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Abstract In this paper we prove a Lions-type compactness embedding result for symmet-
ric unbounded domains of the Heisenberg group. The natural group action on the Heisenberg
group H

n = C
n×R is provided by the unitary group U (n)×{1} and its appropriate subgroups,

which will be used to construct subspaces with specific symmetry and compactness proper-
ties in the Folland-Stein’s horizontal Sobolev space H W 1,2

0 (Hn).As an application, we study
the multiplicity of solutions for a singular subelliptic problem by exploiting a technique of
solving the Rubik-cube applied to subgroups of U (n) × {1}. In our approach we employ
concentration compactness, group-theoretical arguments, and variational methods.

Mathematics Subject Classification 35R03 · 35A15

1 Introduction

It is well-known that compactness of Sobolev embeddings on unbounded domains of R
n

can be recovered whenever the domain has appropriate symmetries. This approach is fruitful
in the study of variational elliptic problems in the presence of a suitable group action on
the Sobolev space. In such cases the principle of symmetric criticality can be applied to
the associated energy functional, allowing a variational treatment of the problem. Roughly
speaking, if X denotes a Sobolev space where the solutions are being sought, the strategy is to
find a topological group T, acting continuously on X, such that the following two properties
simultaneously hold:
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• the fixed point set of X with respect to T is an infinite dimensional subspace of X which
can be compactly embedded into a suitable Lebesgue space;

• the energy functional associated to the studied problem is T -invariant.

In the Euclidean setting, the above approach has been deeply exploited. For instance, if
� = R

n(n ≥ 2), then the space of radially (resp., spherically) symmetric functions of
H1(Rn) is compactly embedded into Lq(Rn), q ∈ (2, 2∗). Here, the symmetric functions
represent the fixed point set of H1(Rn) with respect to the orthogonal group T = O(n)
(resp., T = O(n1)× · · · × O(nl), n = n1 + · · · + nl , ni ≥ 2), see Strauss [20], Lions [14].
A similar argument works for strip-like domains� = ω×R

n−m,where ω ⊂ R
m is bounded

and n − m ≥ 2, obtaining the space of cylindrically symmetric functions on H1
0 (�) via the

group T = IRm × O(n − m), see Esteban and Lions [7], Kobayashi and Ôtani [11].
The purpose of the present paper is to develop counterparts of the aforementioned results

via appropriate group symmetries on the Heisenberg group H
n = C

n × R (n ≥ 1) with
applications to the theory of singular subelliptic problems defined on unbounded domains
of H

n . Subelliptic problems involving the Kohn-Laplace operator on unbounded domains
of stratified groups have been intensively studied in recent years, Garofalo and Lanconelli
[9], Maad [15], Schindler and Tintarev [19], Tintarev [21]. A persisting assumption for these
results was that � is strongly asymptotically contractive. This means that � �= H

n and for
every unbounded sequence {ηk} ⊂ H

n there exists a subsequence {ηk j } such that either

(a) μ(lim inf(ηk j ◦�)) = 0, or
(b) there exists a point η0 ∈ H

n such that for any r > 0 there exists an open set Mr � η0◦�,
a closed set Z of measure zero and an integer jr > 0 such that (ηk j ◦�)∩ B((0, 0), r) ⊂
Mr ∪ Z for every j > jr .

Hereμ(·) is the Lebesgue measure, ‘lim inf’ is the Kuratowski lower-limit, and ‘◦’ is the usual
group operation on H

n . Intuitively speaking, strongly asymptotically contractive domains are
thin at infinity. For instance [15] shows that if p ∈ [0, 1] and �p = {(z, t) ∈ H

n : |t | <
1 + |z|p}, then �p is strongly asymptotically contractive if and only if p ∈ [0, 1).

Once a domain � ⊂ H
n is not strongly asymptotically contractive, H W 1,2

0 (�) need not
be compactly embedded into a Lebesgue space. Therefore, in order to obtain compactness,
further assumptions are needed which will be formulated in terms of symmetries. In this
direction, we mention the interesting paper of Biagini [3] who obtained the first compactness
result in the setting of the Heisenberg group for symmetric functions with certain monoto-
nicity properties with respect to the t-variable.

Inspired from Tintarev and Fieseler [22], via the concentration compactness principle,
in Sect. 3 we state an abstract compactness result for general Carnot groups where a topo-
logical group T acts continuously, see Theorem 3.1. We apply this general principle to the
Heisenberg group and its natural group action by the unitary group T = U (n)× {1}.

To formulate our compactness result, let ψ1, ψ2 : [0,∞) → R be two functions that are
bounded on bounded sets, and ψ1(r) < ψ2(r) for every r ≥ 0. Let

�ψ = {(z, t) ∈ H
n : ψ1(|z|) < t < ψ2(|z|)}, (1.1)

where |z| = √|z1|2 + · · · + |zn |2. Our compactness statement reads as follows.

Theorem 1.1 Let n ≥ 1 and �ψ be from (1.1). Assume that n = n1 + · · · + nl with
ni ≥ 1, l ≥ 1, and let T = U (n1)× · · · × U (nl)× {1}. Then

H W 1,2
0,T (�ψ) = {u ∈ H W 1,2

0 (�ψ) : u(z, t) = u(g(z, t)),∀g ∈ T },
is compactly embedded into Lq(�ψ), q ∈ (2, 2∗

Q).
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Lions-type compactness and Rubik actions 91

Here, Q = 2n + 2 is the homogeneous dimension of H
n, while 2∗

Q = 2Q
Q−2 is the critical

exponent in the Heisenberg group. Note that

H W 1,2
0,T (�ψ) = {u ∈ H W 1,2

0 (�ψ) : u(z, t) = u(|zn1 |, . . . , |znl |, t), zni ∈ C
ni }.

By Theorem 1.1 compactness is induced by symmetries even if the domain �ψ is large
at infinity. However, �ψ cannot be “arbitrarily large”, i.e., it cannot be replaced by the
whole space H

n . Indeed, the space H W 1,2
0,T (H

n)={u ∈ H W 1,2
0 (Hn) : u(z, t)= u(|zn1 |, . . . ,

|znl |, t), zni ∈ C
ni } is not compactly embedded into Lq(Hn). This is due to shiftings along

the t-direction, see Remark 3.3. A similar phenomenon has been pointed out by Birindelli
and Lanconelli [4, Corollary 1.1] concerning De Giorgi’s conjecture on Heisenberg groups.

In Sect. 4 we describe symmetrically different functions belonging to H W 1,2
0 (�ψ) via

groups of the type U (n1) × · · · × U (nl) × {1} for various splittings of the dimension
n = n1 + · · · + nl (ni ≥ 1, l ≥ 2). The objective is to find as much mutually different
subgroups of U (n) of the form U (n1)× · · · × U (nl) as possible such that the group gener-
ated by each two of them to act transitively on the unit sphere of C

n . In this way, by exploiting
a Rubik-cube technique (see Kunkle and Cooperman [13]), we may construct [ n

2 ] + 1 sub-

spaces of H W 1,2
0 (�ψ) which are compactly embedded into Lq(�ψ), q ∈ (2, 2∗

Q), and have
completely different structures from symmetrical point of view, see Proposition 4.1.

In Sect. 5 we apply the above results to study the singular subelliptic problem
{−�Hn u − νV (z, t)u + u = λK (z, t) f (u) in �ψ,

u = 0, on ∂�ψ,
(Pνλ )

where �Hn is the Kohn-Laplace operator on the Heisenberg group H
n, and λ, ν ≥ 0.

We assume that (0, 0) ∈ �ψ, and f ∈ Aq for some q ∈ (2, 2∗
Q), where

Aq =
{

f ∈ C(R,R) : sup
s �=0

| f (s)|
|s| + |s|q−1 < ∞

}

.

On the potentials V, K : �ψ → R we assume:

(HV ) V is measurable, cylindrically symmetric, i.e., V (z, t) = V (|z|, t), and there exists
CV > 0 such that

0 ≤ V (z, t) ≤ CV
|z|2

N (z, t)4
, ∀(z, t) ∈ �ψ \ {(0, 0)};

(HK ) K ∈ L∞(�ψ) is cylindrically symmetric.

Two complementary cases will be considered depending on f : R → R: (a) f is superlinear
at infinity, and (b) f is sublinear at infinity.

For the superlinear case, we assume that f ∈ Aq for some q ∈ (2, 2∗
Q). Denoting by

F(s) = ∫ s
0 f (t)dt, we assume:

( f1) f (s) = o(|s|) as |s| → 0;
( f2) there exists α > 2 such that s f (s) ≥ αF(s) > 0 for all s ∈ R \ {0}.
By means of the principle of symmetric criticality and mountain pass arguments, the con-
struction of the symmetrically distinct subspaces provides the following result.

Theorem 1.2 Let �ψ ⊂ H
n be from (1.1) with (0, 0) ∈ �ψ, ν ∈ [0,C−1

V n2) be fixed, and
let V, K : �ψ → R be potentials verifying (HV ) and (HK ) with inf�ψ K > 0. Let f ∈ Aq

for some q ∈ (2, 2∗
Q) verifying ( f1) and ( f2). Then, the following assertions hold:
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(i) Given T = U (n1)× · · · × U (nl)× {1} with n = n1 + · · · + nl and ni ≥ 1, l ≥ 1, for
every λ > 0, the problem (Pνλ ) has at least a nonzero weak solution in H W 1,2

0,T (�ψ);
(ii) In addition, if f is odd, for every λ > 0 problem (Pνλ ) has at least [ n

2 ] + 1 sequences
of distinct, weak solutions with mutually different symmetric structures.

In the sublinear case, we assume that f ∈ C(R,R) verifies

( f ′
1) f (s) = o(|s|) as |s| → 0;

( f ′
2) f (s) = o(|s|) as |s| → ∞;

( f ′
3) there exists s0 ∈ R such that F(s0) > 0.

We consider the perturbed form of problem (Pνλ ), namely,
{−�Hn u − νV (z, t)u + u = λK (z, t) f (u)+ θ K̃ (z, t) f̃ (u) in �ψ,

u = 0, on ∂�ψ,
(Pνλ,θ )

and we prove a counterpart of Theorem 1.2 as follows.

Theorem 1.3 Let �ψ ⊂ H
n be from (1.1) with (0, 0) ∈ �ψ, ν ∈ [0,C−1

V n2) be fixed, and
let V, K : �ψ → R be potentials verifying (HV ) and (HK ) such that K ∈ L1(�ψ) and
infω K > 0 for some open set ω ⊂ �ψ. Furthermore, let f ∈ C(R,R) be a function veri-
fying ( f ′

1) − ( f ′
3), let f̃ ∈ Aq for some q ∈ (2, 2∗

Q), and K̃ ∈ L∞(�ψ) be a cylindrically
symmetric function. Then, the following assertions hold:

(i) For λ ∈ [0, c−1
f ‖K‖−1

L∞), problem (Pνλ ) = (Pνλ,0) has only the zero solution;
(ii) Given T = U (n1) × · · · × U (nl) × {1} with n = n1 + · · · + nl and ni ≥ 1, l ≥ 1,

there exists λ∗ > 0 such that for every λ > λ∗, there is δλ > 0 with the property that
for θ ∈ [−δλ, δλ], problem (Pνλ,θ ) has at least two distinct, nonzero weak solutions in

H W 1,2
0,T (�ψ);

(iii) In addition, if f and f̃ are odd, there exists
∗ > 0 such that for every λ > 
∗, there
is δλ > 0 with the property that for θ ∈ [−δλ, δλ], the problem (Pνλ,θ ) has at least

sn = 2([ n
2 ] + 1) distinct pairs of nonzero weak solutions {±uλ,θi } ⊂ H W 1,2

0 (�ψ),

i = 1, . . . , sn .

The paper is organized as follows. In Sect. 2 we recall basic notions on stratified groups.
Section 3 is devoted to compactness; after formulating a general compactness result for
Carnot groups (whose proof is presented in the Appendix), we prove Theorem 1.1. In Sect. 4
we study Rubik actions on the Heisenberg group H

n . In Sect. 5 we prove Theorems 1.2 and
1.3, respectively.

2 Preliminaries on stratified groups

In this section we recall some notions and results from the theory of stratified groups, see
Bonfiglioli et al. [6]. A Carnot group is a connected, simply connected, nilpotent Lie group
(G, ◦) of dimension at least two (the neutral element being denoted by 0) whose Lie algebra
G admits a stratification, i.e., G = V1 ⊕ · · · ⊕ Vr with [V1, Vi ] = Vi+1 for i = 1, . . . , r − 1
and [V1, Vr ] = 0. Here, the integer r is called the step of G. Let 〈, 〉0 be a fixed inner
product on V1 ∼= R

m with associated orthonormal basis X1, . . . , Xm . By applying left-
translations to these elements on G, we introduce the horizontal tangent subbundle of the
tangent bundle T G with fibers span{X1(p), . . . , Xm(p)}, p ∈ G, and extend 〈, 〉0 to the
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Lions-type compactness and Rubik actions 93

whole T G by group translation. A left-invariant vector field X on G is horizontal if X (p) ∈
span{X1(p), . . . , Xm(p)} for every p ∈ G.

We introduce the set of horizontal curves of finite length connecting two arbitrary points
p1, p2 ∈ G, namely,

H�p1,p2(G) =
{
γ : [0, 1] → G : γ is piecewise smooth, γ̇ (t) ∈ V1 a.e. t ∈ [0, 1],

γ (0) = p1, γ (1) = p2,
∫ 1

0

√〈γ̇ (t), γ̇ (t)〉0dt < ∞
}
.

Note that by Chow’s theorem, see Gromov [10], H�p1,p2(G) �= ∅, and the Carnot-
Carathéodory distance is defined as

dCC (p1, p2) = inf

⎧
⎨

⎩

1∫

0

√〈γ̇ (t), γ̇ (t)〉0dt : γ ∈ H�p1,p2(G)

⎫
⎬

⎭
,

which is a left invariant metric on G.
For λ > 0 we consider the map δλ : G → G by δλ(X) = λi X for X ∈ Vi which

induces an automorphism on G by the exponential map, denoted in the same way. This
gives a one-parameter family of anisotropic dilations of G such that dCC (δλ(p1), δλ(p2)) =
λdCC (p1, p2) for all p1, p2 ∈ G. The Jacobian of δλ is λQ, where the number
Q = ∑m

i=1 i dim Vi is called the homogeneous dimension of G. Note that the Haar mea-
sure on G is induced by the exponential map from the k-dimensional Lebesgue measure,
where G ∼= R

k and k = ∑r
i=1 dim Vi ; thus, the same notation μ will be used for both

measures. Since G is diffeomorphic with G ∼= R
k, one can identify elements g ∈ G

with elements (x1, . . . , xm, tm+1, . . . , tk) ∈ R
k by g = exp(

∑m
i=1 xi Xi + ∑k

i=m+1 ti Ti )

where Tm+1, . . . , Tk are non-horizontal vectors extending the family X1, . . . , Xm to a basis
of G. The horizontal gradient on the Carnot group G is the vector ∇G = (X1, . . . , Xm)

while the horizontal divergence of a vector field X = ∑m
i=1 fi Xi + ∑k

i=m+1 hi Ti is
divG X = ∑m

i=1 Xi ( fi ). In particular, the subelliptic Laplacian (or, Kohn-Laplacian) is
defined as �G = divG∇G = ∑m

i=1 X2
i .

Let G0 ⊂ G be an open set. The Folland and Stein’s horizontal Sobolev space H W 1,2
0 (G0)

is the completion of C∞
0 (G0) with respect to the norm

‖u‖2
H W (G0)

=
∫

G0

(
m∑

i=1

|Xi u|20 + u2

)

. (2.1)

The inner product coming from the H W (G0)-norm will be denoted by 〈, 〉H W (G0). It is
well-known that the space H W 1,2

0 (G0) is continuously embedded into Lq(G0) for every
q ∈ [2, 2∗

Q), where 2∗
Q = 2Q/(Q − 2) when Q > 2 and 2∗

Q = ∞ when Q = 2, see Folland

and Stein [8]. If G0 is bounded, the above embedding is compact. Note that H W 1,2(G) =
H W 1,2

0 (G), and the H W (G)-norm from (2.1) is invariant with respect to the left group
translations

DG = {gη : u �→ u ◦ η, η ∈ G},
where

(gηu)(p) = u(η ◦ p), p ∈ G, u ∈ H W 1,2(G). (2.2)

It turns out that (H W 1,2
0 (G), DG) is a dislocation pair in the sense of Tintarev and Fieseler,

cf. [22, Proposition 9.1, p. 222], and the elements of DG are unitary operators, i.e., g∗
η = g−1

η .
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If the Carnot group G is polarizable in the sense of Balogh and Tyson [2], according to
Kombe [12], one has the subelliptic Hardy inequality

∫

G

|∇Gu|20 ≥
(

Q − 2

2

)2 ∫

G

|∇G N |20
N 2 u2,∀u ∈ C∞

0 (G), (2.3)

where N = u
1

2−Q
2 is the homogeneous norm associated to Folland’s fundamental solution u2

for the sub-Laplacian �G . Moreover, the constant
(

Q−2
2

)2
is optimal in (2.3).

Our main example is the Heisenberg group H
n = C

n × R (n ≥ 1) which is the simplest
non-commutative (polarizable) Carnot group with step 2. The group operation is given by

(z, t) ◦ (z′, t ′) = (z + z′, t + t ′ + 2Im〈z, z′〉),
where z = (z1, . . . , zn) ∈ C

n, t ∈ R, and 〈z, z′〉 = ∑n
j=1 z j z′

j is the Hermitian inner
product. Denoting by z j = x j + iy j , then (x1, . . . , xn, y1, . . . , yn, t) form a real coordinate
system for H

n and the system of vector fields

X1
j = ∂x j + 2y j∂t ,

X2
j = ∂y j − 2x j∂t ,

T = ∂t ,

form a basis for the left invariant vector fields of H
n . Its Lie algebra has the stratification

Hn = V1⊕V2 where the 2n-dimensional horizontal space V1 is spanned by {X1
j , X2

j } j=1,...,n,

while V2 is spanned by T . The homogeneous dimension of H
n is Q = 2n + 2, thus the best

constant
(

Q−2
2

)2
in (2.3) for G = H

n becomes n2. The (2n + 1)-dimensional Lebesgue

measure μ(·) on H
n is a Haar measure of the group.

Let N (z, t) = (|z|4 + t2)
1
4 be the gauge norm on H

n, and the Korányi metric
dK ((z, t), (z′, t ′)) = N ((z′, t ′)−1 ◦ (z, t)). It is well-known that dCC and dK are equiv-
alent metrics on H

n . The Kor’anyi ball of center (z0, t0) ∈ H
n and radius r > 0 is

B((z0, t0), r) = {(z, t) ∈ H
n : dK ((z, t), (z0, t0)) < r}. A simple calculation shows that

μ(B((z, t), r)) = r Qμ(B((0, 0), 1)), and |∇Hn N (z, t)|0 = |z|
N (z,t) , (z, t) ∈ H

n \ {(0, 0)}.

3 Compact embeddings on stratified groups via symmetries

Let (G, ◦) be a Carnot group, and (T, ·) be a closed topological group with neutral element
e. We say that T acts continuously on G, T ∗ G �→ G, if

(TG0) e ∗ p = p for all p ∈ G;
(TG1) τ̂1 ∗ (τ̂2 ∗ p) = (τ̂1 · τ̂2) ∗ p for all τ̂1, τ̂2 ∈ T and p ∈ G,

and left-distributively if

(TG2) τ̂ ∗ (p1 ◦ p2) = (τ̂ ∗ p1) ◦ (τ̂ ∗ p2) for all τ̂ ∈ T and p1, p2 ∈ G.

A set G0 ⊂ G is T -invariant, if T ∗ G0 = G0, i.e., τ̂ ∗ p ∈ G0 for every τ̂ ∈ T and p ∈ G0.

We shall assume that T induces an action on H W 1,2
0 (G), T #H W 1,2

0 (G) �→ H W 1,2
0 (G),

by

(τ̂#u)(p) = u(τ̂−1 ∗ p). (3.1)
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Lions-type compactness and Rubik actions 95

Once (TG0) and (TG1) hold, the action of T on H W 1,2
0 (G) is continuous. The group T acts

isometrically on H W 1,2
0 (G) if

‖τ̂#u‖H W (G) = ‖u‖H W (G) for all τ̂ ∈ T, u ∈ H W 1,2
0 (G).

Let G0 be an open subset of G, and assume that

(H)G0
T : For every {ηk} ⊂ G such that dCC (0, ηk) → ∞ and μ(lim inf(ηk ◦ G0)) > 0,

there exists a subsequence {ηk j } of {ηk} and a subgroup T{ηk j } of T such that

card(T{ηk j }) = ∞ and for all τ̂1, τ̂2 ∈ T{ηk j }, τ̂1 �= τ̂2, one has

lim
j→∞ inf

p∈G
dCC ((τ̂1 ∗ ηk j ) ◦ p, (τ̂2 ∗ ηk j ) ◦ p) = ∞. (3.2)

Hypothesis (H)G0
T can be viewed as a replacement of the strongly asymptotically contrac-

tiveness of G0. Indeed, while a strongly asymptotically contractive domain is thin at infinity,
hypothesis (H)G0

T allows to deal with a class of domains which are large at infinity. In the

sequel, we state an abstract compactness result for Carnot groups whenever (H)G0
T holds.

Theorem 3.1 Let (G, ◦) be a Carnot group of homogeneous dimension Q ≥ 2, (T, ·) be a
closed infinite topological group acting continuously and left-distributively on G. Assume
that T acts isometrically on H W 1,2

0 (G) by (3.1). Let G0 be a T -invariant open subset of G

and assume that (H)G0
T holds. Then,

H W 1,2
0,T (G0) = {u ∈ H W 1,2

0 (G0) : τ̂#u = u, ∀τ̂ ∈ T }
is compactly embedded into Lq(G0) for every q ∈ (2, 2∗

Q).

Remark 3.1 We shall apply this general Lions-type theorem to the Heisenberg group G = H
n

where T is the action of the unitary group U (n)×{1} on H
n .This statement is strongly related

to the results of Tintarev and Fieseler [22] who considered the case of group actions T by
translations. The proof of Theorem 3.1 follows the ideas from [22]. For the sake of complete-
ness we present it in the Appendix.

Recall that the unitary group is

U (n) = U (n; C) = {τ ∈ GL(n; C) : 〈τ z, τ z′〉 = 〈z, z′〉 for all z, z′ ∈ C
n},

where 〈, 〉 denotes the standard Hermitian inner product.
Let T = U (n)×{1} be the group with its natural multiplication law ’·’, and we introduce

the action T ∗ H
n �→ H

n as

τ̂ ∗ (z, t) = (τ z, t) for τ̂ = (τ, 1) ∈ T and (z, t) ∈ H
n . (3.3)

Lemma 3.1 The group (T, ·) = (U (n)× {1}, ·) acts continuously and left-distributively on
(Hn, ◦) via the action (3.3), i.e., (TG0)-(TG2) hold.

Proof (TG0) and (TG1) hold trivially. The definition of the unitary group U (n) gives

(τ̂ ∗ (z1, t1)) ◦ (τ̂ ∗ (z2, t2)) = (τ z1, t1) ◦ (τ z2, t2)

= (τ z1 + τ z2, t1 + t2 + 2Im〈τ z1, τ z2〉)
= (τ (z1 + z2), t1 + t2 + 2Im〈z1, z2〉)
= τ̂ ∗ ((z1, t1) ◦ (z2, t2)),

which proves (TG2). �
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96 Z. M. Balogh, A. Kristály

The following observation seems to be known to specialists; since we were not able to
find a reference, we include its proof for the sake of completeness.

Lemma 3.2 The group (T, ·) = (U (n)× {1}, ·) acts isometrically on H W 1,2
0 (Hn) by (3.1).

Proof We prove that

‖τ̂#u‖H W (Hn) = ‖u‖H W (Hn), ∀τ̂ = (τ, 1) ∈ T, u ∈ H W 1,2
0 (Hn), (3.4)

where the operation ‘#’ is given by (3.1). To check (3.4), let A(z, t) = A(x, y, t) be the
(2n+1)×(2n+1) symmetric matrix with elements ai j = δi j if i, j = 1, . . . , 2n; a(2n+1) j =
2y j if j = 1, . . . , n; a(2n+1) j = −2x j if j = n + 1, . . . , 2n; and a(2n+1)(2n+1) = 4|z|2.
In other words, A(z, t) =

(
IR2n J z
(J z)T 4|z|2

)
, where J =

(
0 2IRn

−2IRn 0

)
is the symplectic

matrix. Note that
∫

Hn

|∇Hn u|20dzdt =
∫

Hn

〈A(z, t)∇u(z, t),∇u(z, t)〉dzdt,

where 〈, 〉 is the inner product in R
2n+1 and ∇ is the Euclidean gradient. In order to prove

(3.4), it is enough to check that
∫

Hn

〈A(z, t)∇v(z, t),∇v(z, t)〉dzdt =
∫

Hn

〈A(z, t)∇u(z, t),∇u(z, t)〉dzdt,

where v(z, t) = (τ̂#u)(z, t) = u(τ−1z, t). Since

∇v(z, t) = (τ̂−1)T ∇u(τ−1z, t),

where (τ̂−1)T denotes the transpose of τ̂−1, the last relation becomes
∫

Hn

〈A(z, t)(τ̂−1)T ∇u(τ−1z, t), (τ̂−1)T ∇u(τ−1z, t)〉dzdt

=
∫

Hn

〈A(z, t)∇u(z, t),∇u(z, t)〉dzdt,

that is
∫

Hn

〈τ̂−1 A(z, t)(τ̂−1)T ∇u(τ−1z, t),∇u(τ−1z, t)〉dzdt =
∫

Hn

〈A(z, t)∇u(z, t),∇u(z, t)〉dzdt.

Changing the variable z to τ z in the first integral (and keeping in mind that the Jacobian has
determinant 1), our claim is concluded once we prove that

τ̂−1 A(τ z, t)(τ̂−1)T = A(z, t). (3.5)

First, one has

τ̂−1 A(τ z, t)(τ̂−1)T =
(
τ−1 0
0 1

)
·
(

IR2n J (τ z)
(J (τ z))T 4|τ z|2

)
·
(
(τ−1)T 0
0 1

)

=
(
τ−1(τ−1)T τ−1 J (τ z)
(J (τ z))T (τ−1)T 4|τ z|2

)
.

Then, since τ ∈ U (n) = O(2n) ∩ GL(n; C) ∩ Sp(2n; R), we have that τ−1(τ−1)T = IR2n

and τ−1 Jτ = J, which proves our claim, thus (3.4). �

123



Lions-type compactness and Rubik actions 97

Remark 3.2 The above argument actually shows that the structure of the unitary group is
indispensable in the following sense: τ ∈ GL(n; C) verifies relation (3.5) for every (z, t)∈H

n

if and only if τ ∈U (n).Roughly speaking, from ’invariance’ point of view, the unitary groups
play the same role in the Heisenberg setting as the orthogonal groups in the Euclidean frame-
work.

Proof of Theorem 1.1. We are going to apply Theorem 3.1 with (G, ◦) = (Hn, ◦),
T = U (n1)× · · · × U (nl)× {1}, and G0 = �ψ. In view of Lemmas 3.1 & 3.2, it remains

to verify (H)G0
T .

Let ηk = (zk, tk) ∈ C
n × R = H

n, and assume that the sequence {ηk} is unbounded with
the property μ(lim inf(ηk ◦ �ψ)) > 0. We claim that {zk} is unbounded. By contradiction,
we assume that {zk} ⊂ C

n is bounded; consequently, {tk} ⊂ R should be unbounded. Fix
i ∈ N, and let Ai = ∩k≥i (ηk ◦�ψ). Then,

(z′, t ′) ∈ Ai ⇔ (z′, t ′) ∈ ηk ◦�ψ, ∀k ≥ i

⇔ η−1
k ◦ (z′, t ′) ∈ �ψ, ∀k ≥ i

⇔ (z′ − zk, t ′ − tk − 2Im〈zk, z′〉) ∈ �ψ, ∀k ≥ i

⇔ ψ1(|z′ − zk |) < t ′ − tk − 2Im〈zk, z′〉 < ψ2(|z′ − zk |), ∀k ≥ i.

Since {z′ − zk} is bounded and the functions ψ1 and ψ2 map bounded sets into bounded
sets, the sequence {t ′ − tk − 2Im〈zk, z′〉} ∈ R is bounded as well, which contradicts the
unboundedness of {tk}. Consequently, Ai = ∅, so lim inf(ηk ◦ �ψ) = ∪i≥1 Ai = ∅, a con-
tradiction with the assumption. Therefore, the sequence {zk} ⊂ C

n is unbounded, as claimed
above.

If zk = (zn1
k , . . . , znl

k ) with zni
k ∈ C

ni , we can choose i0 ∈ {1, . . . , l} and j0 ∈ {1, . . . ,
ni0} such that a subsequence {zni0 , j0

k j
} of {zni0 , j0

k } ⊂ C is unbounded, where z
ni0
k =

(z
ni0 ,1
k , . . . , z

ni0 ,ni0
k ). Let T{ηk j } be a subgroup of T defined by the S1-action in the unbounded

component z
ni0 , j0
k j

of zk j , where S1 = {eiφ : φ ∈ [0, 2π)} is the circle group. With the above
constructions in our mind, we may choose

T{ηk j } = I
C

n1+···+ni0−1+ j0−1 × S1 × I
C

− j0+ni0
+···+nl × {1}.

It is clear that T{ηk j } is a closed subgroup of T = U (n1)× · · · × U (nl)× {1}, and for every

τ̂k = (τk, 1) = I
C

n1+···+ni0−1+ j0−1 × τ ′
k × I

C
− j0+ni0

+···+nl × {1} ∈ T{ηk j }

with τ ′
k = cosφk + i sin φk, φk ∈ [0, 2π), k = 1, 2 and φ1 �= φ2, it yields that

inf
p∈Hn

dK ((τ̂1 ∗ ηk j ) ◦ p, (τ̂2 ∗ ηk j ) ◦ p) = inf
p∈Hn

N ((−p) ◦ (−τ2zk j ,−tk j ) ◦ (τ1zk j , tk j ) ◦ p)

≥ |τ ′
2z

ni0 , j0
k j

− τ ′
1z

ni0 , j0
k j

|
= [2 − 2 cos(φ2 − φ1)] 1

2 |zni0 , j0
k j

| → ∞,

as j → ∞. Since dCC is an equivalent metric with dK , relation (3.2) is verified. The con-
clusion follows immediately. �
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If T = U (n)× {1} in Theorem 1.1, the following can be stated:

Corollary 3.1 Let�ψ be from (1.1). Then, the space of cylindrically symmetric functions of

H W 1,2
0 (�ψ), i.e.,

H W 1,2
0,cyl(�ψ) = {u ∈ H W 1,2

0 (�ψ) : u(z, t) = u(|z|, t)},
is compactly embedded into Lq(�ψ), q ∈ (2, 2∗

Q).

Remark 3.3 The domain �ψ cannot be replaced by the whole space H
n, i.e., the space

H W 1,2
0,T (H

n) = {u ∈ H W 1,2(Hn) : u(z, t) = u(|zn1 |, . . . , |znl |, t), zni ∈ C
ni }

is not compactly embedded into Lq(Hn), n = n1 + · · · + nl with ni ≥ 1, l ≥ 1. Indeed, let
u0(z, t) = 1+ cos N (z, t)when N (z, t) ≤ π, and u0(z, t) = 0 when N (z, t) ≥ π. Then, the
sequence uk(z, t) = u0(z, t − k) is bounded in H W 1,2

0,T (H
n), it converges weakly to 0, but

uk �→ 0 in Lq(Hn) for any q ∈ (2, 2∗
Q) since ‖uk‖Lq = ‖u0‖Lq �= 0 for every k ∈ N. As we

can see, the lack of compactness of embedding of H W 1,2
0,T (H

n) into Lq(Hn) comes from the

possibility of translations along the whole t-direction, which is not the case for H W 1,2
0,T (�ψ).

This example also shows the indispensability of the central hypothesis (H)G0
T from Theorem

3.1. For instance, if ηk = (0, k) ∈ H
n, then dCC (0, ηk) → ∞ andμ(lim inf(ηk ◦H

n)) = ∞;
however, for every p ∈ H

n and τ̂k = (τk, 1) ∈ U (n)× {1}, k = 1, 2, with τ1 �= τ2, one has

dCC ((τ̂1 ∗ ηk) ◦ p, (τ̂2 ∗ ηk) ◦ p) = dCC (ηk ◦ p, ηk ◦ p) = 0,

i.e., relation (3.2) fails.

Remark 3.4 If the functions ψi (i = 1, 2) are bounded, the domain �ψ is strongly asymp-
totically contractive. In this case, not only H W 1,2

0,T (�ψ) but also H W 1,2
0 (�ψ) can be com-

pactly embedded into Lq(�ψ), q ∈ (2, 2∗
Q), see Garofalo and Lanconelli [9], Schindler and

Tintarev [19].

4 Rubik actions and symmetries

In the previous subsection we proved that the subgroup U (n1)× · · · × U (nl) of the unitary
group U (n) (with n = n1 + · · · + nl ) produces the compact embedding of T -invariant func-
tions of H W 1,2

0 (�ψ) into Lq(�ψ) where T = U (n1)× · · · × U (nl)× {1} and q ∈ (2, 2∗
Q).

The main purpose of the present section is to describe symmetrical differences of functions
belonging to H W 1,2

0 (�ψ) via subgroups of the type U (n1)× · · · × U (nl) for various split-
tings of the dimension n. In order to solve this question we exploit a Rubik-cube technique.
Roughly speaking, the space dimension n corresponds to the number of faces of the cube,
while the sides of the cube are certain blocks in the splitting group U (n1)×· · ·×U (nl). If we
consider only one copy of such a proper splitting, the Rubik-cube cannot be solved/restored
because only some specific moves are allowed, thus there is a lack of transitivity on the cube.
However, combining appropriate splittings simultaneously, different moves complete each
other recovering the transitivity, thus solving the cube. The precise construction is described
in the sequel.
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4.1 Transitivity of combined Rubik-type moves on subgroups of U (n)

Let n ≥ 2 and for i ∈ {1, . . . , [ n
2

]} we consider the subgroup of the unitary group U (n):

Tn,i =
{

U ( n
2 )× U ( n

2 ), if n = 2i,
U (i)× U (n − 2i)× U (i), if n �= 2i.

In the sequel, [Tn,i ; Tn, j ] will denote the group generated by Tn,i and Tn, j . Although Tn,i

does not act transitively on the sphere S2n−1 = {z ∈ C
n : |z| = 1}, we have

Lemma 4.1 Let i, j ∈ {1, . . . , [ n
2

]} with i �= j. Then the group [Tn,i ; Tn, j ] acts transitively
on the sphere S2n−1. Moreover, for every z1, z2 ∈ S2n−1 there exists τ ∈ [Tn,i ; Tn, j ] such
that z1 = τ z2 and τ is the composition of at most 3 alternating elements from Tn,i and Tn, j ,

starting with an element from Tn,max{i, j}.

Proof For simplicity, set 0k = (0, . . . , 0) ∈ C
k = R

2k, k ∈ {1, . . . , n}. We may assume
that j > i. Fix z = (z1, z2, z3) ∈ S2n−1 arbitrarily with z1, z3 ∈ C

j and z2 ∈ C
n−2 j .

[If j = n/2, the term z2 simply disappears from z.] Since U ( j) acts transitively on S2 j−1,

one can find τ 1
j , τ

2
j ∈ U ( j) such that if τ j = τ 1

j × I
Cn−2 j × τ 2

j ∈ Tn, j , then

τ j z = (0 j−1, |z1|, z2, |z3|, 0 j−1).

Now, we switch to the action with an element from Tn,i . Since j −1 ≥ i, due to the transitivity
of U (n − 2i) on S2n−4i−1, there exists τ 1

i ∈ U (n − 2i) such that

τ 1
i (0 j−i−1, |z1|, z2, |z3|, 0 j−i−1) = (1, 0n−2i−1).

Therefore, if τi = I
Ci × τ 1

i × I
Ci ∈ Tn,i then

τiτ j z = (0i , 1, 0n−i−1).

Now, repeating the above argument for another element z̃ ∈ S2n−1, one can find τ̃i ∈ Tn,i

and τ̃ j ∈ Tn, j such that

τ̃i τ̃ j z̃ = (0i , 1, 0n−i−1).

Thus,

z = τ−1
j τ−1

i τ̃i τ̃ j z̃ = τ−1
j τ i τ̃ j z̃

where τ i = τ−1
i τ̃i ∈ Tn,i . �

4.2 Symmetrically distinct elements of H W 1,2
0 (�ψ)

Let n ≥ 2 be fixed. For every i ∈ {1, . . . , [ n
2 ]}, we consider the matrix ζi as

ζi =
(

0 I
C

n
2

I
C

n
2

0

)

if n = 2i, and ζi =
⎛

⎝
0 0 I

Ci

0 I
Cn−2i 0

I
Ci 0 0

⎞

⎠ if n �= 2i.

A simple verification shows that ζi ∈ U (n) \ Tn,i , ζ
2
i = ICn , and ζi Tn,iζ

−1
i = Tn,i .
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In the sequel, we will follow a construction from Bartsch and Willem [5]. Let T̂ ζi
n,i be the

group generated by T̂n,i = Tn,i × {1} and ζ̂i = (ζi , 1). On account of the above properties,
the group generated by T̂n,i and ζ̂i is

T̂ ζi
n,i

def= [T̂n,i ; ζ̂i ] = T̂n,i ∪ ζ̂i T̂n,i , (4.1)

i.e., only two types of elements in T̂ ζi
n,i can be distinguished; namely, elements of the form

τ̂ ∈ T̂n,i , and ζ̂i τ̂ ∈ T̂ ζi
n,i \ T̂n,i (with τ̂ ∈ T̂n,i ). The action of the group T̂ ζi

n,i on H W 1,2
0 (�ψ)

is defined by

(τ̃#u)(z, t) =
{

u(τ̂−1 ∗ (z, t)) if τ̃ = τ̂ ∈ T̂n,i ;
−u((ζ̂i τ̂ )

−1 ∗ (z, t)) if τ̃ = ζ̂i τ̂ ∈ T̂ ζi
n,i \ T̂n,i ,

(4.2)

for τ̃ ∈ T̂ ζi
n,i , u ∈ H W 1,2

0 (�ψ) and (z, t) ∈ �ψ, where ‘∗’ comes from (3.3).
The following result provides a precise information on the mutually symmetric differences

for the spaces of T̂ ζi
n,i -invariant functions in H W 1,2

0 (�ψ).

Proposition 4.1 Let n ≥ 2 and �ψ be from (1.1). The following statements hold true:

(i) The space

H W 1,2

0,T̂
ζi
n,i

(�ψ) = {u ∈ H W 1,2
0 (�ψ) : τ̃#u = u, ∀τ̃ ∈ T̂ ζi

n,i },

where ‘#’ is given in (4.2), is compactly embedded into Lq(�ψ) for all q ∈ (2, 2∗
Q) and

i ∈ {1, . . . , [ n
2 ]};

(ii) H W 1,2

0,T̂
ζi
n,i

(�ψ) ∩ H W 1,2
0,cyl(�ψ) = {0} for all i ∈ {1, . . . , [ n

2 ]};
(iii) If n ≥ 4, then H W 1,2

0,T̂
ζi
n,i

(�ψ)∩ H W 1,2

0,T̂
ζ j
n, j

(�ψ) = {0} for all i, j ∈ {1, . . . , [ n
2 ]}, i �= j.

Proof (i) On the one hand, the first relation of (4.2) implies that H W 1,2

0,T̂
ζi
n,i

(�ψ) ⊂
H W 1,2

0,T̂n,i
(�ψ).On the other hand, on account of Theorem 1.1, the space H W 1,2

0,T̂n,i
(�ψ)

is compactly embedded into Lq(�ψ), q ∈ (2, 2∗
Q).

(ii) Let us fix u ∈ H W 1,2

0,T̂
ζi
n,i

(�ψ) ∩ H W 1,2
0,cyl(�ψ). Since u is T̂ ζi

n,i -invariant, the second

relation from (4.2) implies in particular that u(z, t) = −u(ζ̂−1
i ∗ (z, t)) = −u(ζ−1

i z, t)
for every (z, t) ∈ �ψ. Since u is cylindrically symmetric, i.e., u(z, t) = u(|z|, t), and
|z| = |ζ−1

i z|, we necessarily have that u = 0.

(iii) Let u ∈ H W 1,2

0,T̂
ζi
n,i

(�ψ) ∩ H W 1,2

0,T̂
ζ j
n, j

(�ψ). Note that the latter fact means in particular

that u is both T̂n,i−, and T̂n, j -invariant, thus invariant with respect to [Tn,i ; Tn, j ]×{1}.
Since [Tn,i ; Tn, j ] acts transitively on S2n−1 by Lemma 4.1, it possesses only a single
group orbit. This means that u is actually a cylindrically symmetric function on �ψ,
thus u = 0 from (ii). �
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5 Proof of Theorems 1.2 and 1.3

For f ∈ Aq , let F(s) = ∫ s
0 f (t)dt. Fix ν ∈ [0,C−1

V n2). For every λ > 0, we introduce the

energy functional Eλ : H W 1,2
0 (�ψ) → R associated with problem (Pνλ ), namely,

Eλ(u) = 1

2
‖u‖2

H W (�ψ)
− ν

2

∫

�ψ

V (z, t)u2dzdt − λF(u),

where

F(u) =
∫

�ψ

K (z, t)F(u(z, t))dzdt. (5.1)

For the sake of simplicity of notations, we do not mention the parameter ν in the functional
Eλ. Since f ∈ Aq for some q ∈ (2, 2∗

Q), on account of (HV ), (HK ) and subelliptic Hardy

inequality (see (2.3)), the functional Eλ is well-defined, of class C1 and its critical points are
precisely the weak solutions for (Pνλ ).Moreover, since ν ∈ [0,C−1

V n2), the norm ‖·‖H W (�ψ)

is equivalent with the norm given by

‖u‖ν =
⎛

⎜
⎝‖u‖2

H W (�ψ)
− ν

∫

�ψ

V (z, t)u2dzdt

⎞

⎟
⎠

1/2

. (5.2)

First, we prove Theorem 1.2. Note that hypothesis ( f2) is the standard Ambrosetti and
Rabinowitz assumption (see [1]), which implies that for some s0 > 0 and c > 0, one has
| f (s)| ≥ c|s|α−1 for all |s| > s0, i.e., f is superlinear at infinity.

Proof of Theorem 1.2. (i) Fix λ > 0. Let ET
λ be the restriction of the energy functional Eλ to

the space H W 1,2
0,T (�ψ).On account of Theorem 1.1 and hypotheses ( f1), ( f2), one can apply

in a standard manner the mountain pass theorem of Ambrosetti and Rabinowitz [1] to ET
λ ,

obtaining a critical point uλ ∈ H W 1,2
0,T (�ψ) of ET

λ with positive energy-level; in particular,
uλ �= 0. Due to relation (3.4) and the cylindrical symmetry of V and K , the functional Eλ is
T -invariant where the action of T on H W 1,2

0 (�ψ) is given by (3.1). Now, the principle of
symmetric criticality of Palais [16] implies that uλ is a critical point also for Eλ, thus a weak
solution for (Pνλ ).

(ii) Let n ≥ 2. First, since V and K are cylindrically symmetric, the functional Eλ is
U (n)×{1}-invariant with respect to the action defined by (3.1). Second, since f is odd,
Eλ is an even functional, thus Eλ is T̂ ζi

n,i -invariant with respect to the action from (4.2).

Let E i
λ (i = 1, . . . , [ n

2 ]) and Ecyl
λ be the restrictions of Eλ to the spaces H W 1,2

0,T̂
ζi
n,i

(�ψ)

and H W 1,2
0,cyl(�ψ), respectively. By exploiting Proposition 4.1 (i) and Corollary 3.1

as well as hypotheses ( f1), ( f2), we can apply the symmetric version of the moun-
tain pass theorem to E i

λ (i = 1, . . . , [ n
2 ]) and Ecyl

λ , respectively, see e.g. Willem [23,
Theorem 3.6]. Therefore, one can guarantee the existence of the sequences of distinct
critical points {uλ,ik } ⊂ H W 1,2

0,T̂
ζi
n,i

(�ψ) (i = 1, . . . , [ n
2 ]) and {uλk } ⊂ H W 1,2

0,cyl(�ψ) of

the functionals E i
λ (i = 1, . . . , [ n

2 ]) and Ecyl
λ , respectively. They are also critical points

of Eλ due to the principle of symmetric criticality. In view of Proposition 4.1 (ii) &
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(iii), the symmetric structure of the elements in the aforementioned sequences mutually
differ. �
Before proving Theorem 1.3 some remarks are in order on the assumptions ( f ′

1)− ( f ′
3).

Remark 5.1 (a) Hypotheses ( f1) and ( f ′
1) coincide, which means that f is superlinear at

the origin. Hypothesis ( f ′
2) is a counterpart of the superlinearity assumption ( f2). Due

to ( f ′
1) and ( f ′

2), we have f ∈ Aq for every q ∈ (2, 2∗
Q). These hypotheses also imply

that

lim
s→0

F(s)

s2 = lim|s|→∞
F(s)

s2 = 0.

Moreover, if K ∈ L∞(�ψ) ∩ L1(�ψ), a simple verification shows that F defined in
(5.1) inherits similar properties as F, i.e.,

lim‖u‖ν→0

F(u)
‖u‖2

ν

= 0; (5.3)

lim‖u‖ν→∞
F(u)
‖u‖2

ν

= 0, (5.4)

where ‖ · ‖ν is defined in (5.2).
(b) The number c f = maxs �=0

| f (s)|
|s| is well-defined and positive.

(c) If X is a closed subspace of H W 1,2
0 (�ψ)which is compactly embedded into Lq(�ψ), q ∈

(2, 2∗
Q), then F |X has a compact derivative.

Remark 5.2 Let us keep the notations from the proof of Theorem 1.2 and assume that
( f ′

1) − ( f ′
3) hold. Then, 0 is a local minimum point for the functionals ET

λ and E i
λ

(i = 1, . . . , [ n
2 ]), cf. (5.3). Moreover, these functionals are coercive (cf. (5.4)), bounded

from bellow, satisfying the Palais-Smale condition; thus, all of them have a global minimum
point with negative energy-level for large values of λ. Consequently, the well-known criti-
cal point theorem of Pucci and Serrin [17] gives a third critical point for these functionals.
Summing up, for large values of λ > 0, one can expect the existence of at least two nonzero
weak solutions for (Pνλ ) in H W 1,2

0,T (�ψ), and at least 2([ n
2 ] + 1) nonzero weak solutions for

(Pνλ ) whenever f is odd.

Theorem 1.3 gives a more precise information as the one stated in Remark 5.2; indeed, it
shows that the number of solutions described below is stable with respect to small subcritical
perturbations. In order to prove it, we recall a result established by Ricceri [18].

If X is a Banach space, we denote by WX the class of those functionals E : X → R

having the property that if {uk} is a sequence in X converging weakly to u ∈ X and
lim infk→∞ E(uk) ≤ E(u) then {uk} has a subsequence converging strongly to u.

Theorem 5.1 [18, Theorem 2] Let (X, ‖ · ‖) be a separable, reflexive, real Banach space,
let E1 : X → R be a coercive, sequentially weakly lower semicontinuous C1 functional
belonging to WX , bounded on each bounded subset of X and whose derivative admits a
continuous inverse on X∗. Let E2 : X → R be a C1 functional with compact derivative.
Assume that E1 has a strict local minimum point u0 with E1(u0) = E2(u0) = 0.
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Assume that � < χ, where

� := max

{

0, lim sup
‖u‖→∞

E2(u)

E1(u)
, lim sup

u→u0

E2(u)

E1(u)

}

, (5.5)

χ = sup
E1(u)>0

E2(u)

E1(u)
. (5.6)

Then, for each compact interval [a, b] ⊂ (1/χ, 1/�)(with the conventions 1/0 = ∞ and
1/∞ = 0) there exists κ > 0 with the following property: for every λ ∈ [a, b] and every
C1 functional E3 : X → R with compact derivative, there exists δ > 0 such that for each
θ ∈ [−δ, δ], the equation E ′

1(u)− λE ′
2(u)− θE ′

3(u) = 0 admits at least three solutions in
X having norm less than κ.

Proof of Theorem 1.3. (i) Let u ∈ H W 1,2
0 (�ψ) be a solution of (Pνλ ). Multiplying (Pνλ ) by

u, using the Green theorem, the subelliptic Hardy inequality (2.3) with hypothesis (HV ),

the fact that ν ∈ [0,C−1
V n2), and the definition of number c f > 0 (see Remark 5.1(b)),

we obtain that
∫

�ψ

u2 ≤
∫

�ψ

(|∇Hn u|20 − νV (z, t)u2 + u2)dzdt

= λ

∫

�ψ

K (z, t) f (u)udzdt

≤ λ‖K‖L∞c f

∫

�ψ

u2.

If 0 ≤ λ < c−1
f ‖K‖−1

L∞ , the above estimate implies u = 0.
In the sequel, we are going to prove (ii) and (iii) by applying Theorem 5.1. First, let

ω̂ = ∪{τ̂ω : τ̂ = (τ, 1), τ ∈ U (n)}, where the set ω is from the hypothesis of the theorem.
Since K is cylindrically symmetric, one has

inf
ω̂

K = inf
ω

K > 0. (5.7)

Moreover, one can find (z0, t0) ∈ �ψ and R > 0 such that

R < 2|z0|(
√

2 − 1) (5.8)

and

AR = {(z, t) ∈ H
n : ||z| − |z0|| ≤ R, |t − t0| ≤ R} ⊂ ω̂. (5.9)

Clearly, for every σ ∈ (0, 1], one has Aσ R ⊂ AR ⊂ ω̂ and μ(Aσ R) > 0.

(ii) Let T = U (n1)× . . .× U (nl)× {1} with n = n1 + · · · + nl and ni ≥ 1, l ≥ 1.We are
going to apply Theorem 5.1 with the choices X = H W 1,2

0,T (�ψ) and E1, E2, E3 :
H W 1,2

0,T (�ψ) → R which are the restrictions of 1
2‖ · ‖2

ν,F and F̃ to the space

H W 1,2
0,T (�ψ), respectively, where F̃(u) = ∫

�ψ
K̃ (z, t)F̃(u)dzdt, u ∈ H W 1,2

0 (�ψ).

Note that as a norm-type functional, E1 is coercive, sequentially weakly lower semi-
continuous, it belongs to WH W 1,2

0,T (�ψ)
, it is bounded on each bounded subset of
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H W 1,2
0,T (�ψ) and its derivative admits a continuous inverse on the dual space of

H W 1,2
0,T (�ψ). On account of Remark 5.1(c) and Theorem 1.1, E2 and E3 are C1 func-

tionals with compact derivative. Moreover, u0 = 0 is a strict global minimum point of
E1, E1(0) = E2(0) = 0, and (5.3) and (5.4) yield � = 0 (see relation (5.5)). In the
sequel, we shall prove that

χ = sup

{
2F(u)
‖u‖2

ν

: u ∈ H W 1,2
0,T (�ψ) \ {0}

}
∈ (0,∞).

Let s0 ∈ R be the number from ( f ′
3). For every σ ∈ (0, 1) we consider the truncation

function uσ : �ψ → R defined by

uσ (z, t) = s0

1 − σ

(
1 − max

( ||z| − |z0||
R

,
|t − t0|

R
, σ

))

+
,

where r+ = max(r, 0). It is clear that uσ ∈ H W 1,2
0,cyl(�ψ) ⊂ H W 1,2

0,T (�ψ) and

(p1) suppuσ = AR ;
(p2) ‖uσ ‖L∞ ≤ |s0|;
(p3) uσ (z, t) = s0 for every (z, t) ∈ Aσ R .

The above properties, the subelliptic Hardy inequality (2.3), and hypotheses (HV ) and (HK )

imply that

‖uσ ‖2
ν ≥

∫

�ψ

u2
σ ≥ s2

0μ(Aσ R),

and

F(uσ ) =
∫

AR

K (z, t)F(uσ (z, t))dzdt

=
∫

Aσ R

K (z, t)F(uσ (z, t))dzdt +
∫

AR\Aσ R

K (z, t)F(uσ (z, t))dzdt

≥ inf
Aσ R

K · F(s0)μ(Aσ R)− ‖K‖L∞ max|t |≤|s0| |F(t)|μ(AR \ Aσ R).

If σ → 1, the right-hand sides of the above expressions are positive.
Consequently, from (5.3) and (5.4),

χ = sup

{
2F(u)
‖u‖2

ν

: u ∈ H W 1,2
0,T (�ψ) \ {0}

}
∈ (0,∞),

and the number

λ∗ = inf

{ ‖u‖2
ν

2F(u) : u ∈ H W 1,2
0,T (�ψ), F(u) > 0

}
< ∞ (5.10)

is well-defined. Moreover, one has χ−1 = λ∗.
Applying Theorem 5.1, for every λ > λ∗ = χ−1 > 0, there exists δλ > 0 such that

for each θ ∈ [−δλ, δλ], the functional E1 − λE2 − θE3 has at least three critical points in
H W 1,2

0,T (�ψ).Since the functional Eλ,θ = 1
2‖·‖2

ν−λF−θF̃ is T -invariant where the action of

T on H W 1,2
0 (�ψ) is given by (3.1), the principle of symmetric criticality implies that the crit-

ical points of E1 −λE2 −θE3 are also critical points for Eλ,θ , thus weak solutions for (Pνλ,θ ).
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(iii) If n = 1, the claim easily follows after a suitable modification of the proof of (ii); here,
the energy functional Eλ,θ = 1

2‖ · ‖2
ν − λF − θF̃ is even, thus the solutions appear

in pairs which belong to H W 1,2
0,cyl(�ψ). Now, let n ≥ 2, and fix i ∈ {1, . . . , [ n

2 ]}
arbitrarily. The difficulty relies on the construction of a suitable truncation function
in H W 1,2

0,T̂
ζi
n,i

(�ψ) with properties similar to (p1)-(p3). To complete this aim, we first

introduce the auxiliary function ei : C
i × C

i × R → R by

ei (z, z̃, t) = 2

R

√(
|z| − |z0| + R

2

)2

+ |z̃|2 + (t − t0)2,

where z0, t0 and R > 0 are from (5.8) and (5.9). We also introduce the sets

S1 =
{
(z, z̃, t) ∈ C

i × C
i × R : ei (z, z̃, t) ≤ 1

}

and

S2 =
{
(z, z̃, t) ∈ C

i × C
i × R : ei (z̃, z, t) ≤ 1

}
.

A simple reasoning based on (5.8) shows that

S1 ∩ S2 = ∅. (5.11)

For every σ ∈ (0, 1], we introduce the set in H
n by

Si
σ =

⎧
⎪⎪⎨

⎪⎪⎩

{(z1, z2, t) ∈ C
i × C

i × R : ei (z1, z2, t) ≤ σ or ei (z2, z1, t) ≤ σ }, if n =2i,

{
(z1, z2, z3, t) ∈ C

i × C
n−2i × C

i × R : ei (z1, z3, t) ≤ σ or ei (z3, z1, t) ≤ σ,

and |z2| ≤ σ R
2

}
, if n �=2i.

It is clear that the set Si
σ is T̂ ζi

n,i -invariant (that is, τ̃ Si
σ ⊂ Si

σ for every τ̃ ∈ T̂ ζi
n,i ), Si

σ ⊆ Si
1,

μ(Si
σ ) > 0 for every σ ∈ (0, 1] and

lim
σ→1

μ(Si
1 \ Si

σ ) = 0. (5.12)

Now, we prove that

Si
1 ⊂ AR . (5.13)

We consider that n �= 2i, the case n = 2i is similar. Let (z1, z2, z3, t) ∈ Si
1 such that

ei (z1, z3, t) ≤ 1 and |z2| ≤ R
2 . In particular, the first inequality implies that |t − t0| ≤ R

2 and
(|z0| − R)2 ≤ |z1|2 + |z3|2 ≤ |z0|2. Consequently,

|z|2 = |z1|2 + |z2|2 + |z3|2 ≤ |z0|2 +
(

R

2

)2

< (|z0| + R)2,

|z|2 = |z1|2 + |z2|2 + |z3|2 ≥ (|z0| − R)2,

i.e., ||z| − |z0|| ≤ R. Thus, (z, t) = (z1, z2, z3, t) ∈ AR .

Let s0 ∈ R be the number from hypothesis ( f ′
3). Keeping the above notations, for a fixed

σ ∈ (0, 1), we construct the truncation function ui
σ : �ψ → R defined by

ui
σ (z, t)=

⎧
⎪⎪⎨

⎪⎪⎩

s0
1−σ

[
(1−max(ei (z1, z2, t), σ ))+ − (1 − max(ei (z2, z1, t), σ ))+

]
if n = 2i,

s0
(1−σ)2

[
(1−max(ei (z1, z3, t), σ ))+ − (1 − max(ei (z3, z1, t), σ ))+

]×
× (

1−max( 2
R |z2|, σ )

)
+ , if n �= 2i.
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Due to (5.11) we have the following properties:

(p1′) suppui
σ = Si

1;
(p2′) ‖ui

σ ‖L∞ ≤ |s0|;
(p3′) |ui

σ (x)| = |s0| for every x ∈ Si
σ .

Moreover, τ̃#ui
σ = ui

σ for every τ̃ ∈ T̂ ζi
n,i where the action ‘#’ is from (4.2). Therefore,

ui
σ ∈ H W 1,2

0,T̂
ζi
n,i

(�ψ). Since F is even, by using properties (p1′)− (p3′), one has

F(ui
σ ) =

∫

Si
σ

K (z, t)F(ui
σ (z, t))dzdt +

∫

Si
1\Si

σ

K (z, t)F(ui
σ (z, t))dzdt

≥ inf
Si
σ

K · F(s0)μ(S
i
σ )− ‖K‖L∞ max|t |≤|s0| |F(t)| · μ(Si

1 \ Si
σ ).

On account of (5.7), (5.9), (5.12) and (5.13), if σ is close enough to 1, the right-hand side of
the latter term is positive. Thus, we can define the number

λ∗
i = inf

{ ‖u‖2
ν

2F(u) : u ∈ H W 1,2

0,T̂
ζi
n,i

(�ψ), F(u) > 0

}
< ∞. (5.14)

Moreover, from (5.3) and (5.4), one has that

χi = sup

{
2F(u)
‖u‖2

ν

: u ∈ H W 1,2

0,T̂
ζi
n,i

(�ψ) \ {0}
}

∈ (0,∞)

and χ−1
i = λ∗

i .

As in (ii), we apply Theorem 5.1 to X = H W 1,2

0,T̂
ζi
n,i

(�ψ) and to the functionals E1, E2, E3 :
H W 1,2

0,T̂
ζi
n,i

(�ψ) → R which are the restrictions of 1
2‖·‖2

ν,F and F̃ to H W 1,2

0,T̂
ζi
n,i

(�ψ).Repeat-

ing a similar argument as before, we state that for λ > λ∗
i = χ−1

i > 0, there exists δλi > 0
such that for each θ ∈ [−δλi , δλi ], the functional E1 − λE2 − θE3 has at least three critical

points in H W 1,2

0,T̂
ζi
n,i

(�ψ). Since f and f̃ are odd functions, the energy functional Eλ,θ =
1
2‖ · ‖2

ν − λF − θF̃ is even, thus T̂ ζi
n,i -invariant where the action of T̂ ζi

n,i on H W 1,2
0 (�ψ)

is given by (4.2). From the principle of symmetric criticality it follows that the critical
points of E1 − λE2 − θE3 are also critical points for Eλ,θ , therefore, weak solutions for
(Pνλ,θ ). Summing up the above facts, for every i ∈ {1, . . . , [ n

2 ]}, and for every λ > λ∗
i

and θ ∈ [−δλi , δλi ], problem (Pνλ,θ ) has at least two distinct pairs of nonzero weak solu-

tions {±uλ,θi,1 ,±uλ,θi,2 } ⊂ H W 1,2

0,T̂
ζi
n,i

(�ψ). A similar argument also shows (see also (ii)) that

there exists λ∗
0 > 0 such that for every λ > λ∗

0 there exists δλ0 > 0 such that for every
θ ∈ [−δλ0 , δλ0 ], problem (Pνλ,θ ) has at least two distinct pairs of nonzero weak solutions

{±uλ,θ0,1 ,±uλ,θ0,2 } ⊂ H W 1,2
0,cyl(�ψ).

Now, if we choose 
∗ = max{λ∗
0, λ

∗
1, . . . , λ

∗
[ n

2 ]} and δλ = min{δλ0 , δλ1 , . . . , δλ[ n
2 ]}, the

claim follows from Proposition 4.1 (ii)&(iii). �
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6 Appendix: Proof of Theorem 3.1

Although the line of the proof of Theorem 3.1 is similar to Tintarev and Fieseler [22, Propo-
sition 4.4], we present its proof to make our paper self-contained. The notations and notions
in our proof are taken from [22].

Let {uk} be a bounded sequence in H W 1,2
0,T (G0). By keeping the same notation, we natu-

rally extend the functions uk to the whole group G by zero on G \ G0. Thus, {uk} is bounded
in H W 1,2

0 (G) and since T ∗ G0 = G0, we also have

τ̂#uk = uk, ∀τ̂ ∈ T . (6.1)

Since (H W 1,2
0 (G), DG) is a dislocation pair, we may apply the abstract version of the con-

centration compactness principle from Tintarev and Fieseler [22, Theorem 3.1, p. 62], which
guarantees the existence of a set N0 ⊂ N, w(n) ∈ H W 1,2

0 (G), g(n)k ∈ DG , g(1)k = id with
k ∈ N, n ∈ N0 such that for a renumbered sequence,

w(n) = w lim g(n)
−1

k uk; (6.2)

g(n)
−1

k g(m)k ⇀ 0, n �= m; (6.3)

uk −
∑

n∈N0

g(n)k w(n)
DG
⇀ 0. (6.4)

Let η(n)k ∈ G be the shifting element associated to g(n)k , see (2.2). Putting m = 1 in (6.3), one

has that g(n)k ⇀ 0 (n ≥ 2), thus {η(n)k } has no bounded subsequence, i.e., dCC (0, η
(n)
k ) → ∞

as k → ∞.We claim thatw(n) = 0 for every n ≥ 2. To prove this, we distinguish two cases:
Case 1 We assume thatμ(lim inf(η(n)k ◦G0)) = 0. Fix p ∈ G arbitrarily. Since the Lebes-

gue measure of the set lim inf(η(n)k ◦ G0) is zero, we may assume that p /∈ lim inf(η(n)k ◦ G0).

Therefore, from the definition of the Kuratowski lower-limit for sets, there exists a sub-

sequence {η(n)k j
} of {η(n)k } such that p /∈ η

(n)
k j

◦ G0, i.e., η(n)
−1

k j
◦ p /∈ G0. In particular,

uk j (η
(n)−1

k j
◦ p) = 0. On the other hand, up to a subsequence, from (6.2) we have that the

sequence {g(n)−1

k j
uk j } converges pointwise almost everywhere tow(n) on G.Combining these

facts, we obtain that

w(n)(p) = lim
j
(g(n)

−1

k j
uk j )(p)

(2.2)= lim
j

uk j (η
(n)−1

k j
◦ p) = 0,

which proves the claim.
Case 2 We assume now that μ(lim inf(η(n)k ◦ G0)) > 0. From the hypotheses (H)G0

T
it follows that there exists a subsequence {ηk j } of {ηk} and a subgroup T{ηk j } of T with

card(T{ηk j }) = ∞ verifying relation (3.2). Assume by contradiction that w(n) �= 0 for some

n ≥ 2. Let L ∈ N, and fix the mutually distinct elements τ̂1, . . . , τ̂L ∈ T{ηk j }. It is clear that
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∥
∥
∥
∥
∥

uk j −
L∑

l=1

(τ̂l#w
(n))((τ̂l ∗ η(n)k j

) ◦ ·)
∥
∥
∥
∥
∥

2

H W (G)

≥ 0.

After the expansion of this expression, we obtain that

‖uk j ‖2
H W (G) − 2

L∑

l=1

I l
j +

L∑

l1=1

L∑

l2=1

I l1,l2
j ≥ 0, (6.5)

where

I l
j := 〈uk j , (τ̂l#w

(n))((τ̂l ∗ η(n)k j
) ◦ ·)〉H W (G),

and

I l1,l2
j := 〈(τ̂l1 #w(n))((τ̂l1 ∗ η(n)k j

) ◦ ·), (τ̂l2 #w(n))((τ̂l2 ∗ η(n)k j
) ◦ ·)〉H W (G).

First, we have that

I l
j = 〈uk j , (τ̂l#w

(n))((τ̂l ∗ η(n)k j
) ◦ ·)〉H W (G)

= 〈uk j ((τ̂l ∗ η(n)k j
)−1 ◦ ·), τ̂l#w

(n)〉H W (G) (cf. left invariance of ‖ · ‖H W (G))

= 〈uk j ((τ̂l ∗ η(n)−1

k j
) ◦ ·), τ̂l#w

(n)〉H W (G) (cf. (TG2))

= 〈(τ̂−1
l #uk j )(η

(n)−1

k j
◦ (τ̂−1

l ∗ ·)), τ̂l#w
(n)〉H W (G) (cf. (TG2) and (3.1))

= 〈uk j (η
(n)−1

k j
◦ (τ̂−1

l ∗ ·)), τ̂l#w
(n)〉H W (G) (cf. (6.1))

= 〈(g(n)−1

k j
uk j )(τ̂

−1
l ∗ ·), τ̂l#w

(n)〉H W (G) (cf. (2.2))

= 〈τ̂l#(g
(n)−1

k j
uk j ), τ̂l#w

(n)〉H W (G) (cf. (3.1))

= 〈(g(n)−1

k j
uk j ), w

(n)〉H W (G). (T acts isometrically on H W 1,2
0 (G), τ̂l ∈ T )

Therefore, according to (6.2), one has for every l ∈ {1, . . . , L} that

lim
j

I l
j = lim

j
〈g(n)−1

k j
uk j , w

(n)〉H W (G) = ‖w(n)‖2
H W (G). (6.6)

Now, in order to estimate I l1,l2
j , we distinguish two cases. First, let l1 = l2 =: l. Since

the H W (G)-norm is left-invariant with respect to translations and T acts isometrically on
H W 1,2

0 (G), we have

I l,l
j = ‖w(n)‖2

H W (G). (6.7)

Second, let l1 �= l2. We claim that

lim
j

I l1,l2
j = 0. (6.8)

Indeed, relation (3.2) from hypothesis (H)G0
T , the density of C∞

0 (G) in H W 1,2
0 (G), as well

as the Lebesgue dominance theorem imply relation (6.8). Roughly speaking, the geometri-
cal meaning of the above phenomenon is that the compact supports of the approximating
functions for τ̂li #w

(n)(i = 1, 2) are far from each other after ’distant’ left-translations. Now,
combining relations (6.5)-(6.8), it yields
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‖uk j ‖2
H W (G) ≥ L‖w(n)‖2

H W (G) + o(1).

Since card(T{ηk j }) = ∞, then L can be fixed arbitrary large, which contradicts the bound-

edness of {uk j }. Therefore, w(n) = 0.
Consequently, in both cases we have w(n) = 0 for every n ≥ 2. Now, from (6.4), up to

a subsequence, it yields that uk
DG
⇀ w(1). By using Tintarev and Fieseler [22, Lemma 9.12,

p. 223], it follows that uk → w(1) strongly in Lq(G), q ∈ (2, 2∗
Q). The trivial extension of

uk to G \ G0 by zero yields that uk → w(1)|G0 strongly in Lq(G0), q ∈ (2, 2∗
Q), which

concludes the proof. �
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