every η > 0, there exists ε > 0 such that sup
u∈Sr

|Ir(u)−
Jr(u)| < η, provided that (g3) holds for Cg = ε.

Proof By Sobolev inclusions, we have for any u ∈ Sr,

0 ≤ Ir(u)− Jr(u) =
∫

Ω

G(x, u)dx ≤ Cg

∫

Ω

(1 + |u|p)dx < η ,

if g is chosen as in the hypothesis.

Proof of Theorem 7.10. As in the proof of Theorem 7.9, let us consider
a strictly increasing sequence (bn) of essential values of Ir such that
bn → 0 as n → ∞. Given n ≥ 1, take some δ > 0 with bn + δ < 0
and 2(bj − bj−1) < δ for j = 2, . . . , n. Thus, for any j = 1, . . . , n, there
exists ηj > 0 such that sup

u∈Sr

|Ir(u)− Jr(u)| < ηj implies the existence of

an essential value cj ∈]bj − δ, bj + δ[ of Jr. We now apply Lemma 7.3
for η = min{η1, . . . , ηn}. Thus we obtain εn > 0 such that sup

u∈Sr

|Ir(u)−
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Jr(u)| < η, if (g3) holds with Cg = εn. It follows that Jr has at least n

distinct essential values c1, . . . , cn in the interval ]−∞, 0[.
Now Lemma 1 can be clearly adapted to the functional Jr. Then we

find u1, . . . , un ∈ Sr and λ1, . . . , λn > 0 such that each (uj , λj) is a
solution of Problem (7.62) with Jr(uj) = cj .

7.7 Historical notes, comments

A. Historical notes. Let us consider the equation

{ −4u = f(x, u) + λg(x, u) in Ω,

u = 0 on ∂Ω,
(Eλ)

where Ω ⊆ RN is a bounded open domain, while f, g : Ω × R → R are
Carathéodory functions. We assume the unperturbed equation (E0) has
infinitely many distinct solutions. Then, the main question is:

(q) Fixing k ∈ N, can one find a number λk > 0 such that the per-
turbed equation (Eλ) has at least k distinct solutions whenever
λ ∈ [−λk, λk]?

Two different classes of results are available in the literature answering
affirmatively question (q):

1) Perturbation of symmetric problems. Assume f(x, s) = −f(x,−s)
for every (x, s) ∈ Ω × R. It is well-known that if the energy functional
has the mountain pass geometry, problem (E0) has infinitely many so-
lutions, due to the symmetric version of the Mountain Pass theorem,
see Ambrosetti-Rabinowitz [7]. Furthermore, question (q) was fully an-
swered by Li-Liu [186] for arbitrarily continuous nonlinearity g, following
the topological approach developed by Degiovanni-Lancelotti [81] and
Degiovanni-Rădulescu [85];

2) Perturbation of oscillatory problems. Assume f(x, ·) oscillates near
the origin or at infinity, uniformly with respect to x ∈ Ω. Special kinds
of oscillations produce infinitely many solutions for (E0), as shown by
Omari-Zanolin [229], and Saint Raymond [265]. Concerning the per-
turbed problem, Anello-Cordaro [12] answered question (q), by using
Theorem 1.17.

B. Comments. In this chapter we presented a third, direct method for
answering question (q) whenever the nonlinear term f(x, ·) belongs to a
wide class of oscillatory functions and g(x, s) = sp. We fully described
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the effect of the term g to the oscillatory function f . Namely, the number
of distinct solutions of (Eλ) is sensitive when:
• p ≤ 1 and f oscillates near the origin;
• p ≥ 1 and f oscillates at infinity.

Notice that g can be any continuous function with g(x, 0) = 0, and our
method works also for other elliptic problems.



8

Problems to Part I

I hope that seeing the
excitement of solving this
problem will make young
mathematicians realize that
there are lots and lots of other
problems in mathematics
which are going to be just as
challenging in the future.

Andrew Wiles (b. 1953)

Problem 8.1 Show that any function f : R→ R of class C1 having two
local minima has necessarily a third critical point.

Problem 8.2 Show that the (PS)c-condition implies the (C)c-condition
for any function f : X → R of class C1 and c ∈ R, see Remark 1.3.
Construct a function which shows that the converse does not hold in
general.

Problem 8.3 Prove that every function f : T 2 → R of class C1 has at
least 3 critical points. Here T 2 = S1 × S1 is the 2-dimensional torus.
[Hint: Prove that cat(T 2) = 3 and apply Theorem 1.9.]

Problem 8.4 Let X be a real Banach space and assume that f is a
nonnegative C1 function on X satisfying the Palais–Smale condition or
even a weaker form: every sequence (un) in X such that supn f(un) < ∞
and ‖f ′(un)‖→0, is bounded in X. Prove that f is coercive, that is,

f(u)→+∞ as ‖u‖→∞.

223
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Problem 8.5 Let X be a real Banach space and assume that f is
a nonnegative C1 function on X satisfying the Palais–Smale condition.
Prove that every minimizing sequence of f has a convergent subsequence.

Problem 8.6 Let X be a real Banach space and assume that f is a C1

function on X which is bounded below and satisfies the Palais–Smale
condition. Suppose that all the critical points of f lie in {u ∈ X; ‖u‖ <

R}. Set

M(r) = inf{f(u); ‖u‖ = r} .

Prove that for r > R, M(r) is strictly increasing and continuous from
the right.

Problem 8.7 Let Ω be a bounded open set in RN . For every f ∈ L2(Ω)
and all λ ∈ R, define the functional

Eλ(u) =
1
2

∫

Ω

(|∇u|2 − λu2
)

dx−
∫

Ω

fu dx , u ∈ H1
0 (Ω) .

a) Prove that if λ is not an eigenvalue of (−∆) in H1
0 (Ω), then Eλ

satisfies the Palais–Smale condition in H1
0 (Ω).

b) Prove that if λ is an eigenvalue of (−∆) in H1
0 (Ω) and if f = 0,

then Eλ does not satisfy the Palais–Smale condition in H1
0 (Ω).

Problem 8.8 Let X be a real Banach space and let U be an open subset
of X. Let Φ be a real C1 bounded below function on U . Set

a = inf
U

Φ .

Assume F is a closed subset of U such that dist (F, ∂U) > 0 (no assump-
tion if U = X) and

a = inf
F

Φ .

Prove that there exists a sequence (xn) in U such that

Φ(xn)→a, Φ′(xn)→0 in X∗ and dist (xn, F )→0.

Problem 8.9 In Theorem 1.3, instead of the assumption that f is
bounded from below, assume that

f(x) + ϕ(d(x, x0)) ≥ 0 for every x ∈ X,

for some x0 ∈ X and some function ϕ(t) = o(t) as t→+∞. Prove that
the conclusion of Theorem 1.3 still holds.
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Problem 8.10 (Caristi’s fixed point theorem). Let (X, d) be a complete
metric space and let f : X → X be a function. Assume that Ψ : X→R
is a lower semicontinuous function such that

d(x, f(x)) ≤ Ψ(x)−Ψ(f(x)) for all x ∈ X.

Prove that f has a fixed point.

Problem 8.11 Let Φ be a C1 function on RN such that

m = lim inf
‖x‖→∞

Φ(x) is finite.

Prove that there exists a sequence of points (xm) in RN such that
‖xm‖→∞, Φ(xm)→m, ‖Φ′(xm)‖→0 and Φ′(xm) is parallel to xm (Φ′(xm)
may be zero).

Problem 8.12 Let X be a real Banach space and assume that f : X →
R is a function of class C1 such that

inf
‖u−e0‖=ρ

f(u) ≥ α > max{f(e0), f(e1)}

for some α ∈ R and e0 6= e1 ∈ X with 0 < ρ < ‖e0 − e1‖. Set

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

where

Γ = {γ ∈ C([0, 1], X) : γ(0) = e0, γ(1) = e1} .

Prove that the conclusion of Theorem 1.7 can be strengthened as
follows: there exists a sequence (un) in X such that f(un)→c and (1 +
‖un‖) ‖f ′(un)‖→0 as n→∞.

Problem 8.13 Prove the same result if (1+‖u‖) is replaced by ϕ(‖u‖),
where ϕ ≥ 1 and

∫∞
0

dt
ϕ(t) = +∞.

Problem 8.14 Let X be a real Banach space and assume that f, g :
X → R are functions of class C1 satisfying the Palais–Smale condition
with f ≥ g on X. Let K be a compact metric space and let K∗ be a
nonempty closed subset of K, K∗ 6= K. Define

P = {p ∈ C(K, X); p = p∗ on K∗} ,

where p∗ is a fixed continuous map on K. Assume that

c = inf
p∈P

max
t∈K

f(p(t)) = inf
p∈P

max
t∈K

g(p(t)) > inf
p∈P

max
t∈K∗

f(p∗(t)) .
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Prove that f and g have a common critical point where both functions
equal c.

Problem 8.15 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and assume that p is a real number such that 1 < p < (N+2)/(N−2)
if N ≥ 3 and 1 < p < ∞ if N ∈ {1, 2}.

Prove that the nonlinear problem




−∆u + u = up in Ω
u > 0 in Ω
u = 0 on ∂Ω.

has a solution.

Problem 8.16 Establish the same existence result for the problem




−∆u + u = f(x, u) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where

f(x, u) = o
(
|u|(N+2)/(N−2)

)
as u→+∞, uniformly in x ∈ Ω.

Problem 8.17 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and assume that f is a C1 function on [0, 1] such that f > 0 on
(0, 1) and f(0) = f ′(0) = f(1) = 0. Suppose that u ∈ C1

0 (Ω) satisfies
0 < u ≤ 1 in Ω and −∆u ≤ f(u) in Ω.

Consider the nonlinear elliptic problem
{ −∆u = f(u) in Ω

u = 0 on ∂Ω.
(8.1)

Prove that if u is not a solution of (8.1), then there are at least two
solutions u1 and u2 of problem (8.1) with 0 < u1 < u2 < 1 in Ω.

Problem 8.18 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary, λ ∈ R, and p > 1. For any integer j ≥ 1, set

Γj := {A ⊂ H1
0 (Ω); A is compact, symmetric, 0 6∈ A, γ(A) ≥ j} .

Define the functional

E(u) :=
1
2

∫

Ω

[|∇u|2 − λu2]dx− 1
p + 1

∫

Ω

|u|p+1 dx , u ∈ H1
0 (Ω) .
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Prove that

inf
A∈Γj

max
u∈A

E(u) = −∞ and sup
A∈Γj

min
u∈A

E(u) = +∞ .

Problem 8.19 Let (X, ‖ · ‖) be a real Banach space with ‖ · ‖ of class
C1 on X \ {0}. Denote by S = {v ∈ X | ‖v‖ = 1 } the unit sphere and
let J ⊂ R a nonempty open set. Let f : X → R be a function of class
C1 on X \ {0}. We associate to f a function f̃ : J ×X → R defined by

f̃(t, v) = f(tv) ,

where (t, v) ∈ J ×S and J ⊂ R is an nonempty set. Let H : R×X → R
be a C1 function satisfying

〈H ′
v, v〉 6= tH ′

t if H(t, v) = c.

If (t, v) ∈ J × X with tv 6= 0 is a critical point of f̃ , then u = tv is a
critical point of f .

Problem 8.20 Let (X, ‖ · ‖) be a real Banach space with ‖ · ‖ of class
C1 on X \ {0}. Denote by S = {v ∈ X : ‖v‖ = 1 } the unit sphere and
let J ⊂ R a nonempty open set. Let f : X → R be a function of class
C1 on X \ {0}. Suppose that for all v ∈ S the number

f̂(v) = max
t∈J

f(tv)

is finite, and f̂(v) > f(0) if 0 ∈ J . Assume that f̂ : S → R is of class
C1. Then to every critical point v ∈ S of f̂ , there correspond a critical
point u = tv of f with t ∈ J \ {0} such that f(u) = f̂(v).
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Sublinear Problems on Riemann Manifolds

If only I had the theorems!
Then I should find the proofs
easily enough.

Bernhard Riemann
(1826–1866)

In this chapter we are concerned with elliptic problems defined on
compact Riemannian manifolds. This study is motivated by the Emden-
Fowler equation arising in Mathematical Physics; after a suitable trans-
formation, one obtain a new problem defined on the standard unit sphere
Sd, d ≥ 3. This problem has been extensively studied in the case when
the nonlinear term is superlinear and (sub)critical at infinity. Our aim
is to complete these results by considering nonlinear terms of sublinear
type and oscillatory type.

9.1 Introduction

Consider the parametrized Emden-Fowler equation

(EF)λ −4v = λ|x|α−2K(x/|x|)f(|x|−αv), x ∈ Rd+1 \ {0},
where f : R → R is a continuous function, K is smooth on the d-
dimensional unit sphere Sd, d ≥ 3, α ∈ R, and λ > 0 is a parameter.
The equation (EF)λ has been extensively studied in the pure superlinear
case, i.e., when f has the form f(t) = |t|p−1t, p > 1, see for instance
Cotsiolis-Iliopoulos [79], Vázquez-Véron [288]. In these papers, the au-
thors obtained existence and multiplicity of solutions for (EF)λ, applying
either minimization or minimax methods. Note that in the pure super-
linear case the presence of the parameter λ > 0 is not relevant due to
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the rescalling technique. The solutions of (EF)λ are being sought in the
particular form

v(x) = v(|x|, x/|x|) = u(r, σ) = rαu(σ), (9.1)

where (r, σ) ∈ (0,∞) × Sd are the spherical coordinates in Rd+1 \ {0}.
This type of transformation is also used by Bidaut-Véron-Véron [39],
where the asymptotics of a special form of (EF)λ has been studied.
Throughout (9.1), the equation (EF)λ reduces to

(9.1)λ −∆hu + α(1− α− d)u = λK(σ)f(u), σ ∈ Sd,

where ∆h denotes the Laplace-Beltrami operator on (Sd, h) and h is the
canonical metric induced from Rd+1.

Note that when α = −d/2 or α = −d/2 + 1, and f(t) = |t| 4
d−2 t,

the existence of a smooth solution u > 0 of (9.1)λ can be viewed as an
affirmative answer to the famous Yamabe problem on Sd (see also the
Nirenberg problem); for these topics we refer the reader to Aubin [19],
Cotsiolis-Iliopoulos [78], Hebey[136], and references therein. In these
cases the right hand side of (9.1)λ involves the Sobolev critical exponent.

The purposes of this chapter is to guarantee multiple solutions of
(EF)λ for certain λ > 0 when the nonlinearity f : R→ R has a

(i) sublinear growth at infinity; or
(ii) oscillatory behaviour near zero or at infinity.

9.2 Existence of two solutions

Since 1− d < α < 0 implies the coercivity of the operator u 7→ −∆hu +
α(1 − α − d)u, the form of (9.1)λ motivates the study of the following
general eigenvalue problem, which constitutes the main objective of this
section: Find λ ∈ (0,∞) and u ∈ H2

1 (M) such that

(Pλ) −∆gu + α(σ)u = K̃(λ, σ)f(u), σ ∈ M,

where we assume

(A1) (M, g) is a smooth compact d-dimensional Riemannian manifold
without boundary, d ≥ 3;

(A2) α ∈ C∞(M) and K̃ ∈ C∞((0,∞)×M) are positive functions;
(f1) f : R → R is locally Hölder continuous and sublinear at infinity,

that is,

lim
|s|→∞

f(s)
s

= 0. (9.2)
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A typical case when (9.2) holds is

(fq,c
1 ) There exist q ∈ (0, 1) and c > 0 such that |f(s)| ≤ c|s|q for every

s ∈ R.

As usual, ∆g is the Laplace-Beltrami operator on (M, g); its expression
in local coordinates is ∆gu = gij(∂iju−∂uk

ij∂ku). For every u ∈ C∞(M),
set

‖u‖2H2
α

=
∫

M

〈∇u,∇u〉dσg +
∫

M

α(σ)〈u, u〉dσg,

where 〈·, ·〉 is the inner product on covariant tensor fields associated to g,

∇u is the covariant derivative of u, and dσg is the Riemannian measure.
The Sobolev space H2

α(M) is defined as the completion of C∞(M) with
respect to the norm ‖ · ‖H2

α
. Clearly, H2

α(M) is a Hilbert space endowed
with the inner product

〈u1, u2〉H2
α

=
∫

M

〈∇u1,∇u2〉dσg+
∫

M

α(σ)〈u1, u2〉dσg, u1, u2 ∈ H2
α(M).

Since α is positive, the norm ‖ · ‖H2
α

is equivalent with the standard
norm ‖ · ‖H2

1
; actually, the latter norm is nothing but ‖ · ‖H2

α
with α = 1.

Moreover, we have

min{1, min
M

α1/2}‖u‖H2
1
≤ ‖u‖H2

α
≤ max{1, ‖α‖1/2

L∞}‖u‖H2
1
, u ∈ H2

α(M).

(9.3)

Note that H2
α(M) is compactly embedded into Lp(M) for every p ∈

[1, 2d/(d−2)); the Sobolev embedding constant will be denoted by Sp >

0.

The presence of the parameter λ > 0 in (Pλ) is indispensable. Indeed,
if we consider a sublinear function at infinity which is, in addition, uni-
formly Lipschitz (with Lipschitz constant L > 0), and K̃(λ, σ) = λK(σ),
with K ∈ C∞(M) positive, one can prove that for 0 < λ < 1

L
minM α
maxM K :=

λL we have only the u = uλ = 0 solution of (Pλ), as the standard con-
traction principle on the Hilbert space H2

1 (M) shows. For a concrete
example, let us consider the function f(s) = ln(1 + s2) and assume that
K(σ)
α(σ) = const. = µ0 ∈ (0,∞). Then, for every 0 < λ < minM α

µ0 maxM α , prob-
lem (Pλ) has only the trivial solution; however, when λ > 5

4µ0
, problem

(Pλ) has three distinct constant solutions which are precisely the fixed
points of the function s 7→ λµ0 ln(1+ s2). Note that one of the solutions
is the trivial one.



232 Sublinear Problems on Riemann Manifolds

Let λ > 0. The energy functional Eλ : H2
1 (M) → R associated with

problem (Pλ) is

Eλ(u) =
1
2
‖u‖2H2

α
−

∫

M

K̃(λ, σ)F (u(σ))dσg, (9.4)

where F (s) =
∫ s

0
f(τ)dτ. Due to our initial assumptions (A1), (A2) and

(f1), the functional Eλ is well-defined, it belongs to C1(H2
1 (M),R), and

its critical points are precisely the weak (so, classical) solutions of prob-
lem (Pλ). By (f1), for every ε > 0 sufficiently small there is c(ε) > 0 such
that |f(s)| ≤ ε|s|+ c(ε) for every s ∈ R. Thus, for every u ∈ H2

1 (M), we
have

Eλ(u) ≥ 1
2
(1− ε‖K̃(λ, ·)‖L∞S2

2)‖u‖2H2
α
− c(ε)‖K̃(λ, ·)‖L∞S1‖u‖H2

α
.

Therefore, the functional Eλ is coercive and bounded from below on
H2

1 (M). Moreover, it satisfies the standard Palais-Smale condition, see
Zeidler [296, Example 38.25].

Our first result concerns the case when f : R→ R fulfills the hypoth-
esis

(f2) There exists ν0 > 1 such that lims→0
f(s)
|s|ν0 = 0.

Before to state this result, let us note that the usual norm on the space
Lp(M) will be denoted by ‖ · ‖p, p ∈ [1,∞].

Theorem 9.1 Assume that f : R→ R fulfills (f1), (f2) and sups∈R F (s) >

0. Assume also that (A1) and (A2) are verified with K̃(λ, σ) = λK(σ),
and K ∈ C∞(M) is positive. Then

(i) for every λ > λ∗ := 1
2

‖α‖L1

‖K‖L1

(
maxs 6=0

F (s)
s2

)−1

problem (Pλ) has

at least two distinct, nontrivial solutions u1
λ, u2

λ ∈ H2
1 (M), where

u1
λ is the global minimum of the energy functional associated with

(Pλ);
(ii) if (fq,c

1 ) holds then ‖u1
λ‖H2

1
= o(λ

1
1−r ) for every r ∈ (q, 1), but

‖u1
λ‖H2

1
6= O(λ

1
1−µ ) for any µ ∈ (1, (d + 2)/(d− 2)) as λ →∞.

A direct consequence of Theorem 9.1 applied for (9.1)λ is the following

Theorem 9.2 Assume that 1− d < α < 0. Let f : R→ R be a function
as in Theorem 9.1 and K ∈ C∞(Sd) positive. Then, for every λ > λ∗

problem (EF)λ has at least two distinct, nontrivial solutions.
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Fig. 9.1. The function f(s) = ln(1 + s2).

Example 9.1 Let f(s) = ln(1 + s2), see Figure 9.1. One can apply
Theorems 9.1–9.2.

Proof of Theorem 9.1. Due to (9.2) and (f2), the term F (s)/s2 tends to
0 as |s| → ∞ and s → 0, respectively. Since there exists s0 ∈ R such that
F (s0) > 0, the number λ∗ is well-defined. Now, fix a number s∗ ∈ R\{0}
such that F (s∗)

(s∗)2 = maxs 6=0
F (s)
s2 . Therefore, λ∗ = 1

2

‖α‖L1

‖K‖L1

(s∗)2

F (s∗) .

Fix λ > λ∗. Let us first consider the constant function us∗(σ) = s∗,
σ ∈ M. One has

Eλ(us∗) =
1
2
‖us∗‖2H2

α
− λ

∫

M

K(σ)F (us∗(σ))dσg

=
1
2
‖α‖L1(s∗)2 − λ‖K‖L1F (s∗) = (λ∗ − λ)‖K‖L1F (s∗)

< 0.

Thus, infH2
1 (M) Eλ ≤ Eλ(us∗) < 0. Since Eλ verifies the (PS)-condition

and it is bounded from below, one can find u1
λ ∈ H2

1 (M) such that
Eλ(u1

λ) = infH2
1 (M) Eλ, see Theorem 1.4. Therefore, u1

λ ∈ H2
1 (M) is the

first solution of (Pλ) and u1
λ 6= 0, since Eλ(0) = 0.

Now, we prove that for every λ > λ∗ the functional Eλ has the standard
Mountain Pass geometry. First, due to (f1) and (f2), one can fix two
numbers C > 0 and 1 < ν < d+2

d−2 such that

|F (s)| ≤ C|s|ν+1, s ∈ R.

Since ν + 1 < 2d
d−2 (thus H2

α(M) ↪→ Lν+1(M) is continuous), one has

Eλ(u) ≥ 1
2
‖u‖2H2

α
− λC‖K‖L∞Sν+1

ν+1‖u‖ν+1
H2

α
, u ∈ H2

1 (M). (9.5)
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Let us take ρλ > 0 so small such that

ρλ < min
{

(2λC‖K‖L∞Sν+1
ν+1)

1
1−ν min{1, ‖α‖−1/2}, |s∗|(Volg(M))1/2

}
.

Consequently, by (9.5), for every u ∈ H2
1 (M) complying with ‖u‖H2

1
=

ρλ, we have

Eλ(u) ≥
(

1
2
− λC‖K‖L∞Sν+1

ν+1‖u‖ν−1
H2

α

)
‖u‖2H2

α

≥
(

1
2
− λC‖K‖L∞Sν+1

ν+1 max{1, ‖α‖(ν−1)/2
L∞ }ρν−1

λ

)
min{1,min

M
α}ρ2

λ

≡ η(ρλ) > 0.

By construction, one has ‖us∗‖H2
1

= |s∗|(Volg(M))1/2 > ρλ and from
above Eλ(us∗) < 0 = Eλ(0). Since Eλ satisfies the (PS)-condition, one
can apply the mountain pass theorem. Thus, there exists an element
u2

λ ∈ H2
1 (M) such that E ′λ(u2

λ) = 0 and Eλ(u2
λ) ≥ η(ρλ) > 0. In par-

ticular, u2
λ 6= 0, and the elements u1

λ and u2
λ are distinct. This ends

(i).
Now, we assume that (f c,q

1 ) holds. Since Eλ(u1
λ) < 0, then

1
2
‖u1

λ‖2H2
α
− λ

c

q + 1
‖K‖L∞Sq+1

2 (Volg(M))(1−q)/2‖u1
λ‖q+1

H2
α

< 0.

In particular, ‖u1
λ‖H2

1
= O(λ

1
1−q ) as λ → ∞. Therefore, for every r ∈

(q, 1), one has ‖u1
λ‖H2

1
= o(λ

1
1−r ) as λ →∞.

Let us assume that ‖u1
λ‖H2

1
= O(λ

1
1−µ ) for some µ ∈ (1, (d+2)/(d−2))

as λ → ∞. Consequently, ‖u1
λ‖H2

α
→ 0 as λ → ∞. On the other hand,

since Eλ(u1
λ) ≤ (λ∗− λ)‖K‖L1F (t∗), then Eλ(u1

λ) → −∞ as λ →∞. On
account of (9.5), we have

(
1
2
− λC‖K‖L∞Sµ+1

µ+1‖u1
λ‖µ−1

H2
α

)
‖u1

λ‖2H2
α
→ −∞

as λ → ∞. Therefore, the expression λ‖u1
λ‖µ−1

H2
α

necessarily tends to ∞
as λ → ∞. But this contradicts the initial assumption. This completes
(ii). ¤

Proof of Theorem 9.2. Let us choose (M, g) = (Sd, h), and α(σ) :=
α(1 − α − d) for every σ ∈ Sd in Theorem 9.1. Thus, for every λ > λ∗,
problem (9.1)λ has at least two distinct, nontrivial solutions u1

λ, u2
λ ∈

H2
1 (Sd). On account of (9.1), the elements vi

λ(x) = |x|αui
λ(x/|x|), i ∈
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{1, 2}, are solutions of (EF)λ. ¤

Now, instead of (f2) we consider a weaker assumption, namely:

(f ′2) lims→0
f(s)

s = 0.

The following result shows that (f ′2) is still enough to prove a similar
multiplicity result as Theorem 9.1, but we loose unfortunately the precise
location of the eigenvalues. More precisely, we have

Theorem 9.3 Assume that f : R→ R fulfills (f1), (f ′2) and sups∈R F (s) >

0. Assume also that (A1) and (A2) are verified with K̃(λ, σ) = λK(σ).
Then there exist a nonempty open interval Λ ⊂ (0,∞) and a number

γ > 0 such that for every λ ∈ Λ problem (Pλ) has at least two distinct,
nontrivial solutions u1

λ, u2
λ ∈ H2

1 (M) and ‖ui
λ‖H2

1
< γ, i ∈ {1, 2}.

Similarly as in Theorem 9.2, we have

Theorem 9.4 Assume that 1− d < α < 0. Let f : R→ R be a function
as in Theorem 9.3 and K ∈ C∞(Sd) positive. Then, there exists a
nonempty open interval Λ ⊂ (0,∞) such that for every λ ∈ Λ problem
(EF)λ has at least two distinct, nontrivial solutions.

Example 9.2 Let f : R → R be defined by f(s) = 0 for s ≤ 0,

f(s) = s
ln s for s ∈ (0, e−1] and f(s) = −e−1 for s > e−1, see Figure 9.2.

Note that f satisfies (f ′2) but not (f2) for any ν0 > 1. Therefore, one
can apply Theorems 9.3 and 9.4 (but not Theorems 9.1 and 9.2).

In order to prove Theorems 9.3 and 9.4, we introduce the functionals
N ,F : H2

1 (M) → R defined by

N (u) =
1
2
‖u‖2H2

α
and F(u) =

∫

M

K(σ)F (u(σ))dσg, u ∈ H2
1 (M).

(9.6)

Proposition 9.1 limρ→0+
sup{F(u):N (u)<ρ}

ρ = 0.

Proof. Due to (f ′2), for an arbitrarily small ε > 0 there exists δ(ε) > 0
such that |f(s)| < ε(2‖K‖L∞S2

2)−1|s| for every |s| < δ(ε). On account
of (f1), one may fix 1 < ν < d+2

d−2 and c(ε) > 0 such that |f(s)| < c(ε)|s|ν
for every |s| ≥ δ(ε). Combining these two facts, after an integration, we
obtain

|F (s)| ≤ ε(4‖K‖L∞S2
2)−1s2 + c(ε)(ν + 1)−1|s|ν+1 for every s ∈ R.
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Fig. 9.2. The function from Example 9.2.

Fix a ρ > 0 and any element u ∈ H2
α(M) complying with N (u) < ρ.

Due to the above estimation, we have

F(u) ≤ ε

4
‖u‖2H2

α
+

c(ε)
ν + 1

‖K‖L∞Sν+1
ν+1‖u‖ν+1

H2
α

<
ε

2
ρ +

c(ε)
ν + 1

‖K‖L∞Sν+1
ν+1(2ρ)

ν+1
2 =

ε

2
ρ + c′(ε)ρ

ν+1
2 .

Thus there exists ρ(ε) > 0 such that for every 0 < ρ < ρ(ε), we have

0 ≤ sup{F(u) : N (u) < ρ}
ρ

≤ ε

2
+ c′(ε)ρ

ν−1
2 < ε,

which completes the proof. ¤

Proof of Theorem 9.3. Let X = H2
1 (M), and the functionals N ,F

defined in (9.6). Note that Eλ = N−λF . We know already that for every
λ > 0 the functional Eλ = N − λF is coercive and satisfies the Palais-
Smale condition. Moreover, since the embedding H2

1 (M) ↪→ Lp(M) is
compact, 1 ≤ p < 2d/(d − 2), the functional F is sequentially weakly
continuous; thus, Eλ is sequentially weakly lower semicontinuous.

Due to (9.2) and (f ′2), the term F (s)/s2 tends to 0 as |s| → ∞ and
s → 0, respectively. Since there exists s0 ∈ R such that F (s0) > 0, we
may fix a number s∗ 6= 0 such that F (s∗)

(s∗)2 = maxs6=0
F (s)
s2 . Therefore, λ∗

appearing in Theorem 9.1 is well-defined and λ∗ = 1
2

‖α‖L1

‖K‖L1

(s∗)2

F (s∗) .

Now, let us choose u0 = 0, and u1(σ) = us∗(σ) = s∗ for every σ ∈ M.

Fixing ε ∈ (0, 1), due to Proposition 9.1, one may choose ρ > 0 such
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that
sup{F(u) : N (u) < ρ}

ρ
<

ε

λ∗
; (9.7)

ρ <
1
2
(s∗)2‖α‖L1 .

Note that ε
λ∗ < 1

λ∗ = F(u1)
N (u1)

and 1
2 (s∗)2‖α‖L1 = N (u1). Therefore, by

choosing

a =
1 + ε

F(u1)
N (u1)

− sup{F(u):N (u)<ρ}
ρ

, (9.8)

all the hypotheses of Theorem 1.13 are verified. Consequently, there is
a nonempty open interval Λ ⊂ [0, a] and a number γ > 0 such that for
every λ ∈ Λ, the functional Eλ has at least three distinct critical points
in H2

1 (M) having ‖ · ‖H2
1
-norm less than γ. This ends the proof of The-

orem 9.3. ¤

Proof of Theorem 9.4. Similar to Theorem 9.2. ¤

9.3 Existence of many global minima

In order to obtain a new kind of multiplicity result concerning (Pλ)
(specially, (9.1)λ and (EF)λ), we require:

(f3) There exists µ0 ∈ (0,∞) such that the global minima of the func-
tion s 7→ F̃µ0(s) := 1

2s2 − µ0F (s) has at least m ≥ 2 connected
components.

Note that (f3) implies that the function s 7→ F̃µ0(s) has at least m− 1
local maxima. Thus, the function s 7→ µ0f(s) has at least 2m− 1 fixed
points. In particular, if for some λ > 0 one has K̃(λ,σ)

α(σ) = µ0 for every
σ ∈ M, then problem (Pλ) has at least 2m − 1 ≥ 3 constant solutions.
On the other hand, the following general result can be shown.

Theorem 9.5 Let f : R→ R be a function which fulfills (f1) and (f3).
Assume that (A1) and (A2) are verified with K̃(λ, σ) = λK(σ)+µ0α(σ),
and K ∈ C∞(M) is positive. Then

(i) for every η > max{0, ‖α‖L1 mins∈R F̃µ0(s)} there exists a number
λ̃η > 0 such that for every λ ∈ (0, λ̃η) problem (Pλ) has at least
m + 1 solutions u1,η

λ , . . . , um+1,η
λ ∈ H2

1 (M);
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Fig. 9.3. The function f(s) = min{s+ − sin(πs+), 2(m − 1)} from Example 9.3 for
m = 5.

(ii) if (fq,c
1 ) holds then for each λ ∈ (0, λ̃η) there is a set Iλ ⊂

{1, . . . , m + 1} with card(Iλ) = m such that

‖ui,η
λ ‖H2

1
<

sη,q,c

min{1,minM α1/2} , i ∈ Iλ,

where sη,q,c > 0 is the greatest solution of the equation

1
2
s2 − µ0c‖α‖(1−q)/2

L1

q + 1
sq+1 − η = 0, s > 0.

A consequence of Theorem 9.5 in the context of (EF)λ reads as follows.

Theorem 9.6 Assume that 1− d < α < 0. Let f : R→ R be a function
as in Theorem 9.5 and K ∈ C∞(Sd) be a positive function. Then, there
exists λ0 > 0 such that for every λ ∈ (0, λ0) problem

−4v = |x|α−2[λK(x/|x|) + µ0α(1− α− d)]f(|x|−αv), x ∈ Rd+1 \ {0}

has at least m + 1 solutions.

Example 9.3 Let f : R→ R be defined by f(s) = min{s+−sin(πs+), 2(m−
1)} where m ∈ N \ {1} is fixed and we use the notation s+ = max{s, 0}.
Clearly, (f1) is verified, while for µ0 = 1, the assumption (f3) is also
fulfilled. Indeed, the function s 7→ F̃1(s) has precisely m global minima;
they are 0, 2, . . . , 2(m− 1). Moreover, mins∈R F̃1(s) = 0. Therefore, one
can apply Theorems 9.5 and 9.6.
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In order to prove Theorems 9.5 and 9.6, throughout relation (9.6), we
define the functional Nµ0 : H2

1 (M) → R by

Nµ0(u) = N (u)− µ0

∫

M

α(σ)F (u(σ))dσg, u ∈ H2
1 (M).

Proposition 9.2 The set of all global minima of the functional Nµ0 has
at least m connected components in the weak topology on H2

1 (M).

Proof. First, for every u ∈ H2
1 (M) we have

Nµ0(u) =
1
2
‖u‖2H2

α
− µ0

∫

M

α(σ)F (u(σ))dσg

=
1
2

∫

M

|∇u|2dσg +
∫

M

α(σ)F̃µ0(u(σ))dσg

≥ ‖α‖L1 inf
s∈R

F̃µ0(s).

Moreover, if we consider u(σ) = us̃(σ) = s̃ for a.e. σ ∈ M, where s̃ ∈ R
is a minimum point of the function s 7→ F̃µ0(s), then we have equality
in the previous estimation. Thus,

inf
u∈H2

1 (M)
Nµ0(u) = ‖α‖L1 inf

s∈R
F̃µ0(s).

Moreover, if u ∈ H2
1 (M) is not a constant function, then |∇u|2 =

gij∂iu∂ju > 0 on a positive measured set of the manifold M. In this
case, we have

Nµ0(u) =
1
2

∫

M

|∇u|2dσg +
∫

M

α(σ)F̃µ0(u(σ))dσg > ‖α‖L1 inf
s∈R

F̃µ0(s).

Consequently, between the sets

Min(Nµ0) = {u ∈ H2
1 (M) : Nµ0(u) = inf

u∈H2
1 (M)

Nµ0(u)}

and

Min(F̃µ0) = {s ∈ R : F̃µ0(s) = inf
s∈R

F̃µ0(s)}

there is a one-to-one correspondence. Indeed, let θ be the function that
associates to every number t ∈ R the equivalence class of those func-
tions which are a.e. equal to t in the whole manifold M. Then θ :
Min(F̃µ0) → Min(Nµ0) is actually a homeomorphism between Min(F̃µ0)
and Min(Nµ0), where the set Min(Nµ0) is considered with the relativiza-
tion of the weak topology on H2

1 (M). On account of the hypothesis (f3),



240 Sublinear Problems on Riemann Manifolds

the set Min(F̃µ0) contains at least m ≥ 2 connected components. There-
fore, the same is true for the set Min(Nµ0), which completes the proof. ¤

Proof of Theorem 9.5. Let us choose X = H2
1 (M), N = Nµ0 and

G = −F in Theorem 1.18. Due to Proposition 9.2 and to basic properties
of the functions Nµ0 , F , all the hypotheses of Theorem 1.18 are satisfied.

Then, for every η > max{0, ‖α‖L1 mins∈R F̃µ0(s)}
(
≥ infu∈H2

1 (M)Nµ0(u)}
)

there is a number λ̃η > 0 such that for every λ ∈ (0, λ̃η) the function
Nµ0 − λF has at least m + 1 critical points; let us denote them by
u1,η

λ , . . . , um+1,η
λ ∈ H2

1 (M). Clearly, they are solutions of problem (Pλ),
which concludes (i).

We know in addition that m elements from u1,η
λ , . . . , um+1,η

λ belong to
the set N−1

µ0
((−∞, η)). Let ũ be such an element, i.e.,

Nµ0(ũ) =
1
2
‖ũ‖2H2

α
− µ0

∫

M

α(σ)F (ũ(σ))dσg < η. (9.9)

Assume that (fq,c
1 ) holds. Then |F (s)| ≤ c

q+1 |s|q+1 for every s ∈ R. By
using the Hölder inequality, one has

∫

M

α(σ)|ũ(σ)|q+1dσg ≤ ‖α‖(1−q)/2
L1 ‖ũ‖q+1

H2
α

. (9.10)

Since η > 0, the equation

1
2
s2 − µ0c‖α‖(1−q)/2

L1

q + 1
|s|q+1 − η = 0, (9.11)

always has a positive solution. On account of (9.9) and (9.10), the num-
ber ‖ũ‖H2

α
is less then the greatest solution sη,q,c > 0 of the equation

(9.11). It remains to apply (9.3), which concludes (ii). ¤

Proof of Theorem 9.6. It follows directly by Theorem 9.5. ¤

9.4 Comments and perspectives
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Critical Problems on Spheres

Facts are the air of scientists.
Without them you can never
fly.

Linus Pauling (1901–1994)

10.1 Introduction

We consider the nonlinear elliptic problem

−∆hu = f(u) on Sd, (P)

where ∆hu = divh(∇u) denotes the Laplace-Beltrami operator acting
on u : Sd → R, (Sd, h) is the unit sphere, h being the canonical metric
induced from Rd+1.

Consider a continuous nonlinearity f : R→ R that satisfies (fL
1 ) and

(fL
2 ) from Section 7.1, where L denotes 0+ or +∞. As we pointed out

before, these assumptions imply that f has an oscillatory behaviour at
L. In particular, a whole sequence of distinct, constant solutions for (P)
appears as zeros of the function s 7→ f(s), s > 0.

The purpose of this section is to investigate the existence of non-
constant solutions for (P) under the assumptions (fL

1 ) and (fL
2 ). This

problem will be achieved by constructing sign-changing solutions for
(P). We prove two multiplicity results corresponding to L = 0+ and
L = +∞, respectively; the ’piquancy’ is that not only infinitely many
sign-changing solutions for (P) are guaranteed but we also give a lower
estimate of the number of those sequences of solutions for (P) whose
elements in different sequences are mutually symmetrically distinct.

In order to handle this problem, solutions for (P) are being sought in

241
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the standard Sobolev space H2
1 (Sd). We say that u ∈ H2

1 (Sd) is a weak
solution for (P) if

∫

Sd

〈∇u,∇v〉dσh =
∫

Sd

f(u)vdσh for all v ∈ H2
1 (Sd).

Since we are interested in the existence of infinitely many sign-changing
solutions, it seems some kind of symmetry hypothesis on the nonlinear-
ity f is indispensable; namely, we assume that f is odd in an arbitrarily
small neighborhood of the origin whenever L = 0+, and f is odd on the
whole R whenever L = +∞. In the case L = 0+ no further assumption
on f is needed at infinity (neither symmetry nor growth of f ; in partic-
ular, f may have even a supercritical growth). However, when L = +∞,
we have to control the growth of f ; we assume f(s) = O(s

d+2
d−2 ) as s →∞,

that is, f has an asymptotically critical growth at infinity. In both cases
(L = 0+ and L = +∞), the energy functional E : H2

1 (Sd) → R associ-
ated with (P) is well-defined, which is the key tool in order to achieve
our results.

The first task is to construct certain subspaces of H2
1 (Sd) containing

invariant functions under special actions defined by means of carefully
chosen subgroups of the orthogonal group O(d + 1). A particular form
of this construction has been first exploited by Ding [89]. In our case,
every nontrivial element from these subspaces of H2

1 (Sd) changes the
sign. The main feature of these subspaces of H2

1 (Sd) is based on the
symmetry properties of their elements: no nontrivial element from one
subspace can belong to another subspace, i.e., elements from distinct
subspaces are distinguished by their symmetries. Consequently, guaran-
teeing nontrivial solutions for (P) in distinct subspaces of H2

1 (Sd) of the
above type, these elements cannot be compared with each other. In the
next subsection we show by an explicit construction that the minimal
number of these subspaces of H2

1 (Sd) is sd = [d/2] + (−1)d+1 − 1. Here,
[·] denotes the integer function.

10.2 Group-theoretical argument

Let d ≥ 5 and sd = [d/2] + (−1)d+1 − 1. For every i ∈ {1, ..., sd}, we
define

Gd,i =
{

O(i + 1)×O(d− 2i− 1)×O(i + 1), if i 6= d−1
2 ,

O(d+1
2 )×O(d+1

2 ), if i = d−1
2 .
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Let us denote by 〈Gd,i; Gd,j〉 the group generated by Gd,i and Gd,j . The
key result of this section is

Proposition 10.1 For every i, j ∈ {1, ..., sd} with i 6= j, the group
〈Gd,i; Gd,j〉 acts transitively on Sd.

Proof. Without loosing the generality, we may assume that i < j.

The proof is divided into three steps. For abbreviation, we introduce
the notation 0k = (0, ..., 0) ∈ Rk, k ∈ {1, ..., d + 1}.

Step 1. The group 〈Gd,i; Gd,j〉 acts transitively on Sd−j−1 × {0j+1}.
When j = d−1

2 , the proof is trivial since O(d+1
2 ) acts transitively on

S
d−1
2 . Assume so that j 6= d−1

2 . We show that for every σ = (σ1, σ2, σ3) ∈
Sd−j−1 with σ1 ∈ Ri+1, σ2 ∈ Rj−i, σ3 ∈ Rd−2j−1, and ω ∈ Sj fixed
arbitrarily, there exists gij ∈ 〈Gd,i; Gd,j〉 such that

gij(ω, 0d−j) = (σ, 0j+1). (10.1)

Since O(j + 1) acts transitively on Sj , for every σ̃2 ∈ Rj−i with the
property that (σ1, σ̃2) ∈ Sj , there exists an element gj ∈ O(j + 1) such
that

gjω = (σ1, σ̃2). (10.2)

Note that |σ1|2 + |σ̃2|2 = 1 and |σ1|2 + |σ2|2 + |σ3|2 = 1; so |σ̃2|2 =
|σ2|2 + |σ3|2.

If σ̃2 = 0j−i then σ2 = 0j−i and σ3 = 0d−2j−1; thus, σ = (σ1, 0d−j−i−1).
Let gij := gj × idRd−j ∈ Gd,j . Then, due to (10.2), we have

gij(ω, 0d−j) = (gjω, 0d−j) = (σ1, 0j−i, 0d−j) = (σ1, 0d−i) = (σ, 0j+1),

which proves (10.1).
If σ̃2 6= 0j−i, let r = |σ̃2| > 0. Since O(d − 2i − 1) acts transitively

on Sd−2i−2 (thus, also on the sphere rSd−2i−2), then there exists gi ∈
O(d− 2i− 1) such that gi(σ̃2, 0d−j−i−1) = (σ2, σ3, 0j−i) ∈ rSd−2i−2. Let

g̃i = idRi+1 × gi × idRi+1 ∈ Gd,i and g̃j = gj × idRd−j ∈ Gd,j .

Then gij := g̃ig̃j ∈ 〈Gd,i; Gd,j〉 and on account of (10.2) and i+1 < d−j

(since i < j ≤ sd), we have

g̃ig̃j(ω, 0d−j) = g̃i(gjω, 0d−j) = g̃i(σ1, σ̃2, 0d−j) = (σ1, gi(σ̃2, 0d−j−i−1), 0i+1)

= (σ1, σ2, σ3, 0j−i, 0i+1) = (σ, 0j+1),

i.e., relation (10.1).
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Now, let σ, σ̃ ∈ Sd−j−1. Then, fixing ω ∈ Sj , on account of (10.1),
there are g1, g2 ∈ 〈Gd,i;Gd,j〉 such that g1(ω, 0d−j) = (σ, 0j+1) and
g2(ω, 0d−j) = (σ̃, 0j+1). Consequently, g2g

−1
1 ∈ 〈Gd,i;Gd,j〉 and g2g

−1
1 (σ, 0j+1) =

(σ̃, 0j+1), i.e., the group 〈Gd,i; Gd,j〉 acts transitively on Sd−j−1×{0j+1}.
Step 2. The group 〈Gd,i;Gd,j〉 acts transitively on Sd−i−1 × {0i+1}.

We can proceed in a similar way as in Step 1; however, for the reader’s
convenience, we sketch the proof. We show that for every σ = (σ1, σ2, σ3) ∈
Sd−i−1 with σ1 ∈ Ri+1, σ2 ∈ Rd−j−i−1, σ3 ∈ Rj−i, and ω ∈ Sd−j−1 fixed
arbitrarily, there is gij ∈ 〈Gd,i;Gd,j〉 such that

gij(ω, 0j+1) = (σ, 0i+1). (10.3)

Let σ̃2 ∈ Rd−j−i−1 be such that |σ1|2 + |σ̃2|2 = 1. Then, due to Step 1,
there exists g̃ij ∈ 〈Gd,i; Gd,j〉 such that g̃ij(ω, 0j+1) = (σ1, σ̃2, 0j+1).

If σ̃2 = 0d−j−i−1 then σ2 = 0d−j−i−1 and σ3 = 0j−i; thus, (10.3) is
verified with the choice gij := g̃ij ∈ 〈Gd,i; Gd,j〉.

If σ̃2 6= 0d−j−i−1 then let r = |σ̃2| > 0. Since O(d − 2i − 1) acts
transitively on Sd−2i−2 (thus, also on the sphere rSd−2i−2), then there
exists gi ∈ O(d − 2i − 1) such that gi(σ̃2, 0j−i) = (σ2, σ3) ∈ rSd−2i−2.

Let g̃i = idRi+1 × gi × idRi+1 ∈ Gd,i. Then

g̃ig̃ij(ω, 0j+1) = g̃i(σ1, σ̃2, 0j+1) = (σ1, gi(σ̃2, 0j−i), 0i+1) = (σ, 0i+1).

Consequently, gij := g̃ig̃ij ∈ 〈Gd,i; Gd,j〉 verifies (10.3). Now, following
the last part of Step 1, our claim follows.

Step 3. (Proof concluded) The group 〈Gd,i;Gd,j〉 acts transitively on
Sd.
We show that for every σ = (σ1, σ2, σ3) ∈ Sd with σ1 ∈ Ri+1, σ2 ∈
Rd−j−i−1, σ3 ∈ Rj+1, and ω ∈ Sd−i−1 fixed arbitrarily, there is gij ∈
〈Gd,i; Gd,j〉 such that

gij(ω, 0i+1) = σ. (10.4)

Let σ̃3 ∈ Rj−i such that |σ̃3| = |σ3|. Then, due to Step 2, there exists
g̃ij ∈ 〈Gd,i;Gd,j〉 such that g̃ij(ω, 0i+1) = (σ1, σ2, σ̃3, 0i+1).

If σ̃3 = 0j−i then σ3 = 0j+1 and (10.4) is verified by choosing gij :=
g̃ij ∈ 〈Gd,i;Gd,j〉.

If σ̃3 6= 0j−i, let r = |σ̃3| = |σ3| > 0. Since O(j + 1) acts transitively
on Sj , there exists gj ∈ O(j + 1) such that gj(σ̃3, 0i+1) = σ3 ∈ rSj . Let
us fix the element g̃j = idRd−j × gj ∈ Gd,j . Then

g̃j g̃ij(ω, 0i+1) = g̃j(σ1, σ2, σ̃3, 0i+1) = (σ1, σ2, gj(σ̃3, 0i+1)) = (σ1, σ2, σ3) = σ.

Consequently, gij := g̃j g̃ij ∈ 〈Gd,i; Gd,j〉 verifies (10.4).
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Now, let σ, σ̃ ∈ Sd. Then, fixing ω ∈ Sd−i−1, on account of (10.4), there
are g1, g2 ∈ 〈Gd,i;Gd,j〉 such that g1(ω, 0i+1) = σ and g2(ω, 0i+1) = σ̃.
Consequently, g2g

−1
1 ∈ 〈Gd,i; Gd,j〉 and g2g

−1
1 (σ) = σ̃, i.e., the group

〈Gd,i; Gd,j〉 acts transitively on Sd. This completes the proof. ¤

Let d ≥ 5 and fix Gd,i for some i ∈ {1, ..., sd}. We define the function
τi : Sd → Sd associated to Gd,i by

τi(σ) =

{
(σ3, σ2, σ1), if i 6= d−1

2
, and σ = (σ1, σ2, σ3) with σ1, σ3 ∈ Ri+1, σ2 ∈ Rd−2i−1;

(σ3, σ1), if i = d−1
2

, and σ = (σ1, σ3) with σ1, σ3 ∈ R d+1
2 .

The explicit form of the groups Gd,i and the functions τi can be seen
in Table 1 for dimensions d = 5, ..., 12. It is clear by construction that
τi /∈ Gd,i, τiGd,iτ

−1
i = Gd,i and τ2

i = idRd+1 .

d sd Gd,i; i ∈ {1, ..., sd} τi; i ∈ {1, ..., sd}
5 2 G5,1 = O(2)×O(2)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ2, σ3 ∈ R2

G5,2 = O(3)×O(3) τ2(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R3

6 1 G6,1 = O(2)×O(3)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R3

7 3 G7,1 = O(2)×O(4)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R4

G7,2 = O(3)×O(2)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R3, σ2 ∈ R2

G7,3 = O(4)×O(4) τ3(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R4

8 2 G8,1 = O(2)×O(5)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R5

G8,2 = O(3)×O(3)×O(3) τ2(σ1, σ2, σ3) = (σ2, σ1, σ3); σ1, σ2, σ3 ∈ R3

9 4 G9,1 = O(2)×O(6)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R6

G9,2 = O(3)×O(4)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R3, σ2 ∈ R4

G9,3 = O(4)×O(2)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R4, σ2 ∈ R2

G9,4 = O(5)×O(5) τ4(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R5

10 3 G10,1 = O(2)×O(7)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R7

G10,2 = O(3)×O(5)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R3, σ2 ∈ R5

G10,3 = O(4)×O(3)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R4, σ2 ∈ R3

11 5 G11,1 = O(2)×O(8)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R8

G11,2 = O(3)×O(6)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R3, σ2 ∈ R6

G11,3 = O(4)×O(4)×O(4) τ3(σ1, σ2, σ3) = (σ2, σ1, σ3); σ1, σ2, σ3 ∈ R4

G11,4 = O(5)×O(2)×O(5) τ4(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R5, σ2 ∈ R2

G11,5 = O(6)×O(6) τ5(σ1, σ2) = (σ2, σ1); σ1, σ2 ∈ R6

12 4 G12,1 = O(2)×O(9)×O(2) τ1(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R2, σ2 ∈ R9

G12,2 = O(3)×O(7)×O(3) τ2(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R3, σ2 ∈ R7

G12,3 = O(4)×O(5)×O(4) τ3(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R4, σ2 ∈ R5

G12,4 = O(5)×O(3)×O(5) τ4(σ1, σ2, σ3) = (σ3, σ2, σ1); σ1, σ3 ∈ R5, σ2 ∈ R3

Table 1.

Inspired by [30], [32], we introduce the action of the group Gτi

d,i =
〈Gd,i, τi〉 ⊂ O(d + 1) on the space H2

1 (Sd). Due to the above properties
of τi, only two types of elements in Gτi

d,i can be distinguished; namely,
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g̃ = g ∈ Gd,i, and g̃ = τig ∈ Gτi

d,i \ Gd,i (with g ∈ Gd,i), respectively.
Therefore, the action Gτi

d,i ×H2
1 (Sd) → H2

1 (Sd) given by

gu(σ) = u(g−1σ), (τig)u(σ) = −u(g−1τ−1
i σ), (10.5)

for g ∈ Gd,i, u ∈ H2
1 (Sd) and σ ∈ Sd, is well-defined, continuous and

linear. We define the subspace of H2
1 (Sd) containing all symmetric points

with respect to the compact group Gτi

d,i, i.e.,

HG
τi
d,i

(Sd) = {u ∈ H2
1 (Sd) : g̃u = u for every g̃ ∈ Gτi

d,i}.
For further use, we also introduce

HGd,i
(Sd) = {u ∈ H2

1 (Sd) : gu = u for every g ∈ Gd,i},
where the action of the group Gd,i on H2

1 (Sd) is defined by the first
relation of (10.5).

Remark 10.1 Every nonzero element of the space HG
τi
d,i

(Sd) changes

sign. To see this, let u ∈ HG
τi
d,i

(Sd) \ {0}. Due to the Gτi

d,i-invariance of

u and (10.5) we have u(σ) = −u(τ−1
i σ) for every σ ∈ Sd. Since u 6= 0, it

should change the sign.

The next result shows us how can we construct mutually distinct
subspaces of H2

1 (Sd) which cannot be compared by symmetrical point
of view.

Theorem 10.1 For every i, j ∈ {1, ..., sd} with i 6= j, one has

(i) HGd,i
(Sd) ∩HGd,j

(Sd) = {constant functions on Sd};
(ii) HG

τi
d,i

(Sd) ∩H
G

τj
d,j

(Sd) = {0}.

Proof. (i) Let u ∈ HGd,i
(Sd) ∩ HGd,j

(Sd). In particular, u is both
Gd,i- and Gd,j-invariant, i.e. giu = gju = u for every gi ∈ Gd,i and
gj ∈ Gd,j , respectively. Consequently, u is also 〈Gd,i, Gd,j〉-invariant;
thus, u(σ) = u(gijσ) for every gij ∈ 〈Gd,i, Gd,j〉 and σ ∈ Sd. Due to
Proposition 10.1, for every fixed σ ∈ Sd, the orbit of gijσ is the whole
sphere Sd whenever gij runs through 〈Gd,i, Gd,j〉. Therefore, u should
be constant.

(ii) Let u ∈ HG
τi
d,i

(Sd)∩H
G

τj
d,j

(Sd). The second relation of (10.5) shows

that u(σ) = −u(τ−1
i σ) = −u(τ−1

j σ), σ ∈ Sd. But, due to (i), u is con-
stant. Thus, u should be 0. ¤
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Fig. 10.1. The image of the function w : Sd → R from (10.6) with parameters r =
0.2, R = 1.5, s = 0.4; the value w(σ) is represented (radially) on the line determined
by 0 ∈ Rd+1 and σ ∈ Sd, the ’zero altitude’ being cσ, i.e., the sphere cSd, with
c = 1.3. The union of those 8 disconnected holes on the sphere Sd where the function
w takes values s and (−s) corresponds to the G

τi
d,i–invariant set Di. (Note that the

figure describes the case i 6= d−1
2

. When i = d−1
2

the coordinate σ2 vanishes and

the figure becomes simpler.)

To conclude this section, we construct explicit functions belonging to
HG

τi
d,i

(Sd) which is of interest in its own right as well. Before we give

the class of functions we are speaking about, we say that a set D ⊂ Sd

is Gτi

d,i-invariant, if g̃D ⊆ D for every g̃ ∈ Gτi

d,i.

Proposition 10.2 Let i ∈ {1, ..., sd} and s > 0 be fixed. Then there exist
a number Ci > 0 and a Gτi

d,i-invariant set Di ⊂ Sd with Volh(Di) > 0,
both independent on the number s, and a function w ∈ HG

τi
d,i

(Sd) such
that

i) ‖w‖L∞ ≤ s;

ii) |∇w(σ)| ≤ Cis for a.e. σ ∈ Sd;

iii) |w(σ)| = s for every σ ∈ Di.
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An explicit function w : Sd → R fulfilling all the requirements of Propo-
sition 10.2 is given by

w(σ) =
8s

(R− r)
sgn(|σ1| − |σ3|)max

(
0, min

(
R− r

8
,
R− r

4
−

−max

(∣∣∣∣|σ1|+ |σ3| − R + 3r

4

∣∣∣∣ ,

∣∣∣∣
∣∣|σ1| − |σ3|

∣∣− R + 3r

4

∣∣∣∣
)))

(10.6)

where R > r, and σ = (σ1, σ2, σ3) ∈ Sd with σ1, σ3 ∈ Ri+1, σ2 ∈
Rd−2i−1 whenever i 6= d−1

2 , and σ = (σ1, σ3) ∈ Sd with σ1, σ3 ∈ R d+1
2

whenever i = d−1
2 . The Gτi

d,i-invariant set Di ⊂ Sd can be defined as

Di =

{
σ ∈ Sd :

∣∣∣∣|σ1|+ |σ3| − R + 3r

4

∣∣∣∣ ≤
R− r

8
,

∣∣∣∣||σ1| − |σ3|| − R + 3r

4

∣∣∣∣ ≤
R− r

8

}
.

The geometrical image of the function w from (10.6) is shown by Figure
10.1.

10.3 Arbitrarily small solutions

Let f : R → R be a continuous function and F (s) =
∫ s

0
f(t)dt. We

assume that

(f0
1 ) −∞ < lim infs→0+

F (s)
s2 ≤ lim sups→0+

F (s)
s2 = +∞;

(f0
2 ) lim infs→0+

f(s)
s < 0.

Theorem 10.2 Let d ≥ 5 and f : R→ R be a continuous function which
is odd in an arbitrarily small neighborhood of the origin, verifying (f0

1 )
and (f0

2 ). Then there exist at least sd = [d/2] + (−1)d+1 − 1 sequences
{ui

k}k ⊂ H2
1 (Sd), i ∈ {1, ..., sd}, of sign-changing weak solutions of (P)

distinguished by their symmetry properties. In addition,

lim
k→∞

‖ui
k‖L∞ = lim

k→∞
‖ui

k‖H2
1

= 0 for every i ∈ {1, ..., sd}.

Example 10.1 Let α, β, γ ∈ R such that α + β > 1 > α > 0, and
γ ∈ (0, 1). Then, the function f : R → R defined by f(0) = 0 and
f(s) = |s|α−1s(γ + sin |s|−β) near the origin (but s 6= 0) and extended
in an arbitrarily way to the whole R, verifies both (f0

1 ) and (f0
2 ).

In order to prove Theorem 10.2, we need some propositions. Through-
out this section we assume the hypotheses of Theorem 10.2 are fulfilled.

Let s̃ > 0 be so small that f is odd on [−s̃, s̃], and let us define
f̃(s) = sgn(s)f(min(|s|, s̃)). Clearly, f̃ is continuous and odd on R.

Define also F̃ (s) =
∫ s

0
f̃(t)dt, s ∈ R.
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On account of (f0
2 ), one may fix c0 > 0 such that

lim inf
s→0+

f(s)
s

< −c0 < 0. (10.7)

In particular, there is a sequence {sk}k ⊂ (0, s̃) converging (decreasingly)
to 0, such that

f̃(sk) = f(sk) < −c0sk. (10.8)

Let us define the functions

ψ(s) = f̃(s)+c0s and Ψ(s) =
∫ s

0

ψ(t)dt = F̃ (s)+
c0

2
s2, s ∈ R. (10.9)

Due to (10.8), ψ(sk) < 0; so, there are two sequences {ak}k, {bk}k ⊂
(0, s̃), both converging to 0, such that bk+1 < ak < sk < bk for every
k ∈ N and

ψ(s) ≤ 0 for every s ∈ [ak, bk]. (10.10)

Since c0 > 0, see (10.7), the norm

‖u‖c0 =
(∫

Sd

|∇u|2dσh + c0

∫

Sd

u2dσh

)1/2

(10.11)

is equivalent to the standard norm ‖·‖H2
1
. Now, we define E : H2

1 (Sd) →
R by

E(u) =
1
2
‖u‖2c0

−
∫

Sd

Ψ(u(σ))dσh,

which is well-defined since ψ has a subcritical growth, and H2
1 (Sd) is

compactly embedded into Lp(Sd), p ∈ [1, 2∗), see Hebey [136, Theo-
rem 2.9, p. 37]. Moreover, E belongs to C1(H2

1 (Sd)), it is even, and
it coincides with the energy functional associated to (P) on the set
B∞(s̃) = {u ∈ L∞(Sd) : ‖u‖L∞ ≤ s̃} because the functions f and f̃

coincide on [−s̃, s̃].

From now on, we fix i ∈ {1, ..., sd} and the corresponding subspace
HG

τi
d,i

(Sd) of H2
1 (Sd) introduced in the previous section. Let us denote

by Ei the restriction of the functional E to HG
τi
d,i

(Sd) and for every k ∈ N,
consider the set

T i
k = {u ∈ HG

τi
d,i

(Sd) : ‖u‖L∞ ≤ bk}, (10.12)

where bk is from (10.10).
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Proposition 10.3 The functional Ei is bounded from below on T i
k and its

infimum mi
k on T i

k is attained at ui
k ∈ T i

k. Moreover, mi
k = Ei(ui

k) < 0
for every k ∈ N.

Proof. For every u ∈ T i
k we have

Ei(u) =
1
2
‖u‖2c0

−
∫

Sd

Ψ(u(σ))dσh ≥ − max
[−bk,bk]

Ψ ·Volh(Sd) > −∞.

It is clear that T i
k is convex and closed, thus weakly closed in HG

τi
d,i

(Sd).

Let mi
k = infT i

k
Ei, and {un}n ⊂ T i

k be a minimizing sequence of Ei for
mi

k. Then, for large n ∈ N, we have

1
2
‖un‖2c0

≤ mi
k + 1 + max

[−bk,bk]
Ψ ·Volh(Sd),

thus {un}n is bounded in HG
τi
d,i

(Sd). Up to a subsequence, {un}n

weakly converges in HG
τi
d,i

(Sd) to some ui
k ∈ T i

k. Since ψ has a sub-

critical growth, by using the compactness of the embedding HG
τi
d,i

(Sd) ⊂
H2

1 (Sd) ↪→ Lp(Sd), 1 ≤ p < 2∗, one can conclude the sequentially weak
continuity of the function u 7→ ∫

Sd Ψ(u(σ))dσh, u ∈ HG
τi
d,i

(Sd). Conse-
quently, Ei is sequentially weak lower semicontinuous. Combining this
fact with the weak closedness of the set T i

k, we obtain Ei(ui
k) = mi

k =
infT i

k
Ei.

The next task is to prove that mi
k < 0 for every k ∈ N. First, due to

(10.9) and (f0
1 ), we have

−∞ < lim inf
s→0+

Ψ(s)
s2

≤ lim sup
s→0+

Ψ(s)
s2

= +∞. (10.13)

Therefore, the left-hand side of (10.13) and the evenness of Ψ implies
the existence of l > 0 and % ∈ (0, s̃) such that

Ψ(s) ≥ −ls2 for every s ∈ (−%, %). (10.14)

Let Di ⊂ Sd and Ci > 0 be from Proposition 10.2 (which depend only
on Gd,i and τi), and fix a number l > 0 large enough such that

lVolh(Di) >
(
l +

c0

2

)
Volh(Sd) +

C2
i

2
, (10.15)

c0 > 0 being from (10.7). Taking into account the right-hand side of
(10.13), there is a sequence {sk}k ⊂ (0, %) such that sk ≤ bk and Ψ(sk) =
Ψ(−sk) > ls2

k for every k ∈ N.
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Let wk := wsk
∈ HG

τi
d,i

(Sd) be the function from Proposition 10.2

corresponding to the value sk > 0. Then wk ∈ T i
k and one has

Ei(wk) =
1
2
‖wk‖2c0

−
∫

Sd

Ψ(wk(σ))dσh

≤ 1
2

(
C2

i + c0Volh(Sd)
)
s2

k −
∫

Di

Ψ(wk(σ))dσh −
∫

Sd\Di

Ψ(wk(σ))dσh.

On account of Proposition 10.2 iii), we have
∫

Di

Ψ(wk(σ))dσh = Ψ(sk)Volh(Di) > lVolh(Di)s2
k.

On the other hand, due to relation (10.14) and Proposition 10.2 i), we
have

∫

Sd\Di

Ψ(wk(σ))dσh ≥ −l

∫

Sd\Di

w2
k(σ)dσh > −lVolh(Sd)s2

k.

Combining (10.15) with the above estimations, we obtain that mi
k =

infT i
k
Ei ≤ Ei(wk) < 0, which proves our claim. ¤

Proposition 10.4 Let ui
k ∈ T i

k from Proposition 10.3. Then, ‖ui
k‖L∞ ≤

ak. (The number ak is from (10.10).)

Proof. Let A = {σ ∈ Sd : ui
k(σ) /∈ [−ak, ak]} and suppose that

meas(A) > 0. Define the function γ(s) = sgn(s)min(|s|, ak) and set
wk = γ ◦ ui

k. Since γ is Lipschitz continuous, then wk ∈ H2
1 (Sd), see

Hebey [136, Proposition 2.5, p. 24].
We first claim that wk ∈ HG

τi
d,i

(Sd). To see this, it suffices to prove

that g̃wk = wk for every g̃ ∈ Gτi

d,i. First, let g̃ = g ∈ Gd,i. Since gui
k = ui

k,
we have

gwk(σ) = wk(g−1σ) = (γ◦ui
k)(g−1σ) = γ(ui

k(g−1σ)) = γ(ui
k(σ)) = wk(σ)

for every σ ∈ Sd. Now, let g̃ = τig ∈ Gτi

d,i \Gd,i (with g ∈ Gd,i). Since γ

is an odd function and (τig)ui
k = ui

k, on account of (10.5) we have

(τig)wk(σ) = −wk(g−1τ−1
i σ) = −(γ ◦ ui

k)(g−1τ−1
i σ)

= γ(−ui
k(g−1τ−1

i σ)) = γ((τig)ui
k(σ)) = γ(ui

k(σ))
= wk(σ)

for every σ ∈ Sd. In conclusion, the claim is true, and wk ∈ HG
τi
d,i

(Sd).

Moreover, ‖wk‖L∞ ≤ ak. Consequently, wk ∈ T i
k.
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We introduce the sets

A1 = {σ ∈ A : ui
k(σ) < −ak} and A2 = {σ ∈ A : ui

k(σ) > ak}.

Thus, A = A1 ∪A2, and we have that wk(σ) = ui
k(σ) for all σ ∈ Sd \A,

wk(σ) = −ak for all σ ∈ A1, and wk(σ) = ak for all σ ∈ A2. Moreover,

Ei(wk)− Ei(ui
k) =

= −1
2

∫

A

|∇ui
k|2dσh +

c0

2

∫

A

[w2
k − (ui

k)2]dσh −
∫

A

[Ψ(wk)−Ψ(ui
k)]dσh

= −1
2

∫

A

|∇ui
k(σ)|2dσh +

c0

2

∫

A

[a2
k − (ui

k(σ))2]dσh

−
∫

A1

[Ψ(−ak)−Ψ(ui
k(σ))]dσh −

∫

A2

[Ψ(ak)−Ψ(ui
k(σ))]dσh.

Note that
∫

A
[w2

k − (ui
k)2]dσh ≤ 0. Next, by the mean value theorem, for

a.e. σ ∈ A2, there exists θk(σ) ∈ [ak, bk] such that Ψ(ak)−Ψ(ui
k(σ)) =

ψ(θk(σ))(ak − ui
k(σ)). Thus, on account of (10.10), one has

∫

A2

[Ψ(ak)−Ψ(ui
k(σ))]dσh ≥ 0.

In the same way, using the oddness of ψ, we conclude that
∫

A1

[Ψ(−ak)−Ψ(ui
k(σ))]dσh ≥ 0.

In conclusion, every term of the expression Ei(wk)−Ei(ui
k) is nonpositive.

On the other hand, since wk ∈ T i
k, then Ei(wk) ≥ Ei(ui

k) = infT i
k
Ei. So,

every term in Ei(wk)− Ei(ui
k) should be zero. In particular,

∫

A

|∇ui
k(σ)|2dσh =

∫

A

[a2
k − (ui

k(σ))2]dσh = 0.

These equalities imply that meas(A) should be 0, contradicting our ini-
tial assumption. ¤

Proposition 10.5 limk→∞mi
k = limk→∞ ‖ui

k‖L∞ = limk→∞ ‖ui
k‖H2

1
=

0.

Proof. Using Proposition 10.4, we have that ‖ui
k‖L∞ ≤ ak < s̃ for a.e.

σ ∈ Sd. Therefore, we readily have that limk→∞ ‖ui
k‖L∞ = 0.
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Moreover, the mean value theorem shows that

mi
k = Ei(ui

k) ≥ −
∫

Sd

Ψ(ui
k(σ))dσh ≥ − max

[−s̃,s̃]
|ψ|

∫

Sd

|ui
k(σ)|dσh

≥ − max
[−s̃,s̃]

|ψ|Volh(Sd)ak.

Since limk→∞ ak = 0, we have limk→∞mk ≥ 0. On the other hand, mk <

0 for every k ∈ N, see Proposition 10.3, which implies limk→∞mi
k = 0.

Note that

‖ui
k‖2c0

2
= mi

k +
∫

Sd

Ψ(ui
k(σ))dσh ≤ mi

k + max
[−s̃,s̃]

|ψ|Volh(Sd)ak,

thus limk→∞ ‖ui
k‖c0 = 0. But ‖ · ‖c0 and ‖ · ‖H2

1
are equivalent norms. ¤

Now, we prove the key result of this section where the non-smooth
principle of symmetric criticality for Szulkin-type functions plays a cru-
cial role.

Proposition 10.6 ui
k is a weak solution of (P) for every k ∈ N.

Proof. We divide the proof into two parts. First, let

Tk = {u ∈ H2
1 (Sd) : ‖u‖L∞ ≤ bk}.

Step 1. 〈E ′(ui
k), w − ui

k〉H2
1
≥ 0 for every w ∈ Tk.

The set Tk is closed and convex in H2
1 (Sd). Let ζTk

be the indicator
function of the set Tk (i.e., ζTk

(u) = 0 if u ∈ Tk, and ζTk
(u) = +∞, oth-

erwise). We define the Szulkin-type functional Ik : H2
1 (Sd) → R∪{+∞}

by Ik = E+ζTk
, see Section 1.6. We deduce that E is of class C1(H2

1 (Sd)),
ζTk

is convex, lower semicontinuous and proper. On account of (10.12),
we have that T i

k = Tk ∩ HG
τi
d,i

(Sd); therefore, the restriction of ζTk
to

HG
τi
d,i

(Sd) is precisely the indicator function ζT i
k

of the set T i
k. Since ui

k is

a local minimum point of Ei relative to T i
k (see Proposition 10.3), then

ui
k is a critical point of the functional Ii

k := Ei + ζT i
k

in the sense of
Szulkin [282, p. 78], that is,

0 ∈ E ′i(ui
k) + ∂ζT i

k
(ui

k) in (HG
τi
d,i

(Sd))∗, (10.16)

where ∂ζT i
k

stands for the subdifferential of the convex function ζT i
k
.

Since E is even, by means of (10.5) one can easily check that it is
Gτi

d,i-invariant. The function ζTk
is also Gτi

d,i-invariant since g̃Tk ⊆ Tk

for every g̃ ∈ Gτi

d,i (we use again (10.5)). Finally, since Gτi

d,i ⊂ O(d+1) is
compact, and Ei and ζT i

k
are the restrictions of E and ζTk

to HG
τi
d,i

(Sd),
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respectively, we may apply – via relation (10.16) – the principle of sym-
metric criticality proved by Kobayaski-Ôtani, see Theorem 1.27. Thus,
we obtain

0 ∈ E ′(ui
k) + ∂ζTk

(ui
k) in (H2

1 (Sd))∗.

Consequently, for every w ∈ H2
1 (Sd), we have

〈E ′(ui
k), w − ui

k〉H2
1

+ ζTk
(w)− ζTk

(ui
k) ≥ 0,

which implies our claim.
Step 2. (Proof concluded) ui

k is a weak solution of (P).
By Step 1, we have
∫

Sd
〈∇ui

k,∇(w−ui
k)〉dσh+c0

∫

Sd
ui

k(w−ui
k)dσh−

∫

Sd
ψ(ui

k)(w−ui
k)dσh ≥ 0, ∀ w ∈ Tk.

Recall from (10.9) that ψ(s) = f̃(s) + c0s, s ∈ R. Moreover, f and f̃

coincide on [−s̃, s̃] and ui
k(σ) ∈ [−ak, ak] ⊂ (−s̃, s̃) for a.e. σ ∈ Sd (see

Proposition 10.4). Consequently, the above inequality reduces to
∫

Sd

〈∇ui
k,∇(w − ui

k)〉dσh −
∫

Sd

f(ui
k)(w − ui

k)dσh ≥ 0, ∀ w ∈ Tk.

(10.17)
Let us define the function γ(s) = sgn(s)min(|s|, bk), and fix ε > 0 and
v ∈ H2

1 (Sd) arbitrarily. Since γ is Lipschitz continuous, wk = γ◦(ui
k+εv)

belongs to H2
1 (Sd), see Hebey [136, Proposition 2.5, p. 24]. The explicit

expression of wk is

wk(σ) =





−bk, if σ ∈ {ui
k + εv < −bk}

ui
k(σ) + εv(σ), if σ ∈ {−bk ≤ ui

k + εv < bk}
bk, if σ ∈ {bk ≤ ui

k + εv}.

Therefore, wk ∈ Tk. Taking w = wk as a test function in (10.17), we
obtain

0 ≤ −
∫

{ui
k+εv<−bk}

|∇ui
k|2 +

∫

{ui
k+εv<−bk}

f(ui
k)(bk + ui

k)

+ε

∫

{−bk≤ui
k+εv<bk}

〈∇ui
k,∇v〉 − ε

∫

{−bk≤ui
k+εv<bk}

f(ui
k)v

−
∫

{bk≤ui
k+εv}

|∇ui
k|2 −

∫

{bk≤ui
k+εv}

f(ui
k)(bk − ui

k).
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After a suitable rearrangement of the terms in this inequality, we obtain
that

0 ≤ ε

∫

Sd

〈∇ui
k,∇v〉 − ε

∫

Sd

f(ui
k)v

−
∫

{ui
k+εv<−bk}

|∇ui
k|2 −

∫

{bk≤ui
k+εv}

|∇ui
k|2

+
∫

{ui
k+εv<−bk}

f(ui
k)(bk + ui

k + εv) +
∫

{bk≤ui
k+εv}

f(ui
k)(−bk + ui

k + εv)

−ε

∫

{ui
k+εv<−bk}

〈∇ui
k,∇v〉 − ε

∫

{bk≤ui
k+εv}

〈∇ui
k,∇v〉.

Let Mk = max[−ak,ak] |f |. Since ui
k(σ) ∈ [−ak, ak] ⊂ [−bk, bk] for a.e.

σ ∈ Sd, we have
∫

{ui
k+εv<−bk}

f(ui
k)(bk + ui

k + εv) ≤ −εMk

∫

{ui
k+εv<−bk}

v

and
∫

{bk≤ui
k+εv}

f(ui
k)(−bk + ui

k + εv) ≤ εMk

∫

{bk≤ui
k+εv}

v.

Using the above estimates and dividing by ε > 0, we obtain

0 ≤
∫

Sd

〈∇ui
k,∇v〉dσh −

∫

Sd

f(ui
k)vdσh

−Mk

∫

{ui
k+εv<−bk}

vdσh + Mk

∫

{bk≤ui
k+εv}

vdσh

−
∫

{ui
k+εv<−bk}

〈∇ui
k,∇v〉dσh −

∫

{bk≤ui
k+εv}

〈∇ui
k,∇v〉dσh.

Now, letting ε → 0+, and taking into account Proposition 10.4 (i.e.,
−ak ≤ ui

k(σ) ≤ ak for a.e. σ ∈ Sd), we have

meas({ui
k + εv < −bk}) → 0 and meas({bk ≤ ui

k + εv}) → 0,

respectively. Consequently, the above inequality reduces to

0 ≤
∫

Sd

〈∇ui
k,∇v〉dσh −

∫

Sd

f(ui
k)vdσh.

Putting (−v) instead of v, we see that ui
k is a weak solution of (P), which

completes the proof. ¤
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Proof of Theorem 10.2. Fix i ∈ {1, ..., sd}. Combining Propositions
10.3 and 10.5, one can see that there are infinitely many distinct ele-
ments in the sequence {ui

k}k. These elements are weak solutions of (P)
as Proposition 10.6 shows, and they change sign, see Remark 10.1. More-
over, due to Theorem 10.1 (ii), solutions in different spaces HG

τi
d,i

(Sd),
i ∈ {1, ..., sd}, cannot be compared from symmetrical point of view.
The L∞– and H2

1–asymptotic behaviour of the sequences of solutions
are described in Proposition 10.5. ¤

10.4 Arbitrarily large solutions

Instead of (f0
1 ) and (f0

2 ), respectively, we assume

(f∞1 ) −∞ < lim infs→∞
F (s)
s2 ≤ lim sups→∞

F (s)
s2 = +∞;

(f∞2 ) lim infs→∞
f(s)

s < 0.

Unlike in Theorem 10.2 where no further assumption is needed at
infinity, we have to control here the growth of f . We assume that f has
an asymptotically critical growth at infinity, namely,

(f∞3 ) sups∈R
|f(s)|

1+|s|2∗−1 < ∞, where 2∗ = 2d
d−2 .

Theorem 10.3 Let d ≥ 5 and f : R → R be an odd, continuous func-
tion which verifies (f∞1 ), (f∞2 ) and (f∞3 ). Then there exist at least
sd = [d/2] + (−1)d+1 − 1 sequences {ũi

k}k ⊂ H2
1 (Sd), i ∈ {1, ..., sd},

of sign-changing weak solutions of (P) distinguished by their symmetry
properties. In addition,

lim
k→∞

‖ũi
k‖L∞ = lim

k→∞
‖ũi

k‖H2
1

= ∞ for every i ∈ {1, ..., sd}.

Example 10.2 Let d ≥ 5 and α, β, γ ∈ R such that d+2
d−2 ≥ α > 1,

|α − β| < 1, and γ ∈ (0, 1). Then, the function f : R → R defined
by f(s) = |s|α−1s(γ + sin |s|β) verifies the hypotheses (f∞1 ), (f∞2 ) and
(f∞3 ), respectively.

Certain parts of the proof of Theorem 10.3 are similar to that of The-
orem 10.2; so, we present only the differences. We assume throughout
of this section that the hypotheses of Theorem 10.3 are fulfilled. Due to
(f∞2 ), one can fix c∞ > 0 such that

lim inf
s→∞

f(s)
s

< −c∞ < 0.
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Let {sk} ⊂ (0,∞) be a sequence converging (increasingly) to +∞, such
that f(sk) < −c∞sk. We define the functions

ψ(s) = f(s) + c∞s and Ψ(s) =
∫ s

0

ψ(t)dt = F (s) +
c∞
2

s2, s ∈ R.

(10.18)
By construction, ψ(sk) < 0; consequently, there are two sequences
{ak}k, {bk}k ⊂ (0,∞), both converging to ∞, such that ak < sk <

bk < ak+1 for every k ∈ N and

ψ(s) ≤ 0 for every s ∈ [ak, bk]. (10.19)

Since c∞ > 0, the norm ‖ · ‖c∞ defined in the same way as (10.11) with
c∞ instead of c0, is equivalent to the standard norm ‖ · ‖H2

1
. Now, we

define the energy functional E : H2
1 (Sd) → R associated with (P) by

E(u) =
1
2
‖u‖2c∞ −

∫

Sd

Ψ(u(σ))dσh.

Since H2
1 (Sd) is continuously embedded into Lp(Sd), 1 ≤ p ≤ 2∗, see

[136, Corollary 2.1, p. 33]), using hypothesis (f∞3 ), the functional E is
well-defined, and it belongs to C1(H2

1 (Sd)). Moreover, since f is odd on
the whole R, the functional E is even.

We fix i ∈ {1, ..., sd} and the subspace HG
τi
d,i

(Sd) of H2
1 (Sd). Let Ei

be the restriction of the functional E to HG
τi
d,i

(Sd) and for every k ∈ N,
define the set

Zi
k = {u ∈ HG

τi
d,i

(Sd) : ‖u‖L∞ ≤ bk},

where bk is from (10.19).

Proposition 10.7 The functional Ei is bounded from below on Zi
k and

its infimum m̃i
k on Zi

k is attained at ũi
k ∈ Zi

k. Moreover, limk→∞ m̃i
k =

−∞.

Proof. It is easy to check that Ei is bounded from below on Zi
k. In

order to see that it attains its infimum on Zi
k we show that the function

u 7→ ∫
Sd Ψ(u(σ))dσh, u ∈ HG

τi
d,i

(Sd) is sequentially weak continuous;
in such case, Ei is sequentially weak lower semicontinuous and we may
proceed in the standard way. On one hand, due to (f∞3 ), (10.18) and
the oddness of ψ, one can find c1 > 0 such that

|ψ(s)| ≤ c1(1 + |s|2∗−1), s ∈ R. (10.20)
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On the other hand, the definition of Gd,i shows that the Gd,i-orbit of
every point σ ∈ Sd has at least dimension 1, i.e., dim(Gd,iσ) ≥ 1 for
every σ ∈ Sd. Thus

dG = min{dim(Gd,iσ) : σ ∈ Sd} ≥ 1.

Applying [30, Lemma 3.2], we conclude in particular that HGd,i
(Sd) is

compactly embedded into Lq(Sd), whenever q ∈
[
1, 2d−2

d−3

)
. Since 2d−2

d−3 >

2∗, the embedding HG
τi
d,i

(Sd) ⊂ HGd,i
(Sd) ↪→ L2∗(Sd) is compact. Com-

bining (10.20) with the above compactness property, we conclude the
sequentially weak continuity of the function u 7→ ∫

Sd Ψ(u(σ))dσh, u ∈
HG

τi
d,i

(Sd). Consequently, we may assert that the infimum m̃i
k on Zi

k is

attained at the point ũi
k ∈ Zi

k.
We will prove limk→∞ m̃i

k = −∞. First, due to (10.18) and (f∞1 ), we
have

−∞ < lim inf
s→∞

Ψ(s)
s2

≤ lim sup
s→∞

Ψ(s)
s2

= +∞. (10.21)

The left inequality of (10.21) and the evenness of Ψ implies the existence
of l, % > 0 such that

Ψ(s) ≥ −ls2 for every |s| > %. (10.22)

Let Di ⊂ Sd and Ci > 0 be from Proposition 10.2 (which depend only
on Gd,i and τi), and fix a number l > 0 large enough such that

lVolh(Di) >
(
l +

c∞
2

)
Volh(Sd) +

C2
i

2
. (10.23)

Taking into account the right-hand side of (10.21), there is a sequence
{s̃k}k ⊂ (0,∞) such that limk→∞ s̃k = ∞ and Ψ(s̃k) = Ψ(−s̃k) > ls̃2

k

for every k ∈ N.

Let {bnk
}k be an increasing subsequence of {bk}k such that s̃k ≤ bnk

for every k ∈ N. Let w̃k := ws̃k
∈ HG

τi
d,i

(Sd) be the function from

Proposition 10.2 corresponding to the value s̃k > 0. Then w̃k ∈ Zi
nk

and
one has

Ei(w̃k) =
1
2
‖w̃k‖2c∞ −

∫

Sd

Ψ(w̃k(σ))dσh

≤ 1
2

(
C2

i + c∞Volh(Sd)
)
s̃2

k −
∫

Di

Ψ(w̃k(σ))dσh −
∫

Sd\Di

Ψ(w̃k(σ))dσh.
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On account of Proposition 10.2 iii), we have
∫

Di

Ψ(w̃k(σ))dσh = Ψ(s̃k)Volh(Di) > lVolh(Di)s̃2
k.

Due to Proposition 10.2 i) and (10.22), we have
∫

Sd\Di

Ψ(w̃k(σ))dσh =
∫

(Sd\Di)∩{|w̃k|≤%}
Ψ(w̃k(σ))dσh

+
∫

(Sd\Di)∩{|w̃k|>%}
Ψ(w̃k(σ))dσh

≥ −
(

max
[−%,%]

|Ψ|+ ls̃2
k

)
Volh(Sd).

Combining these estimates, we obtain that

Ei(w̃k) ≤ s̃2
k

(
−lVolh(Di) +

(
l +

c∞
2

)
Volh(Sd) +

C2
i

2

)
+max

[−%,%]
|Ψ|Volh(Sd).

Taking into account (10.23) and that limk→∞ s̃k = ∞, we obtain limk→∞ Ei(w̃k) =
−∞. Since m̃i

nk
= Ei(ũi

nk
) = infZi

nk
Ei ≤ Ei(w̃k), then limk→∞ m̃i

nk
=

−∞. Since the sequence {m̃i
k}k is non-increasing, the claim follows. ¤

Proposition 10.8 limk→∞ ‖ũi
k‖L∞ = limk→∞ ‖ũi

k‖H2
1

= ∞.

Proof. Assume first by contradiction that there exists a subsequence
{ũi

nk
}k of {ũi

k}k such that ‖ũi
nk
‖L∞ ≤ M for some M > 0. In particular,

{ũi
nk
} ⊂ Zi

l for some l ∈ N. Therefore, for every nk ≥ l, we have

m̃i
l ≥ m̃i

nk
= inf

Zi
nk

Ei = Ei(ũi
nk

) ≥ inf
Zi

l

Ei = m̃i
l.

Consequently, m̃nk
= m̃l for every nk ≥ l, and since the sequence {m̃i

k}k

is non-increasing, there exists k0 ∈ N such that for every k ≥ k0 we have
m̃i

k = m̃i
l, contradicting Proposition 10.7.

It remains to prove that limk→∞ ‖ũi
k‖H2

1
= ∞. Note that (10.20) and

the continuity of the embedding H2
1 (Sd) into L2∗(Sd) implies that for

come C > 0 we have∣∣∣∣
∫

Sd

Ψ(u(σ))dσh

∣∣∣∣ ≤ C(‖u‖H2
1

+ ‖u‖2∗H2
1
), ∀u ∈ H2

1 (Sd).

Similarly as above, we assume that there exists a subsequence {ũi
nk
}k of

{ũi
k}k such that for some M > 0, we have ‖ũi

nk
‖H2

1
≤ M . Since ‖ · ‖c∞

is equivalent with ‖ · ‖H2
1
, due to the above inequality, the sequence

{Ei(ũi
nk

)}k is bounded. But m̃i
nk

= Ei(ũi
nk

), thus, the sequence {m̃i
nk
}
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is also bounded. This fact contradicts Proposition 10.7. ¤

Proof of Theorem 10.3. Due to Proposition 10.7, we can find infinitely
many distinct elements ũi

k; similar reasoning as in Propositions 10.4 and
10.6 show that ũi

k are weak solutions of (P) for every k ∈ N. The L∞–
and H2

1–asymptotic behaviour of the sequences of solutions are described
in Proposition 10.8. The rest is similar as in Theorem 10.2. ¤

Remark 10.2 Theorems 10.2 and 10.3 can be successfully applied to
treat Emden-Fowler equations of the form

−∆v = |x|α−2f(|x|−αv), x ∈ Rd+1 \ {0} (α < 0) (10.24)

whenever f : R → R is enough smooth and oscillates either at zero or
at infinity having an asymptotically critical growth. Finding solutions
of (10.24) in the form v(x) = v(r, σ) = rαu(σ), (r, σ) = (|x|, x/|x|) ∈
(0,∞)× Sd being the spherical coordinates, we obtain

−∆hu + α(1− d− α)u = f(u) on Sd, (10.25)

see also (9.1)λ. Assuming (fL
1 ) and lim infs→L

f(s)
s < α(1 − d − α)

with L ∈ {0+, +∞}, and (f∞3 ) whenever L = +∞, we may formulate
multiplicity results for (10.25), so for (10.24). Note that the obtained
solutions of (10.24) are sign-changing and non-radial.

10.5 Historical notes, comments and perspectives

A. Historical notes. One of the most famous problems in Differential
Geometry is the so-called Yamabe problem: given a smooth compact
Riemannian manifold (M, g) of dimension d, d ≥ 3, there exists a met-
ric g̃ from the conformal class of g of constant scalar curvature. This
problem has a PDE formulation which has been extensively studied by
many authors; the reader id referred to the monographs of Aubin [19]
and Hebey [136].

Another class of elliptic problems defined on compact manifolds arises
from the Emden-Fowler equation, studied for superlinear nonlineari-
ties via minimization or minimax methods by Cotsiolis-Iliopoulos [79],
Vázquez-Véron [288], Bidaut-Véron-Véron [39], etc.

In Sections 9.2 and 10 we presented some of our contributions related
to Emden-Fowler equations when the nonlinearity has either a sublinear
growth at infinity or it has an oscillatory behavior near zero or at infinity.



10.5 Historical notes, comments and perspectives 261

Elliptic problems involving oscillatory nonlinearities have been studied
in Omari-Zanolin [229], Ricceri [258], Saint Raymond [265], subjected to
standard Neumann or Dirichlet boundary value conditions on bounded
open domains of Rn, or even on unbounded domains, see Faraci-Kristály
[111], Kristály [166]. Results in finding sign-changing solutions for semi-
linear problems can be found in Li-Wang [187], Zou [299] and references
therein. The strategy in these last papers is to construct suitable closed
convex sets which contain all the positive and negative solutions in the
interior, and are invariant with respect to some vector fields. Our ap-
proach is rather different than those of [187], [299] and is related to the
works of Bartsch-Schneider-Weth [30] and Bartsch-Willem [32], where
the existence of non-radial and sign-changing solutions are studied for
Schrödinger and polyharmonic equations defined on Rn.

B. Comments. Section 9.2 is based on the paper of Kristály-Rădulescu
[175], while the main results of Section 10 are mainly contained in
Kristály [169] and Kristály-Marzantowicz [171].

As we mentioned at the beginning of Section 9.2, when the nonlinear-
ity f is a uniformly Lipschitz function (with Lipschitz constant L > 0),
we have extra information on the eigenvalues:

(a) problem (Pλ) has only the trivial solution whenever λ ∈ (0, λL);
(b) problem (Pλ) has at least two nontrivial solutions whenever λ >

λ∗. Clearly, we have λ∗ ≥ λL, and usually these two numbers do not
coincide. (For instance, if f(s) = ln(1+s2), K(σ) = α(σ) = const., then
λL = 1 while λ∗ ≈ 1.32.) Unfortunately, we have no any precise result
when the parameter belongs to the ‘gap-interval’ [λL, λ∗].

In Section 10, the minimal number of those sequences of solutions
for (P) which contain mutually symmetrically distinct elements is sd =
[d/2] + (−1)d+1 − 1. Note that sd ∼ d/2 as d → ∞. However, in lower
dimensions, Theorems 10.2 and 10.3 are not spectacular. For instance,
s4 = 0; therefore, on S4 we have no analogous results as Theorems 10.2
and 10.3. Note that s3 = 1; in fact, for G3,1 = O(2)×O(2) we may apply
our arguments. Hence, on S3 one can find a sequence of solutions of (P)
with the described properties in our theorems. We may compare these
results with that of Bartsch-Willem [32]; they studied the lower bound
of those sequences of solutions for a Schrödinger equation on Rd+1 which
contain elements in different O(d+1)-orbits. Due to [32, Proposition 4.1,
p. 457], we deduce that their lower bound is s′d =

[
log2

d+3
3

]
whenever

d ≥ 3 and d 6= 4.
Let α, β ∈ L∞(Sd) be two Gd,i-invariant functions such that essinfSdβ >
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0 and consider the problem

−∆hu + α(σ)u = β(σ)f(u) on Sd. (10.26)

If f : R→ R has an asymptotically critical growth fulfilling (fL
1 ) and

lim inf
s→L

f(s)
s

< essinfSd

α

β
,

problem (10.26) admits a sequence of Gd,i-invariant (perhaps not sign-
changing) weak solutions in both cases, i.e. L ∈ {0+,∞}. The proofs
can be carried out following Theorems 10.2 and 10.3, respectively, con-
sidering instead of HG

τi
d,i

(Sd) the space HGd,i
(Sd). Note that α : Sd → R

may change its sign. In particular, this type of result complements the
paper of Cotsiolis-Iliopoulos [78].

C. Further perspectives. The symmetry and compactness of the sphere
Sd have been deeply exploited in Section 10. We intend to study a
challenging problem related to (P) which is formulated on non-compact
Riemannian symmetric spaces (for instance, on the hyperbolic space
Hd = SO0(d, 1)/SO(d) which is the dual companion of Sd = SO(d +
1)/SO(d)). In order to handle this kind of problem, the action of the
isometry group of the symmetric space seems to be essential, as shown
by Hebey [136, Chapter 9], Hebey-Vaugon [138].
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Equations with Critical Exponent

Numbers are the highest
degree of knowledge. It is
knowledge itself.

Plato (429–347 B.C.)

11.1 Introduction

In the last years many books and papers were dedicated to study Sobolev
spaces and equations with critical exponent on compact or non-compact
Riemannian manifold with or without boundary. For recent develop-
ments, we refer to the books by Ambrosetti and Malchiodi [6], Druet,
Hebey, and Robert [96], and Hebey [135], [136]. In this chapter we
present some elementary existence results concerning equations with
critical exponent. Here we follow the paper of Hebey [137].

First we formulate the Yamabe problem to give the geometric moti-
vation of these type problems. Let (M, g) be a Riemannian space and
∇ the Riemannian connection. Let (xi) is a local system of coordinates
on M , then

∇ ∂
∂xi

(
∂

∂xj

)
= Γk

ij

∂

∂xk
.

The functions Γk
ij are called the Christoffel symbols of the connection ∇.

In the local system of coordinates (xi) the components of metric tensor
g we denote by (gij) with the inverse matrix (gij), and let |g| = det (gij).
The divergence operator divg on the C1 vector field X = (Xi) is defined

263
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by

div gX =
1√
|g|

∑

i

∂

∂xi
(
√
|g|Xi),

and the Laplace–Beltrami operator by ∆gu = div g(∇u). Here

∇u =
∑

i

gij ∂u

∂xi

In the local system of coordinates (xi) the Laplace-Beltrami operator
∆g, has the following expression:

∆gu = −gij

(
∂2u

∂xi∂xj
− Γk

ij

∂u

∂xk

)
. (11.1)

The curvature associated to the connection ∇ is defined by:

R(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ],

where [·, ·] denote the Poisson bracket of the vector fields X and Y .
Consider the 4- covariant tensor R(X, Y, Z, T ) = g(X, R(Z, T )Y ) with
components Rlkij = glmRm

kij . The Ricci tensor is obtained from cur-
vature tensor by contraction and it is only one nonzero tensor or its
negative. Its components are Rij = Rk

ikj . The Ricci tensor is symmetric
and its contraction Sg = Rijg

ij is called scalar curvature. A metric of
the form g̃ = eug is said to be conformal metric to g. We denote by [g]
the conformal class of the reference metric g. By definition

[g] = {eug | u ∈ C∞(M)}. (11.2)

If Sg and Sg̃ are the scalar curvatures of g and g̃, one easily gets that

e2uSg̃ = Sg + 2(n− 1)∆gu− (n− 1)(n− 2)|∇u|2g. (11.3)

Let us now write g̃ under the form g̃ = u
4

n−2 g, for u : M → R some
smooth positive function. The above relation becomes

∆gu +
n− 2

4(n− 1)
Sgu =

n− 2
4(n− 1)

Sg̃u
n+2
n−2 . (11.4)

The Yamabe problem can be formulated in the following way:

Geometric formulation. For any smooth compact Riemannian mani-
fold (M, g) of dimension n, n ≥ 3, there exists g̃ ∈ [g] of constant scalar
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curvature.

PDE formulation. For any smooth compact Riemannian manifold
(M, g) of dimension n, n ≥ 3, there exists u ∈ C∞(M), u > 0 and there
exists λ ∈ R such that

∆gu +
n− 2

4(n− 1)
Sgu = λu

n+2
n−2 (11.5)

where ∆g is the Laplacian with the respect to g, and Sg is the scalar
curvature of g.

If u and λ satisfies equation (11.5), and if g̃ = u
4

n−4 g, then we gets

Sg̃ =
4(n− 1)
n− 2

λ.

In particular, this gives a conformal metric to g of constant scalar cur-
vature. The left hand side in this equation (11.5) is referred to as the
conformal Laplacian. We denoted by

Lg = ∆gu +
n− 2

4(n− 1)
Sgu.

Note that Lg is conformally invariant in the following sense: If g̃ =
ϕ

4
n−2 g is a conformal metric to g, then, for all u ∈ C∞(M),

Lg̃(u) = ϕ−
n+2
n−2 Lg(uϕ).

In this chapter we study the problem like (11.4). For this let (M, g)
be a smooth compact Riemannian manifold of dimension n ≥ 3, and
h : M → R be a smooth function. In the next we study equations of the
following form:

(CE)





∆gu + hu = λu2?−1, in M

u > 0, in M,

where λ ∈ R and 2? = 2n
n−2 is the critical exponent of the embedding

W 1,2(M) ↪→ L2?

.
Before to discuss this problem we remember

Theorem 11.1 Let (X, ‖ · ‖) be a real Banach space, Ω ⊂ X be an open
subset, f : Ω → R be a differentiable function, and Φ : Ω → Rn be of
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class C1. Let also a ∈ Rn be such that H = Φ−1(a) is not empty. If
x0 ∈ H is a solution of the minimization problem

f(x0) = min
x∈H

f(x)

and if DΦ(x0) is surjective, then there exists (λ1, . . . , λn) ∈ Rn such
that

Df(x0) =
n∑

i=1

λiDΦi(x0),

where Φ = (Φ1, . . . , Φn).

The next result is the Hopf’s maximum principle.

Theorem 11.2 Let Ω ⊂ Rn be an open connected set and let

L(u) =
n∑

i.j=1

aij
∂2u

∂xi∂xj
+

n∑

i=1

bi(x)
∂u

∂xi + h(x)u

be a linear uniformly elliptic differential operator with bounded coeffi-
cients and h ≤ 0. Suppose that u ∈ C2(M) satisfies L(u) ≥ 0. If u

attains its maximum M ≥ 0 in Ω, then u is constant equal to M on Ω.
Otherwise if at x0 ∈ ∂Ω, u is continuous and u(x0) = M ≥ 0 then the
outer normal derivative at x0, if it exists, satisfies ∂u(x0)

∂n > 0, provided
x0 belongs to the boundary of a ball included in Ω. Moreover, if h = 0,
the same conclusion hold for a maximum M < 0.

An immediate consequence of the Hopf’s maximum principle is the
following.

Proposition 11.1 Let f : M × R → R be a continuous function and
u ∈ C2(M) such that

∆gu ≥ u(x)f(x, u(x)),

then either u > 0 or u = 0.

As usual, C∞(M) and C∞0 (M) denote the spaces of smooth functions
and smooth compactly supported function on M respectively.

Definition 11.1 The Sobolev space
◦
Hp

k(M) is the closure of C∞0 (M)
in Hp

k (M).
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If (M, g) is a complete Riemannian manifold, then for any p ≥ 1, we

have
◦
Hp

k(M) = Hp
k (M).

We finish this section with the Sobolev embedding theorem and the
Rellich- Kondrachov result for compact manifold without and with bound-
ary.

Theorem 11.3 (Sobolev embedding theorems for compact manifolds)
Let M be a cpmpact Riemannian manifold of dimension n.

a) If 1
r ≥ 1

p − k
n , then the embedding Hp

k (M) ↪→ Lr(M) is continu-
ous.

b) (Rellich-Kondrakov theorem) Suppose that the inequality in a) i
s strict, then the embedding Hp

k (M) ↪→ Lr(M) is compact.
c) Suppose 0 < α < 1 and 1

p ≤ k−α
n , then the embedding Hp

k (M) ↪→
Cα(M) is continuous.

Theorem 11.4 Let (M, g) be a compact n-dimensional Riemannian
manifold with boundary ∂M .

a) The embedding Hp
1 (M) ↪→ Lq(M) is continuous, if p ≤ q ≤ np

n−p

and compact for p ≤ q < np
n−p .

b) If ∂M 6= ∅, then the embedding Hp
1 (M)hookrightarrowLq(∂M)

is continuous, if p ≤ q ≤ p(n−1)
n−p and compact for p ≤ q < p(n−1)

n−p .

Theorem 11.5 For any smooth compact Riemannian manifold (M, g)
of dimension n ≥ 3, there exists B > 0 such that for any u ∈ H2

1 (M),
(∫

M

|u|2?

dvg

)2/2?

≤ K2
n

∫

M

|∇u|2dvg + B

∫

M

u2dvg (11.6)

and the inequality is sharp.

Theorem 11.6 (Global elliptic regularity) Let M be a compact Riemann
manifold, and suppose that u ∈ L1

loc(M) is a weak solution to ∆gu = f .

a) If f ∈ Hp
k (M), then u ∈ Hp

k+2(M), and

‖u‖Hp
k+2

≤ C(‖∆gu‖Hp
k

+ ‖u‖Lp).

b) If f ∈ Ck,α(M), then f ∈ Ck+2,α(M), and

‖u‖Cp
k+2

≤ C(‖∆gu‖Cp
k

+ ‖u‖Cα).
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11.2 Subcritical case

In this section we study the following subcritical equation, i.e




∆gu + hu = λuq−1, in M

u > 0, in M,

(11.7)

where (M, g) b a smooth compact manifold of dimension n ≥ 3, h :
M → R a smooth function and q ∈ (2, 2?) be a fixed number.

Definition 11.2 We say that u ∈ H2
1 (M) is a weak solution of the

equation (11.7) if for every ϕ ∈ H2
1 (M) we have

∫

M

〈∇u,∇ϕ〉gdvg +
∫

M

huϕdvg = α

∫

M

uq−1ϕdvg.

We have the following regularity result.

Theorem 11.7 If u ∈ H2
1 (M) is a weak solution of (11.7), then u ∈

C∞(M).

Proof First we prove that the weak solution u is smooth, i.e. u ∈
C∞(M). For this let f = µqu

q−1, and p1 = 2?. Since u ∈ H2
1 (M), from

Theorem 11.3 follows that u ∈ Lp1(M). Hence f ∈ L
p1

q−1 (M), and it

follows from Theorem 11.6 that u ∈ H
p1

q−1
2 (M). Using again Theorem

11.3 embedding theorem, we obtain

1) u ∈ Lp2(M), where p2 = np1
n(q−1)−2p1

if n(q − 1) > 2p1

or
2) u ∈ Ls(M) for all s if n(q − 1) ≤ 2p1.

If we repeat this process, we get by finite induction that u ∈ Ls(M)
for all s. Indeed, let p0 = n(q−2)

2 . Then p1 > p0. We define pi by
induction letting





pi+1 = npi

n(q−1)−2pi
, if n(q − 1) > 2pi

pi+1 = +∞, if n(q − 1) ≤ 2pi.

(11.8)

For every i ∈ N? we have pi > p0. It follows that pi+1 > pi. Moreover,
u ∈ Lpi+1(M) if n(q−1) > 2pi, and u ∈ Ls(M) for all s if n(q−1) ≤ 2pi.
Now, either exists i ∈ N? such that pi > n(q−1)

2 , or pi ≤ n(q−1)
2 for all

i. In the first case, pi+1 = +∞ and we get that u ∈ Ls(M) for all s.
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In the second case, (pi) is an increasing sequence bounded from above.
Thus (pi) converges, and if p is the limit of the pi’s, then

p =
np

n(q − 1)− 2p

so that p = n(q−2)
2 , which is impossible. This prove that u ∈ Ls(M) for

all s. By Theorem 11.6 we get u ∈ Hs
2(M) for all s. From c) Theorem

11.3 follows that u ∈ C1(M). Then, since q > 2, uq−1 ∈ C1(M), and, in
particular uq−1 ∈ Hs

1(M) for all s. Using again Theorem 11.6, it follows
that u ∈ Hs

3(M) for all s, and c) Theorem 11.3 implies u ∈ C2(M).
Since u 6= 0, applying the maximum principle, i.e. Theorem 11.1 we get
than u > 0. From Theorem 11.6 follows that u ∈ C∞(M). Thus the
assertion of theorem is proved.

We define

µq = inf
u∈Hq

∫

M

(|∇u|2 + hu2)dvg, (11.9)

where

Hq = {u ∈ H2
1 | such that

∫

M

|u|qdvg = 1}. (11.10)

We have the following result

Theorem 11.8 Let (M, g) be a smooth compact Riemannian manifold
of dimension n ≥ 3. Given q ∈ (2, 2?), there exists u ∈ C∞(M), u > 0
in M such that

∆gu + hu = µqu
q−1,

where
∫

M
uqdvg = 1, where µq is as above.

Proof Let (ui) ⊂ Hq a minimizing sequence for µq. Taking into account
Proposition 3.49 [18] we have |∇|u|| = |∇u| a.e., up to replacing ui by
|ui|, we can assume that ui ≥ 0 for all i. Since (ui) ⊂ Hq and q > 2,
(ui) using Hölder inequality we get

∫

M

|ui|2dvg ≤ Vg(M)
q−2

q (
∫

M

|ui|qdvg)
2
q .

From this inequality follows that (ui) is bounded in L2(M). In par-
ticular, µq is finite, and (ui) is bounded in H2

1 (M). Since H2
1 (M) is

a Hilbert space, follows that is reflexive. Taking into account that the
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embedding H2
1 (M) ↪→ Lq(M) is compact, there exists u ∈ H2

1 (M) and
a subsequence of (ui) which will denote in the sameway, such that:

a) ui ⇀ u weakly in H2
1 (M)

b) ui → u strongly in Lq(M)
c) ui(x) → u(x) a.e. x ∈ M .

From c) follows that u ≥ 0, and by b), u ∈ Hq. Because the norm is
weakly lower semicontinuous and ui ⇀ u weakly in H2

1 (M) follows that

‖u‖H2
1
≤ lim inf

i→+∞
‖ui‖H2

1
.

Because ui → u strongly in Lq(M) and since Lq(M) ⊂ L2(M), then we
obtain

µq =
∫

M

(|∇u|2 + hu2)dvg.

In particular, u is minimizer for µq. By Theorem 11.1 follows the exis-
tence of α ∈ R, such that for any ϕ ∈ H2

1 (M),
∫

M

〈∇u,∇ϕ〉gdvg +
∫

M

huϕdvg = α

∫

M

uq−1ϕdvg.

Taking ϕ = u, we get that α = µq. Thus u ∈ Hq, u ≥ 0, a weak
solutions of (11.7).

11.3 Critical case

In this section we study the critical case, i.e. the problem

(CE)





∆gu + hu = λu2?−1, in M

u > 0, in M,

where, (M, g) be a smooth compact manifold of dimension n ≥ 3, h :
M → R a smooth function, where λ ∈ R and 2? = 2n

n−2 is the critical
exponent.

We define

µ = inf
u∈H

∫

M

(|∇u|2 + hu2)dvg,

where

H = {u ∈ H2
1 | such that

∫

M

|u|2?

dvg = 1}.
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Because L2?

(M) ⊂ L2(M), follows that µ is finite. First we state the
following regularity result, which essentially is due to Trudinger [284].
Here we follows the Hebey work [137].

We have the following regularity result.

Theorem 11.9 Let (M, g) be a smooth compact Riemannian manifold
of dimension n ≥ 3, and let h : M → R be a smooth function. If
u ∈ H2

1 (M), u ≥ 0 is a weak solution of the equation

∆gu + hu = λu2?−1

where λ ∈ R, then u ∈ C∞(M) and either u ≡ 0, or u > 0 everywhere.

Proof It is enough to prove that u ∈ Ls(M) for some s > 2?, because
using the argument from Theorem 11.8 follows that u ∈ C∞(M). For a
fixed number L > 0 we consider the following functions FL, GL : R→ R
given by

FL(t) =
{ |t|2?/2, if |t| ≤ L

2?

2 L(2?−2)/2|t| − 2?−2
2 L2?/2, if |t| > L,

and

GL(t) =
{ |t|2?−1, if |t| ≤ L

2?

2 L(2?−2)|t| − 2?−2
2 L2?−1, if |t| > L.

From the definitions of the functions FL and GL follows

FL ≤ t2
?/2, GL ≤ t2

?/2 and (FL(t))2 ≥ tGL(t).

From these, follows easily (F ′L(t))2 ≤ 2?

2 G′L(t) for t 6= L. Taking into
account that FL and GL are locally Lipschitz and if we denote F̃L =
FL(u) and G̃L = GL(u) follows that F̃L, G̃L ∈ H2

1 (M). Since u ∈
H2

1 (M) is a weak solutions the equation (CE), follows that
∫

M

〈∇u,∇G̃L〉gdvg +
∫

M

huG̃Ldvg = α

∫

M

u2?−1G̃Ldvg.

Since G̃L(u) ≤ u2?−1, and u ∈ L2?

(M), it follows that there exists
C1, C2 > 0, independent of L, such that

∫

M

G′L(u)|∇u|2dvg ≤ C1 + C2

∫

M

u2?−1G̃Ldvg
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and since (F ′L(t))2 ≤ 2?

2 G′L(t) and tGL(t) ≤ (FL(t))2, follows that

2?

2

∫

M

|∇F̃L|dvg ≤ C1 + C2

∫

M

u2?−2F̃ 2
Ldvg.

Given K > 0, let

K+ = {x ∈ M : u(x) ≤ K},
and

K− = {x ∈ M : u(x) ≥ K}.
Because H2

1 (M) ↪→ L2?

(M) the embedding is continuous, from the
Hölder’s inequalities we get
∫

M

u2?−2F̃ 2
Ldvg =

∫

K−
u2?−2F̃ 2

Ldvg +
∫

K+
u2?−2F̃ 2

Ldvg

≤
∫

K−
u2?−2F̃ 2

Ldvg +
(∫

K+
u2?

)2/n (∫

K+
F̃ 2?

L

)2/2?

≤
∫

K−
u2?−2F̃ 2

Ldvg + ε(K)
(∫

M

F̃ 2?

L

)2/2?

≤
∫

K−
u2?−2F̃ 2

Ldvg + C3ε(K)
∫

M

(|∇F̃L|2 + F̃ 2
L)dvg,

where ε(K) = (
∫

K+ u2?

dvg)2/n, and C3 does not depend on K and
L.Since u ∈ L2?

(M), we have lim
K→+∞

ε(K) = 0. We fix K > 0 such that

C2C3ε(K) < 2
2? . We suppose that L > K, then we have

∫

K−
u2?−2F̃ 2

Ldvg ≤ K2(2?−1)Vg,

where Vg denotes the volume of M with respect the Riemannian metric
g. Since FL(t) ≤ t2

?/2 and u ∈ L2?

(M) follows the existence of a real
number C4 > 0, which does not depend on L such that

∫

M

F̃ 2
Ldvg ≤ C4.

In consequence, then there exist C5, C6 > 0, independent of L, with
C6 < 1, such that

∫

M

|∇F̃L|2dvg ≤ C5 + C6

∫

M

|∇F̃L|2dvg.

From this inequality follows that
∫

M

|∇F̃L|2dvg ≤ C5

1− C6
.
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Taking into account the Sobolev inequality for the embedding H2
1 (M) ↪→

L2?

(M) and the above inequality we get
∫

M

F̃ 2?

dvg ≤ C7,

where C7 does not depend on L. If L → +∞, follows that u ∈ L(2?)2/2(M).
But (2?)2/2 > 2 and we get the existence of some s > 2? such that
u ∈ Ls(M). Now we can use the procedure from Theorem 11.8 to prove
that u ∈ C∞(M). Now from Theorem 11.1 it follows that either u ≡ 0
or u > 0.

Theorem 11.10 Let (M, g) be a smooth compact manifold of dimension
n ≥ 3, and let h : M → R be a smooth function. If µ ≤ 0, then the
problem (CE) has a smooth positive solution.

Proof
In the following we distinguish two cases.
First case: µ < 0. Fix q ∈ (2, 2?) and we consider the equation

∆gu + hu = µqu
q−1,

where µq is defined in (11.8).
From Theorem 11.8, there exists uq ∈ C∞(M), uq > 0, such that

∆guq + huq = µqu
q−1
q ,

and
∫

M
uq

qdvg = 1. Hence there exists u ∈ H such that I(u) < 0, where

I(u) =
∫

M

(|∇u|2 + hu2)dvg.

We have

µq ≤ I

(
u

(
∫

M
|u|q)1/q

)

and that
∫

M
|u|qdvg ≤ V 1− q

2? , where Vg is the volume of M with respect
to g, we easily get that there exists ε0 > 0 such that µq ≤ ε0 for every
q ∈ (2, 2?). In similar way, we easily get that there exists K > 0 such
that µq ≥ −K for all q ∈ (2, 2?). Hence, there exists ε0 > 0 such that

− 1
ε0
≤ µq ≤ −ε0
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for all q ∈ (2, 2?). Let xq be a point where uq is maximum. Then
∆guq(xq) ≥ 0. It follows from the equation satisfied by uq that

h(xq)uq ≤ µqu
q−1
q (xq).

In particular, h(xq) < 0, and

uq−2
q (xq) ≤ 1

ε0
max
x∈M

|h(x)|,

therefore the u′qs are uniformly bounded. From Theorem 11.6 follows
that the sequence u′qs are bounded in Hp

2 for all p. In particular, a sub-
sequence of the u′qs converge to some u in C1(M) as q → 2?. Assuming
that the µ′qs converge to some λ as q → 2?, we get that u is a weak
solution of

∆gu + hu = λu2?−1.

Because
∫

M

uq
qdvg = 1, follows that u is nonzero and uq → u uniformly

as q → 2?.
From Theorem 11.9 follows that u is smooth and Proposition 11.1

implies that u is everywhere positive. In particular, u is a strong so-
lution of the above equation. With similar arguments as above, we
get that lim sup

q→2?
µq ≤ µ. Independently, it is straightforward that µ ≤

I

(
(
∫

M

u2?

q dvg)−
1
2? uq

)
, therefore

(∫

M

u2?

q dvg

) 2
2?

µ ≤ µq

for all q. Since uq → u uniformly, we have that
∫

M

u2?

q dvg →
∫

M

u2?

dvg.

Hence, we also have that lim inf
q→2?

µq ≥ µ. It follows that µq → µ as

q → 2?, so that λ = µ. Summarizing, we proved that if µ < 0, then
there exists u ∈ C∞(M), u > 0, such that

∆gu + hu = µu2?−1

and
∫

M

u2?

dvg = 1. In particular, u is a minimizing solution of the

equation. Moreover, u is obtained as the uniform limit of a subsequence
of the u′qs.
The null case: µ = 0.
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For the fixed number q ∈ (2, 2?) we consider the equation

∆gu + hu = µqu
q−1,

where µq is defined in (11.9).
From Theorem 11.8 follows the existence of an element uq ∈ C∞(M), uq >

0 be such that

∆guq + huq = µqu
q−1
q

and
∫

M

uq
qdvg = 1. First we claim that if µ = 0, then µq = 0 for all q.

Given ε > 0, we let uε ∈ H be such that I(uε) ≤ ε. Thanks to Sobolev
inequality, there exists A > 0 such that for any u ∈ H2

1 (M ,

‖u‖22? ≤ A(‖u‖22 + ‖u‖22).
Taking u = uε in the above inequality, we get that for any ε > 0,

1 ≤ A(ε + B‖uε‖22),
where B = 1 + max

x∈M
|h(x)|. Hence, there exists C > 0 such that ‖uε‖2 ≥

C for all ε > 0 sufficiently small. In particular, for q > 2, there exists
Cq > 0 such that ∫

M

|uε|qdvg ≥ Cq.

Independently, it is clear that µq ≤ I(‖uε‖−1
q uε), so that ‖uε‖2qµq ≤ ε.

Fixing q > 2, and letting ε → 0, it follows that µq ≤ 0. On the other
hand,

µq = I(uq) = ‖uq‖22?I(‖uq‖−1
2? uq) ≥ ‖uq‖22?µ,

so that µq ≥ 0. This prove the above claim if µ = 0, then µq = 0 for all
q. Letting u = ‖uq‖−1

2? uq for some q, we get that u is a positive smooth
solution of the equation

∆gu + hu = µu2?−1

such that
∫

M

u2?

dvg = 1.

The positive case: µ > 0.
In this case first we prove that the operator ∆g + h is coercive in the
sense that, there exists λ > 0 such that for any u ∈ H2

1 (M),
∫

M

(|∇u|2 + hu2)dvg ≥ λ‖u‖2H2
1
.
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From condition µ > 0 and from Hölder’s inequalities follows the exis-
tence of µ̃ > 0 such that for any u ∈ H2

1 (M),
∫

M

(|∇u|2 + hu2)dvg ≥ µ̃

∫

M

u2dvg.

We let ε ∈ (0, µ̃
2 ) be such that (1− ε)µ̃ + εh ≥ µ̃

2 . Then

∫

M

(|∇u|2 + hu2)dvg ≥ ε

∫

M

(|∇u|2 + hu2)dvg + (1− ε)
∫

M

u2dvg

≥
∫

M

|∇u|2dvg +
µ̃

2

∫

M

u2dvg

≥ ε

∫

M

(|∇u|2 + u2)dvg.

In consequence, the operator ∆g + h is coercive.
The main result in the case µ > 0 is the following:

Theorem 11.11 Let (M, g) be a smooth compact Riemannian manifold
of dimension n ≥ 3, and h : M → R be a smooth function. If

inf
u∈H

∫

M

(|∇u|2 + hu2)dvg <
1

K2
n

.

Then there exists u ∈ C∞(M), u > 0 such that

∆gu + hu = µu2?−1

and
∫

M
u2?

dvg = 1. In particular, u is a minimizing solution of the
equation.

Proof Let (ui) ⊂ H be a minimizing sequence for µ. Using again
Proposition 3.49 [18], we can replace ui by |ui|, so we can assume that the
ui’s are nonnegative. We have that (ui) is bounded in H2

1 (M). Taking
into account that H2

1 (M) is a Hilbert space, we may thus assume that
there exists u ∈ H2

1 (M), such that

1) ui ⇀ u weakly in H2
1 (M),

2) ui → u strongly in L2(M),
3) ui → u almost everywhere as i → +∞.

In particular, u is nonnegative. From the weak convergence ui ⇀ u

follows that

‖ui‖22 = ‖∇(ui − u)‖22 + ‖u‖22 + o(1),
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for all i, where o(1) → 0 as i → +∞. From Brézis-Lieb Lemma (see
Theorem B.2), it follows that

‖ui‖2
?

2? = ‖ui − u‖2?

2? + ‖u‖2?

2? + o(1),

for all i, where, as above, o(1) → 0 as i → +∞. From Theorem 11.5
follows that, there exists B > 0 such that for any i,

‖ui − u‖22? ≤ K2
n‖∇(ui − u)‖22 + B‖ui − u‖22.

Since ui ∈ H, it follows that

(1− ‖u‖2?

2?)2/2? ≤ K2
n

(‖∇ui‖22 − ‖∇u‖22
)

+ o(1).

Since I(ui) → µ and ui → u strongly in L2(M), we also have that

K2
n(‖∇ui‖22 − ‖∇u‖22) = K2

nµ−K2
n

(∫

M

|∇u|2dvg +
∫

M

hu2dvg

)
+ o(1)

≤ K2
nµ−K2

nµ‖u‖22? + o(1).

Hence,

(1− ‖u‖2?

2?)2/2? ≤ K2
n(1− ‖u‖22?).

From the assumption µK2
n < 1 follows that

1− ‖u‖22? ≤ (1− ‖u‖2?

2?)2/2?

.

From this we have ‖u‖2? = 1. Then, ‖ui‖2 → ‖u‖2 as i → +∞, and
since

‖∇ui‖22 = ‖∇(ui − u)‖22 + ‖∇u‖22 + o(1),

we get that ui → u strongly in H2
1 (M) as i → +∞. In particular, u is

a minimizer for µ, and u is a weak nonnegative solution of the equation

∆gu + hu = µu2?−1.

From Theorem 11.9 and Proposition 11.1 follows that u is smooth and
positive.

11.4 Comments and historical notes

In 1960, Yamabe [294] attempted to solve the problem Given a com-
pact Riemannian manifold (M, g) of dimension n ≥ 3, then there exists
a conformal metric with constant scalar curvature. Unfortunately, his
proof contained an error, discovered by Trudinger [284] and repair the
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proof, but only with a rather restrictive assumption on the manifold
M . In 1976, Aubin [17] and Schoen [267] trait the remaining case. In
1984, Cherrier [68] extend the Yamabe problem to the compact Riemann
manifold with boundary. In 1987 appear a very nice paper due to Lee
and Parker [185] about the Yamabe problem, where heres gave a proof
of the Yamabe problem unifying Aubin’s and Schoen’s arguments. The
Yamabe problem on compact Riemannian manifold with boundary was
studied in many papers by Escobar [104], [105], [106]. In 1993, Hebey
and Vaugon [138] studied the equivariant Yamabe problem. In the last
years many papers are dedicated to study different aspects of Yamabe
or Yamabe like problems. For this see the books of Ambrosetti and Mal-
chiodi [6], Druet, Hebey, and Robert [96], and Hebey [135], [136] and
also the papers of Li and Li [188] and Il’yasov and Runst [142] and there
references. Also many papers is dedicated to study the Yamabe invari-
ant, see for example a very nice paper of Ammann, Dahl, and Humbert
[10]. These problems suggest to study elliptic or semilinear elliptic prob-
lems on a compact Riemannian manifold with or without boundary. In
the present exists a very reach literature which are dedicated to study
these problem.
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Problems to Part II

In mathematics the art of
proposing a question must be
held of higher value than
solving it.

Georg Cantor (1845–1918)

Problem 12.1 (Hopf’s lemma) Let (M, g) be a connected, compact
Riemannian manifold and f : M → R a smooth function such that

∆gf ≥ 0.

Then f is constant.

Problem 12.2 Consider Sn the n-dimensional unit sphere endowed with
the Riemannian metric induced by the inclusion ι : Sn ↪→ Rn+1. Show
that for any smooth function f : Rn+1 → R we have

(∆Rn+1f)|Sn = ∆Sn(f |Sn)− ∂2f

∂r2
|Sn − n

∂f

∂r
|Sn ,

where ∆Rn+1 , ∆Sn and ∂
∂r are the Laplace operator on Rn+1, Sn, and

the radial derivative, respectively.

Problem 12.3 Let Sn be the unit sphere endowed with the usual Rie-
mannian structure from Rn+1. Denote by Hk the vector space of the
harmonic polynomial of degree k ≥ 0 defined on Rn+1. Let H̃k = {f |Sn :
f ∈ Hk}.

a) Show that ∆Snf = k(n + k − 1)f, for all f ∈ H̃k and hence
k(n + k − 1) is an eigenvalue of the Laplace operator ∆Sn .

279
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b) H̃k is the eigenspace corresponding to the eigenvalue λk = k(n +
k − 1).

c) The set {k(n + k − 1) : k ∈ N} is the set of eigenvalues of ∆Sn .

Problem 12.4 (M. Obata [227] ) If g is a metric on Sn that is conformal
to the standard metric g and has constant scalar curvature, then up to a
constant scale factor, g is obtained from g by a conformal diffeomorphism
of the sphere.

Problem 12.5 Let g0 be the standard Riemannian metric on Rn. Let
h = (hij) be a symmetric bilinear form with compact support and con-
sider the metric gε = g0 + εh on Rn. If Rgε

denotes the scalar curvature
of gε prove that

Rgε(x) = εR1(x) + ε2R2(x) + o(ε2),

where

R1(x) =
∑

i,j

∂2hij

∂xi∂xj
−∆trh,

and

R2 = −2
∑

k,j,l

hkj
∂2hij

∂2xl
+

∑

k,j,l

hkj
∂2hll

∂xj∂xk
+

3
4

∑

k,j,l

∂hjl

∂xk

∂hjl

∂xk

−
∑

k,j,l

∂hjl

∂xl

∂hjk

∂xk
+

∑

k,j,l

∂hjl

∂xl

∂hkk

∂xj
− 1

4

∑

k,j,l

∂hll

∂xj

∂hkk

∂xj
− 1

2

∑

k,j,l

∂hkl

∂xj

∂hjk

∂xl
.

Also the following formula holds.

|gε| 12 = 1 +
ε

2
trh + ε2

(
1
8
(trh)2 − 1

4
tr(h2)

)
+ o(ε2).

Problem 12.6 Let (M,
◦
g) be a compact Riemannian manifold with

boundary n ≥ 3. Let 0 ∈ ∂M be a point. We assume that 1 ≤ i, j, k, l ≤
n− 1. Let (x1, x2, . . . , xn−1) be normal coordinate on ∂M at the point
0. Let γ(t) be the geodesics leaving from (x1, x2, . . . , xn−1) in the or-
thogonal direction to ∂M and parameterized by the arc length. In this
case (x1, x2, . . . , xn−1) will be called Fermi coordinates at 0 ∈ ∂M . In
these coordinates the arc length is written as

ds2 = dt2 + gij(x, t)dxidxj .
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If g = det(
◦
g) then g = det(gij). If xi and t are sufficiently small, then

the following formula holds

√
g = 1−Ht+

1
2
(H2−‖π‖2−Ric(η))t2−Hitxi− 1

6
Rijxixj +O(|(x, t)|3),

where π is the second fundamental form, H is its trace and Rij are the
coefficients of the Ricci tensor of ∂M .

Problem 12.7 Let (M, g) be a connected compact n-dimensional Rie-
mannian manifold without boundary. An eigenvalue of the p-Laplace
operator ∆pu := div g(|∇u|p−2∇u) is a real number λ such that there
exists u ∈ W p

1 (M) \ {0} such that

−∆pu = λ|u|p−2u.

We denote by σp(M, g) the set of all nonzero eigenvalues. The set
σp(M, g) is not empty, unbounded and included in (0, +∞). If λ1 =
inf σp(M, g) prove that λ1 ∈ σp(M, g) and

λ1 = min
{∫

M

|∇ϕ|pdvg : ϕ ∈ Σ0

}

where

Σ0 =
{

ϕ ∈ W p
1 (M) :

∫

M

|ϕ|pdvg = 1,

∫

M

|ϕ|p−2ϕdvg = 0
}

.

If ω ⊂ M is a non-empty open subset, define

µ(ω) = min
{∫

ω

|∇ϕ|p : ϕ ∈ W 1,p
0 (ω),

∫

ω

|ϕ|pdvg = 1
}

.

Prove that

λ1 = min
(ω,ω̃)

max{µ(ω), µ(ω̃)},

where (ω, ω̃) runs over the set of couples of non-empty disjoint open
subset of M and if u is any nonzero eigenfunction associated to λ1, then
M \ u−1(0) has two connected open components.

Problem 12.8 Let (M, g) be an n-dimensional compact Riemannian
manifold without boundary, K : M → R a continuous function (K 6= 0)
and λ ∈ R. We consider the following equation

∆gu + λu + K(x)uq = 0.
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a) If λ = 0 and 1 < q < n+2
n−2 then the equation admits a positive

solutions if and only if the following conditions hold:

i)
∫

M
Kdvg < 0;

ii) there exists x0 ∈ M such that K(x0) > 0.

b) If λ < 0 and 1 < q < n+2
n−2 then the equation admits positive

solutions if and only if the condition ii) holds.

Problem 12.9 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and let λ1 denote the first eigenvalue of (−∆) in H1

0 (Ω). Let
f : R→R be a differentiable function such that f(0) = 0, f ′(0) < λ1,
and

λ1 < lim
u→+∞

f(u)
u

< ∞ .

Prove that the problem




−∆u = f(u) in Ω
u > 0 in Ω
u = 0 on ∂Ω

has a solution.

Problem 12.10 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and assume that p is a real number such that 1 < p < (N+2)/(N−2)
if N ≥ 3 and 1 < p < ∞ if N ∈ {1, 2}.

Prove that there exists λ∗ > 0 such that the problem
{ −∆u = λ(1 + u)p in Ω

u = 0 on ∂Ω

has at least two solutions for any λ ∈ (0, λ∗).

Problem 12.11 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and assume that p is a real number such that 1 < p < (N+2)/(N−2)
if N ≥ 3 and 1 < p < ∞ if N ∈ {1, 2}. Consider the problem





−∆u = up + f(x) in Ω
u > 0 in Ω
u = 0 on ∂Ω,

(12.1)

where f is a smooth function.
Prove that there exists δ > 0 such that problem (12.1) has a solution,

provided that ‖f‖L∞ ≤ δ.
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Problem 12.12 Let Ω ⊂ RN be a bounded domain with smooth bound-
ary and assume that p is a real number such that 1 < p < (N+2)/(N−2)
if N ≥ 3 and 1 < p < ∞ if N ∈ {1, 2}. Consider the problem

{ −∆u = |u|p + f(x) in Ω
u = 0 on ∂Ω,

(12.2)

where f is a smooth function.
Denote

K = {f ∈ C0,α(Ω); problem (12.2) has a solution}
and

P = {h ∈ C0,α(Ω); h ≥ 0 in Ω} .

a) Prove that K is a convex set and K \ P ⊂ K.
b) Prove that for every f ∈ IntK, problem (12.2) has at least two

solutions. In particular, if f ≤ 0 in Ω, then problem (12.2) has
at least two solutions.
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Mathematical Preliminaries

Knowledge is power. (Ipsa
Scientia Potestas Est)

Sir Francis Bacon
(1561–1626), Meditationes

Sacræ. De Hæresibus

13.1 Metrics, geodesics, flag curvature

Let M be a connected m-dimensional C∞ manifold and let TM =⋃
p∈M TpM be its tangent bundle. If the continuous function F : TM →

[0,∞) satisfies the conditions that it is C∞ on TM \{0}; F (tu) = tF (u)
for all t ≥ 0 and u ∈ TM, i.e., F is positively homogeneous of degree
one; and the matrix gij(u) := [ 12F 2]yiyj (u) is positive definite for all
u ∈ TM \ {0}, then we say that (M, F ) is a Finsler manifold. If F is
absolutely homogeneous, then (M, F ) is said to be reversible. Let π∗TM

be the pull-back of the tangent bundle TM by π : TM \ {0} → M ; then

g(p,y) := gij(p,y)dpi ⊗ dpj := [
1
2
F 2]yiyj dpi ⊗ dpj , p ∈ M, y ∈ TpM,

(13.1)
is the natural Riemannian metric on the pulled-back bundle π∗TM .

Unlike the Levi-Civita connection in Riemann geometry, there is no
unique natural connection in the Finsler case. Among these connec-
tions on π∗TM, we choose the Chern connection whose coefficients are
denoted by Γk

ij ; see [22, p.38]). This connection induces the curvature
tensor, denoted by R; see [22, Chapter 3]. The Chern connection de-
fines the covariant derivative DV U of a vector field U in the direction
V ∈ TpM. Since, in general, the Chern connection coefficients Γi

jk in

284
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natural coordinates have a directional dependence, we must say explic-
itly that DV U is defined with a fixed reference vector. In particular, let
σ : [0, r] → M be a smooth curve with velocity field T = T (t) = σ̇(t).
Suppose that U and W are vector fields defined along σ. We define DT U

with reference vector W as

DT U =
[
dU i

dt
+ U jT k(Γi

jk)(σ,W )

]
∂

∂pi |σ(t)

,

where
{

∂
∂pi |σ(t)

}
i=1,m

is a basis of Tσ(t)M. A C∞ curve σ : [0, r] → M,

with velocity T = σ̇ is a (Finslerian) geodesic if

DT

[
T

F (T )

]
= 0 with reference vector T . (13.2)

If the Finslerian velocity of the geodesic σ is constant, then (13.2) be-
comes

d2σi

dt2
+

dσj

dt

dσk

dt
(Γi

jk)(σ,T ) = 0, i = 1, ..., m = dimM. (13.3)

For any p ∈ M and y ∈ TpM we may define the exponential map
expp : TpM → M , expp(y) = σ(1, p, y), where σ(t, p, y) is the unique
solution (geodesic) of the second order differential equation (13.2) (or,
(13.3)) which passes through p at t = 0 with velocity y.

If U, V and W are vector fields along a curve σ, which has velocity
T = σ̇, we have the derivative rule

d

dt
g(σ,W )(U, V ) = g(σ,W )(DT U, V ) + g(σ,W )(U,DT V ) (13.4)

whenever DT U and DT V are with reference vector W and one of the
following conditions holds:

• U or V is proportional to W, or
• W = T and σ is a geodesic.

Let γ : [0, 1] → M be a smooth regular curve and Σ : [0, 1]× [−ε, ε] →
M be a smooth regular variation of γ (i.e. Σ(t, 0) = γ(t) for all t ∈ [0, 1])
with variation vector field U = U(t, u) = ∂Σ

∂u . Then

∂

∂u
g(σ,T )(T, T ) = 2g(σ,T )(T, DUT ), (13.5)

where T = ∂Σ
∂t and the covariant derivative DUT is with reference vector

T .
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A vector field J along a geodesic σ : [0, r] → M (with velocity field
T ) is said to be a Jacobi field if it satisfies the equation

DT DT J + R(J, T )T = 0, (13.6)

where R is the curvature tensor. Here, the covariant derivative DT is
defined with reference vector T.

We say that q is conjugate to p along the geodesic σ if there exists a
nonzero Jacobi field J along σ which vanishes at p and q.

Let γ : [0, r] → M be a piecewise C∞ curve. Its integral length is
defined as

LF (γ) =
∫ r

0

F (γ(t), γ̇(t)) dt.

Let Σ : [0, r] × [−ε, ε] → M (ε > 0) be a piecewise C∞ variation of
a geodesic γ : [0, r] → M with Σ(·, 0) = γ. Let T = T (t, u) = ∂Σ

∂t , U =
U(t, u) = ∂Σ

∂u the velocities of the t-curves and u-curves, respectively.
The formula for the first variation of arc length, see Bao-Chern-Shen
[22, Exercise 5.1.4], gives us

L′F (Σ(·, 0)) :=
d

du
LF (Σ(·, u))|u=0 =

[
gT

(
U,

T

F (T )

)

|u=0

]∣∣∣∣∣

t=r

t=0

. (13.7)

For p, q ∈ M , denote by Γ(p, q) the set of all piecewise C∞ curves
γ : [0, r] → M such that γ(0) = p and γ(r) = q. Define the map
dF : M ×M → [0,∞) by

dF (p, q) = inf
γ∈Γ(p,q)

LF (γ). (13.8)

Of course, we have dF (p, q) ≥ 0, where equality holds if and only if p = q,

and the triangle inequality holds, i.e., dF (p0, p2) ≤ dF (p0, p1)+dF (p1, p2)
for every p0, p1, p2 ∈ M. In general, since F is only a positive homoge-
neous function, dF (p, q) 6= dF (q, p); thus, (M, dF ) is only a quasi-metric
space. If (M, g) is a Riemannian manifold, we will use the notation dg

instead of dF which becomes a usual metric function.
For p ∈ M, r > 0, we define the forward and backward Finsler-metric

ball s, respectively, with center p ∈ M and radius r > 0, by

B+
p (r) = {q ∈ M : dF (p, q) < r} and B−p (r) = {q ∈ M : dF (q, p) < r}.

We denote by Bp(r) := {y ∈ TpM : F (p, y) < r} the open tangent
ball at p ∈ M with radius r > 0. It is well-known that the topology
generated by the forward (resp. backward) metric balls coincide with
the underlying manifold topology, respectively.



13.1 Metrics, geodesics, flag curvature 287

By Whitehead’s theorem (see [292] or [22, Exercise 6.4.3, p. 164]) and
[22, Lemma 6.2.1, p. 146] we can conclude the following useful local
result (see also [179]).

Proposition 13.1 Let (M,F ) be a Finsler manifold, where F is posi-
tively (but perhaps not absolutely) homogeneous of degree one. For every
point p ∈ M there exist a small ρp > 0 and cp > 1 (depending only on
p) such that for every pair of points q0, q1 in B+

p (ρp) we have

1
cp

dF (q1, q0) ≤ dF (q0, q1) ≤ cpdF (q1, q0). (13.9)

Moreover, for every real number k ≥ 1 and q ∈ B+
p (ρp/k) the mapping

expq is C1-diffeomorphism from Bq(2ρp/k) onto B+
q (2ρp/k) and every

pair of points q0, q1 in B+
p (ρp/k) can be joined by a unique minimal

geodesic from q0 to q1 lying entirely in B+
p (ρp/k).

A set M0 ⊆ M is forward bounded if there exist p ∈ M and r > 0 such
that M0 ⊆ B+

p (r). Similarly, M0 ⊆ M is backward bounded if there exist
p ∈ M and r > 0 such that M0 ⊆ B−p (r).

A set M0 ⊆ M is geodesic convex if for any two points of M0 there
exists a unique geodesic joining them which belongs entirely to M0.

Let (p, y) ∈ TM \ 0 and let V be a section of the pulled-back bundle
π∗TM . Then,

K(y, V ) =
g(p,y)(R(V, y)y, V )

g(p,y)(y, y)g(p,y)(V, V )− [g(p,y)(y, V )]2
(13.10)

is the flag curvature with flag y and transverse edge V . In particular,
when the Finsler structure F arises from a Riemannian metric g (i.e.,
the fundamental tensor gij = [ 12F 2]yiyj does not depend on the direction
y), the flag curvature coincides with the usual sectional curvature.

If K(V, W ) ≤ 0 for every 0 6= V, W ∈ TpM, and p ∈ M , with V and
W not collinear, we say that the flag curvature of (M, F ) is non-positive.

A Finsler manifold (M, F ) is said to be forward (resp. backward)
geodesically complete if every geodesic σ : [0, 1] → M parameterized to
have constant Finslerian speed, can be extended to a geodesic defined on
[0,∞) (resp. (−∞, 1]). (M, F ) is geodesically complete if every geodesic
σ : [0, 1] → M can be extended to a geodesic defined on (−∞,∞). In
the Riemannian case, instead of geodesically complete we simply say
complete Riemannian manifold.
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Theorem 13.1 (Theorem of Hopf-Rinow, [22, p. 168]) Let (M, F )
be a connected Finsler manifold, where F is positively (but perhaps not
absolutely) homogeneous of degree one. The following two criteria are
equivalent:

(a) (M, F ) is forward (backward) geodesically complete;
(b) Every closed and forward (backward) bounded subset of (M,dF )

is compact.

Moreover, if any of the above holds, then every pair of points in M can
be joined by a minimizing geodesic.

Theorem 13.2 (Theorem of Cartan-Hadamard, [22, p. 238]) Let
(M, F ) be a forward/backward geodesically complete, simply connected
Finsler manifold of non-positive flag curvature. Then:

(a) Geodesics in (M,F ) do not contain conjugate points.
(b) The exponential map expp : TpM → M is a C1 diffeomorphism

from the tangent space TpM onto the manifold M .

A Finsler manifold (M, F ) is a Minkowski space if M is a vector space
and F is a Minkowski norm inducing a Finsler structure on M by trans-
lation; its flag curvature is identically zero, the geodesics are straight
lines, and for any two points p, q ∈ M , we have F (q − p) = dF (p, q),
see Bao-Chern-Shen [22, Chapter 14]. In particular, (M, F ) is both for-
ward and backward geodesically complete. The fundamental inequality
for Minkowski norms implies

|gy(y, w)| ≤
√

gy(y, y) ·
√

gw(w,w) = F (y) · F (w) for all y 6= 0 6= w,

(13.11)
which is the generalized Cauchy-Schwarz inequality, see Bao-Chern-Shen
[22, p. 6-10].

A Finsler manifold is of Berwald type if the Chern connection coeffi-
cients Γk

ij in natural coordinates depend only on the base point. Special
Berwald spaces are the (locally) Minkowski spaces and the Riemannian
manifolds. In the latter case, the Chern connection coefficients Γk

ij co-
incide the usual Christofel symbols

Γ
k

ij(p) =
1
2

[(
∂gmj

∂pj

)

p

+
(

∂gmi

∂pj

)

p

−
(

∂gij

∂pm

)

p

]
gmk(p)

where the gij ’s are such that gimgmj = δij .
A Riemannian manifold is said to be of Hadamard-type, if it is simply

connected, complete, having non-positive sectional curvature.
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Theorem 13.3 (Cosine inequality, see [91, Lemma 3.1]) Let (M, g) be
a Hadamard-type Riemannian manifold. Consider the geodesic triangle
determined by vertices a, b, c ∈ M . If ĉ is the angle belonging to vertex
c and if A = dg(b, c), B = dg(a, c), C = dg(a, b), then

A2 + B2 − 2AB cos ĉ ≤ C2.

The following result is probably know, but since we have not found
an explicit reference, we give its proof.

Proposition 13.2 Let (M, g) be a complete, finite-dimensional Rieman-
nian manifold. Then any geodesic convex set K ⊂ M is contractible.

Proof Let us fix p ∈ K arbitrarily. Since K is geodesic convex, every
point q ∈ K can be connected to p uniquely by the geodesic segment
γq : [0, 1] → K, i.e., γq(0) = p, γq(1) = q. Moreover, the map K 3
q 7→ exp−1

p (q) ∈ TpM is well-defined and continuous. Note actually
that γq(t) = expp(t exp−1

p (q)). We define the map F : [0, 1] × K → K

by F (t, q) = γq(t). It is clear that F is continuous, F (1, q) = q and
F (0, q) = p for all q ∈ K, i.e., the identity map idK is homotopic to the
constant map p.

13.2 Busemann-type inequalities on Finsler manifolds

In the forties, Busemann developed a synthetic geometry on metric
spaces. In particular, he axiomatically elaborated a whole theory of
non-positively curved metric spaces which have no differential structure
a priori and they possess the essential qualitative geometric properties
of Finsler manifolds. These spaces are the so-called G-spaces, see Buse-
mann [54, p. 37]. This notion of non-positive curvature requires that in
small geodesic triangles the length of a side is at least the twice of the
geodesic distance of the mid-points of the other two sides, see Busemann
[54, p. 237].

To formulate in a precise way this notion, let (M,d) be a quasi-metric
space and for every p ∈ M and radius r > 0, we introduce the forward
and backward metric ball s

B+
p (r) = {q ∈ M : d(p, q) < r} and B−

p (r) = {q ∈ M : d(q, p) < r}.

A continuous curve γ : [a, b] → M with γ(a) = x, γ(b) = y is a shortest
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geodesic, if l(γ) = d(x, y), where l(γ) denotes the generalized length of γ

and it is defined by

l(γ) = sup{
n∑

i=1

d(γ(ti−1), γ(ti)) : a = t0 < t1 < ... < tn = b, n ∈ N}.

In the sequel, we always assume that the shortest geodesics are parametrized
proportionally to arclength, i.e., l(γ|[0,t]) = tl(γ).

Remark 13.1 A famous result of Busemann-Meyer (see [55, Theorem
2, p. 186]) from Calculus of Variations shows that the generalized length
l(γ) and the integral length LF (γ) of any (piecewise) C∞ curves coin-
cide for Finsler manifolds. Therefore, the minimal Finsler geodesic and
shortest geodesic notions coincide.

We say that (M,d) is a locally geodesic (length) space if for every point
p ∈ M there is a ρp > 0 such that for every two points x, y ∈ B+

p (ρp)
there exists a shortest geodesic joining them.

Definition 13.1 A locally geodesic space (M, d) is said to be a Buse-
mann non-positive curvature space (shortly, Busemann NPC space), if
for every p ∈ M there exists ρp > 0 such that for any two shortest
geodesics γ1, γ2 : [0, 1] → M with γ1(0) = γ2(0) = x ∈ B+

p (ρp) and with
endpoints γ1(1), γ2(1) ∈ B+

p (ρp) we have

2d(γ1(
1
2
), γ2(

1
2
)) ≤ d(γ1(1), γ2(1)).

(We shall say that γ1 and γ2 satisfy the Busemann NPC inequality).

Let (M, g) be a Riemannian manifold and (M, dg) the metric space
induced by itself. In this context, the Busemann NPC inequality is
well-known. Namely, we have

Proposition 13.3 [54, Theorem (41.6)] (M, dg) is a Busemann non-
positive curvature space if and only if the sectional curvature of (M, g)
is non-positive.

However, the picture for Finsler spaces is not so nice as in Proposition
13.3 for Riemannian manifolds. To see this, we consider the Hilbert
metric of the interior of a simple, closed and convex curve C in the
Euclidean plane. In order to describe this metric, let MC ⊂ R2 be the
region defined by the interior of the curve C and fix x1, x2 ∈ Int(MC).
Assume first that x1 6= x2. Since C is a convex curve, the straight
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line passing to the points x1, x2 intersects the curve C in two point;
denote them by u1, u2 ∈ C. Then, there are τ1, τ2 ∈ (0, 1) such that
xi = τiu1 + (1− τi)u2 (i = 1, 2).

The Hilbert distance between x1 and x2 is

dH(x1, x2) =
∣∣∣∣log

(
1− τ1

1− τ2
· τ2

τ1

)∣∣∣∣ .

We complete this definition by dH(x, x) = 0 for every x ∈ Int(MC).
One can easily prove that (Int(MC), dH) is a metric space and it is a
projective Finsler metric with constant flag curvature −1. However, due
to Kelly-Straus, we have

Proposition 13.4 (see [156]) The metric space (Int(MC), dH) is a Buse-
mann non-positive curvature space if and only if the curve C ⊂ R2 is an
ellipse.

This means that, although for Riemannian spaces the non-positivity
of the sectional curvature and Busemann’s curvature conditions are mu-
tually equivalent, the non-positivity of the flag curvature of a generic
Finsler manifold is not enough to guarantee Busemann’s property.

Therefore, in order to obtain a characterization of Busemann’s curva-
ture condition for Finsler spaces, we have two possibilities:

(I) To find a new notion of curvature in Finsler geometry such that
for an arbitrary Finsler manifold the non-positivity of this cur-
vature is equivalent with the Busemann non-positive curvature
condition, as it was proposed by Z. Shen, see [276, Open Prob-
lem 41]; or,

(II) To keep the flag curvature, but put some restrictive condition on
the Finsler metric.

In spite of the fact that (reversible) Finsler manifolds are included in
G-spaces, only few results are known which establish a link between
the differential invariants of a Finsler manifold and the metric prop-
erties of the induced metric space. The main result of this section is
due Kristály-Kozma [170] (see also Kristály-Varga-Kozma [179]), which
makes a strong connection between an analytical property and a syn-
thetic concept of non-positively curved metric spaces. Namely, we have

Theorem 13.4 Let (M, F ) be a Berwald space with non-positive flag
curvature, where F is positively (but perhaps not absolutely) homoge-
neous of degree one. Then (M, dF ) is a Busemann NPC space.
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Proof Let us fix p ∈ M and consider ρp > 0, cp > 1 from Proposition
13.1. We will prove that ρ′p = ρp

cp
is a good choice in Definition 13.1. To

do this, let γ1, γ2 : [0, 1] → M be two (minimal) geodesics with γ1(0) =
γ2(0) = x ∈ B+

p (ρ′p) and γ1(1), γ2(1) ∈ B+
p (ρ′p). By Proposition 13.1, we

can construct a unique geodesic γ : [0, 1] → M joining γ1(1) with γ2(1)
and dF (γ1(1), γ2(1)) = L(γ). Clearly, γ(s) ∈ B+

p (ρ′p) for all s ∈ [0, 1] (we
applied Proposition 13.1 for k = cp). Moreover, x ∈ B+

γ(s)(2ρp). Indeed,
by (13.9), we obtain

dF (γ(s), x) ≤ dF (γ(s), p)+dF (p, x) ≤ cpdF (p, γ(s))+ρ′p ≤ (cp+1)ρ′p < 2ρp.

Therefore, we can define Σ : [0, 1]× [0, 1] → M by

Σ(t, s) = expγ(s)((1− t) · exp−1
γ(s)(x)).

The curve t 7→ Σ(1 − t, s) is a radial geodesic which joins γ(s) with
x. Taking into account that (M, F ) is of Berwald type, the reverse of
t 7→ Σ(1− t, s), i.e. t 7→ Σ(t, s) is a geodesic too (see [22, Exercise 5.3.3,
p. 128]) for all s ∈ [0, 1]. Moreover, Σ(0, 0) = x = γ1(0), Σ(1, 0) =
γ(0) = γ1(1). From the uniqueness of the geodesic between x and γ1(1),
we have Σ(· , 0) = γ1. Analogously, we have Σ(· , 1) = γ2. Since Σ is a
geodesic variation (of the curves γ1 and γ2), the vector field Js, defined
by

Js(t) =
∂

∂s
Σ(t, s) ∈ TΣ(t,s)M

is a Jacobi field along Σ(· , s), s ∈ [0, 1] (see [22, p. 130]). In particular,
we have Σ(1, s) = γ(s), Js(0) = 0, Js(1) = ∂

∂sΣ(1, s) = dγ
ds and Js( 1

2 ) =
∂
∂sΣ( 1

2 , s).

Now, we fix s ∈ [0, 1]. Since Js(0) = 0 and the flag curvature in non-
positive, then the geodesic Σ(·, s) has no conjugated points, see Theorem
13.2. Therefore,

Js(t) 6= 0 for all t ∈ (0, 1].

Hence gJs(Js, Js)(t) is well defined for every t ∈ (0, 1]. Moreover,

F (Js)(t) := F (Σ(t, s), Js(t)) = [gJs(Js, Js)]
1
2 (t) 6= 0 ∀ t ∈ (0, 1].

(13.12)
Let Ts the velocity field of Σ(·, s). Applying twice formula (13.4), we
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obtain

d2

dt2
[gJs(Js, Js)]

1
2 (t) =

d2

dt2
F (Js)(t) =

d

dt

[
gJs(DTsJs, Js)

F (Js)

]
(t) =

[gJs(DTsDTsJs, Js) + gJs(DTsJs, DTsJs)] · F (Js)− g2
Js

(DTsJs, Js) · F (Js)
−1

F 2(Js)
(t) =

gJs(DTsDTsJs, Js) · F 2(Js) + gJs(DTsJs, DTsJs) · F 2(Js)− g2
Js

(DTsJs, Js)

F 3(Js)
(t),

where the covariant derivatives (for generic Finsler manifolds) are with
reference vector Js. Since (M,F ) is a Berwald space, the Chern con-
nection coefficients do not depend on the direction, i.e., the notion of
reference vector becomes irrelevant. Therefore, we can use the Jacobi
equation (13.6), concluding that

gJs
(DTs

DTs
Js, Js) = −gJs

(R(Js, Ts)Ts, Js).

Using the symmetry property of the curvature tensor, the formula of the
flag curvature, and the Schwarz inequality we have

−gJs(R(Js, Ts)Ts, Js) = −gJs(R(Ts, Js)Js, Ts)

= −K(Js, Ts) · [gJs(Js, Js)gJs(Ts, Ts)− g2
Js

(Js, Ts)] ≥ 0.

For the last two terms of the numerator we apply again the Schwarz
inequality and we conclude that

d2

dt2
F (Js)(t) ≥ 0 for all t ∈ (0, 1].

Since Js(t) 6= 0 for t ∈ (0, 1], the mapping t 7→ F (Js)(t) is C∞ on (0, 1].
From the above inequality and the second order Taylor expansion about
v ∈ (0, 1], we obtain

F (Js)(v) + (t− v)
d

dt
F (Js)(v) ≤ F (Js)(t) for all t ∈ (0, 1]. (13.13)

Letting t → 0 and v = 1/2 in (13.13), by the continuity of F, we obtain

F (Js)(
1
2
)− 1

2
d

dt
F (Js)(

1
2
) ≤ 0.

Let v = 1/2 and t = 1 in (13.13), and adding the obtained inequality
with the above one, we conclude that

2F (Σ(
1
2
, s),

∂

∂s
Σ(

1
2
, s)) = 2F (Js)(

1
2
) ≤ F (Js)(1) = F (γ(s),

dγ

ds
).
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Integrating the last inequality with respect to s from 0 to 1, we obtain

2LF (Σ(
1
2
, ·)) = 2

∫ 1

0

F (Σ(
1
2
, s),

∂

∂s
Σ(

1
2
, s)) ds

≤
∫ 1

0

F (γ(s),
dγ

ds
) ds

= LF (γ)

= dF (γ1(1), γ2(1)).

Since Σ( 1
2 , 0) = γ1( 1

2 ),Σ( 1
2 , 1) = γ2( 1

2 ) and Σ( 1
2 , ·) is a C∞ curve, by the

definition of the metric function dF , we conclude that γ1 and γ2 satisfy
the Busemann NPC inequality. This concludes the proof of Theorem
13.4.

In view of Theorem 13.4, Berwald spaces seem to be the first class
of Finsler metrics that are non-positively curved in the sense of Buse-
mann and which are neither flat nor Riemannian. Moreover, the above
result suggests a full characterization of the Busemann curvature no-
tion for Berwald spaces. Indeed, we refer the reader to Kristály-Kozma
[170] where the converse of Theorem 13.4 is also proved; here we omit
this technical part since only the above result is applied for Economical
problems.

Note that Theorem 13.4 includes a partial answer to the question
of Busemann [54] (see also [235, p. 87]), i.e., every reversible Berwald
space of non-positive flag curvature has convex capsules (i.e., the loci
equidistant to geodesic segments).

In the fifties, Aleksandrov introduced independently an other notion
of curvature in metric spaces, based on the convexity of the distance
function. It is well-known that the condition of Busemann curvature is
weaker than the Aleksandrov one, see [150, Corollary 2.3.1]. Neverthe-
less, in Riemannian spaces the Aleksandrov curvature condition holds
if and only if the sectional curvature is non-positive (see [52, Theorem
1A.6]), but in the Finsler case the picture is quite rigid. Namely, if on a
reversible Finsler manifold (M,F ) the Aleksandrov curvature condition
holds (on the induced metric space by (M, F )) then (M, F ) it must be
Riemannian, see [52, Proposition 1.14].

A direct consequence of Theorem 13.4 is

Corollary 13.1 Let (M, F ) be a forward/backward geodesically com-
plete, simply connected Berwald space with non-positive flag curvature,
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where F is positively (but perhaps not absolutely) homogeneous of degree
one. Then (M,dF ) is a global Busemann NPC space, i.e., the Busemann
NPC inequality holds for any pair of geodesics.

The following result is crucial in Chapters 14 and 15.

Proposition 13.5 Let (M,F ) be a forward/backward geodesically com-
plete, simply connected Berwald space with non-positive flag curvature,
where F is positively (but perhaps not absolutely) homogeneous of de-
gree one. Fix two geodesics γ1, γ2 : [0, 1] → M . Then, the function
t 7→ dF (γ1(t), γ2(t)) is convex.

Proof Due to Hopf-Rinow theorem (see Theorem 13.1), there exists a
geodesic γ3 : [0, 1] → M joining γ1(0) and γ2(1). Moreover, due to
Cartan-Hadamard theorem (see Theorem 13.2), γ3 is unique. Applying
Corollary 13.1 first to the pair γ1, γ3 and then to the pair γ3, γ2 (with
opposite orientation), we obtain

dF (γ1(
1
2
), γ3(

1
2
)) ≤ 1

2
dF (γ1(1), γ3(1));

dF (γ3(
1
2
), γ2(

1
2
)) ≤ 1

2
dF (γ3(0), γ2(0)).

Note that the opposite of γ3 and γ2 are also geodesics, since (M, F )
is of Berwald type, see [22, Example 5.3.3]. Now, using the triangle
inequality, we obtain

dF (γ1(
1
2
), γ2(

1
2
)) ≤ 1

2
dF (γ1(1), γ2(1)) +

1
2
dF (γ1(0), γ2(0)),

which means actually the 1
2 -convexity of the function t 7→ dF (γ1(t), γ2(t)).

Continuing in this way and taking a limit if necessarily, we conclude the
convexity of the above function.

13.3 Variational inequalities

Existence results for Nash equilibria are often derived from intersec-
tion theorems (KKM theorems) or fixed point theorems. For instance,
the original proof of Nash concerning equilibrium point is based on the
Brouwer fixed point theorem. These theorems are actually equivalent to
minimax theorems or variational inequalities, as Ky Fan minimax the-
orem, etc. In this section we recall a few results which will be used in
Chapter 16.
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A nonempty set X is acyclic if it is connected and its C̆ech homology
(coefficients in a fixed field) is zero in dimensions greater than zero. Note
that every contractible set is acyclic (but the converse need not holds
in general). The following result is a Ky Fan type minimax theorem,
proved by McClendon:

Theorem 13.5 [207, Theorem 3.1] Suppose that X is a compact acyclic
finite-dimensional ANR. Suppose h : X × X → R is a function such
that {(x, y) : h(y, y) > h(x, y)} is open and {x : h(y, y) > h(x, y)}
is contractible or empty for all y ∈ X. Then there is a y0 ∈ X with
h(y0, y0) ≤ h(x, y0) for all x ∈ X.

In the sequel, we state some well-known results from the theory of
variational inequalities. To do this, we consider a Gâteaux differentiable
function f : K → R where K is a closed convex subset of the topological
vector space X.

Lemma 13.1 Let x0 ∈ K be a relative minimum point of f to K, i.e.,
f(x) ≥ f(x0) for every x ∈ K. Then,

f ′(x0)(x− x0) ≥ 0, ∀x ∈ K. (13.14)

Furthermore, if f is convex, then the converse also holds.

Lemma 13.2 Let x0 ∈ K such that

f ′(x)(x− x0) ≥ 0, ∀x ∈ K. (13.15)

Then, x0 ∈ K is a relative minimum point of f to K. Furthermore, if
f is convex, then the converse also holds.

Note that if we replace f ′ by an operator A : X → X∗, then (13.14)
appearing in Lemma 13.1 is called a Stampacchia-type variational in-
equality, while (13.15) from Lemma 13.2 is a Minty-type variational
inequality.



14

Minimization of Cost-functions on Manifolds

Geography has made us
neighbors. History has made
us friends. Economics has
made us partners, and
necessity has made us allies.
Those whom God has so
joined together, let no man
put asunder.

John F. Kennedy (1917–1963)

14.1 Introduction

Let us consider three markets P1, P2, P3 placed on an inclined plane
(slope) with an angle α to the horizontal plane, denoted by (Sα). Assume
that three cars transport products from (resp. to) deposit P ∈ (Sα) to
(resp. from) markets P1, P2, P3 ∈ (Sα) such that

• they move always in (Sα) along straight roads;
• the Earth gravity acts on them (we omit other physical pertur-

bations such as friction, air resistance, etc.);
• the transport costs coincide with the distance (measuring actually

the time elapsed to arrive) from (resp. to) deposit P to (resp.
from) markets Pi (i = 1, 2, 3).

We emphasize that usually the two distances, i.e., from the deposit to
the markets and conversely, are not the same. The point here is that the
travel speed depends heavily on both the slope of the terrain and the
direction of travel. More precisely, if a car moves with a constant speed
v [m/s] on a horizontal plane, it goes lt = vt + g

2 t2 sin α cos θ meters in

297
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t seconds on (Sα), where θ is the angle between the straight road and
the direct downhill road (θ is measured in clockwise direction). The law
of the above phenomenon can be described relatively to the horizontal
plane by means of the parametrized function

Fα(y1, y2) =
y2
1 + y2

2

v
√

y2
1 + y2

2 + g
2y1 sinα

, (y1, y2) ∈ R2 \ {(0, 0)}. (14.1)

Here, g ≈ 9.81m/s2. The distance (measuring the time to arrive) from
P = (P 1, P 2) to Pi = (P 1

i , P 2
i ) is

dα(P, Pi) = Fα(P 1
i − P 1, P 2

i − P 2),

and for the converse it is

dα(Pi, P ) = Fα(P 1 − P 1
i , P 2 − P 2

i ).

Consequently, we have to minimize the functions

Cf (P ) =
3∑

i=1

dα(P, Pi) and Cb(P ) =
3∑

i=1

dα(Pi, P ), (14.2)

when P moves on (Sα). The function Cf (resp. Cb) denotes the total
forward (resp. backward) cost between the deposit P ∈ (Sα) and mar-
kets P1, P2, P3 ∈ (Sα). The minimum points of Cf and Cb, respectively,
may be far from each other (see Figure 14.1), due to the fact that Fα

(and dα) is not symmetric unless α = 0, i.e., Fα(−y1,−y2) 6= Fα(y1, y2)
for each (y1, y2) ∈ R2 \ {(0, 0)}.

We will use in general Tf (resp. Tb) to denote a minimum point of
Cf (resp. Cb), which corresponds to the position of a deposit when we
measure costs in forward (resp. backward) manner, see (14.2).

In the case α = 0 (when (Sα) is a horizontal plane), the functions Cf

and Cb coincide (the same is true for Tf and Tb). The minimum point
T = Tf = Tb is the well-known Torricelli point corresponding to the
triangle P1P2P3∆. Note that F0(y1, y2) =

√
y2
1 + y2

2/v corresponds to
the standard Euclidean metric; indeed,

d0(P, Pi) = d0(Pi, P ) =
√

(P 1
i − P 1)2 + (P 2

i − P 2)2/v

measures the time, which is needed to arrive from P to Pi (and vice-
versa) with constant velocity v.

Unfortunately, finding critical points as possible minima does not yield
any result: either the minimization function is not smooth enough (usu-
ally, it is only a locally Lipschitz function) or the system, which would
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Fig. 14.1. We fix P1 = (−250,−50), P2 = (0,−100) and P3 = (−50, 100) on
the slope (Sα) with angle α = 35o. If v = 10, the minimum of the total for-
ward cost on the slope is Cf ≈ 40.3265; the corresponding deposit is located at
Tf ≈ (−226.11,−39.4995) ∈ (Sα). However, the minimum of the total backward
cost on the slope is Cb ≈ 38.4143; the corresponding deposit has the coordinates
Tb ≈ (−25.1332,−35.097) ∈ (Sα).

give the critical points, becomes very complicated even in quite simple
cases (see (14.5) below). Consequently, the main purpose of the present
chapter is to study the set of these minima (existence, location) in vari-
ous geometrical settings.

Note, that the function appearing in (14.1) is a typically Finsler met-
ric on R2, introduced and studied first by Matsumoto [204]. In this way,
elements from Riemann-Finsler geometry are needed in order to handle
the question formulated above. In the next sections we prove some neces-
sarily, existence, uniqueness and multiplicity results for the economical
problem on non-positively curved Berwald space which model various
real life phenomena. Simultaneously, relevant numerical examples and
counterexamples are constructed by means of evolutionary methods and
computational geometry tools, emphasizing the applicability and sharp-
ness of our results.
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14.2 A necessary condition

Let (M, F ) be an m-dimensional connected Finsler manifold, where F

is positively (but perhaps not absolutely) homogeneous of degree one.
In this section we prove some results concerning the set of minima for

functions

Cf (Pi, n, s)(P ) =
n∑

i=1

ds
F (P, Pi) and Cb(Pi, n, s)(P ) =

n∑

i=1

ds
F (Pi, P ),

where s ≥ 1 and Pi ∈ M, i = 1, . . . , n, correspond to n ∈ N markets.
The value Cf (Pi, n, s)(P ) (resp. Cb(Pi, n, s)(P )) denotes the total s-
forward (resp. s-backward) cost between the deposit P ∈ M and the
markets Pi ∈ M, i = 1, ..., n. When s = 1, we simply say total forward
(resp. backward) cost.

By using the triangle inequality, for every x0, x1, x2 ∈ M we have

|dF (x1, x0)− dF (x2, x0)| ≤ max{dF (x1, x2), dF (x2, x1)}. (14.3)

Given any point P ∈ M , there exists a coordinate map ϕP defined
on the closure of some precompact open subset U containing P such
that ϕP maps the set U diffeomorphically onto the open Euclidean ball
Bm(r), r > 0, with ϕP (P ) = 0Rm . Moreover, there is a constant c > 1,
depending only on P and U such that

c−1‖ϕP (x1)− ϕP (x2)‖ ≤ dF (x1, x2) ≤ c‖ϕP (x1)− ϕP (x2)‖ (14.4)

for every x1, x2 ∈ U ; see [22, p. 149]. Here, ‖ · ‖ denotes the Eu-
clidean norm on Rm. We claim that for every Q ∈ M, the function
dF (ϕ−1

P (·), Q) is a Lipschitz function on ϕP (U) = Bm(r). Indeed, for
every yi = ϕP (xi) ∈ ϕP (U), i = 1, 2, due to (14.3) and (14.4), one has

|dF (ϕ−1
P (y1), Q)− dF (ϕ−1

P (y2), Q)| = |dF (x1, Q)− dF (x2, Q)| ≤

≤ max{dF (x1, x2), dF (x2, x1)} ≤ c‖y1 − y2‖.
Consequently, for every Q ∈ M, there exists the generalized gradient
of the locally Lipschitz function dF (ϕ−1

P (·), Q) on ϕP (U) = Bm(r), see
Clarke [71, p. 27], i.e., for every y ∈ ϕP (U) = Bm(r) we have

∂dF (ϕ−1
P (·), Q)(y) = {ξ ∈ Rm : d0

F (ϕ−1
P (·), Q)(y; h) ≥ 〈ξ, h〉 for all h ∈ Rm},

where 〈·, ·〉 denotes the standard inner product on Rm and

d0
F (ϕ−1

P (·), Q)(y; h) = lim sup
z→y, t→0+

dF (ϕ−1
P (z + th), Q)− dF (ϕ−1

P (z), Q)
t
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is the generalized directional derivative.

Theorem 14.1 (Necessary Condition) Assume that Tf ∈ M is a mini-
mum point for Cf (Pi, n, s) and ϕTf

is a map as above. Then

0Rm ∈
n∑

i=1

ds−1
F (Tf , Pi)∂dF (ϕ−1

Tf
(·), Pi)(ϕTf

(Tf )). (14.5)

Proof Since Tf ∈ M is a minimum point of the locally Lipschitz function
Cf (Pi, n, s), then

0Rm ∈ ∂

(
n∑

i=1

ds
F (ϕ−1

Tf
(·), Pi)

)
(ϕTf

(Tf )),

see [71, Proposition 2.3.2]. Now, using the basic properties of the gener-
alized gradient, see [71, Proposition 2.3.3] and [71, Theorem 2.3.10], we
conclude the proof.

Remark 14.1 A result similar to Theorem 14.1 can also be obtained
for Cb(Pi, n, s).

Example 14.1 Let M = Rm, m ≥ 2, be endowed with the natural
Euclidean metric. Taking into account (14.5), a simple computation
shows that the unique minimum point Tf = Tb (i.e., the place of the
deposit) for Cf (Pi, n, 2) = Cb(Pi, n, 2) is the centre of gravity of markets
{P1, ..., Pn}, i.e., 1

n

∑n
i=1 Pi. In this case, ϕTf

can be the identity map
on Rm.

Remark 14.2 The system (14.5) may become very complicate even for
simple cases; it is enough to consider the Matsumoto metric given by
(14.1). In such cases, we are not able to give an explicit formula for
minimal points.

14.3 Existence and uniqueness results

The next result gives an alternative concerning the number of minimum
points of the function Cf (Pi, n, s) in a general geometrical framework.
(Similar result can be obtained for Cb(Pi, n, s).) Namely, we have the
following theorem.
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Theorem 14.2 Let (M, F ) be a simply connected, geodesically complete
Berwald manifold of nonpositive flag curvature, where F is positively
(but perhaps not absolutely) homogeneous of degree one. Then

(a) there exists either a unique or infinitely many minimum points
for Cf (Pi, n, 1);

(b) there exists a unique minimum point for Cf (Pi, n, s) whenever
s > 1.

Proof First of all, we observe that M is not a backward bounded set.
Indeed, if we assume that it is, then M is compact due to Hopf-Rinow
theorem, see Theorem 13.1. On the other hand, due Cartan-Hadamard
theorem, see Theorem 13.2, the exponential map expp : TpM → M

is a diffeomorphism for every p ∈ M. Thus, the tangent space TpM =
exp−1

p (M) is compact, a contradiction. Since M is not backward bounded,
in particular, for every i = 1, ..., n, we have that

sup
P∈M

dF (P, Pi) = ∞.

Consequently, outside of a large backward bounded subset of M , denoted
by M0, the value of Cf (Pi, n, s) is large. But, M0 being compact, the
continuous function Cf (Pi, n, s) attains its infimum, i.e., the set of the
minima for Cf (Pi, n, s) is always nonempty.

On the other hand, due to Proposition 13.5 for every nonconstant
geodesic σ : [0, 1] → M and p ∈ M , the function t 7→ dF (σ(t), p) is
convex and t 7→ ds

F (σ(t), p) is strictly convex, whenever s > 1 (see also
[150, Corollary 2.2.6]).

(a) Let us assume that there are at least two minimum points for
Cf (Pi, n, 1), denoting them by T 0

f and T 1
f . Let σ : [0, 1] → M be a

geodesic with constant Finslerian speed such that σ(0) = T 0
f and σ(1) =

T 1
f . Then, for every t ∈ (0, 1) we have

Cf (Pi, n, 1)(σ(t)) =
n∑

i=1

dF (σ(t), Pi)

≤ (1− t)
n∑

i=1

dF (σ(0), Pi) + t

n∑

i=1

dF (σ(1), Pi)(14.6)

= (1− t)min Cf (Pi, n, 1) + t min Cf (Pi, n, 1)

= min Cf (Pi, n, 1).

Consequently, for every t ∈ [0, 1], σ(t) ∈ M is a minimum point for
Cf (Pi, n, 1).
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(b) It follows directly from the strict convexity of the function t 7→
ds

F (σ(t), p), whenever s > 1; indeed, in (14.6) we have < instead of ≤
which shows we cannot have more then one minimum point for Cf (Pi, n, s).

Example 14.2 Let F be the Finsler metric introduced in (14.1). One
can see that (R2, F ) is a typically nonsymmetric Finsler manifold. Ac-
tually, it is a (locally) Minkowski space, so a Berwald space as well; its
Chern connection vanishes, see [22, p. 384]. According to (13.3) and
(13.10), the geodesics are straight lines (hence (R2, F ) is geodesically
complete in both sense) and the flag curvature is identically 0. Thus,
we can apply Theorem 14.2. For instance, if we consider the points
P1 = (a,−b) ∈ R2 and P2 = (a, b) ∈ R2 with b 6= 0, the minimum points
of the function Cf (Pi, 2, 1) form the segment [P1, P2], independently of
the value of α. The same is true for Cb(Pi, 2, 1). However, considering
more complicated constellations, the situation changes dramatically, see
Figure 14.2.

It would be interesting to study in similar cases the precise orbit of
the (Torricelli) points Tα

f and Tα
b when α varies from 0 to π/2. Several

numerical experiments show that Tα
f tends to a top point of the convex

polygon (as in the Figure 14.2).

In the sequel, we want to study our problem in a special constellation:
we assume the markets are situated on a common ”straight line”, i.e.,
on a geodesic which is in a Riemannian manifold. Note that, in the
Riemannian context, the forward and backward costs coincide, i.e.,

Cf (Pi, n, 1) = Cb(Pi, n, 1).

We denote this common value by C(Pi, n, 1). We have

Theorem 14.3 Let (M, g) be a Hadamard-type Riemannian manifold.
Assume the points Pi ∈ M, i = 1, ..., n, (n ≥ 2), belong to a geodesic
σ : [0, 1] → M such that Pi = σ(ti) with 0 ≤ t1 < ... < tn ≤ 1. Then

(a) the unique minimum point for C(Pi, n, 1) is P[n/2] whenever n is
odd;

(b) the minimum points for C(Pi, n, 1) is the whole geodesic segment
situated on σ between Pn/2 and Pn/2+1 whenever n is even.

Proof Since (M, g) is complete, we extend σ to (−∞,∞), keeping the
same notation. First, we prove that the minimum point(s) for C(Pi, n, 1)
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Fig. 14.2. A hexagon with vertices P1, P2, ..., P6 in the Matsumoto space. Increasing
the slope’s angle α from 0 to π/2, points T α

f and T α
b are wandering in the presented

directions. Orbits of points T α
f and T α

b were generated by natural cubic spline curve

interpolation.

belong to the geodesic σ. We assume the contrary, i.e., let T ∈ M \
Image(σ) be a minimum point of C(Pi, n, 1). Let T⊥ ∈ Image(σ) be the
projection of T on the geodesic σ, i.e.

dg(T, T⊥) = min
t∈R

dg(T, σ(t)).

It is clear that the (unique) geodesic lying between T and T⊥ is perpen-
dicular to σ with respect to the Riemannian metric g.

Let i0 ∈ {1, ..., n} such that Pi0 6= T⊥. Applying the cosine inequality,
see Theorem 13.3 (a), for the triangle with vertices Pi0 , T and T⊥ (so,
T̂⊥ = π/2), we have

d2
g(T⊥, T ) + d2

g(T⊥, Pi0) ≤ d2
g(T, Pi0).
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Since

dg(T⊥, T ) > 0,

we have

dg(T⊥, Pi0) < dg(T, Pi0).

Consequently,

C(Pi, n, 1)(T⊥) =
n∑

i=1

dg(T⊥, Pi) <

n∑

i=1

dg(P, Pi) = min C(Pi, n, 1),

a contradiction. Now, conclusions (a) and (b) follow easily by using
simple arithmetical reasons.

14.4 Examples on the Finslerian-Poincaré disc

We emphasize that Theorem 14.3 is sharp in the following sense: neither
the nonpositivity of the sectional curvature (see Example 14.3) nor the
Riemannian structure (see Example 14.4) can be omitted.

Example 14.3 (Sphere) Let us consider the 2-dimensional unit sphere
S2 ⊂ R3 endowed with its natural Riemannian metric h inherited by
R3. We know that it has constant curvature 1. Let us fix P1, P2 ∈ S2

(P1 6= P2) and their antipodals P3 = −P1, P4 = −P2. There exists
a unique great circle (geodesic) connecting Pi, i = 1, ..., 4. However,
we observe that the function C(Pi, 4, 1) is constant on S2; its value is
2π. Consequently, every point on S2 is a minimum for the function
C(Pi, 4, 1).

Example 14.4 (Finslerian-Poincaré disc) Let us consider the disc

M = {(x, y) ∈ R2 : x2 + y2 < 4}.

Introducing the polar coordinates (r, θ) on M , i.e., x = r cos θ, y =
r sin θ, we define the non-reversible Finsler metric on M by

F ((r, θ), V ) =
1

1− r2

4

√
p2 + r2q2 +

pr

1− r4

16

,

where

V = p
∂

∂r
+ q

∂

∂θ
∈ T(r,θ)M.
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Fig. 14.3.
Step 1: The minimum of the total backward (resp. forward) cost function Cb(Pi, 2, 1)
(resp. Cf (Pi, 2, 1)) is restricted to the geodesic determined by P1(1.6, 170◦) and
P2(1.3, 250◦). The point which minimizes Cb(Pi, 2, 1) (resp. Cf (Pi, 2, 1)) is approxi-
mated by Pb(0.8541, 212.2545◦) (resp. Pf = P1); in this case Cb(Pi, 2, 1)(Pb) ≈ 1.26
(resp. Cf (Pi, 2, 1)(Pf ) ≈ 2.32507).
Step 2: The minimum of the total backward (resp. forward) cost function
Cb(Pi, 2, 1) (resp. Cf (Pi, 2, 1)) is on the whole Randers space M . The mini-
mum point of total backward (resp. forward) cost function is approximated by
Tb(0.4472, 212.5589◦) (resp. Tf (1.9999, 171.5237◦)), which gives Cb(Pi, 2, 1)(Tb) ≈
0.950825 < Cb(Pi, 2, 1)(Pb) (resp. Cf (Pi, 2, 1)(Tf ) ≈ 2.32079 < Cf (Pi, 2, 1)(Pf )).

The pair (M,F ) is the so-called Finslerian-Poincaré disc. Within the
classification of Finsler manifolds, (M,F ) is a Randers space, see [22,
Section 12.6], which has the following properties:

(p1) it has constant negative flag curvature −1/4;
(p2) the geodesics have the following trajectories: Euclidean circular

arcs that intersect the boundary ∂M of M at Euclidean right
angles; Euclidean straight rays that emanate from the origin; and
Euclidean straight rays that aim to the origin;

(p3) distF ((0, 0), ∂M) = ∞, while distF (∂M, (0, 0)) = log 2.

Although (M,F ) is forward geodesically complete (but not backward
geodesically complete), it has constant negative flag curvature − 1

4 and
it is contractible (thus, simply connected), the conclusion of Theorem
14.3 may be false. Indeed, one can find points in M (belonging to the
same geodesic) such that the minimum point for the total forward (resp.
backward) cost function is not situated on the geodesic, see Figure 14.3.
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Remark 14.3 Note that Example 14.4 (Finslerian-Poincaré disc) may
give a model of a gravitational field whose centre of gravity is located at
the origin O = (0, 0), while the boundary ∂M means the ”infinity”. Sup-
pose that in this gravitational field, we have several spaceships, which
are delivering some cargo to certain bases or to another spacecraft. Also,
assume that these spaceships are of the same type and they consume k

liter/second fuel (k > 0). Note that the expression F (dσ) denotes the
physical time elapsed to traverse a short portion dσ of the spaceship
orbit. Consequently, traversing a short path dσ, a spaceship consumes
kF (dσ) liter of fuel. In this way, the number k

∫ 1

0
F (σ(t), dσ(t))dt ex-

presses the quantity of fuel used up by a spaceship traversing an orbit
σ : [0, 1] → M.

Suppose that two spaceships have to meet each other (for logistical
reasons) starting their trip from bases P1 and P2, respectively. Con-
suming as low total quantity of fuel as possible, they will choose Tb as
a meeting point and not Pb on the geodesic determined by P1 and P2.
Thus, the point Tb could be a position for an optimal deposit-base.

Now, suppose that we have two damaged spacecraft (e.g., without
fuel) at positions P1 and P2. Two rescue spaceships consuming as low
total quantity of fuel as possible, will blastoff from base Tf and not from
Pf = P1 on the geodesic determined by P1 and P2. In this case, the point
Tf is the position for an optimal rescue-base. If the spaceships in trouble
are close to the center of the gravitational field M , then any rescue-base
located closely also to the center O , implies the consumption of a great
amount of energy (fuel) by the rescue spaceships in order to reach their
destinations (namely, P1 and P2). Indeed, they have to overcome the
strong gravitational force near the center O . Consequently, this is the
reason why the point Tf is so far from O, as Figure 14.3 shows. Note
that further numerical experiments support this observation. However,
there are certain special cases when the position of the optimal rescue-
base is either P1 or P2: from these two points, the farthest one from the
gravitational center O will be the position of the rescue-base. In such
case, the orbit of the (single) rescue spaceship is exactly the geodesic
determined by points P1 and P2.

14.5 Comments and further perspectives

A. Comments. The results of this chapter are based on the paper of
Kristály-Kozma [170] and Kristály-Moroşanu-Róth[172]. In this chap-
ter we studied variational problems arising from Economical contexts
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via Riemann-Finsler geometry. Real life phenomena may be well mod-
elized involving Finsler metrics, which represent external force as cur-
rent or gravitation. A special class of Finsler manifolds, called Berwald
space, played a central role in our investigation. Indeed, a recent result
of Kristály-Kozma [170] concerning metric relations on non-positively
curved Berwald spaces has been exploited which includes several real
life applications (as the slope metric of a hillside, described by Mat-
sumoto [204]). Beside of these applications, we also presented a com-
pletely new material on non-positively curved Berwald spaces as well as
a conjecture regarding the rigidity of Finsler manifolds under the Buse-
mann curvature condition which could be of interest for the community
of Geometers.

B. Further perspectives. We propose an optimization problems which
arises in a real life situation.

Problem 14.1 There are given n ships moving on different paths (we
know all the details on their speed, direction, etc.). Determine the posi-
tion of the optimum point(s) of the aircraft-carrier (mother ship) from
where other n ships can reach the first n ships within a given time in-
terval using the lowest amount of (total) combustible.

We give some hints concerning Problem 14.1. We consider it in a
particular case as follows. Two pleasure boats are moving on given
paths within an estuary ending in a waterfall (see Figure 14.4), and
a mother ship MS is positioned in the same area for safety reasons
transporting two lifeboats. The problem is to determine the optimal
position of the mother ship MS at every moment such that the two
lifeboats reach the two pleasure boats within a T period consuming
the minimal total combustible (for a lifeboat it is allowed to wait the
pleasure boat but not conversely). On Figure 14.4, the points x1(0)
and x2(0) correspond to the alerting moment (when the lifeboats start
their trips) while x1(T ) and x2(T ) are the last possible points where the
lifeboats and the corresponding pleasure boats may meet each other. In
this case, the external force is the current flow towards the waterfall;
the law describing this force – up to some constants – can be given as a
submanifold of the Finslerian-Poincaré disc, see Example 14.4.

We now formulate the first problem within a general mathematical
framework. We consider the quasi-metric space (M,dF ) associated with
a Finsler manifold (M, F ) which is not necessarily symmetric, the paths
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Fig. 14.4. The force of the current flow towards the waterfall may be described by
means of the Finslerian-Poincaré disc model. The points x1(0) and x2(0) correspond
to the alerting moment when the lifeboats from the mother-ship MS start their
trips, while x1(T ) and x2(T ) are the last possible points where the lifeboats and the
corresponding pleasure boats may meet each other.

xi : [0, T ] → M (i = 1, ..., n) and some numbers vi > 0 (i = 1, ..., n)
representing the speeds of the last n ships moving towards the paths xi

in order to meet the ith ship from the first group. Let us consider the
function

fi(P ) = min
t∈[0,T ]

{dF (P, xi(t)) : dF (P, xi(t)) ≤ vit}

and the convex functions ψi : R → R (i = 1, ..., n). The variational
problem we are dealing with is

min{f(P ) : P ∈ M} (Poptim)

where

f(P ) =
n∑

i=1

ψi(fi(P )).

We assume that

S =
n⋂

i=1

{P ∈ M : dF (P, xi(T )) ≤ viT} 6= ∅,

which is a sufficient condition for the existence of a solution to the vari-
ational problem (Poptim).
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Best Approximation Problems on Manifolds

If that enabled us to predict
the succeeding situation with
the same approximation, that
is all we require, and we
should say that the
phenomenon had been
predicted, that it is governed
by the laws.

Henri Poincaré (1854–1912)

15.1 Introduction

One of the most famous questions of functional and numerical analy-
sis is the best approximation problem: find the nearest point (called
also projection) from a given point to a nonempty set, both situated
in an ambient space endowed with a certain metric structure by means
of which one can measure metric distances. In the classical theory of
best approximations the ambient space has a vector space structure,
the distance function is symmetric which comes from a norm or, spe-
cially, from an inner product. However, non-symmetry is abundant in
important real life situations; indeed, it is enough to consider the swim-
ming (with/against a current) in a river, or the walking (up/down) on
a mountain slope. These kinds of non-symmetric phenomena lead us to
spaces with possible no vector space structure while the distance func-
tion is not necessarily symmetric, see also Chapter 14. Thus, the most
appropriate framework is to consider not necessarily reversible Finsler
manifolds. This nonlinear context throws completely new light upon the
problem of best approximations where well-tried methods usually fail.

310
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The purpose of this chapter is to initiate a systematic study of best
approximation problems on Finsler manifolds by exploiting notions from
Finsler geometry as geodesics, forward/backward geodesically complete-
ness, flag curvature, fundamental inequality of Finsler geometry, and
first variation of arc length. Beyond of this new approach, we premise a
sharp contrast between the classical results of best approximation theory
and those obtained in the present paper.

Throughout this chapter, (M, F ) is a connected finite-dimensional
Finsler manifold, F is positively (but perhaps not absolutely) homo-
geneous of degree one. Let dF : M ×M → [0,∞) be the quasi-metric
associated with F , see (13.8). Let q ∈ M be a point and S ⊂ M a
nonempty set. Since dF is not necessarily symmetric, let

distF (q, S) = inf{dF (q, s) : s ∈ S} and distF (S, q) = inf{dF (s, q) : s ∈ S}

the forward and backward distances between the point q and the set S,
respectively. The forward (resp. backward) best approximation problem
can be formulated as follows: find sf ∈ S (resp. sb ∈ S) such that

dF (q, sf ) = distF (q, S) (resp. dF (sb, q) = distF (S, q)).

We define the set of forward (resp. backward) projections of q to S by

P+
S (q) = {sf ∈ S : dF (q, sf ) = distF (q, S)}

(resp. P−S (q) = {sb ∈ S : dF (sb, q) = distF (S, q)}).

If P+
S (q) and P−S (q) coincide (for instance, when the Finsler metric F

is absolutely homogeneous), we simple write PS(q) instead of the above
sets. If any of the above sets is a singleton, we do not make any difference
between the set and its unique point.

In the following sections we are dealing in detail with the existence,
characterization and non-expansiveness of projections, geodesic convex-
ity and Chebyshevity of closed sets as well as with nearest points between
two sets.

15.2 Existence of projections

Let (M, F ) be a Finsler manifold. A set S ⊂ M is forward (resp. back-
ward) proximinal if P+

S (q) 6= ∅ (resp. P−S (q) 6= ∅) for every q ∈ M.
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Theorem 15.1 Let (M,F ) be a forward (resp. backward) geodesically
complete Finsler manifold, S ⊂ M a nonempty closed set. Then, S is a
forward (resp. backward) proximinal set.

Proof We consider the statement only for the ”forward” case, the
”backward” case works similarly. Let us fix q ∈ M arbitrarily and let
{sn}n∈N ⊂ S be a forward minimizing sequence, i.e., limn→∞ dF (q, sn) =
distF (q, S) =: d0. In order to conclude the proof, it is enough to show
that the sequence {sn}n∈N contains a convergent subsequence. Indeed,
let {skn}n ⊂ S be a convergent subsequence of {sn}n. Since S is closed,
then limn→∞ skn = sf ∈ S. Moreover, since dF (q, ·) is continuous, we
have dF (q, sf ) = limn→∞ dF (q, skn) = distF (q, S), which proves that
sf ∈ P+

S (q), i.e., S is a forward proximinal set.
Let A = {sn : n ∈ N} and assume that A has no any convergent

subsequence. Then, for every a ∈ A, there exists ra > 0 such that

B+
a (ra) ∩A ⊆ {a}. (15.1)

On the other hand, for n large enough, we have dF (q, sn) < d0 +1; thus,
we may assume that A ⊂ B+

q (d0+1). Since the set A is forward bounded
and closed, due to Hopf-Rinow’s theorem, it is also compact. Since
A ⊆ ∪a∈AB+

a (ra) and B+
a (ra) are open balls in the manifold topology,

there exist a1, ..., al ∈ A such that A ⊆ ∪l
i=1B+

ai
(rai). In particular, for

every n ∈ N, there exists i0 ∈ {1, ..., l} such that sn ∈ B+
ai0

(rai0
). Due

to (15.1),

sn ∈ B+
ai0

(rai0
) ∩A ⊆ {ai0},

i.e., sn = ai0 . Consequently, the set A contains finitely many elements,
which contradicts our assumption.

The geodesically completeness cannot be dropped in Theorem 15.1.
We describe here a concrete example on the Finslerian-Poincaré disc, see
Example 14.4. The idea to construct a closed, not backward proximinal
set in (M,F ) comes from the property (p3) and from the fact that (M, F )
is not geodesically backward complete, see Bao-Chern-Shen [22, p. 342].
We consider the point q = (1, 0) ∈ M and the set S = {(t,−√2) :
t ∈ [1,

√
2)} ⊂ M, see Figure 1. Clearly, S is closed in the topology of

(M, F ). However, a numerical calculation based on property (p2) and on
Maple codes shows that the function t 7→ dF ((t,−√2), q), t ∈ [1,

√
2), is

strictly decreasing, thus the value distF (S, q) = limt→√2 dF ((t,−√2), q) ≈
0.8808 is not achieved by any point of S, i.e., P−S (q) = ∅.
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Fig. 15.1. S = {(t,−√2) : t ∈ [1,
√

2)} is a closed, but not backward proximi-
nal set on the Finslerian-Poincaré disc.

15.3 Geometric properties of projections

Let (X, 〈·, ·〉) be a real prehilbert space, S ⊂ X be a nonempty convex
set, x ∈ X, y ∈ S. Due to Moskovitz-Dines [220] one has:

y ∈ PS(x) ⇔ 〈x− y, z − y〉 ≤ 0 for all z ∈ S. (15.2)

The geometrical meaning of this characterization is that the vectors x−y

and z − y (for every z ∈ S) form an obtuse-angle with respect to the
inner product 〈·, ·〉.

For a Finsler manifold (M, F ), the function F is not necessarily in-
duced by an inner product, thus angle-measuring looses its original
meaning. The ’inner product’ on a Finsler manifold (M,F ) is the Rie-
mannian metric on the pulled-back bundle π∗TM depending not only
on the points of M but also on the directions in TM , defined by g(p,y)

from (13.1), y ∈ TpM .
Let S ⊂ M be a nonempty set and q ∈ M . We consider the following

statements:

(MD+
1 ) : s ∈ P+

S (q);
(MD+

2 ) : If γ : [0, 1] → M is the unique minimal geodesic from γ(0) = q to
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γ(1) = s ∈ S, then every geodesic σ : [0, δ] → S (δ ≥ 0) emanating
from the point s fulfills g(s,γ̇(1))(γ̇(1), σ̇(0)) ≥ 0.

Theorem 15.2 Let (M, F ) be a forward geodesically complete Finsler
manifold, S ⊂ M be a nonempty closed set. Then, (MD+

1 ) ⇒ (MD+
2 ).

Proof One may assume that δ > 0; otherwise, the statement is triv-
ial since the curve σ shrinks to a point. Standard ODE theory shows
that the geodesic segment σ : [0, δ] → M has a C∞ extension σ̃ :
(−ε, δ] → M , where ε > 0, see Bao-Chern-Shen [22, Exercise 5.4.2].
Since γ is the unique minimal geodesic lying the points q and s, there
exists v0 ∈ TqM such that γ(t) = expq(tv0) and expq∗ is nonsingular at
the point v0. On account of Bao-Chern-Shen [22, p. 205], one may fix
0 < ε0 < min{ε, δ} and a C∞ vector field V : [−ε0, ε0] → TqM such that
V (0) = v0, expq(V (u)) = σ̃(u) and expq∗ is not singular at V (u) for ev-
ery u ∈ [−ε0, ε0]. Let us introduce the map Σ : [0, 1]× [−ε0, ε0] → M by
Σ(t, u) = expq(tV (u)). Note that Σ is well-defined and Σ is a variation
of the geodesic γ with Σ(·, 0) = γ. By definition, we have

L′F (Σ(·, 0)) =
d

du
LF (Σ(·, u))|u=0 = lim

u→0+

LF (Σ(·, u))− LF (Σ(·, 0))
u

≥ lim
u→0+

dF (q, σ̃(u))− LF (γ)
u

= lim
u→0+

dF (q, σ(u))− dF (q, s)
u

.

Since s ∈ P+
S (q) and σ(u) ∈ S for small values of u ≥ 0, the latter limit

is non-negative; thus, L′F (Σ(·, 0)) ≥ 0. On the other hand, combining
this relation with the first variation formula, see (13.7), we obtain

0 ≤ L′F (Σ(·, 0)) =
g(s,γ̇(1))(γ̇(1), σ̇(0))

F (s, γ̇(1))
.

We now consider the statements for the ”backward” case:

(MD−
1 ) : s ∈ P−S (q);

(MD−
2 ) : If γ : [0, 1] → M is the unique minimal geodesic from γ(0) = s ∈ S

to γ(1) = q, then every geodesic σ : [0, δ] → S (δ ≥ 0) emanating
from the point s fulfills g(s,γ̇(0))(γ̇(0), σ̇(0)) ≤ 0.

The proof of the following result works similarly to that of Theorem
15.2.
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Theorem 15.3 Let (M,F ) be a backward geodesically complete Finsler
manifold, S ⊂ M be a nonempty, closed set. Then, (MD−

1 ) ⇒ (MD−
2 ).

Remark 15.1 Let (M, g) be a Riemannian manifold. In this special
case, since the fundamental tensor g is independent on the directions,
the statements (MD+

1 ) and (MD+
2 ) (as well as (MD−

1 ) and (MD−
2 ))

reduce to:

(MD1) : s ∈ PS(q);
(MD2) : If γ : [0, 1] → M is the unique minimal geodesic from γ(0) =

s ∈ S to γ(1) = q, then every geodesic σ : [0, δ] → S (δ ≥ 0)
emanating from the point s fulfills g(γ̇(0), σ̇(0)) ≤ 0.

Remark 15.2 The implications in Theorems 15.2 and 15.3 cannot be
reversed in general, not even for Riemannian manifolds. Indeed, we
consider the m-dimensional unit sphere (Sm, g0) (m ≥ 2), and we fix the
set S as the equator of Sm. Let also q ∈ Sm \ (S ∪{N,−N}) where N is
the North pole. One can see that hypothesis (MD2) holds exactly for two
points s1 ∈ S and s2 = −s1 ∈ S; these points are the intersection points
of the equator S and the plane throughout the points q, N and −N . Let
us fix an order of the points on the great circle: N, q, s1,−N, s2. Then,
we have distg0(q, S) = dg0(q, s1) < π/2 < dg0(q, s2), thus s1 ∈ PS(q) but
s2 /∈ PS(q).

In spite of Remark 15.2 we have two Moskovitz-Dines type characteri-
zations. The first is due to Walter [290] for Hadamard-type Riemannian
manifolds.

Theorem 15.4 Let (M, g) be a Hadamard-type Riemannian manifold
and let S ⊂ M be a nonempty, closed, geodesic convex set. Then
(MD1) ⇔ (MD2).

For not necessarily reversible Minkowski spaces, we may prove the
following.

Theorem 15.5 Let (M,F ) = (Rm, F ) be a Minkowski space and S ⊂ M

be a nonempty, closed, geodesic convex set. Then
(i) (MD+

1 ) ⇔ (MD+
2 );

(ii) (MD−
1 ) ⇔ (MD−

2 ).

Proof On account of Theorems 15.2 and 15.3 we have (MD+
1 ) ⇒ (MD+

2 )
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and (MD−
1 ) ⇒ (MD−

2 ), respectively. We now prove that (MD+
2 ) ⇒

(MD+
1 ); the implication (MD−

2 ) ⇒ (MD−
1 ) works in a similar way.

We may assume that s 6= q. The unique minimal geodesic γ : [0, 1] →
M from γ(0) = q to γ(1) = s ∈ S is γ(t) = q + t(s− q). Fix z ∈ S, and
define the geodesic segment σ : [0, 1] → M by σ(t) = s + t(z − s). Since
S is geodesic convex, then σ([0, 1]) ⊆ S. Consequently, the inequality
from (MD+

2 ) reduces to

gs−q(s− q, z − s) ≥ 0. (15.3)

Relations (15.3) and (13.11) yield

d2
F (q, s) = F 2(s− q)

= gs−q(s− q, s− q)

≤ gs−q(s− q, z − q)

≤ F (s− q) · F (z − q)

= dF (q, s) · dF (q, z),

i.e., dF (q, s) ≤ dF (q, z). Since z ∈ S is arbitrarily fixed, we have s ∈
P+

S (q).

15.4 Geodesic convexity and Chebyshev sets

If (X, 〈·, ·〉) is a finite-dimensional Hilbert space and S ⊂ X is a nonempty
closed set, the equivalence of the following statements is well-known (see
Borwein [43] and Phelps [239]):
• S is convex;
• S is Chebyshev, i.e., cardPS(x) = 1 for every x ∈ X;
• PS is non-expansive, i.e., for every x1, x2 ∈ X,

‖PS(x1)− PS(x2)‖ ≤ ‖x1 − x2‖.
On manifolds, as might be expected, uniqueness of the projection is in-
fluenced not only by the geodesical convexity of the set but also by the
curvature of the space. The latter is well emphasized by considering
the standard m-dimensional unit sphere Sm (m ≥ 2) with its natural
Riemannian metric g0, having constant sectional curvature 1. The pro-
jection of the North pole N ∈ Sm to a geodesic ball centered at the
South pole and radius r < 1/2 is the whole boundary of this geodesic
ball. As far as we know, there is only one class guaranteeing the unique-
ness of projections on non-positively curved spaces from any point to
any; namely, the geodesic convex sets on global Busemann NPC spaces,
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see Jost [150, Section 3.3]. Note that all Hadamard-type Riemannian
manifolds belong to this class, see also Udrişte [286].

However, uniqueness of projections to generic geodesic convex sets are
not known either for reversible or for non-reversible Finsler manifolds
with non-positive curvature. In the sequel, we delimit a class of not nec-
essarily reversible Finsler manifolds (so, in particular, non-Riemannian
manifolds) for which the forward/backward projections are singletons to
any geodesic convex sets.

Let (M,F ) be a Finsler manifold. A set S ⊂ M is a forward (resp.
backward) Chebyshev set if cardP+

S (q) = 1 (resp. cardP−S (q) = 1) for
each q ∈ M .

Theorem 15.6 Let (M,F ) be a forward (resp. backward) geodesically
complete, simply connected Berwald space with non-positive flag curva-
ture, and S ⊂ M a nonempty, closed, geodesic convex set. Then, S is a
forward (resp. backward) Chebyshev set.

Proof By Theorem 15.1, we know that cardP+
S (q) ≥ 1 (resp. cardP−S (q) ≥

1) for every q ∈ M . On the other hand, Proposition 13.5 guaran-
tees that t 7→ dF (γ1(t), γ2(t)) is convex for any two minimal geodesics
γ1, γ2 : [0, 1] → M (with not necessarily a common starting point).
In particular, for every q ∈ M and any non-constant geodesic γ :
[0, 1] → M , the function t 7→ d2

F (q, γ(t)) is strictly convex. Now, as-
sume that cardP+

S (q) > 1, i.e., there exists s1, s2 ∈ P+
S (q), s1 6= s2.

Let γ : [0, 1] → M be the minimal geodesic which joins these points.
Consequently, Imγ ⊂ S and for every 0 < t < 1, we have

d2
F (q, γ(t)) < td2

F (q, γ(1)) + (1− t)d2
F (q, γ(0)) = dist2F (q, S),

a contradiction.

Remark 15.3 Both Hadamard-type Riemannian manifolds and Min-
kowski spaces fulfill the hypotheses of Theorem 15.6. Now, we present a
typical class of Berwald spaces where Theorem 15.6 applies. Let (N, h)
be an arbitrarily closed hyperbolic Riemannian manifold of dimension
at least 2, and ε > 0. Let us define the Finsler metric Fε : T (R×N) →
[0,∞) by

Fε(t, p; τ, w) =

√
hp(w,w) + τ2 + ε

√
h2

p(w, w) + τ4,

where (t, p) ∈ R×N and (τ, w) ∈ T(t,p)(R×N). Shen [273] pointed out
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that the pair (R×N, Fε) is a reversible Berwald space with non-positive
flag curvature which is neither a Riemannian manifold nor a Minkowski
space.

Remark 15.4 There are Finsler manifolds with non-positive flag cur-
vature which are not curved in the sense of Busemann and the function
t 7→ dF (γ1(t), γ2(t)) is not convex; simple examples of these types can
be given theoretically on Hilbert geometries (see Socié-Méthou [277]), or
numerically on certain Randers spaces (see Shen [271], [272]) by using
evolutive programming in the spirit of Kristály-Moroşanu-Róth [172].
Thus, no convexity property of the function t 7→ dF (γ1(t), γ2(t)) can be
guaranteed in general which raises doubts on the validity of Theorem
15.6 for arbitrary Finsler manifolds with non-positive flag curvature.

Remark 15.5 The Chebyshevity of a closed set does not imply always
its geodesic convexity in arbitrarily Hadamard-type Riemannian mani-
folds. Indeed, consider the Poincaré upper half-plane model H2 (with
sectional curvature −1) and the closed set S = H2 \ B(0,1)(2), where
B(0,1)(2) is the standard euclidean 2-dimensional open ball with center
(0, 1) ∈ R2 and radius 2. S is a Chebyshev set since every horocycle
which is below of the boundary ∂S and tangent to the same set ∂S, is
situated in the interior of B(0,1)(2). However, it is clear that S is not
geodesic convex. For further examples and comments, see Grognet [130,
Section 2]. These examples show the converse of Theorem 15.6 does not
hold in general. Moreover, the following rigidity result does hold.

Theorem 15.7 (Busemann [54, p. 152]) Let (M,F ) be a simply-
connected, complete, reversible Finsler manifold with non-positive flag
curvature. If any Chebyshev set in M is geodesic convex, then (M, F )
is a Minkowski space.

The following characterization of geodesic convexity is due to Grognet
[130] (see also Udrişte [286] for an alternative proof via the second vari-
ation formula of the arc lenght):

Theorem 15.8 Let (M, g) be a Hadamard-type Riemannian manifold
and S ⊂ M be a nonempty closed set. The following two statements are
equivalent:

(i) S is geodesic convex;
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(ii) PS is non-expansive, i.e., dg(PS(q1), PS(q2)) ≤ dg(q1, q2) for any
qi ∈ M , i = 1, 2.

Proof (i)⇒(ii) This part is contained in Udrişte [286]; for complete-
ness we give its outline. First, on account of Theorem 15.6, S is a
Chebyshev set. Fix q1, q2 ∈ M and let γi : [−1, 1] → M be the unique
geodesic with constant speed from γi(−1) = qi to γi(1) = si = PS(qi),
i = 1, 2. Define the variation Σ : [0, 1] × [−1, 1] → M by Σ(t, u) =
expγ1(u)(t exp−1

γ1(u)(γ2(u))). Note that

L2
g(Σ(·, u)) =

(∫ 1

0

√
g(

∂Σ
∂t

(t, u),
∂Σ
∂t

(t, u))dt

)2

=
∫ 1

0

g(
∂Σ
∂t

(t, u),
∂Σ
∂t

(t, u))dt .

Throughout the first variational formula, we obtain that

(L2
g)
′(Σ(·, 1)) = 2

[
g(γ′2(1),

∂Σ
∂t

(1, 1))− g(γ′1(1),
∂Σ
∂t

(0, 1))
]

.

Since S is geodesic convex, then the geodesic Σ(·, 1) belongs to S. Ap-
plying Theorem 15.4, we obtain that

g(−γ′1(1),
∂Σ
∂t

(0, 1)) ≤ 0 and g(−γ′2(1),−∂Σ
∂t

(1, 1)) ≤ 0 .

Consequently, (L2
g)
′(Σ(·, 1)) ≤ 0. Now, using the second variational for-

mula, and taking into account that γ1, γ2 are geodesics, we deduce that

(L2
g)
′′(Σ(·, u)) = 2

∫ 1

0

[
g

(
D

∂t

∂Σ
∂t

,
D

∂t

∂Σ
∂t

)
−R

(
∂Σ
∂t

,
∂Σ
∂u

,
∂Σ
∂t

,
∂Σ
∂u

)]
dt,

where R is the Riemannian curvature tensor. Since the sectional cur-
vature is non-positive, we obtain (L2

g)′′(Σ(·, u)) ≥ 0. Now, the Taylor
expansion yields Lg(Σ(·, 1)) ≤ Lg(Σ(·,−1)), i.e., dg(s1, s2) ≤ dg(q1, q2).

(ii)⇒(i) Assume that S is not geodesic convex, i.e., there exists two
distinct points s1, s2 ∈ S such that the unique geodesic with constant
speed γ : [0, 1] → M , with γ(0) = s1 and γ(1) = s2 has the property
that γ(t) /∈ S for every t ∈ (0, 1). Since S is proximinal, cf. Theorem
15.1, we fix an element s̃ ∈ PS(γ(1/2)).

We claim that either dg(s1, s̃) or dg(s̃, s2) is strictly greater than
dg(s1, s2)/2. If s̃ = s1 or s̃ = s2, the claim is true. Now, if s1 6= s̃ 6=
s2, we assume that max{dg(s1, s̃), dg(s̃, s2)} ≤ dg(s1, s2)/2. Therefore,
dg(s1, s2) ≤ dg(s1, s̃) + dg(s̃, s2) ≤ dg(s1, s2), which implies that s̃ ∈ S
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belongs to the geodesic γ, contradicting our initial assumption. Thus,
the claim is true. Suppose that dg(s1, s̃) > dg(s1, s2)/2; the other case
works similarly. Since PS(s1) = s1 and dg(s1, s2)/2 = dg(s1, γ(1/2)),
relation dg(s1, s̃) > dg(s1, γ(1/2)) contradicts (ii).

Remark 15.6 In spite of Theorem 15.8 there is no way to give a simi-
lar characterization for generic Finsler manifolds with non-positive flag
curvature. In the sequel, we give such a simple counterexample on Mat-
sumoto mountain slope (R2, Fα), see (14.1). More precisely, let v = 10
and α = 60o in (R2, Fα), and

S = {(y1, y2) ∈ R2 : y1 + y2 = 1}.
It is clear that S is closed and geodesic convex. Let q1 = (0, 0) and
q2 = (0, 1). Since q2 ∈ S, then P+

S (q2) = q2. Due to Theorem 15.6,
cardP+

S (q1)=1, and from Theorem 15.5, sf ∈ P+
S (q1) if and only if

gsf
(sf , e) = 0 where e = (1,−1) is the direction vector of the straight

line S. Solving the equation gsf
(sf , e) = 0, we obtain the unique solution

sf = (0.58988935, 0.41011065) ∈ S. Moreover,

dFα(P+
S (q1), P+

S (q2)) = dFα(sf , q2) = Fα(q2 − sf )

= 0.58988935 · Fα(−1, 1) = 0.11923844

> 0.1 = Fα(q2 − q1)

= dFα(q1, q2).

Consequently, P+
S is not a non-expansive map in general.

15.5 Optimal connection of two submanifolds

Let us assume that two disjoint closed sets M1 and M2 are fixed in a
(not necessarily reversible) Finsler manifold (M,F ). Roughly speaking,
we are interested in the number of those Finslerian geodesics which con-
nect M1 and M2 in an optimal way, i.e., satisfying certain boundary
conditions. In order to handle this problem, following Mercuri [209],
Caponio, Javaloyes and Masiello [56], we first describe the structure of
a special Riemann-Hilbert manifold.

Let (M, F ) be a forward or backward complete Finsler manifold and
let us endow in the same time M with any complete Riemannian met-
ric h. Let N be a smooth submanifold of M × M . We consider the
collection ΛN (M) of curves c : [0, 1] → M with (c(0), c(1)) ∈ N and
having H1 regularity, that is, c is absolutely continuous and the integral
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∫ 1

0

h(ċ, ċ)ds is finite. It is well known that ΛN (M) is a Hilbert manifold

modeled on any of the equivalent Hilbert spaces of H1 sections, with
endpoints in TN , of the pulled back bundle c∗TM , c being any regular
curve in ΛN (M). For every H1 sections X and Y of c∗TM the scalar
product is given by

〈X,Y 〉1 =
∫ 1

0

h(X, Y )ds +
∫ 1

0

h(∇h
c X,∇h

c Y )ds (15.4)

where ∇h
c is the usual covariant derivative along c associated to the

Levi-Civita connection of the Riemannian metric h.
Let J : ΛN (M) → R be the energy functional defined by

J(c) =
1
2

∫ 1

0

F 2(c, ċ)ds. (15.5)

For further use, we denote the function F 2 by G. Note that the func-
tional J is of class C2− on the space ΛN (M), i.e., it is of class C1 with
locally Lipschitz differential.

Proposition 15.1 A curve γ ∈ ΛN (M) is a constant (non zero) speed
geodesic for the Finsler manifold (M,F ) satisfying the boundary condi-
tion

g(γ(0),γ̇(0))(V, γ̇(0)) = g(γ(1),γ̇(1))(W, γ̇(1)), ∀(V,W ) ∈ T(γ(0),γ(1))N,

(15.6)
if and only if it is a (non constant) critical point of J .

Proof Assume that γ ∈ ΛN (M) is a critical point of J . One can prove
that γ is a smooth regular curve which argument is based on local coor-
dinates. Now let Z ∈ TγΛN (M) be a smooth vector field along γ and let
Σ : [0, 1]× [−ε, ε] → M be a smooth regular variation of γ with variation
vector field U = ∂Σ

∂u having endpoints in TN and such that U(t, 0) = Z(t)
for all t ∈ [0, 1]. Let also T = ∂Σ

∂t . Since G(x, y) = g(x,y)(y, y) for any
(x, y) ∈ TM \ 0, from (13.5) we get

d

du
J(Σ) =

1
2

∫ 1

0

∂

∂u
g(Σ,T )(T, T )dt =

∫ 1

0

g(Σ,T )(T, DUT )dt. (15.7)

Since Σ is smooth, we have that DUT = DT U both considered with the
reference vector T ; therefore, using this equality in (15.7) and evaluating
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at u = 0 we obtain

dJ(γ)[Z] =
∫ 1

0

g(γ,γ̇)(γ̇, Dγ̇Z)dt, (15.8)

where Dγ̇Z has reference vector γ̇. Now, applying relation (13.4), we
have

d

dt
g(γ,γ̇)(γ̇, Z) = g(γ,γ̇)(Dγ̇ γ̇, Z) + g(γ,γ̇)(γ̇, Dγ̇Z),

which, when applied to (15.8), gives us

0 = dJ(γ)[Z] = −
∫ 1

0

g(γ,γ̇)(Dγ̇ γ̇, Z)dt+g(γ(1),γ̇(1))(γ̇(1), Z(1))−g(γ(0),γ̇(0))(γ̇(0), Z(0)).

(15.9)
Now, by choosing an endpoints vanishing vector field Z one can see
that γ should verify the equation Dγ̇ γ̇ = 0, i.e., γ is a constant speed
geodesic. Consequently, the remaining part of the above relation gives
precisely the boundary conditions (15.6).

For the converse, we observe that if γ is a constant non-zero speed
geodesic satisfying the boundary conditions (15.6) then (15.9) holds and
hence γ is a critical point of J .

Remark 15.7 Two particular cases is presented concerning the form of
N.

(i) Let ∆ be the diagonal in M × M and N = ∆. By using the
Euler theorem for homogeneous functions, we know that ∂yG(x, y) =
2g(x,y)(·, y) for any (x, y) ∈ TM . Hence, from γ(0) = γ(1) and (15.6)
we clearly have

∂yG(γ(0), γ̇(0)) = ∂yG(γ(0), γ̇(1)).

Since the map y 7→ ∂yG(x, y) is an injective map, we necessarily have
that γ̇(0) = γ̇(1), i.e., the curve γ in Proposition 15.1 is a closed geodesic.
See Mercuri [209].

(ii) Let M1 and M2 be two submanifolds of M and N = M1×M2. In
(15.6) put W = 0. Then, for any V ∈ Tγ(0)M1 we get g(γ(0),γ̇(0))(V, γ̇(0)) =
0. Analogously, taking V = 0, we have g(γ(1),γ̇(1))(W, γ̇(0)) = 0 for any
W ∈ Tγ(1)M2. When (M,F ) is a Riemannian manifold, these conditions
are actually the well-known perpendicularity conditions to M1 and M2,
respectively. See Grove [133].

Based on the papers of Caponio, Javaloyes and Masiello [56], Kozma,
Kristály and Varga [160], and Mercuri [209], we sketch the proof of the
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fact that J satisfies the (PS)-condition under natural assumptions. This
result allows us to give several multiplicity results concerning the number
of geodesics joining two different submanifolds in a Finsler manifold.

Proposition 15.2 Let (M, F ) be forward (resp. backward) complete
and N be a closed submanifold on M ×M such that the first projection
(resp. the second projection) of N to M is compact. Then J satisfies
the (PS)-condition on ΛN (M).

Proof (Sketch) We sketch the proof in the forward complete case, the
backward being similar.

Step 1. Differentiable structure on ΛN (M). The manifold ΛN (M) is
a closed submanifold of the complete Hilbert manifold Λ(M); the last
one being the set of all the H1 curves in M parameterized on [0, 1] with
scalar product from (15.4). The differentiable manifold structure on
Λ(M) is given by the charts {(Oω, exp−1

ω )}ω∈C∞(M), where exp−1
ω is the

inverse of the map expω(ξ) = expω(t) ξ(t), for all ξ ∈ H1(Oω), being Oω

a neighborhood of the zero section in ω∗TM .
Step 2. Uniform convergence of a (PS)-sequence. We consider the

sequence {cn}n∈N contained in ΛN (M) which verifies the assumptions
from the (PS)-condition. In particular, {J(cn)}n is bounded. We shall
prove that the sequence {cn}n converges uniformly. To do this, we fix a
point p ∈ p1(N), where p1 is the first projection on M ×M . Then

dF (p, cn(s)) ≤ dF (p, cn(0)) + dF (cn(0), cn(s))

≤ dF (p, cn(0)) +
∫ 1

0

F (cn, ċn)ds,

for all s ∈ [0, 1], n ∈ N. Since p1(N) is compact, there exists a constant
K such that dF (p, cn(0)) ≤ K. By the Hölder inequality, for every
s ∈ [0, 1] we have

dF (p, cn(s)) ≤ K +
(∫ 1

0

G(cn, ċn)ds

) 1
2

= K +
√

J(cn) ≤ K1.

Consequently, the set S = {cn(s) : s ∈ [0, 1], n ∈ N} is a forward
bounded set; thus, Hopf-Rinow theorem, see Theorem 13.1, shows that
there exists a compact subset C of M which contains S. Hence there
exist k1, k2 > 0 such that

k1|v|2 ≤ G(x, v) ≤ k2|v|2, ∀x ∈ C, v ∈ TxM.

Here, we denoted by | · | the norm associated to the metric h. Moreover,
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let dh be the distance associated to the Riemannian metric h, then using
the last and Hölder’s inequalities, we get

dh(cn(s1), cn(s2)) ≤
∫ s2

s1

|ċn|ds ≤ √
s2 − s1

(∫ 1

0

|ċn|2ds

) 1
2

≤ 1
k1

√
s2 − s1

(∫ 1

0

G(cn, ċn)ds

) 1
2

≤ K2

√
s2 − s1,

with s1 < s2 in [0, 1] and K2 > 0, so that {cn(t)} is relatively compact
for every t ∈ [0, 1] and uniformly Hölder. Thus we can use the symmetric
distance dh and the Ascoli-Arzelà theorem to obtain a subsequence, that
will be denoted again by {cn}, converging uniformly to a curve c of class
C0 parameterized in [0, 1] and having endpoints in N .

Step 3. Reduction of the strong convergence of {cn}n to an appropri-
ate convergence in H1-topology. For any η > 0 small enough the set
C = {expc(s) v : s ∈ [0, 1]; v ∈ B(c(s), η)} is compact in M. Let inj(p)
be the injectivity radius of p in (M, h) and ρ = inf{inj(p) : p ∈ C}.
Since the injectivity radius is continuous, we have that ρ > 0; therefore,
there exists a curve ω of class C∞ such that ‖c − ω‖∞ < min{η, ρ/2}.
Let [0, 1] 3 t → E(t) = (E1(t), . . . , Em(t)) be a parallel orthonormal
frame along ω with m = dim M , and let Pt : Rm → Tω(t)M de-
fined as Pt(v1, . . . , vm) = v1E(t) + · · · + vmEm(t). Consider the Eu-
clidean open ball of radius ρ, denoted in the sequel by U , and the map
ϕ(t, v) = expω(t) Pt(v). Since ρ ≤ inj(ω(t)), the map ϕt : U → M , de-
fined as ϕt(v) = ϕ(t, v), is locally invertible and injective with invertible
differential dϕt(v), for every t ∈ [0, 1] and v ∈ U . By taking a smaller
open set in U that contains the closed ball of radius ρ/2 and contained
in the closed ball of radius 2ρ/3, we can assume that all the continu-
ous functions involved in the rest of the proof are uniformly bounded in
[0, 1] × U or in

⋃
t∈[0,1]{t} × ϕ({t} × U), as for example the norms of

dϕ(t, v) and dϕ(t, x), where ϕ(t, x) = ϕ−1
t (x). Let Oω be a neighbor-

hood of ω in H1([0, 1], M) such that the map ϕ−1
∗ : Oω → H1([0, 1], U),

defined as ϕ−1
∗ (x)(t) = ϕ−1

t (x(t)) is the map of coordinate system cen-
tered at ω. Observe that the inverse of ϕ−1

∗ is the map ϕ∗, defined by
ϕ∗(ξ)(t) = ϕ(t, ξ(t)). Clearly if n is big enough, cn ∈ ϕ∗(H1([0, 1], U)),
so that we call ξn = ϕ−1

∗ (cn). Consequently, taking into account the
above reduction argument inspired by [1, Appendix A.1], the strong
convergence of {cn}n is equivalent with the strong convergence of {ξn}n

in H1([0, 1], U).
Step 4. Splitting argument. Taking the vector space of dimension 2m
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defined by V = {ζ ∈ C∞([0, 1],Rm) : ζ ′′− ζ = 0}, we have the following
orthogonal splitting

H1([0, 1],Rm) = H1
0 ([0, 1],Rm)⊕ V.

Therefore, if n ∈ N is big enough there exist ξ0
n ∈ H1

0 ([0, 1], U) and
ζn ∈ V such that ξn = ξ0

n + ζn. Note that {cn} is a sequence which
verifies the assumptions of the (PS)-condition. Moreover, the norm of
dϕ∗ is bounded in H1([0, 1], U), {ζn}n is a converging sequence in the C1

norm (which follows from the C0 convergence of {ξn}n and the smooth
dependence of the solutions of the differential equation defining V from
boundary data) and {ξn}n is a bounded sequence in H1([0, 1], U) (ξ0

n

is a bounded sequence in H1
0 ([0, 1], U)). Due to the above facts and

considering J defined on the manifold Λ(M), we have

d(J ◦ ϕ∗)(ξn)[ξn − ξk]

= d(J ◦ ϕ∗)(ξn)[ξ0
n − ξ0

k] + d(J ◦ ϕ∗)(ξn)[ζn − ζk]

= dJ(cn)[dϕ∗(ξn)[ξ0
n − ξ0

k]] + d(J ◦ ϕ∗)(ξn)[ζn − ζk] → 0. (15.10)

Step 5. Boundedness of {ξn}n in H1([0, 1], U). To see this, it is
enough to observe that

∫ 1

0

|ξ̇n|2ds =
∫ 1

0

|dϕ(s, cn)[(1, ċn)]|2ds

≤ K3

∫ 1

0

(1 + h(ċn, ċn))ds ≤ K3 + K4J(cn) < K5 < +∞, (15.11)

where ϕ(s, x) = ϕ−1
s (x), for every s ∈ [0, 1] and x ∈ ϕs(U), and

K3, K4,K5 are positive constants.
Step 6. (Final) The sequence {ξn}n is fundamental in H1([0, 1], U).

Technical estimations show that
∫ 1

0

|ξ̇n − ξ̇k|2ds → 0

as n, k →∞. This concludes the proof.

Now, we are in the position to establish an existence and some multi-
plicity results concerning the number of geodesics joining two submani-
folds in a Finsler manifold.
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Theorem 15.9 Let (M, F ) be a forward or backward complete Finsler
manifold and let M1 and M2 be two closed submanifolds of M such that
M1 or M2 is compact. Then in any homotopy class of curves from M1

to M2 there exists a geodesic with energy smaller than that of any other
curve in this class satisfying (15.6). Furthermore, there are at least
catΛM1×M2(M) geodesics joining M1 and M2 with the property (15.6).

Proof Since ΛM1×M2(M) is a complete Hilbert-Riemann manifold and
the energy functional satisfies the (PS)-condition, see Proposition 15.2,
it follows that the energy integral attains its infimum on any component
of ΛM1×M2(M) and its lower bound, see Theorem 1.4. The infimum
points are critical points of J , while any critical point c for J is a geodesic
with the property (15.6), see Proposition 15.1. Therefore, the first part
is proved. Now, applying Theorem 1.9, we obtain our last claim.

Theorem 15.10 Let (M, F ) be a compact, connected and simply con-
nected Finsler manifold, and let M1 and M2 be two closed disjoint sub-
manifolds of M with M1 contractible. Then there are infinitely many
geodesics joining M1 and M2 with the property (15.6).

Proof Due to Theorem C.3, we have that cuplongΛM1×M2(M) = ∞.

Using the inequality catΛM1×M2(M) ≥ 1 + cuplongΛM1×M2(M), from
Theorem 15.9 the statement follows.

Theorem 15.11 Let (M, F ) be a complete, non-contractible Finsler
manifold, and let M1 and M2 be two closed, disjoint and contractible
submanifolds of M such that M1 or M2 is compact. Then there are
infinitely many geodesics joining M1 and M2 with the property (15.6).

Proof Since M1×M2 is a submanifold of M×M, the inclusion ΛM1×M2M ↪→
C0

M1×M2
(M) = {σ ∈ C0([0, 1],M) : σ(0) ∈ M1, σ(1) ∈ M2} is a homo-

topy equivalence, see Grove [133, Theorem 1.3]. Since M1 and M2 are
contractible subsets of M, the sets C0

M1×M2
(M) and M1 ×M2 × Ω(M)

are homotopically equivalent, see Fadell-Husseini [109, Proposition 3.2].
Since M is non contractible, we have catΩ(M) = ∞, see Theorem C.1.
Therefore, catΛM1×M2(M) = ∞ and we apply again Theorem 15.9 to
obtain the desired conclusion.
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15.6 Final remarks and perspectives

Further questions arise concerning the best approximation problems on
Finsler manifolds. We formulate only a few of them:

(i) The Moskovitz-Dines type characterization of projections has been
proved for Minkowski spaces (Theorem 15.5) and for Hadamard-
type Riemannian manifolds (Theorem 15.4). We feel quite certain
we face a rigidity result: if (MD+

1 ) ⇔ (MD+
2 ) (or, (MD−

1 ) ⇔
(MD−

2 )) holds on a Finsler manifold (M, F ) with non-positive
flag curvature, than (M, F ) is either a Riemannian manifold or a
Minkowski space.

(ii) We were able to prove the uniqueness result (Theorem 15.6) only
on Berwald spaces. Try to extend Theorem 15.6 to any (not nec-
essarily reversible) Finsler manifold with non-positive flag curva-
ture; see also Remark 15.4.

(iii) Determine those classes of Finsler manifolds with non-positive
flag curvature whose (forward and backward) projections are non-
expansive for every nonempty, closed, geodesic convex set. We be-
lieve the only class fulfilling this property is the class of Hadamard-
type Riemannian manifolds. There are three supporting reasons
for this fact: (i) non-expansiveness of the projection map holds
on Hadamard-type Riemannian manifolds, see Theorem 15.8; (ii)
in Remark 15.6 we gave a counterexample for non-expansivity of
the projection map on a slightly general case than Riemannian
manifolds; (iii) the non-expansiveness of the projection map holds
on a normed vector space if and only if the norm comes from an
inner product, see Phelps [239].
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A Variational Approach of the Nash
Equilibria

I did have strange ideas during
certain periods of time.

John F. Nash (b. 1928)

16.1 Introduction

Nash equilibrium plays a central role in game theory; it is a concept strat-
egy of a game involving n-players (n ≥ 2) in which every player know
the equilibrium strategies of the other players, and changing his/her own
strategy alone, a player has nothing to gain.

Let K1, . . . , Kn (n ≥ 2) be the nonempty sets of strategies of the
players and fi : K1 × . . . × Kn → R (i ∈ {1, . . . , n}) be the payoff
functions. A point p = (p1, . . . , pn) ∈ K is a Nash equilibrium point for
(f ,K) if

fi(p; qi) ≥ fi(p) for all qi ∈ Ki, i ∈ {1, . . . , n}.
Here and in the sequel, the following notations are used: K = Πn

i=1Ki;
p = (p1, . . . , pn); (f ,K) = (f1, . . . , fn; K1, . . . , Kn); (p; qi) = (p1, . . . , qi, . . . , pn).

The most well-known existence result is due to Nash (see [225], [224])
which works for compact and convex subsets Ki of Hausdorff topological
vector spaces, and the continuous payoff functions fi are (quasi)convex
in the ith-variable, i ∈ {1, . . . , n}. A natural question that arises at this
point is:

How is it possible to guarantee the existence of Nash equilibrium points for a
family of payoff functions (perhaps set-valued) without any convexity, or even
more, when their domains are not convex in the usual sense?

328
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In this chapter we focus our attention to the existence and location
of Nash equilibrium points in various context. First, in Section 16.2
we give several formulations of Nash equilibria via variational inequal-
ities of Stampacchia and Minty type following the paper of Cavazzuti,
Pappalardo and Passacantando [62], in Section 16.3 we are dealing with
Nash equilibrium points for set-valued maps on vector spaces. In Section
16.4, we treat a case when the domain of the strategy sets are not neces-
sarily convex in the usual sense by applying elements from Riemannian
geometry.

16.2 Nash equilibria and variational inequalities

We first recall the well-known result of Nash (see [225], [224]), concerning
the existence of at least one Nash equilibrium point for a system (f ,K).

Theorem 16.1 Let K1, . . . ,Kn be nonempty compact convex subsets of
Hausdorff topological vector spaces, and let fi : K → R (i ∈ {1, . . . , n})
be continuous functions such that qi ∈ Ki 7→ fi(p; qi) is quasiconvex for
all fixed pj ∈ Kj (j 6= i). Then there exists a Nash equilibrium point for
(f ,K).

In the sequel, assume that the sets of strategies of the players, i.e.,
K1, . . . ,Kn (n ≥ 2), are closed convex subsets of a common vector space
X. Moreover, we also assume that the payoff functions fi are continuous
on K and each fi is of class C1 in its ith variable on an open set Di ⊇ Ki.
Let p ∈ K; we introduce the notations

∇f(p) = (
∂f1

∂p1
(p), ...,

∂fn

∂pn
(p)) and 〈∇f(p),q〉 =

n∑

i=1

〈∂fi

∂pi
(p), qi〉,

where 〈·, ·〉 inside the sum denotes the duality pair between X and X∗.
A point p = (p1, . . . , pn) ∈ K is a Nash-Stampacchia point for (f ,K)

if

〈∇f(p),q− p〉 ≥ 0 for all q ∈ K.

In a similar way, a point p = (p1, . . . , pn) ∈ K is a Nash-Minty point for
(f ,K) if

〈∇f(q),q− p〉 ≥ 0 for all q ∈ K.

Theorem 16.2 (a) Every Nash equilibrium point for (f ,K) is a Nash-
Stampacchia point for (f ,K).
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(b) Every Nash-Minty equilibrium point for (f ,K) is a Nash equilib-
rium point for (f ,K).

(c) If each fi is convex in its ith variable, then the converses also hold
in (a) and (b).

Proof The proof easily follows from Lemmas 13.1 and 13.2.

Theorem 16.3 Assume that ∇f is a strictly monotone operator. Then,
the following assertions hold true:

(a) (f ,K) has at most one Nash-Stampacchia point.
(b) (f ,K) has at most one Nash equilibrium point.

Proof (a) Assume that p1 6= p2 ∈ K are Nash-Stampacchia points for
(f ,K). In particular, we clearly have that

〈∇f(p1),p2 − p1〉 ≥ 0,

〈∇f(p2),p1 − p2〉 ≥ 0.

Therefore, by the strict monotonicity assumptions we have

0 ≤ 〈∇f(p1)−∇f(p2),p2 − p1〉 < 0,

contradiction.
(b) It follows from Theorem 16.2 (a).

Usually, the set of Nash-Stampacchia points and the set of Nash equi-
librium points are different. A simple example which support this state-
ment is presented in what follows, see also [153].

Example 16.1 Let K1 = K2 = [−1, 1], D1 = D2 = R, and f1, f2 :
D1 ×D2 → R defined by

f1(x1, x2) = x2
1x2 + x1, f2(x1, x2) = −x2

1x
2
2 + x2.

One can prove that the set of Nash-Stampacchia points for (f ,K) is

{(1/2,−1), (−1, 1/2), (−1,−1), (1,−1)}.
However, the unique Nash equilibrium point for (f ,K) is (−1,−1).

In the rest of this section we assume that X is a prehilbert space.
Consequently, the inequality from the definition of Nash-Stampacchia
point for (f ,K) can be written equivalently as

〈(p− α∇f(p))− p,q− p〉 ≤ 0 for all q ∈ K, α > 0.
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Furthermore, in terms of projections, the Moskovitz-Dines type relation,
see relation 15.2, gives actually that

p ∈ PK(p− α∇f(p)) for all α > 0.

Note that since K is convex, it is also a Chebyshev set, i.e., the above
relation has the form

0 = PK(p− α∇f(p))− p for all α > 0.

The last relation motivates the study of the following continuous dy-
namical system

ẋ(t) = PK(x(t)− α∇f(x(t)))− x(t), (16.1)

where α > 0 is fixed. Following Cavazzuti, Pappalardo and Passacan-
tando [62], we prove

Theorem 16.4 Assume that ∇f(p) = 0. If ∇f is strongly monotone
on K with constant η > 0 and Lipschitz continuous on K with constant
L > 0, then there exists α0 > 0 such that for every α ∈ (0, α0) there
exists a constant C > 0 such that for each solution x(t) of (16.1), with
x(0) ∈ K, we have

‖x(t)− p‖ ≤ ‖x(0)− p‖ exp(−Ct), ∀t ≥ 0,

i.e., x(t) converges exponentially to p ∈ K.

Proof First of all, due to the non-expansiveness of the projection oper-
ator PK, we have that

‖PK(x(t)− α∇f(x(t)))− p‖2 =

= ‖PK(x(t)− α∇f(x(t)))− PK(p− α∇f(p))‖2 ≤

≤ ‖x(t)− p− α(∇f(x(t))−∇f(p))‖2

= ‖x(t)−p‖2−2α〈∇f(x(t))−∇f(p),x(t)−p〉+α2‖∇f(x(t))−∇f(p)‖2

≤ (1− 2αη + α2L2)‖x(t)− p‖2.
Let α0 = 2η/L2 and α ∈ (0, α0). Note that the whole orbit of x(t)
remains in K. We consider the function

h(t) =
1
2
‖x(t)− p‖2.
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Then, we have

ḣ(t) = 〈x(t)− p, PK(x(t)− α∇f(x(t)))− x(t)〉
= 〈x(t)− p, PK(x(t)− α∇f(x(t)))− p〉 − ‖x(t)− p‖2
≤ ‖x(t)− p‖ · ‖PK(x(t)− α∇f(x(t)))− p‖ − ‖x(t)− p‖2
≤ (

√
1− 2αη + α2L2 − 1)‖x(t)− p‖2

= −2Ch(t),

where C = 1 −
√

1− 2αη + α2L2 > 0. Consequently, we have ḣ(t) ≤
−2Ch(t), with h(0) = 1

2‖x(0)−p‖2. After an integration, we have that

‖x(t)− p‖ ≤ ‖x(0)− p‖ exp(−Ct), ∀t ≥ 0.

The proof is complete.

16.3 Nash equilibria for set-valued maps

In some cases the objective/payoff functions are not single-valued, i.e.,
the values of a payoff functions are not real numbers but some sets.
Set-valued versions of the Nash equilibrium problem can be founded in
the literature, see for example Guillerme [134] and Luo [196]. In this
section we propose a new approach in the study of the existence of
Nash equilibria for set-valued maps which is based on the contingent
derivative.

Let K1, . . . , Kn be nonempty subsets of a real normed space X, and
let Fi : K Ã R (i ∈ {1, . . . , n}) be set-valued maps with nonempty
compact values. A point p = (p1, . . . , pn) ∈ K is a Nash equilibrium
point for (F,K) = (F1, . . . , Fn;K1, . . . , Kn) if p is a Nash equilibrium
point for (minF,K).

The following result is an easy consequence of Theorem 16.1.

Theorem 16.5 Let K1, . . . , Kn be nonempty compact convex subsets
of a real normed space X, and let Fi : K Ã R (i ∈ {1, . . . , n}) be
continuous set-valued maps on K with nonempty compact values such
that qi ∈ Ki Ã Fi(p; qi) is convex on Ki for all fixed pj ∈ Kj (j 6= i).
Then there exists a Nash equilibrium point for (F,K).

Proof Let fi = min Fi (i ∈ {1, . . . , n}). It is easy to prove that the
functions fi are continuous and convex in the ith variable. We apply
Theorem 16.1.
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Let K = K1 = K2 = [−1, 1], X = R, and F1, F2 : K × K Ã R be
defined by

F1(x1, x2) = [max{|x1|, |x2|} − 1, 0]; (16.2)

F2(x1, x2) = [1−max{|x1|, |x2|}, 2− x2
1 − x2

2]. (16.3)

Clearly, F1 and F2 are continuous on K ×K, but x2 ∈ K Ã F2(0, x2)
is not convex on K. Therefore, Theorem 16.5 can not be applied. How-
ever, we will see in Example 16.2 that there are Nash equilibrium points
for (F,K) = (F1, F2; K, K). To determine these points we elaborate a
method by using the contingent derivative of set-valued maps.

Let K1, . . . , Kn be nonempty convex subsets of a real normed space
X, and let Fi : K1×. . .×X×. . .×Kn Ã R (i ∈ {1, . . . , n}) be set-valued
maps with compact, nonempty values. Here, X is in the ith position.
Let be a fixed element. We can define the (partial) contingent derivative
of Fi in the ith variable at the point (p, min Fi(p)), i.e., the contingent
derivative of Fi(p1, . . . , pi−1, ·, pi+1, . . . , pn) at the point (pi, min Fi(p)),
see Appendix, Definition E.4.

Definition 16.1 A point p = (p1, . . . , pn) ∈ K is said to be a Nash
contingent point for (F,K) if

DiFi(p, min Fi(p))(qi − pi) ⊆ R+

for all qi ∈ Ki and all i ∈ {1, . . . , n}.

Proposition 16.1 Let p = (p1, . . . , pn) ∈ K be a Nash equilibrium point
for (F,K)). If each map qi Ã Fi(p; qi) (i ∈ {1, . . . , n}) is Ki-locally
Lipschitz, then p is a Nash contingent point for (F,K).

Proof Since p is a Nash equilibrium point for (F,K), we have

Fi(p; qi)−min Fi(p) ⊆ R+ (16.4)

for all qi ∈ Ki and all i ∈ {1, . . . , n}.
Let i ∈ {1, . . . , n}, qi ∈ Ki be fixed elements and we fix arbitrarily

ci ∈ DiFi(p, minFi(p))(qi − pi). We prove that ci ≥ 0. From (E.2) we
have that

lim inf
t→0+

dist
(

ci,
Fi(p; pi + t(qi − pi))−min Fi(p)

t

)
= 0, (16.5)

since the map vi Ã Fi(p; vi) is Ki-locally Lipschitz. Since Ki is convex,
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for t > 0 small enough, yt
i = pi + t(qi − pi) ∈ Ki. Using (16.4), we have

that
Fi(p; yt

i)−min Fi(p)
t

⊆ R+.

Suppose that ci < 0. Then

0 < |ci| = dist(ci,R+) ≤ dist
(

ci,
Fi(p; yt

i)−min Fi(p)
t

)
,

which is in contradiction with (16.5).

The above proposition allows to select the Nash equilibrium points
from the set of Nash contingent points. In most of the cases the de-
termination of contingent Nash points is much more easier than those
of the Nash equilibrium points. We will present two examples in this
direction. We will use the notation

ba, bc = [min{a, b},max{a, b}], where a, b ∈ R.

Example 16.2 Let us consider the set-valued maps from (16.2) and
(16.3) in extended forms, i.e. K = K1 = K2 = [−1, 1], X = R and let
F1 : X ×K Ã R, F2 : K ×X Ã R be defined by

F1(x1, x2) = bmax{|x1|, |x2|} − 1, 0c;

F2(x1, x2) = b1−max{|x1|, |x2|}, 2− x2
1 − x2

2c.
It is easy to verify that u ∈ K Ã F1(u, x2) and v ∈ K Ã F2(x1, v) are
K-locally Lipschitz maps (x1, x2 ∈ K being fixed points). We are first
looking for those points (x1, x2) ∈ K ×K which fulfill

D1F1((x1, x2), min F1(x1, x2))(v1 − x1) ⊆ R+ for all v1 ∈ K; (16.6)

D2F2((x1, x2),min F2(x1, x2))(v2 − x2) ⊆ R+ for all v2 ∈ K. (16.7)

Using the geometric meaning of the contingent derivative (see relation
(E.1)), after an elementary discussion and computation, the points which
satisfy the inclusions (16.6) and (16.7) respectively, are

CNP1 = {(x1, x2) ∈ K ×K : |x1| ≤ |x2|};

CNP2 = {(x1, x2) ∈ K×K : |x1| > |x2|}∪{(x1, x2) ∈ K×K : |x2| = 1}.
Therefore, the contingent Nash points for (F,K) = (F1, F2;K,K) are

CNP = CNP1 ∩ CNP2 = {(x1, x2) ∈ K ×K : |x2| = 1}.
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A direct computation shows that the set of Nash equilibrium points for
(F,K) coincides the set CNP.

Example 16.3 Let K = [−1, 1], and let F1 : R × K Ã R and F2 :
K × R Ã R be defined by

F1(x1, x2) =
{ b2, |x1 − 1|c, if x2 ≥ 0,

b2, |x1 + 1|c, if x2 < 0,

and

F2(x1, x2) =
{ b2, |x2 + 1|c, if x1 ≥ 0,

b2, |x2 − 1|c, if x1 < 0.

The points which satisfy the corresponding inclusions from (16.6) and
(16.7) respectively, are

CNP1 = {(1, x2) : x2 ∈ [0, 1]} ∪ {(−1, x2) : x2 ∈ [−1, 0)};

CNP2 = {(x1,−1) : x1 ∈ [0, 1]} ∪ {(x1, 1) : x1 ∈ [−1, 0)}.
The maps u ∈ K Ã F1(u, x2) and v ∈ K Ã F2(x1, v) are K-locally
Lipschitz (x1, x2 ∈ K being fixed points), however the set of Nash con-
tingent points for (F,K) = (F1, F2; K,K) is CNP = CNP1 ∩ CNP2,

which is empty. Hence the set of Nash equilibrium points is empty too,
due to Proposition 16.1.

Note that the set-valued maps from Examples 16.2 and 16.3 are not
continuous on K × K. In the sequel, we give sufficient conditions to
obtain Nash contingent points, assuming some continuity hypotheses
on the set-valued maps. Before to do this, we can state the converse of
Proposition 16.1 by taking a convexity assumption for the corresponding
set-valued maps. Let X be a normed space, and let K be a nonempty
subset of X.

Definition 16.2 The set-valued map F : X Ã R is called K-pseudo-
convex at (u, c) ∈ Graph(F ) if

F (u′) ⊆ c + DF (u, c)(u′ − u) for all u′ ∈ K.

In the case when K = Dom(F ), the above definition reduces to [16,
Definition 5.1.1]. The following result can be easily proved.

Proposition 16.2 Let K1, . . . ,Kn be nonempty subsets of a real normed
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space X, and let Fi : K1× . . .×X× . . .×Kn Ã R (i ∈ {1, . . . , n}) be set-
valued maps with nonempty compact values. Let p = (p1, . . . , pn) ∈ K be
a Nash contingent point for (F,K). If qi Ã Fi(p; qi) (i ∈ {1, . . . , n}) is
Ki-pseudo-convex at (pi, min Fi(p)), then p is a Nash equilibrium point
for (F,K).

We give and existence theorem concerning the Nash contingent points
for a system (F,K) by using a Ky Fan type result proved by Kristály
and Varga [176]:

Theorem 16.6 Let X̃ be a real normed space, let K be a nonempty
convex compact subset of X̃, and let F : K×K Ã R be a set-valued map
satisfying the following conditions:

(i) for all v ∈ K, u ∈ K Ã F (u, v) is lower semicontinuous on K;
(ii) for all u ∈ K, v ∈ K Ã F (u, v) is convex on K;
(iii) for all u ∈ K, F (u, u) ⊆ R+.

Then there exists an element u ∈ K such that

F (u, v) ⊆ R+ for all v ∈ K. (16.8)

Let Ki and Fi (i ∈ {1, . . . , n}) be as in Proposition 16.2. We denote
by Fi|K the restriction of Fi to K = K1 × . . .×Ki × . . .×Kn.

Definition 16.3 Fi|K is called i-lower semicontinuously differentiable
if

Graph(Fi |K)×X 3 (p, c, h) Ã DiFi(p, c)(h)

is lower semicontinuous.

Now, we are in the position to give an existence result concerning the
Nash contingent points.

Theorem 16.7 Let K1, . . . , Kn be nonempty compact convex subsets
of a real normed space X and let Fi : K1 × . . . × X × . . . × Kn Ã R
(i ∈ {1, . . . , n}) be set-valued maps with nonempty compact values and
with closed graph. Suppose that for each i ∈ {1, . . . , n} the map Fi is Ki-
locally Lipschitz in the ith variable, Fi|K is continuous on K and i-lower
semicontinuously differentiable. Then there exists a Nash contingent
point for (F,K).

Proof Let X̃ = X × . . .×X. Clearly, K is a compact, convex subset of
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X̃. We define the map G : K×K Ã R by

G(p,q) =
n∑

i=1

DiFi(p,min Fi(p))(qi − pi),

where p = (p1, . . . , pn) and q = (q1, . . . , qn). We will verify the hypothe-
ses from Theorem 16.6.

(i) Let us fix q ∈ K. Since the sum of finite lower semicontinuous
maps is lower semicontinuous, it is enough to prove that p ∈ K Ã
DiFi(p,min Fi(p))(qi − pi) is lower semicontinuous on K for each i ∈
{1, . . . , n}. To do this, let us fix an p ∈ K. Now, let ci ∈ DiFi(p, min Fi(p))(qi−
pi) and {pm} be a sequence from K which converges to p. Since Fi|K
is continuous on K, the function min(Fi|K) is also continuous. There-
fore min Fi(pm) → min Fi(p) as m → ∞. Using the fact that Fi|K
is i-lower semicontinuously differentiable, there exists a sequence cm

i ∈
DiFi(pm, min Fi(pm))(qi − pm

i ) such that cm
i → ci as m →∞.

(ii) Let us consider p ∈ K. fixed. We will prove that q ∈ K Ã G(p,q)
is convex on K. Since the sum of convex maps is also convex, it is enough
to prove that q ∈ K Ã DiFi(p, min Fi(p))(qi− pi) is convex. Using the
fact that Fi|K is i-lower semicontinuously differentiable (in particular
qi Ã Fi(p; qi) is sleek at (pi,min Fi(p))) and Remark E.2, the above
set-valued map is a closed convex process.

(iii) Let p ∈ K and i ∈ {1, . . . , n} be fixed. We prove that every
element ci from DiFi(p, min Fi(p))(0) is non-negative. In fact, since
qi Ã Fi(p; qi) is Ki-locally Lipschitz, from (E.2) we have

lim inf
t→0+

dist
(

ci,
Fi(p; pi + t · 0)−min Fi(p)

t

)
= 0.

Since
Fi(p)−min Fi(p)

t
⊆ R+ for all t > 0,

we obtain that ci ≥ 0. Therefore, G(p,p) =
∑n

i=1 DiFi(p,min Fi(p))(0) ⊆
R+.

By Theorem 16.6 we obtain an element p = (p1, . . . , pn) ∈ K such
that

n∑

i=1

DiFi(p,min Fi(p))(qi − pi) ⊆ R+ for all q ∈ K. (16.9)

Let i ∈ {1, . . . , n} be fixed. We may choose qj = pj , j 6= i. Since
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the (partial) contingent derivatives are closed convex process, we clearly
have that 0 ∈ DjFj(p, min Fj(p))(0), j 6= i. From (16.9), we obtain

DiFi(p, min Fi(p))(qi − pi) ⊆ R+ for all qi ∈ Ki.

The proof is complete.

Using Remark E.1, we immediately obtain a consequence of the above
theorem. A similar result was obtained by Kassay, Kolumbán and Páles
[153].

Corollary 16.1 Let K1, . . . , Kn be nonempty compact convex subsets of
a real normed space X and let fi : K1 × . . . ×X × . . . ×Kn → R (i ∈
{1, . . . , n}) be continuous functions. Suppose that there exist open convex
sets Di ⊆ X such that Ki ⊆ Di and fi is continuously differentiable in
the ith variable on Di and ∂ifi is continuous on K1× . . .×Di× . . .×Kn.

Then there exists an element p ∈ K such that

〈∂ifi(p), qi − pi〉 ≥ 0

for all qi ∈ Ki and all i ∈ {1, . . . , n}.

Example 16.4 Let K = K1 = K2 = [−1, 1], X = D1 = D2 = R, and
let f1, f2 : D1 ×D1 → R be defined by

f1(x1, x2) = x1x2 + x2
1, f2(x1, x2) = x2 − 3x1x

2
2.

Clearly, the above sets and functions satisfy the assumptions from Corol-
lary 16.1, hence a solution for the above system is guaranteed. It is
easy to observe that, for i ∈ {1, 2}, we have ∂ifi(x1, x2)(vi − xi) ≥
0 for all vi ∈ K if and only if
• ∂ifi(x1, x2) = 0 if −1 < xi < 1;
• ∂ifi(x1, x2) ≥ 0, if xi = −1 and
• ∂ifi(x1, x2) ≤ 0 if xi = 1.

Discussing all the cases, we establish that the set of Nash contingent
points for (f ,K) = (f1, f2;K,K) is CNP = {( 1

2 ,−1)}. This point will
be also a Nash equilibrium point for (f ,K).

16.4 Lack of convexity: a Riemannian approach

In this section we are going to treat a case when the strategy sets Ki

are not necessarily convex in the usual sense. In order to handle this
problem a geometrical method will be exploited: we assume that one
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can find suitable Riemannian manifolds (Mi, gi) such that the set Ki

becomes a geodesic convex set in Mi. Note that the choice of such
Riemannian structures does not influence the Nash equilibrium points
for (f ,K). Moreover, after fixing these manifolds if the payoff functions
fi become convex on Ki (i.e., fi ◦ γi : [0, 1] → R is convex in the usual
sense for every geodesic γi : [0, 1] → Ki), the following existence result
may be stated.

Theorem 16.8 Let (Mi, gi) be finite-dimensional Riemannian mani-
folds, Ki ⊂ Mi be nonempty, compact, geodesic convex sets, and fi :
K → R be continuous functions such that Ki 3 qi 7→ fi(p; qi) is con-
vex on Ki for every p ∈ K, i ∈ {1, . . . , n}. Then, there exists a Nash
equilibrium point for (f ,K).

Proof We apply Theorem 13.5 by choosing X = K = Πn
i=1Ki and h :

X×X → R defined by h(q,p) =
∑n

i=1[fi(p; qi)−fi(p)]. First of all, note
that the sets Ki are ANRs, being closed subsets of finite-dimensional
manifolds (thus, locally contractible spaces). Moreover, since a product
of a finite family of ANRs is an ANR (see Bessage and Pelczyński [37,
p. 69]), it follows that X is an ANR. Due to Proposition 13.2, X is
contractible, thus acyclic.

Note that the function h is continuous, and h(p,p) = 0 for every
p ∈ X. Consequently, the set {(q,p) ∈ X ×X : 0 > h(q,p)} is open.

It remains to prove that Sp = {q ∈ X : 0 > h(q,p)} is contractible or
empty for all p ∈ X. Assume that Sp 6= ∅ for some p ∈ X. Then, there
exists i0 ∈ {1, ..., n} such that fi0(p; qi0)−fi0(p) < 0 for some qi0 ∈ Ki0 .

Therefore, q = (p; qi0) ∈ Sp, i.e., priSp 6= ∅ for every i ∈ {1, ..., n}. Now,
we fix qj = (qj

1, ..., q
j
n) ∈ Sp, j ∈ {1, 2} and let γi : [0, 1] → Ki be the

unique geodesic joining the points q1
i ∈ Ki and q2

i ∈ Ki (note that
Ki is geodesic convex), i ∈ {1, ..., n}. Let γ : [0, 1] → K defined by
γ(t) = (γ1(t), ..., γn(t)). Due to the convexity of the function Ki 3 qi 7→
fi(p; qi), for every t ∈ [0, 1], we have

h(γ(t),p) =
n∑

i=1

[fi(p; γi(t))− fi(p)]

≤
n∑

i=1

[tfi(p; γi(1)) + (1− t)fi(p; γi(0))− fi(p)]

= th(q2,p) + (1− t)h(q1,p)

< 0.
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Consequently, γ(t) ∈ Sp for every t ∈ [0, 1], i.e., Sp is a geodesic con-
vex set in the product manifold M = Πn

i=1Mi endowed with its natural
(warped-)product metric (with the constant weight functions 1), see
O’Neill [230, p. 208]. Now, Proposition 13.2 implies that Sp is con-
tractible. Alternatively, we may exploit the fact that the projections
priSp are geodesic convex, thus contractible sets, i ∈ {1, ..., n}.

On account of Theorem 13.5, there exists p ∈ K such that 0 =
h(p,p) ≤ h(q,p) for every q ∈ K. In particular, putting q = (p; qi),
qi ∈ Ki fixed, we obtain that fi(p; qi)−fi(p) ≥ 0 for every i ∈ {1, ..., n},
i.e., p is a Nash equilibrium point for (f ,K).

Our further investigation is motivated by the following two questions:

• What about the case when some payoff functions fi are not convex on
Ki in spite of the geodesic convexity of Ki on (Mi, gi)?

• Even for convex payoff functions fi on Ki, how can we localize the
Nash equilibrium points for (f ,K)?

The following concept is destined for simultaneously handling the above
questions.

Let (Mi, gi) be complete finite-dimensional Riemannian manifolds,
Ki ⊂ Mi be nonempty, geodesic convex sets, and fi : (K;Di) → R
functions such that Di 3 qi 7→ fi(p; qi) is of class C1 for every p ∈ K,
where (K; Di) = K1 × ... × Di × ... × Kn, with Di open and geodesic
convex, and Ki ⊆ Di ⊆ Mi, i ∈ {1, . . . , n}.

A point p = (p1, . . . , pn) ∈ K is a Nash critical point for (f ,K) if

gi(∂ifi(p), exp−1
pi

(qi)) ≥ 0 for all qi ∈ Ki, i ∈ {1, . . . , n}.
Here, ∂ifi(p) denotes the ith partial derivative of fi at the point pi ∈ Ki.

A useful relation between Nash equilibrium points and Nash critical
points is established by the following result.

Proposition 16.3 Any Nash equilibrium point for (f ,K) is a Nash
critical point for (f ,K). In addition, if Di 3 qi 7→ fi(p; qi) is convex for
every p ∈ K, i ∈ {1, . . . , n}, the converse also holds.

Proof Let p ∈ K be a Nash equilibrium point for (f ,K). In particular,
for every qi ∈ Ki with i ∈ {1, . . . , n} fixed, the geodesic segment t 7→
exppi

(t exp−1
pi

(qi)), t ∈ [0, 1] joining the points pi and qi, belongs entirely
to Ki; thus,

fi(p; exppi
(t exp−1

pi
(qi)))− fi(p) ≥ 0 for all t ∈ [0, 1]. (16.10)
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Combining relation (16.10) with

gi(∂ifi(p), exp−1
pi

(qi)) = lim
t→0+

fi(p; exppi
(t exp−1

pi
(qi)))− fi(p)

t
,

we indeed have that p ∈ K is a Nash critical point for (f ,K).
Now, let us assume that p ∈ K is a Nash critical point for (f ,K), i.e.,

0 ≤ gi(∂ifi(p), exp−1
pi

(qi)) = lim
t→0+

fi(p; exppi
(t exp−1

pi
(qi)))− fi(p)

t
.

(16.11)
The function

g(t) =
fi(p; exppi

(t exp−1
pi

(qi)))− fi(p)
t

is well-defined on the whole interval (0, 1]; indeed, t 7→ exppi
(t exp−1

pi
(qi))

is the minimal geodesic joining the points pi ∈ Ki and qi ∈ Ki which
belongs to Ki ⊂ Di. Moreover, a standard computation shows that
t 7→ g(t) is non-decreasing on (0, 1] due to the convexity of Di 3 qi 7→
fi(p; qi). Consequently, (16.11) implies that

0 ≤ lim
t→0+

g(t) ≤ g(1) = fi(p; exppi
(exp−1

pi
(qi)))−fi(p) = fi(p; qi)−fi(p),

which completes the proof.

In order to state our existence result concerning Nash critical points,
we consider the hypothesis

(H) Ki 3 qi 7→ gi(∂ifi(p), exp−1
pi

(qi)) is convex for every p ∈ K and
i ∈ {1, ..., n}.

Remark 16.1 Let I1, I2 ⊆ {1, ..., n} be such that I1 ∪ I2 = {1, ..., n}.
Hypothesis (H) holds, for instance, when

• (Mi, gi) is Euclidean, i ∈ I1;
• Ki = Imγi where γi : [0, 1] → Mi is a minimal geodesic, i ∈ I2.

(a) In the first case, we have exppi
= idRdim Mi ; in this case Ki 3 qi 7→

〈∂ifi(p), qi − pi〉 becomes affine, so convex.
(b) In the second case, if σi : [0, 1] → Mi is a geodesic segment joining

the points σi(0) = γi(t̃0) with σi(1) = γi(t̃1) (0 ≤ t̃0 < t̃1 ≤ 1), then
Imσi ⊆ Imγi = Ki. Fix pi = γi(ti) ∈ Ki (0 ≤ t̃i ≤ 1). Let a0, a1 ∈ R
(a0 < a1) such that exppi

(a0γ
′
i(ti)) = γi(t̃0) and exppi

(a1γ
′
i(ti)) = γi(t̃1).

Then, σi(t) = exppi
((a0 + (a1 − a0)t)γ′i(ti)). Now, the claim easily

follows since the convexity of function from (H) reduces to the affinity
of t 7→ gi(∂ifi(p), (a0 + (a1 − a0)t)γ′i(ti)).
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Theorem 16.9 Let (Mi, gi) be complete finite-dimensional Riemannian
manifolds, Ki ⊂ Mi be nonempty, compact, geodesic convex sets and
fi : (K; Di) → R continuous functions such that Di 3 qi 7→ fi(p; qi) is
of class C1 for every p ∈ K, i ∈ {1, . . . , n}. If (H) holds, there exists a
Nash critical point for (f ,K).

Proof The proof is similar to that of Theorem 16.8; we show only the
differences. Let X = K = Πn

i=1Ki and h : X × X → R defined by
h(q,p) =

∑n
i=1 gi(∂ifi(p), exp−1

pi
(qi)). It is clear that h(p,p) = 0 for

every p ∈ X.

First of all, the (upper-semi)continuity of h(·, ·) on X ×X implies the
fact that the set {(q,p) ∈ X ×X : 0 > h(q,p)} is open.

Now, let p ∈ X such that Sp = {q ∈ X : 0 > h(q,p)} is not empty.
Then, there exists i0 ∈ {1, ..., n} such that gi0(∂i0fi0(p), exp−1

pi0
(qi0)) < 0

for some qi0 ∈ Ki0 . Consequently, q = (p; qi0) ∈ Sp, i.e., priSp 6= ∅ for
every i ∈ {1, ..., n}. Now, we fix qj = (qj

1, ..., q
j
n) ∈ Sp, j ∈ {1, 2}, and

let γi : [0, 1] → Ki be the unique geodesic joining the points q1
i ∈ Ki and

q2
i ∈ Ki. Let also γ : [0, 1] → K defined by γ(t) = (γ1(t), ..., γn(t)). Due

to hypotheses (H), the convexity of the function [0, 1] 3 t 7→ h(γ(t),p),
t ∈ [0, 1] easily follows. Therefore, γ(t) ∈ Sp for every t ∈ [0, 1], i.e., Sp

is a geodesic convex set, thus contractible.
Theorem 13.5 implies the existence of p ∈ K such that 0 = h(p,p) ≤

h(q,p) for every q ∈ K. In particular, if q = (p; qi), qi ∈ Ki fixed, we
obtain that gi(∂ifi(p), exp−1

pi
(qi)) ≥ 0 for every i ∈ {1, ..., n}, i.e., p is a

Nash critical point for (f ,K). The proof is complete.

Remark 16.2 Proposition 16.3 and Theorem 16.9 give together a pos-
sible answer to the location of Nash equilibrium points. Indeed, on
account of Theorem 16.9 we are able to find explicitly the Nash critical
points for (f ,K); then, due to Proposition 16.3, among Nash critical
points for (f ,K) we may choose the Nash equilibrium points for (f ,K).

Remark 16.3 The set of Nash critical points and the set of Nash equi-
librium points are usually different. Indeed, let f1, f2 : [−1, 1]2 → R be
defined by f1(x1, x2) = f2(x1, x2) = x3

1 + x3
2. Note that (0, 0), (0,−1),

(−1, 0) and (−1,−1) are Nash critical points, but only (−1,−1) is a
Nash equilibrium point for (f1, f2; [−1, 1], [−1, 1]).

The following examples show the applicability of our results.



16.4 Lack of convexity: a Riemannian approach 343

Example 16.5 Let K1 = [−1, 1], K2 = {(cos t, sin t) : t ∈ [π/4, 3π/4]},
and f1, f2 : K1 ×K2 → R defined for every x ∈ K1, (y1, y2) ∈ K2 by

f1(x, (y1, y2)) = |x|y2
1 − y2, f2(x, (y1, y2)) = (1− |x|)(y2

1 − y2
2).

Note that K1 ⊂ R is convex in the usual sense, but K2 ⊂ R2 is not.
However, if we consider the Poincaré upper-plane model (H2, gH), the
set K2 ⊂ H2 is geodesic convex with respect to the metric gH, being the
image of a geodesic segment from (H2, gH). It is clear that f1(·, (y1, y2))
is a convex function on K1 in the usual sense for every (y1, y2) ∈ K2.
Moreover, f2(x, ·) is also a convex function on K2 ⊂ H2 for every x ∈
K1. Indeed, the latter fact reduces to the convexity of the function
t 7→ (1−|x|) cos(2t), t ∈ [π/4, 3π/4]. Therefore, Theorem 16.8 guarantees
the existence of at least one Nash equilibrium point for (f1, f2; K1,K2).
Using Proposition 16.3, a simple calculation shows that the set of Nash
equilibrium (=critical) points for (f1, f2;K1,K2) is K1 × {(0, 1)}.

Example 16.6 Let K1 = [−1, 1]2, K2 = {(y1, y2) : y2 = y2
1 , y1 ∈ [0, 1]},

and f1, f2 : K1 ×K2 → R defined for every (x1, x2) ∈ K1, (y1, y2) ∈ K2

by

f1((x1, x2), (y1, y2)) = −x2
1y2+x2y1, f2((x1, x2), (y1, y2)) = x1y

2
2+x2y

2
1 .

The set K1 ⊂ R2 is convex, but K2 ⊂ R2 is not in the usual sense.
However, K2 may be considered as the image of a geodesic segment
on the paraboloid of revolution prev(u, v) = (v cos u, v sin u, v2). More
precisely, K2 becomes geodesic convex on Imprev, being actually a com-
pact part of a meridian on Imprev. Note that neither f1(·, (y1, y2)) nor
f2((x1, x2), ·) is convex (the convexity of the latter function being con-
sidered on K2 ⊂Imprev); thus, Theorem 16.8 is not applicable. In view
of Remark 16.1 (c), Theorem 16.9 can be applied in order to determine
the set of Nash critical points. This set is nothing but the set of solutions
in the form ((x̃1, x̃2), (ỹ, ỹ2)) ∈ K1 ×K2 of the system

{ −2x̃1ỹ
2(x1 − x̃1) + ỹ(x2 − x̃2) ≥ 0, ∀(x1, x2) ∈ K1,

ỹ(2ỹ2x̃1 + x̃2)(y − ỹ) ≥ 0, ∀y ∈ [0, 1].
(SystemNCP)

We distinguish three cases: (a) ỹ = 0; (b) ỹ = 1; and (c) 0 < ỹ < 1.
(a) ỹ = 0. Then, any ((x̃1, x̃2), (0, 0)) ∈ K1 ×K2 solves (SystemNCP).
(b) ỹ = 1. After an easy computation, we obtain that ((−1,−1), (1, 1)) ∈

K1 ×K2 and ((0,−1), (1, 1)) ∈ K1 ×K2 solve (SystemNCP).
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(c) 0 < ỹ < 1. The unique situation when (SystemNCP) is solv-
able is ỹ =

√
2/2. In this case, (SystemNCP) has a unique solution

((1,−1), (
√

2/2, 1/2)) ∈ K1 ×K2.
Consequently, the set of Nash critical points for (f1, f2; K1,K2), de-

noted in the sequel by SNCP, is the union of the points from (a), (b) and
(c), respectively.

Let us denote by SNEP the set of Nash equilibrium points for (f1, f2;K1,K2).
Due to Proposition 16.3, we may select the elements of SNEP from SNCP.
Therefore, the elements of SNEP are the solutions ((x̃1, x̃2), (ỹ, ỹ2)) ∈
SNCP of the system

{ −x2
1ỹ

2 + x2ỹ ≥ −x̃2
1ỹ

2 + x̃2ỹ, ∀(x1, x2) ∈ K1,

x̃1y
4 + x̃2y

2 ≥ x̃1ỹ
4 + x̃2ỹ

2, ∀y ∈ [0, 1].
(SystemNEP)

We consider again the above three cases.
(a) ỹ = 0. Among the elements ((x̃1, x̃2), (0, 0)) ∈ K1×K2 which solve

(SystemNCP), only those are solutions for (SystemNEP) which fulfill the
condition x̃2 ≥ max{−x̃1, 0}.

(b) ỹ = 1. We have ((−1,−1), (1, 1)) ∈ SNEP, but ((0,−1), (1, 1)) /∈
SNEP.

(c) 0 < ỹ < 1. We have ((1,−1), (
√

2/2, 1/2)) ∈ SNEP.

16.5 Historical comments and perspectives

A. Historical comments. Although many extensions and applications
can be found of Nash’s result (see, for instance, Chang [66], Georgiev
[125], Guillerme [134], Kulpa and Szymanski [181], Luo [196], Morgan
and Scalzo [214], Yu and Zhang [295], and references therein), to the
best of our knowledge, only a few works can be found in the literature
dealing with the question addressed in the Introduction, i.e., the location
of Nash equilibrium points for a functions with non-usual properties (for
instance, set-valued maps) which are defined on sets with non-standard
structures. Nessah and Kerstens [226] characterize the existence of Nash
equilibrium points on non-convex strategy sets via a modified diagonal
transfer convexity notion; Tala and Marchi [283] also treat games with
non-convex strategies reducing the problem to the convex case via cer-
tain homeomorphism; Kassay, Kolumbán and Páles [153] and Ziad [298]
considered Nash equilibrium points on convex domains for non-convex
payoff functions having suitable regularity instead of their convexity.

In this chapter we treated the existence and location of Nash equilib-
rium points in various context. Via variational inequalities and dynam-
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ical systems, we established stability results concerning Nash critical
points following the paper of Cavazzuti, Pappalardo and Passacantando
[62]. In Section 16.3 we studied Nash equilibrium points for set-valued
maps on vector spaces. The purpose of the last section was to initiate a
new approach concerning the study of Nash equilibria, where the payoff
functions are defined on sets which are not necessarily convex in the
usual sense, by embedding these sets into suitable Riemannian mani-
folds.

B. Perspectives. The main challenging question is to study the (expo-
nential) stability of Nash critical points for functions which are defined
on sets embedded into certain Riemannian manifolds. Since the non-
expansiveness and the validity of Moskovitz-Dines property of the pro-
jection operator are indispensable in such an argument (see Theorem
16.4), we believe that this fact is possible only for those cases where the
strategy sets can be embedded into Hadamard-type Riemannian mani-
foldsm (see Theorems 15.4 and 15.8).
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Problems to Part III

God exists since mathematics
is consistent, and the Devil
exists since we cannot prove it.

André Weil (1906–1998)

Problem 17.1 Prove that (Int(MC), dH) is a metric space, where C is a
simple, closed and convex curves and dH is the Hilbert distance. [Hint:
See Section 13.2]

Problem 17.2 Let C be an ellipse with semi-axes a > b > 0, and
consider three points P1 = (a/2, 0), P2 = (−a/2, 0) and P3 = (a/2,−b/2)
in the interior of the ellipse Int(MC). Determine the minimum points
of the total cost function C(Pi, 3, s) =

∑3
i=1 ds

H(·, Pi) on Int(MC) for
s = 1 and s = 2, respectively.

Problem 17.3 Let M = Rm, m ≥ 2, be endowed with the natural
Euclidean metric, and Pi ∈ M, i = 1, ..., n given points. Prove that
the unique minimum point Tf = Tb (i.e., the place of the deposit) for
Cf (Pi, n, s) = Cb(Pi, n, s) is the center of gravity of points {P1, ..., Pn}
if and only if s = 2. [Hint: See Example 14.1]

Problem 17.4 There is a ship which moves on a closed curve and there
are n fixed ambulance stations. Suppose that at a certain moment,
the ship’s crew asks for first-aid continuing their trip. Determine the
position of ambulance station from where the team assistance reaches
the ship within minimal time. [Hint: Follow Problem 14.1]

346
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Problem 17.5 If M0 is a submanifold of the Riemannian manifold
(M, g) and γ : [0, 1] → M is a geodesic of M with the properties that
γ(1) ∈ M0 and dg(γ(0), y) ≥ Lg(γ) for every y ∈ M0, then g(γ̇(1), X) =
0 for every X ∈ Tγ(1)M0, i.e., γ is perpendicular to M0 at the point of
contact. [Hint: Use the first variational formula and follow Proposition
15.1]

Problem 17.6 If M1 and M2 are submanifolds of the Riemannian mani-
fold (M, g) and γ : [0, 1] → M is a geodesic of M with the properties that
x0 = γ(0) ∈ M1, y0 = γ(1) ∈ M2, and dg(x, y) ≥ dg(x0, y0) = Lg(γ) for
every (x, y) ∈ M1×M2, then g(γ̇(0), X) = 0 and g(γ̇(1), Y ) = 0 for every
(X, Y ) ∈ Tγ(0)M1 × Tγ(1)M2, i.e., γ is a common perpendicular of M1

and M2. [Hint: Use the first variational formula and follow Proposition
15.1]

Problem 17.7 Let (M, g) be a simply connected Riemannian manifold
with non-positive sectional curvature and let α, β : R → M be two
geodesics. We allow that β(t) =constant, and ‖α̇‖ = 1. The distance
function f(t) = dg(α(t), β(t)) has the following properties:

1) the equation f(t) = 0 has at most one solution;
2) f is a function of class C∞ for all t ∈ R with f(t) 6= 0.
[Hint: Use the first and second variational formula.]

Problem 17.8 Let K1 = [−5, 3], K2 = {(cos t, sin t) : t ∈ [π/4, 3π/4]},
and f1, f2 : K1 × K2 → R defined for every x ∈ K1, (y1, y2) ∈ K2

by f1(x, (y1, y2)) = x2y3
1 − y2

2 , f2(x, (y1, y2)) = (16 − x2)(y2
1 − y2

2).
Determine the set of Nash equilibrium points for (f ,K).

Problem 17.9 Let K1 = {(sin t, cos t) : t ∈ [π/8, 3π/7]}, K2 = {(y1, y2) :
y2 = y2

1 + 2, y1 ∈ [0, 2]}, and f1, f2 : K1 × K2 → R defined for ev-
ery (x1, x2) ∈ K1, (y1, y2) ∈ K2 by f1((x1, x2), (y1, y2)) = 3x1y

2
2 +

2x3
2y

3
1 , f2((x1, x2), (y1, y2)) = 4x2

1y
3
2 +5x2

2y1. Determine the set of Nash
equilibrium points for (f ,K).

Problem 17.10 Let K = K1 = K2 = [−2, 3], X = R, and F1, F2 : K ×
K Ã R be defined by F1(x1, x2) = [max{x2

1, x
3
2}−1, 0] and F2(x1, x2) =

[1−max{|x1|, x2
2}, 6 − x1 − x2

2]. Determine the set of Nash equilibrium
points for (F,K) = (F1, F2; K, K).

Problem 17.11 (Location of Post Office) Let P1 = (1, 0) ∈ R2 and
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P2 = (0, 1) ∈ R2 be two Post Offices, and let two players moving on
the set K = K ×K where K = (−∞, 0]. The purpose of the ith player
is to minimize the distance between (x1, x2) ∈ K and his favorite goal
Pi. What about the case when the players moving area is subject to the
social constraint S = {(x1, x2) ∈ K : x1 + x2 ≤ −2}? [Hint: Use Nash
point notions from Section 16.2.]
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A

Elements of convex analysis

By plucking her petals, you do
not gather the beauty of the
flower.

Rabindranath Tagore
(1861–1941)

A.1 Convex sets and convex functions

Mathematically, the notion of convex set can be made precise by defining
the segment joining any two points x and y in a vector space to be the
set of of all points having the form λx + (1 − λ)y for 0 ≤ λ ≤ 1. A set
is convex if and only if it contains all the segments joining any two of
its points. The geometric nature of this definition is depicted in Figures
A.1 and A.2.

Given a collection of convex sets, it is always possible to create other
convex sets by the operations of dilation, sum or intersection. More
precisely, if A and B are convex sets in a linear space then the sets

αA := {αx; x ∈ A} where α ∈ R
and

A + B := {a + b; a ∈ A, b ∈ B}
are convex, too. Moreover, any intersection of convex sets is convex.

The notion of convex function was introduced in the first part of the
twentieth century, though it was implicitly used earlier by Gibbs and
Maxwell in order to describe relationships between thermodynamic vari-
ables.

351



352 Elements of convex analysis

x

λx+(1-λ)y

y

Fig. A.1. Geometric illustration of a convex set.

x

y

Fig. A.2. Shape of a nonconvex set.

Definition A.1 Let C be a convex set in a linear space. A function
f : C→R is convex if and only if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y) for any λ ∈ [0, 1].

Fig. A.3. Geometric illustration of a convex function.
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a b

y=f(x)

Fig. A.4. Geometric illustration of the epigraph of a function f : [a, b]→R.

Thus, a functional is convex if the segment connecting two points on
its graph lies above the graph of the function, as shown in Figure A.3.
Now, this definition is often expressed concisely by defining the set of all
points that lie above the graph of a functional to be the epigraph (see
Figure A.4). This set plays an important role in optimization theory
and is usually referred in economics as an upper contour set.

Definition A.2 The epigraph of a functional f acting on a vector space
X is the subset

epi (f) := {(x, a) ∈ X × R; f(x) ≤ a} .

The following result makes clear how the notions of convexity of a set
and convexity of a functional are related.

Proposition A.1 Suppose f is a functional defined on a convex set.
Then f is a convex functional if and only if the set epi (f) is convex.

We have seen in this volume that convexity plays an important role
in many optimization problems. In addition, some classes of inequality
constraints couched in terms of convex cones are amenable to Lagrange
multiplier methods for abstract spaces. Convex cones are also used to
define orderings on vector spaces, which in turn facilitate the introduc-
tion of inequality constraints.
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Fig. A.5. A convex closed cone with vertex at the origin in R2.

Definition A.3 Let X be a vector space. A set C0 ⊂ X is a cone with
vertex at the origin if

x ∈ X implies αx ∈ C0 ,

for all α ≥ 0. A cone with vertex at a point v ∈ X is defined to be the
translation v + C of a cone C0 with vertex at the origin:

C = {v + x; x ∈ C0} .

A positive cone C+
0 ⊂ X is defined by

C+
0 := {x; x ∈ C0, x ≥ 0} .

A cone with vertex at the origin need not be convex. We also point
out that a cone need not be closed, in general. Examples of cones (either
convex or not convex ) are depicted in Figures A.5, A.6, and A.7.

The next theorem is a result due to Efimov and Stechkin in the theory
of best approximation. Roughly speaking, this property assures that
in a certain class of Banach spaces, every sequentially weakly closed
Chebyshev set is convex.

Theorem A.1 (Lemma 1 of [99], Theorem 2 of [285]) Let X be a uni-
formly convex Banach space with strictly convex topological dual. As-
sume that M is a sequentially weakly closed non–convex subset of X.

Then, for any convex dense subset S of X, there exists x0 ∈ S such
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Fig. A.6. A nonconvex closed cone with vertex at the origin in R2.

Fig. A.7. A nonconvex open cone with vertex at the origin in R2.

that the set

{y ∈ M : ‖y − x0‖ = d(x0,M)}

contains at least two points.
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A.2 Convex analysis in Banach spaces

Throughout this section we assume that (X, || · ||) is a Banach space.

Definition A.4 Let α : X → (−∞, +∞] be a function and let x ∈ X

be a point where α is finite. The one-sided directional derivative of α at
x with respect to a vector y ∈ X is

α′(x; y) = lim
λ↘0

α(x + λy)− α(x)
λ

,

if it exists.

Lemma A.1 Let be α : X → (−∞,+∞] be a convex function, and let
x ∈ X be a point where alpha(x) is finite. For each y ∈ X, the difference
quotient in the definition of α′(x; y) is a non-decreasing function of λ >

0, so that α′(x; y) exists and

α′(x; y) = lim
λ↘0

α(x + λy)− α(x)
λ

.

Moreover, α′(x; y) is a positively homogeneous convex of y ∈ X.

Definition A.5 Let α : X → (−∞, +∞] be a convex function. An
element x? ∈ X is said to be a subgradient of the convex function α at
a point x ∈ X provided that for any z ∈ X,

α(z) ≥ α(x) + 〈x?, z − x〉 .
The set of all subgradient of α at x is called the subdifferential of α at
x and is denoted by ∂α(x).

Lemma A.2 Let α : X → (−∞, +∞] be a convex function and let
x ∈ X be a point where α(x) is finite. Then x? ∈ ∂α(x) if and only if
for all y ∈ X,

α′(x; y) ≥ 〈x?, y〉 .
Now, let S ⊂ X be a non-empty closed convex set and denote by

αS : X → (−∞, +∞] the indicator function associated to S, that is,

jS(x) =
{

0, if x ∈ S

+∞, if x ∈ X \ S.
(A.1)

In this case ∂αS(x) = {x? ∈ X? | 〈x?, z − x〉 ≤ 0, ∀ z ∈ S}, that
is, ∂αS(x) coincide with the normal cone associated to S at the point
x ∈ S. Thus, ∂αS(x) = NS(x).
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Let S ⊂ X be a nonempty set. As usual, we denote the distance
function distS : X → R defined by

distS(x) = inf{‖x− y‖ : y ∈ S}.
It is clear that distS is a globally Lipschitz function. Consequently, one
may define its directional derivative in the sense of Clarke at the point
x ∈ S with direction v ∈ X, denoted by dist0S(x; v).

Definition A.6 Let x ∈ S. A vector v ∈ X is tangent to S at x if
dist0S(x; v) = 0. The set of tangent vectors of S at x is denoted by
TS(x).

Note that TS(x) is a closed convex cone in X; in particular, 0 ∈ TS(x).

Definition A.7 Let x ∈ S. The normal cone to S at x is

NS(x) = {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 for all v ∈ TS(x)}.

Proposition A.2 Let X = X1 ×X2, where X1, X2 are Banach spaces,
and let x = (x1, x2) ∈ S1 × S2, where S1, S2 are subsets of X1, X2,
respectively. Then

TS1×S2(x) = TS1(x1)× TS2(x2);

NS1×S2(x) = NS1(x1)×NS2(x2).



B

Function spaces

All the effects of Nature are
only the mathematical
consequences of a small
number of immutable laws.

Pierre-Simon Laplace
(1749–1827)

In this part we recall some basic facts on Lebesgue and Sobolev spaces.
A central place is dedicated to the main theorems in these basic function
spaces.

B.1 Lebesgue spaces

Let Ω ⊂ RN be an open set. We recall that the Lebesgue spaces are
defined by

Lp(Ω) :=
{

u : Ω→R; u is measurable and
∫

Ω

|u(x)|p dx < ∞
}

if 1 ≤ p < ∞, and

L∞(Ω) := {u : Ω→R; u is measurable and ess supx∈Ω |u(x)| < ∞} .

For any 1 ≤ p ≤ ∞ we define the space

Lp
loc(Ω) := {u : Ω→R; u ∈ Lp(ω) for each ω ⊂⊂ Ω} .

We have used in this volume the following basic results on Lebesgue
spaces.

358
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Theorem B.1 (Fatou’s Lemma). Assume that for any n ≥ 1, un ∈
L1(Ω) and un ≥ 0 a.e. on Ω. Then

∫

Ω

lim inf
n→∞

un dx ≤ lim inf
n→∞

∫

Ω

un dx .

The next theorem is due to Brezis and Lieb [48] provides us with a
correction term that changes Fatou’s lemma from an inequality to an
equality.

Theorem B.2 (Brézis–Lieb Lemma). Let (un) be a sequence of func-
tions defined on Ω that converges pointwise a.e. to a function u. Assume
that for some 1 ≤ p < ∞, there exists a positive constant C such that
for all x ∈ Ω,

sup
n≥1

∫

Ω

|un(x)|p dx < C .

Then

lim
n→∞

∫

Ω

[|un(x)|p − |un(x)− u(x)|p] dx =
∫

Ω

|u(x)|p dx .

Theorem B.3 (Lebesgue’s Dominated Convergence Theorem). Assume
that for any n ≥ 1, un ∈ L1(Ω). Suppose that un→u a.e. on Ω and
|un| ≤ v a.e., for some function v ∈ L1(Ω). Then

lim
n→∞

∫

Ω

un(x) dx =
∫

Ω

u(x) dx .

B.2 Sobolev spaces

Let u ∈ L1
loc(Ω) be a function. A function vα ∈ L1

loc(Ω) such that
∫

Ω

u(x)Dαϕ(x)dx = (−1)|α|
∫

Ω

vα(x)ϕ(x)dx

for any ϕ ∈ C∞0 (Ω) is called the weak distributional derivative of u and
is denoted by Dαu. Here α = (α1, ..., αn), where αi (i = 1, ..., N) are

nonnegative integers and Dαu = ∂|α|
∂xα1

1 . . . ∂xαN

N
, with |α| = α1+...+αN .

It is clear that if such a vα exists, it is unique up to sets of measure zero.
To define a Sobolev space we introduce a functional || · ||m,p, where m
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is a nonnegative integer and 1 ≤ p ≤ ∞, as follows

||u||m,p =


 ∑

0≤|α|≤m

∫

Ω

|Dαu(x)|pdx




1/p

,

for 1 ≤ p < ∞ and

||u||m,∞ = max
0≤|α|≤m

sup
Ω
|Dαu(x)|

if p = ∞. It is obvious that || · ||m,p and || · ||m,∞ define norms on any
vector space of functions for which values of these functionals are finite,
provided functions are identified in the space if they are equal almost
everywhere.

For any integer m ≥ 1 and any 1 ≤ p ≤ ∞ we can define the following
spaces

Hm,p(Ω) = the completion of {u ∈ Cm(Ω) : ||um,p|| < ∞}
with respect the norm || · ||m,p;

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m},
where Dα denotes the weak partial derivative of u;

Wm,p
0 (Ω) = the closure of C∞0 (Ω) in the space Wm,p(Ω).

The above spaces equipped with the norms || · ||m,p are called Sobolev
spaces over Ω.

It is clear that W 0,p = W 0.p
0 = Lp. It is also known that Hm,p(Ω) =

W 1,p(Ω) for every domain Ω ⊂ RN . The spaces Wm,p(Ω) and Wm,p
0 (Ω)

are Banach spaces and these spaces are reflexive if and only if 1 < p < ∞.
Moreover, W k,2(Ω) and W k,2

0 (Ω) are Hilbert spaces with scalar product

〈u, v〉 =
∑

|α|≤k

∫

Ω

Dαu(x)Dαv(x)dx,

where D0u = u. Also, Wm,p(Ω) and Wm,p
0 (Ω) are separable for 1 ≤ p <

∞. For any 1 ≤ p < ∞ we denote p′ = p/(p− 1) (if p = 1, p′ = ∞) and
we denote by W−m,p′(Ω) the dual space of Wm,p

0 (Ω) and we write

W−m,p′(Ω) = (Wm,p(Ω))?
.

Then every element T ∈ W−m,p′(Ω) has the form

T (u) =
∑

|α|≤k

∫

Ω

Dαu(x)vα(x)dx,
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where vα are suitable elements in Lp′(Ω).
B.3 Compact embedding results

Let (X, || · ||X), (Y, || · ||Y ) be Banach spaces. We say that X is continu-
ously embedded into Y if there exists an injective linear map i : X → Y

and a constant C such that ||i(x)||Y ≤ C||x||X for all x ∈ X. We iden-
tify X with the image i(X). We say that X is compactly embedded
into Y if i is a compact map, that is, i maps bounded subsets of X into
relatively compact subset of Y .

The following theorem has a particular importance in the variational
and qualitative analysis of differential and partial differential equations,
due to the control over the nonlinear terms.

Theorem B.4 (Sobolev embedding theorem) Suppose that Ω ⊂ RN is
a bounded domain with Lipschitz boundary. Then

(i) If kp < N , then W k,p(Ω) is continuously embedded into Lq(Ω) for

each 1 ≤ q ≤ Np
N − kp

; this embedding is compact, if q <
Np

N − kp
.

(ii) If 0 ≤ m < k − N
p < m + 1, then W k,p(Ω) is continuously

embedded into Cm,α(Ω), for 0 ≤ α ≤ k−m− m
p , this embedding

is compact if α < k −m− m
p .

Let Cm,β(Ω) denote the set of all functions u belonging to Cm(Ω)
and whose partial derivatives Dαu, with |α| = m, are Hölder continuous
with exponent 0 < β < 1.

For a bounded domain Ω, Cm,β(Ω) becomes a Banach space with a
norm

||u||Cm,β =
∑

|α|≤m

‖Dαu‖∞ +
∑

|α|=m

sup
x 6=y∈Ω

|Dαu(x)−Dαu(y)|
|x− y|β .

For an arbitrary domain Ω ⊂ RN and u ∈ W k,p
0 (Ω) we have

K‖u‖p
p? ≤

∑

|α|=k

∫

Ω

|Dαu(x)|pdx, (B.1)

where p? = Np
N − kp

and K = K(k, n, p) is the best Sobolev constant.

This inequality says that W k,p
o is continuously embedded in Lp?

(Ω).
If u ∈ W k,p(RN ), then the best Sobolev constant S is given by
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K(k, n, p) = π−
1
2 N− 1

p

(
p− 1
N − p

)1− 1
p





Γ(1 +
N

2
)Γ(N)

Γ(
N

p
)Γ(1 + N − N

p
)





1
N

,

where Γ( · ) denotes Euler’s Gamma function. Moreover, the equality
holds in (B.1) if and only if u has the form

u(x) =
[
a + b|x| p

p−1

]1−N
p

, (B.2)

where a and b are positive constants.
If k = 1, p = 2, then the sharp constant will be denoted by Kn and

we have

Kn =

√
4

n(n− 2)ω
2
n
n

, (B.3)

where ωn is the volume of the unit sphere.
We denote by Dk,p(RN ) completion of C∞0 (RN ) with respect to the

norm

‖u‖p
Dk,p =

∑

|α|=k

∫

Ω

|Dαu(x)|pdx .

According to the inequality (B.1), the function space Dk,p(RN ) is
continuously embedded in Lp?

(RN ).
Let Ω be an unbounded domain in RN with smooth boundary ∂Ω and

let G be a subgroup of O(N) whose elements leave Ω invariant, that is,
g(Ω) = Ω for all g ∈ G. We assume that Ω is compatible with G, that
is, for some r > 0

m(y, r,G) →∞, as dist(y, Ω) ≤ r, |y| → ∞ (B.4)

where

m(y, r,G) = sup
{

n ∈ N :
∃ g1, g2, ..., gn ∈ Gs.t.
B(gjy, r) ∩B(gky, r) = ∅ if j 6= k

}
.

Let X = W 1,p
0 (Ω) and define a representation of G over X as follows:

(π(g)u)(x) = u(g−1x), g ∈ G, u ∈ X x ∈ Ω.

As usual we shall write gu in place of π(g)u.
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A function u defined on Ω is said to be G-invariant if

u(gx) = u(x), ∀ g ∈ G, a.e. x ∈ Ω.

Then u ∈ X is G-invariant if and only if

u ∈ XG = W 1,p
0,G(Ω) := {u ∈ X : gu = u, ∀ g ∈ G }.

On X we take the norm

‖u‖ =
{∫

Ω

(|∇u|p + |u|p)
}1/p

.

The next result is essentially given by Willem [292] and in this form was
proved by Kobayashi-Ôtani [158].

Theorem B.5 If Ω is compatible with G, then the embeddings

XG = W 1,p
0,G(Ω) ↪→ Lq(Ω), p < q < p? =

Np

N − p

are compact.

Now, we consider the space

H1(RN ) :=
{

u ∈ L2(RN ) : ∇u ∈ L2(RN )
}

with the inner product

〈u, v〉 =
∫

RN

[∇u∇v + uv].

The space (H1(RN ), 〈·, ·〉) becomes a Hilbert space.
Let G be a subgroup of O(N). We define

H1
G(RN ) = {u ∈ H1 : gu = u, ∀ g ∈ G},

where gu(x) := u(g−1x).
The following result establishes a compact embedding in the case of

lack of compactness.

Theorem B.6 (Lions [190]) Let Nj ≥ 2, j = 1, ..., k,

k∑

j=1

Nj = N and

G := O(N1)×O(N2)× ...×O(Nk).

Then the following embedding is compact:

H1
G(RN ) ↪→ Lp(RN ), 2 < p < 2?.
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In the following we consider Ω = Ω̃×RN , N −m ≥ 2, Ω̃ ⊂ Rm(m ≥ 1)
is open bounded and 1 ≤ p ≤ N . We consider the space W 1,p

0 (Ω)

with the norm ||u|| =
(∫

Ω

|∇u|p
) 1

p

. Let G be a subgroup of O(N)

defined by G = idm × O(N − m). The action of G on W 1,p
0 (Ω) is

given by gu(x1, x2) = u(x1, g1x2) for every (x1, x2) ∈ Ω̃ × RN−m and
g = idm × g1 ∈ G. The subspace of invariant functions is defined by

W 1,p
0,G = {u ∈ X : gu = u, ∀g ∈ G}.

The action of G on W 1,p
0 (Ω) is isometric, that is

||gu|| = ||u||, ∀g ∈ G.

We have the following result.

Theorem B.7 (Lions [190]) If 2 ≤ p ≤ N , then the embedding

W 1,p
0,G ↪→ Ls(Ω), p < s < p?

is compact.

We end this section with a result given by Esteban and Lions [108].
For this we consider Ω̃ ⊂ Rm a bounded open set Ω = Ω̃× R and let

H1
0 (Ω) = {u ∈ L2(Ω) : ∇u ∈ L2(Ω), u = 0 on ∂Ω = ∂Ω̃× R}.

We denote by K the cone of H1
0 (Ω) defined by

K = {u ∈ H1
0 (ω × R) : u is nonnegative,

y 7→ u(x, y) is nonincreasing for x ∈ ω, y ≥ 0, and
y 7→ u(x, y) is nondecreasing for x ∈ ω, y ≤ 0},

Theorem B.8 (Esteban and Lions [108]) The embeddings K ↪→ Lq(Ω)
are compact for q ∈ (2, 2∗m), where 2∗m = 2(m+1)

m−1 if m > 1, and 2∗m = ∞
if m = 1.

B.4 Sobolev spaces on Riemann manifolds

Let (M, g) be a Riemannian manifold of dimension n. For k an inte-
ger and k an integer and u ∈ C∞(M),∇ku denotes the k-th covariant



B.4 Sobolev spaces on Riemann manifolds 365

derivative of u (with the convection ∇0u = u.) The component of ∇u

in the local coordinates (x1, · · · , xn) are given by

(∇2)ij =
∂2u

∂xi∂xj
− Γk

ij

∂u

∂xk
.

By definition on has

|∇ku|2 = gi1j1 · · · gikjk(∇ku)i1···ik
(∇ku)j1···jk

.

For k ∈ N and p ≥ 1 real, we denote by Cm
k (M) the space of smooth

functions u ∈ C∞(M) such that |∇ju| ∈ Lp(M) for any j = 0, · · · , k.

Hence,

Cp
k = {u ∈ C∞(M) : ∀ j = 0, ..., k,

∫

M

|∇ju|pdv(g) < ∞ }

where, in local coordinates, dv(g) =
√

det(gij)dx, and where dx stands
for the Lebesque’s volume element of Rn. If M is compact, on has that
Cp

k(M) = C∞(M) for all k and p ≥ 1.

Definition B.1 The Sobolev space Hp
k (M) is the completion of Cp

k(M)
with respect the norm

||u||Hp
k

=
k∑

j=0

(∫

M

|∇ju|pdv(g)
) 1

p

.

More precisely, one can look at Hp
k (M) as the space of functions u ∈

Lp(M) which are limit in Lp(M) of a Cauchy sequence (um) ⊂ Ck, and
define the norm ||u||Hp

k
as above where |∇ju|, 0 ≤ j ≤ k, is now the

limit in Lp(M) of |∇jum|. These space are Banach space, and if p > 1,
then Hp

k is reflexive. We note that, if M is compact, Hp
k (M) does not

depend on the Riemannian metric. If p = 2, H2
k(M) is a Hilbert space

when equipped with the equivalent norm

||u|| =
√√√√

k∑

j=0

∫

M

|∇ju|2dv(g). (B.5)

The scalar product 〈·, ·〉 associated to || · || is defined by

〈u, v〉 =
k∑

m=0

∫

M

(
gi1j1 · · · gimjm(∇mu)i1...im(∇mv)j1...jm

)
dv(g). (B.6)
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We denote by Ck(M) the set of k times continuously differentiable
functions, for which the norm

‖u‖Ck =
n∑

i=1

sup
M
|∇iu|

is finite. The Hölder space Ck,α(M) is defined for 0 < α < 1 as the set
of u ∈ Ck(M) for which the norm

‖u‖Ck,α = ‖u‖Ck + sup
x,y

|∇ku(x)−∇ku(y)|
|x− y|α

is finite, where the supremum is over all x 6= y such that y is contained
in a normal neighborhood of x, and ∇ku(y) is taken to mean the tensor
at x obtained by parallel transport along the radial geodesics from x to
y.

As usual, C∞(M) and C∞0 (M) denote the spaces of smooth functions
and smooth compactly supported function on M respectively.

Definition B.2 The Sobolev space
◦
Hp

k(M) is the closure of C∞0 (M) in
Hp

k (M).

If (M, g) is a complete Riemannian manifold, then for any p ≥ 1, we

have
◦
Hp

k(M) = Hp
k (M).

We finish this section with the Sobolev embedding theorem and the
Rellich–Kondrachov result for compact manifold without and with bound-
ary.

Theorem B.9 (Sobolev embedding theorems for compact manifolds) Let
M be a compact Riemannian manifold of dimension n.

a) If 1
r ≥ 1

p − k
n , then the embedding Hp

k (M) ↪→ Lr(M) is continu-
ous.

b) (Rellich-Kondrachov theorem) Suppose that the inequality in a) i
s strict, then the embedding Hp

k (M) ↪→ Lr(M) is compact.
c) Suppose 0 < α < 1 and 1

p ≤ k−α
n , then the embedding Hp

k (M) ↪→
Cα(M) is continuous.

Theorem B.10 Let (M, g) be a compact n-dimensional Riemannian
manifold with boundary ∂M .

a) The embedding Hp
1 (M) ↪→ Lq(M) is continuous, if p ≤ q ≤ np

n−p

and compact for p ≤ q < np
n−p .
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b) If ∂M 6= ∅, then the embedding Hp
1 (M) ↪→ Lq(∂M) is continuous,

if p ≤ q ≤ p(n−1)
n−p and compact for p ≤ q < p(n−1)

n−p .

Theorem B.11 For any smooth compact Riemannian manifold (M, g)
of dimension n ≥ 3, there exists B > 0 such that for any u ∈ H2

1 (M),
(∫

M

|u|2?

dvg

)2/2?

≤ K2
n

∫

M

|∇u|2dvg + B

∫

M

u2dvg (B.7)

and the inequality is sharp.

Theorem B.12 (Global elliptic regularity) Let M be a compact Riemann
manifold, and suppose that u ∈ L1

loc(M) is a weak solution to ∆gu = f .

a) If f ∈ Hp
k (M), then u ∈ Hp

k+2(M), and

‖u‖Hp
k+2

≤ C(‖∆gu‖Hp
k

+ ‖u‖Lp).

b) If f ∈ Ck,α(M), then f ∈ Ck+2,α(M), and

‖u‖Cp
k+2

≤ C(‖∆gu‖Cp
k

+ ‖u‖Cα).
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Category and genus

Every human activity, good or
bad, except mathematics,
must come to an end.

Paul Erdös (1913–1996)

Topological tools play a central role in the study of variational prob-
lems. Though this approach was foreshadowed in the works of H. Poin-
caré and G. Birkhoff, the force of these ideas was realized in the first
decades of the 20th century, in the pioneering works of Ljusternik and
Schnirelmann [194] and Morse [215, 216]. In this section we recall the
notions of Ljusternik-Schnirelmann category and Krasnoselski genus as
well as some basic properties of them.

Definition C.1 Let M be a topological space and A ⊂ M a subset.
The continuous map η : A× [0, 1] → M is called a deformation of A in
M if η(u, 0) = u for every u ∈ A. The set A is said be contractible in
M if there exists a deformation η : A × [0, 1] → M with η(A, 1) = {p}
for some p ∈ M .

Definition C.2 Let M be a topological space. A set A ⊂ M is said to be
of Ljusternik-Schnirelmann category k in M (denoted catM (A) = k) if
it can be covered by k but not by k−1 closed sets which are contractible
to a point in M . If such k does not exist, then catM (A) = +∞. We
define cat(M) = catM (M).

The Ljusternik-Schnirelmann category has the following basic prop-
erties.

368
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Proposition C.1 If A and B are subsets of the topological space M ,
then the following properties hold true.

(a) If A ⊆ B, then catM (A) ≤ catM (B);
(b) catM (A ∪B) ≤ catM (A) + catM (B).
(c) If A is closed in X and η : A× [0, 1] → M a deformation of A in

X, then catM (A) ≤ catM (η(A, 1)).
(d) If M is an ANR (in particular, it is a Banach-Finsler manifold

of class C1) and A ⊂ M , then there exist a neighborhood of A in
M , such that catM (U) = catM (A).

Theorem C.1 [109] Let M be a non-contractible topological space and
let Ω(M) denote the space of based loops in M . Then cat(Ω(M)) = ∞.

Definition C.1 Let M be an arcwise connected topological space. Then
cuplong(M) is the greatest non-vanishing iterated cup-product of singu-
lar cocycles of M such that each component is of dimension greater than
zero.

Theorem C.2 [268] If M is an arcwise connected metric space, then
cat(M) ≥ cuplong(M) + 1.

Theorem C.3 [269] Let M be a compact, connected, simply connected
and non-contractible Riemannian manifold. If Ω(M) denotes the space
of the free loops on M , then cuplong(Ω) = ∞.

Let X be a real Banach space and denote

A = {A ⊂ X \ {0} : A = −A, A is closed}.

Definition C.3 We say that the positive integer k is the Krasnoselski
genus of A ∈ A, if there exists an odd map ϕ ∈ C(A,Rk \ {0}) and
k is the smallest integer with this property. The genus of the set A is
denoted by γ(A) = k. When there does not exist a finite such k, set
γ(A) = ∞. Finally, set γ(∅) = 0.

Example C.1 Suppose A ⊂ X \ {0} is closed and A ∩ (−A) = ∅. Let
Ã = A ∪ (−A). Then γ(Ã) = 1 since the function ϕ(x) = 1 for x ∈ A

and ϕ(x) = −1 for x ∈ −A is odd and lies in C(Ã,R \ {0}).
For A ∈ A and δ > 0 we denote by Nδ(A) the uniform δ-neighborhood

of A, that is, Nδ(A) = {x ∈ X : distA(x) ≤ δ}.
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Proposition C.2 Let A, B ∈ A. Then the following properties hold
true.

1◦ Normalization: If x 6= 0, γ({x} ∪ {−x}) = 1;
2◦ Mapping property: If there exists an odd map f ∈ C(A, B), then

γ(A) ≤ γ(B);
3◦ Monotonicity property: If A ⊂ B, then γ(A) ≤ γ(B);
4◦ Subadditivity: γ(A ∪B) ≤ γ(A) + γ(B);
5◦ Continuity property: If A is compact then γ(A) < ∞ and there

is δ > 0 such that Nδ(A) ∈ A. In such a case, γ(Nδ(A)) = γ(A).

Example C.2 (a) If Sk−1 is the (k− 1)-dimensional unit sphere in Rk,

k ∈ N, then γ(Sk−1) = k.
(b) If S is the unit sphere in an infinite dimensional and separable

Banach space, then γ(S) = +∞.



D

Clarke and Degiovanni gradients

Profound study of nature is
the most fertile source of
mathematical discoveries.

Baron Jean Baptiste Joseph
Fourier (1768–1830)

In many time independent problems arising in applications, the so-
lutions of a given problem are critical points of an appropriate energy
functional f , which is usually supposed to be real and of class C1 (or
even differentiable) on a real Banach space. One may ask what happens
if f , which often is associated to the original equation in a canonical
way, fails to be C1 or differentiable. In this case the gradient of f

must be replaced by a generalized one, in a sense which is described
in this Appendix, either for locally Lipschitz or for continuous/lower
semi-continuous functionals. In the latter case we use in the general
framework of metric spaces.

D.1 Locally Lipschitz functionals

Let X will denote a real Banach space. Let X∗ be its dual and, for every
x ∈ X and x∗ ∈ X∗, let 〈x∗, x〉 denote the duality pairing between X∗

and X.

Definition D.1 A functional f : X → R is said to be locally Lipschitz
provided that, for every x ∈ X, there exists a neighbourhood V of x and
a positive constant k = k(V ) depending on V such that for all y, z ∈ V ,

|f(y)− f(z)| ≤ k ||y − z|| .
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Definition D.2 Let f : X → R be a locally Lipschitz functional and
x, v ∈ X. We call the Clarke generalized directional derivative of f in x

with respect to the direction v the number

f0(x, v) = lim sup
y→x
λ↘0

f(y + λv)− f(y)
λ

.

If f is a locally Lipschitz functional, then f0(x, v) is a finite number
and

|f0(x, v)| ≤ k||v|| .
Moreover, if x ∈ X is fixed, then the mapping v 7−→ f0(x, v) is positive
homogeneous and subadditive, so convex continuous. By the Hahn-
Banach theorem, there exists a linear map x∗ : X → R such that for
every v ∈ X,

x∗(v) ≤ f0(x, v) .

Definition D.3 Let f : X → R be a locally Lipschitz functional and
x ∈ X. The generalized gradient (Clarke subdifferential) of f at the
point x is the nonempty subset ∂f(x) of X∗ which is defined by

∂f(x) = {x∗ ∈ X∗; f0(x, v) ≥ 〈x∗, v〉, for all v ∈ X} .

We also point out that if f is convex, then ∂f(x) coincides with the
subdifferential of f in x in the sense of the convex analysis, that is,

∂f(x) = {x∗ ∈ X∗; f(y)− f(x) ≥ 〈x∗, y − x〉, for all y ∈ X} .

We list in what follows the main properties of the Clarke gradient of
a locally Lipschitz functional. We refer to [71], [72] for further details
and proofs.

a) For every x ∈ X, ∂f(x) is a convex and σ(X∗, X)-compact set.
b) For every x, v ∈ X the following holds

f0(x, v) = max{〈x∗, v〉; x∗ ∈ ∂f(x)} .

c) The multivalued mapping x 7−→ ∂f(x) is upper semicontinuous, in
the sense that for every x0 ∈ X, ε > 0 and v ∈ X, there exists δ > 0
such that, for any x∗ ∈ ∂f(x) satisfying ||x − x0|| < δ, there is some
x∗0 ∈ ∂f(x0) satisfying |〈x∗ − x∗0, v〉| < ε.

d) The functional f0(·, ·) is upper semi-continuous.
e) If x is an extremum point of f , then 0 ∈ ∂f(x).
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f) The mapping

λ(x) = min
x∗∈∂f(x)

||x∗||

exists and is lower semicontinuous.
g) ∂(−f)(x) = −∂f(x).
h) Lebourg’s mean value theorem: if x and y are two distinct point

in X then there exists a point z situated in the open segment joining x

and y such that

f(y)− f(x) ∈ 〈∂f(z), y − x〉
i) If f has a Gâteaux derivative f ′ which is continuous in a neighbour-

hood of x, then ∂f(x) = {f ′(x)}. If X is finite dimensional, then ∂f(x)
reduces at one point if and only if f is Fréchet-differentiable at x.

Definition D.4 A point x ∈ X is said to be a critical point of the
locally Lipschitz functional f : X → R if 0 ∈ ∂f(x), that is f0(x, v) ≥ 0,
for every v ∈ X. A number c is a critical value of f provided that there
exists a critical point x ∈ X such that f(x) = c.

We remark that a minimum point is also a critical point. Indeed, if x

is a local minimum point, then for every v ∈ X,

0 ≤ lim sup
λ↘0

f(x + λv)− f(x)
λ

≤ f0(x, v) .

Definition D.5 If f : X → R is a locally Lipschitz functional and
c is a real number, we say that f satisfies the Palais-Smale condition
at the level c (in short, (PS)c) if any sequence (xn) in X satisfying
f(xn) −→ c and λ(xn) −→ 0, contains a convergent subsequence. The
mapping f satisfies the Palais-Smale condition (in short, (PS)) if every
sequence (xn) which satisfies (f(xn)) is bounded and λ(xn) −→ 0, has
a convergent subsequence.

D.2 Continuous or lower semi-continuous functionals

We are now interested in the main properties of the corresponding prop-
erties in the case where f is a continuous or even a lower semi-continuous
functional defined on a metric space.

Definition D.6 Let (X, d) be a metric space and let f : X → R be
a continuous function. Let u ∈ X be a fixed element. We denote by
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|df |(u) the supremum of the σ ∈ [0,∞[ such that there exist δ > 0 and
a continuous map H : B(u, δ)× [0, δ] → X such that for all v ∈ B(u, δ)
and t ∈ [0, δ] we have

a) d(H(v, t), v) ≤ t;
b) f(H(v, t)) ≤ f(v)− σt.

The extended real number |df |(u) is called the weak slope of f at u.

Definition D.7 Let (X, d) be a metric space and f : X → R be a
continuous function. A point u ∈ X is said to be a critical point of f if
|df |(u) = 0.

Definition D.8 Let (X, d) be a metric space. A continuous function
f : X → R satisfies the Palais-Smale condition at level c ∈ R (shortly,
(PS)c-condition) if every sequence {un} ⊂ X such that limn→∞ f(un) =
c and limn→∞ |df |(un) = 0, possesses a convergent subsequence.

For every c ∈ R we set

Kc = {u ∈ X : |df |(u) = 0, f(u) = c};

f c = {u ∈ X : f(u) ≤ c}.

Remark D.1 Note that |df |(u) = ‖f ′(u)‖ whenever X is a Finsler
manifold of class C1 and f is of class C1, see [83]. In particular, when
X is a Banach space, Definition D.8 reduces to Definition 1.1 (a).

Theorem D.1 [Deformation lemma; [74, Theorem 2.3]] Let (X, d) be a
complete metric space and let f : X → R be a continuous function, and
c ∈ R. Assume that f satisfies the (PS)c-condition. Then, given ε > 0,
O a neighborhood of Kc (if Kc = ∅, we choose O = ∅) and λ > 0, there
exist ε > 0 and a continuous map η : X × [0, 1] → X such that

(i) d(η(u, t), u)) ≤ λt for all u ∈ Xand t ∈ [0, 1];
(ii) f(η(u, t)) ≤ f(u) for all u ∈ Xand t ∈ [0, 1];
(iii) η(u, t) = u for all u /∈ f−1(]c− ε, c + ε[) and t ∈ [0, 1];
iv) η(f c+ε \ O, 1) ⊆ f c−ε.

These notions can be extended to arbitrary functions defined on a
metric space (X, d). Let f : X → R be a function. We denote by Br(u)
the open ball of center u and radius r and we set

epi (f) = {(u, λ) ∈ X × R : f(u) ≤ λ} .
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In the following, X × R will be endowed with the metric

d ((u, λ), (v, µ)) =
(
d(u, v)2 + (λ− µ)2

)1/2

and epi (f) with the induced metric.

Definition D.9 For every u ∈ X with f(u) ∈ R, we denote by |df |(u)
the supremum of the σ’s in [0,+∞[ such that there exist δ > 0 and a
continuous map

H : (Bδ(u, f(u)) ∩ epi (f))× [0, δ] → X

satisfying

d(H((w, µ), t), w) ≤ t , f(H((w, µ), t)) ≤ µ− σt ,

whenever (w, µ) ∈ Bδ(u, f(u)) ∩ epi (f) and t ∈ [0, δ].
The extended real number |df |(u) is called the weak slope of f at u.

Define a function Gf : epi (f) → R by Gf (u, λ) = λ. Of course, Gf is
Lipschitz continuous of constant 1.

Proposition D.1 For every u ∈ X with f(u) ∈ R, we have f(u) =
Gf (u, f(u)) and

|df |(u) =





|dGf |(u, f(u))√
1− |dGf |(u, f(u))2

if |dGf |(u, f(u)) < 1 ,

+∞ if |dGf |(u, f(u)) = 1 .

We refer to [59, Proposition 2.3] for a complete proof of this result.
The previous proposition allows us to reduce, at some extent, the

study of the general function f to that of the continuous function Gf .
Moreover, if f is continuous then Definition D.9 reduces to Definition
D.6.

Two important notions which are very well related to the notion of
weak slope are those of generalized directional derivative and generalized
gradient in the sense of Degiovanni. For every u ∈ X with f(u) ∈ R,
v ∈ X and ε > 0, let f0

ε (u; v) be the infimum of r ∈ R such that there
are δ > 0 and a continuous map

V : (Bδ(u, f(u)) ∩ epi (f))× (0, δ]→Bε(v)

satisfying

f(w + tV((w, µ), t) ≤ µ + rt ,
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whenever (w, µ) ∈ Bδ(u, f(u)) ∩ epi (f) and t ∈ (0, δ]. Under these
assumptions, we define the generalized directional derivative of f at u

with respect to v by

f0(u; v) := sup
ε>0

f0
ε (u; v) .

We also define the generalized gradient of f at u by

∂f(u) := {ϕ ∈ X∗; f0(u; v) ≥ ϕ(v) for every v ∈ X} .

Theorem D.2 If u ∈ X and f(u) ∈ R, the following facts hold:

(a) |df |(u) < +∞ ⇐⇒ ∂f(u) 6= ∅;
(b) |df |(u) < +∞ =⇒ ∂f(u) ≥ min {‖u∗‖ : u∗ ∈ ∂f(u)}.

We point out that f0(u; v) is greater or equal than the directional
derivative in the sense of Clarke-Rockafellar, hence ∂f(u) contains the
subdifferential of f at u in the sense of Clarke. However, if f : X → R
is locally Lipschitz, these notions agree with those of Clarke. Thus, in
such a case, f0(u; · ) is also Lipschitz continuous and we have for all
u, v ∈ X,

f0(u; v) = lim sup
z→u, w→v

t→0+

f(z + tw)− f(z)
t

, (D.1)

{
(u, v) 7→ f0(u; v)

}
is upper semicontinuous on X ×X . (D.2)

By means of the weak slope, we can now introduce the two main
notions of critical point theory.

Definition D.10 We say that u ∈ X is a (lower) critical point of f , if
f(u) ∈ R and |df |(u) = 0. We say that c ∈ R is a (lower) critical value
of f , if there exists a (lower) critical point u ∈ X of f with f(u) = c.

Definition D.11 Let c ∈ R. A sequence (un) in X is said to be a
Palais-Smale sequence at level c ( (PS)c−sequence, for short) for f , if
f(un) → c and |df |(un) → 0.

We say that f satisfies the Palais-Smale condition at level c ((PS)c,
for short), if every (PS)c−sequence (un) for f admits a convergent sub-
sequence (unk

) in X.
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The main feature of the weak slope is that it allows to prove natural
extensions of the classical critical point theory for general continuous
functions defined on complete metric spaces. Moreover, one can try to
reduce the study of a lower semicontinuous function f to that of the
continuous function Gf . Actually, Proposition D.1 suggests to exploit
the bijective correspondence between the set where f is finite and the
graph of f .

Assuming that (X, d) is a metric space and f : X→R is continuous,
for any a ∈ R := R ∪ {−∞,+∞} we set

fa := {u ∈ X; f(u) ≤ a} .

Definition D.12 Let a, b ∈ R with a ≤ b. The pair (f b, fa) is said to
be trivial if for every neighborhoods [α′, α′′] of a and [β′, β′′] of b in R,
there exists a continuous function H : fβ′ × [0, 1]→fβ′′ such that for all
x ∈ fβ′ , H(x, 0) = x, H(fβ′ × {1}) ⊂ fα′′ , and H(fα′ × [0, 1]) ⊂ fα′′ .

Definition D.13 A real number c is said to be an essential value of f

if for every ε > 0 there exist a, b ∈ (c − ε, c + ε) with a < b such that
the pair (f b, fa) is not trivial.

Example D.1 Let f : R2→R defined by f(x, y) = ex − y2. Then 0 is
an essential value of f , but not a critical value of f . On the other hand,
condition (PS)0 is not satisfied for f

Definition D.14 Let X be a normed space and f : X → R an even
function with f(0) < +∞. For every (0, λ) ∈ epi (f) we denote by
|dZ2Gf |(0, λ) the supremum of the σ’s in [0, +∞) such that there exist
δ > 0 and a continuous map

H = (H1,H2) : (Bδ(0, λ) ∩ epi (f))× [0, δ] → epi (f)

satisfying

d (H((w, µ), t), (w, µ)) ≤ t , H2((w, µ), t) ≤ µ− σt ,

H1((−w, µ), t) = −H1((w, µ), t) ,

whenever (w, µ) ∈ Bδ(0, λ) ∩ epi (f) and t ∈ [0, δ].

The following result is the saddle point theorem for nondifferentiable
functions.
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Theorem D.3 Let X be a Banach space and assume that f : X →
R∪{+∞} is an even lower semicontinuous function. Assume that there
exists a strictly increasing sequence (Vh) of finite-dimensional subspaces
of X with the following properties:

(a) there exist a closed subspace Z of X, % > 0 and α > f(0) such
that X = V0 ⊕ Z and

∀u ∈ Z : ‖u‖ = % =⇒ f(u) ≥ α ;

(b) there exists a sequence (Rh) in ]%, +∞[ such that

∀u ∈ Vh : ‖u‖ ≥ Rh =⇒ f(u) ≤ f(0) ;

(c) for every c ≥ α, the function f satisfies (PS)c and (epi)c;
(d) we have |dZ2Gf |(0, λ) 6= 0 whenever λ ≥ α.

Then there exists a sequence (uh) of critical points of f with f(uh) →
+∞.
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Elements of set–valued analysis

To myself I am only a child
playing on the beach, while
vast oceans of truth lie
undiscovered before me.

Sir Isaac Newton (1642–1727)

Let X and Y be metric spaces, and let F : X Ã Y be a set-valued
map with nonempty values.

Definition E.1 (i) F : X Ã Y is upper semi-continuous at u ∈ X (usc
at u) if for any neighborhood U of F (u) there exists η > 0 such that for
every u′ ∈ BX(u, η) we have F (u′) ⊆ U .

(ii) F : X Ã Y is lower semi-continuous at u ∈ X (lsc at u) if for any
y ∈ F (u) and for any sequence of elements {un} in X converging to u

there exists a sequence {yn} converging to y and yn ∈ F (un).
(iii) F : X Ã Y is upper (resp. lower) semi-continuous on X if F is

upper (resp. lower) semi-continuous at every point u ∈ X.
(iv) F : X Ã Y is continuous at u ∈ X if it is both upper semi-

continuous and lower semi-continuous at u, and that it is continuous on
X if and only if it is continuous at every point of X.

Let M be a subset of Y . We set

F−1(M) = {x ∈ X : F (u) ∩M 6= ∅};

F+1(M) = {x ∈ X : F (u) ⊆ M}.
The subset F−1(M) is called the inverse image of M by F and F+1(M)
is called the core of M by F . The following characterization of the upper
(resp. lower) semicontinuity of F on X can be given.

379
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Proposition E.1 Let X and Y be metric spaces. A set-valued map
F : X Ã Y with nonempty values is upper semicontinuous on X if and
only if the inverse image of any closed subset M ⊆ Y is closed, and it is
lower semicontinuous on X if and only if the core of any closed subset
M ⊆ Y is closed.

Let X and Y be vector spaces, let F : X Ã Y be a set-valued map,
and let K be a convex subset of X.

Definition E.2 (i) F is a process if λF (u) = F (λu) for all u ∈ X,
λ > 0, and 0 ∈ F (0).

(ii) We say that F is convex on K if

λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2)

for all x1, x2 ∈ K and all λ ∈ [0, 1].

Let X be a normed space, K be a subset of X, and let u ∈ K, where
K is the closure of K. The contingent cone TK(u) is defined by

TK(u) = {v ∈ X : lim inf
t→0+

dist(u + tv,K)
t

= 0}.

In particular, if K is convex, then K ⊆ u + TK(u).
Let F : X Ã R be a set-valued map with nonempty compact values.

Definition E.3 (i) We say that F is Lipschitz around u ∈ X if there
exist a positive constant L and a neighborhood U of u such that

F (u1) ⊆ F (u2) + L‖u1 − u2‖ · [−1, 1] for all u1, u2 ∈ U.

(ii) Let K ⊆ X. F is K-locally Lipschitz if it is Lipschitz around all
u ∈ K.

Proposition E.2 Let X be a normed space. If F : X Ã R is K-locally
Lipschitz, then the restriction F |K : K Ã R is continuous on K.

Definition E.4 The contingent derivative DF (u, c) of F : X Ã R at
(u, c) ∈ GraphF is the set-valued map from X to R defined by

Graph(DF (u, c)) = TGraphF (u, c), (E.1)

where TGraphF (u, c) is the contingent cone at (u, c) to the GraphF .
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We can characterize the contingent derivative by a limit of a differ-
ential quotient. Let (u, c) ∈ GraphF and suppose that F is Lipschitz
around u. We have

v ∈ DF (u, c)(h) ⇐⇒ lim inf
t→0+

dist(v,
F (u + th)− c

t
) = 0 (E.2)

(see Aubin and Frankowska [16, Proposition 5.1.4, p.186]). If we intro-
duce the Kuratowski upper limit

Limsupu′→uF (u′) =
{

c ∈ R : lim inf
u′→u

dist(c, F (u′)) = 0
}

,

then (E.2) can be written in the following form:

DF (u, c)(h) = Limsupt→0+
F (u + th)− c

t
.

Remark E.1 Let us consider the case when F is single-valued, that
is, F (u) = {f(u)} for all u ∈ X. Suppose that f : X → R is continu-
ously differentiable. From Aubin and Frankowska [16, Proposition 5.1.3,
p.184], we have that

DF (u, f(u))(h) = f ′(u)(h) for all h ∈ X. (E.3)

Definition E.5 (i) We say that F : X Ã R is sleek at (u, c) ∈ GraphF
if the map

GraphF 3 (u ′, c′) Ã Graph (DF (u ′, c′))

is lower semicontinuous at (u, c). F is said to be sleek if it is sleek at
every point (u, c) ∈ GraphF .

(ii) F : X Ã R is lower semicontinuously differentiable if the map

(u, c, h) ∈ GraphF ×X Ã DF (u, c)(h)

is lower semicontinuous.

The lower semicontinuous differentiability of a set-valued may clearly
implies its sleekness.

Remark E.2 If F : X Ã R is a set-valued map with nonempty compact
values and closed graph, and it is sleek at (u, c) ∈ GraphF , then its con-
tingent derivative at (u, c) is a closed convex process (see [16, Theorem
4.1.8, p.130]).
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Kristály, A. and Marzantowicz, W. (2008). Multiplicity of symmetrically dis-
tinct sequences of solutions for a quasilinear problem in RN , Nonlinear
Differential Equations and Applications (NoDEA) 15, 209–226.
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Socié-Méthou, E. (2004). Behaviour of distance functions in Hilbert-Finsler
geometry, Differential Geom. Appl. 20, 1–10.



Bibliography 395

Stegall, C. (1978). Optimization of functions on certain subsets of Banach
spaces, Math. Ann. 236, 171-176.

Strauss, W.A. (1977). Existence of solitary waves in higher dimensions, Com-
mun. Math. Phys. 55, 149–162.

Struwe, M. (1990). Variational Methods, (Springer-Verlag, Berlin).
Sullivan, F. (1981). A characterization of complete metric spaces, Proc. Amer.

Math. Soc. 83, 345–346.
Szulkin, A. (1986). Minimax methods for lower semicontinuous functions

and applications to nonlinear boundary value problems, Ann. Inst.
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Vázquez, J.-L. and Véron, L. (1991). Solutions positives d’équations elliptiques
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unbounded domain, 84
uncertainty principle, 119
unit sphere

volume, 362
upper contour set, 353
upper semi-continuous, 113

functional, 49
set-valued map, 379

value
critical, 35
essential, 377

variational inequality, 45, 51
variational principle

Borwein-Preiss, 8
Ekeland, 4, 57
Ricceri, 36
Stegall, 8

vector
field, 261
space, 51
tangent, 357

vertex, 354

weak
partial derivative, 360
distributional derivative, 359

weak slope, 374
weak solution, 89
weakly closed set, 176
weakly convergent, 110, 115
Weierstrass theorem, 3
weight function, 85
weighted Hardy-type inequality, 85
weighted Lebesgue space, 85
weighted Sobolev space, 84, 85

Yamabe problem, 120, 230
Young inequality, 86

zero altitude, 15


