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Abstract

I The main result: a method to numericaly approximate
the solutions of certain parabolic equations.

I Ultimate applications: to Finance (option pricing).

I Connection through Probability and Stochastic calc.

I Techniques from Geometric analysis (complete metrics)
and Numerical methods for polyhedral domains (Melrose,
Struwe, Dauge, Schwab, ... ).

I Error estimates using pseudodifferential operators (Farkas,
Schulze, Triebel, ... ).
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Motivation

I General Problem: Find fast, precise numerical methods to
price Financial Derivatives (Contingent Claims).

I Almost 600 Trillion on the market (US 14T).

I Lehman Broth. deriv. (2T) > Stimulus package (800B).

I The pricing problem can be reduced to solving a (backw.)
parabolic partial differential equation (Kolmogorov).

I Difficult to solve numerically (evolution equations, curse of
dimensionality, non-bounded domains).
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Black-Scholes-Merton model
Risky asset Xt modeled by geometric Brownian motion (w. drift)

dXt = µXtdt + σXtdWt .

with σ the volatility and µ the average rate of return (constant).

The no arbitrage value of a European Option U on Xt with
payoff h(XT ) at maturity T is then the discounted expectation

UBSM(t , x) = EQ[e−r(T−t)h(Xt ) |Xt = x ]

=

∫ ∞
0
GBSM

T−t (x , y)h(y)dy ,

GBSM
T−t (x , y) =risk-neutral transition density kernel = Green

function and r =risk free interest rate. We approximate Gt for
general models.
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Black-Scholes-Merton formula

For Call Options (the right to buy the asset X at time T for the
price K )

h(XT ) = max{0,XT − K}

and explicit evaluation of the above integral is possible:

UBSM(t , x) = xN (d−) + Ke−r(T−t)N (d+),

where N (x) =
∫ x
−∞

1√
2π

e−z2/2 and

d± =
ln(x/K ) + (r ± σ2/2)(T − t)

σ
√

T − t
.

Very few other explicit formulas are known.
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Black-Scholes PDE
Let us change τ = T − t and denote

LU(τ, x) =
σ2x2

2
∂2

x U(τ, x) + rx∂xU(τ, x)− rU(τ, x)

(Black-Scholes). Then the option price U = UBSM satisfies{
(∂τ − L)U(τ, x) = 0,
U(0, x) = h(x),

Therefore GBSM
τ (x , y) is the Green function (fundamental

solution) of ∂τ − L, namely,

UBSM(τ, x) =

∫ ∞
0
GBSM
τ (x , y)h(y)dy .
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Other equations
The Black-Scholes Partial Differential Equation (PDE) will
be a test case for the results to follow.
Problems in practice:

I The prices of stocks are not log-normal (fat tails, driven by
a Levy process: Schwab-Farkas).

I The implied volatility is not constant (volatility smile).
Other models were also proposed

dXt = µXtdt + σ(t)Xβ
t dWt .

time-dependent CEV model, with PDE ∂t − L

LU(τ, x) =
σ(t)2x2β

2
∂2

x U(τ, x) + rx∂xU(τ, x)− rU(τ, x).
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SABR Model
Lesniewsky and all.: the volatility is not only non-constant, it is
even stochastic (µ, ν const., often C(x) = xβ){

dXt = µXtdt + σtC(Xt )dWt

dσt = νσtdZt .

For two (correlated) Gaussian processes Wt and Zt ,

d [Wt ,Zt ] = ρdt ,

the PDE is ∂t − L with (y =volatility)

2L = y2(C(x)2∂2
x + 2ρνC(x)∂x∂y + ν2∂2

y
)
.
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SABR Solutions

I No exact (closed form) solutions are known.

I Approximate solutions using the natural metric defined by
the SABR PDE (Varadhan metric).

I Varadhan metric = hyperbolic metric for C(X ) = X .

I The Laplace operator L0 associated to the hyperbolic
metric on R2

+ is such that ∂t − L0 has an explicit Green
function

I L = L0 + V , with V of order one. Use Dyson series (below).
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Green’s Function
I Our Main Problem: Solve numerically the parabolic

partial differential equation{
∂tu(t , x)− Lu(t , x) = f (t)
u(0, x) = h(x), x ∈ Rn,

L =
∑
i,j

aij(x)∂i∂j +
∑

j

bj(x)∂j + c(x),

Often (!) ∂tu − Lu = 0 and u(0) = h is given by

u(t , x) =

∫
GL

t (x , y)h(y)dy =: etLu(x).

I Our main result: explicitly computable approximations of
the Green function GL

t (x , y) that is accurate to order tk .
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Geometry
Assumptions (and results): in terms of geometry
[aij ]

−1 = [aij ] symmetric, positive definite, and
∑

ij aijdx idx j

(Varadhan metric).
Length of a curve γ : [a,b]→ Rn is then

`(γ) =

∫ b

a

√∑
ij

aijγ′i (t)γ
′
j (t) dt

d(x , y) = inf `(γ), for `(a) = x , `(b) = y .

lim
t→0+

t lnGt (x , y) = −d(x , y)2/4.

Varadhan for time independent case
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WKB Heat Kernel short-time asymptotic

Short-time asymptotic expansions well-known in literature:
Assume L = Laplace-Beltrami operator

Gt (x , y) =
e−

d(x,y)2

4t

(4πt)N/2

(
G0(x , y) + G1(x , y)t + G2(x , y)t2 + . . .

)
,

d(x , y) distance in Varadhan metric (McKean-Singer,
Atiyah-Singer, Bismut, Avellaneda, ... ).

More generally, operators of the form ∇∗∇+ V for a potential
V , the famous WKB approximation (Henry-Labordere, Kampen,
Gatheral and Lawrence, ... ).
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For the CEV model

d(x , y) =

√
2
σ

∣∣∣ ∫ y

x
t−βdt

∣∣∣,
so d(0, x) <∞ for β ∈ (0,1), incomplete metric.

For the Black-Scholes-Merton PDE (β = 1), the metric is
d(x , y) =

√
2
∣∣ ln(x/y)

∣∣/σ, complete: d(0, x) =∞, and

Gτ (x , y) =
1

σx
√

2πτ
e−
(

ln(x/y)+σ2τ/2
)2

2σ2τ

Issues: In general, the distance d(x , y) and the coefficient
functions Gj are difficult to compute.
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Semi-classical Heat Kernel asymptotics

Let w = (x − y)/
√

t

GL
t (x , y) ∼ t−n/2

∑
j≥0

t j/2pj(x ,w)e
−wT A(x)−1w

4

=
∑
j≥0

t(j−n)/2pj
(
x , t−1/2(x − y)

)
e
−(x−y)T A(x)−1(x−y)

4t ,

pj(x ,w) a polynomial of degree j in w (Greiner, Taylor, us, ...).

Issues: Computation of pj? Approximating the diffusion
(covariance) matrix by A(x) seems not to be the best choice.

V. Nistor Approx of parabolic equations



Introduction
Main Result

Examples and tests
Sketch of Proof

Statement
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Our results:
I An algorithm to compute the polynomials pj ,
I error estimates for the remainder and tests,
I x replaced by z(x , y) between x and y in exponential.

Let w = (x − y)/
√

t , ξ = (x − z)/
√

t ,

GL
t (x , y) ∼

∑
j≥0

t(j−n)/2pj
(
z, ξ, ∂x

)
e
−wT A(z)−1w

4

=
∑
j≥0

t(j−n)/2Pj
(
z, t−1/2(x − z), t−1/2(x − y)

)
e
−(x−y)T A(z)−1(x−y)

4t .

G[µ,z]
t (x , y)=

µ∑
j=0

t(j−n)/2Pj
(
z, t−1/2ξ, t−1/2w

)
e
−wT A(z)−1w

4t .
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Main Result

We can find explicit polynomials P`(z, x , y) such that the error

etLf (x) =

∫
RN
G[µ,z]

t (x , y)f (y)dy + t(µ+1)/2E [µ,z]
t f (x).

satisfies
‖E [µ,z]

t f‖W m+k,p
a

≤ Ct−k/2‖f‖W m,p
a
,

with C independent of t ∈ [0,T ], 0 < T <∞.

Here W m,p
a are weighted Sobolev spaces (derivatives up to

order m in ea|x |Lp).

Suitable for the computation of greeks.
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Our expansion
I parabolic rescaling, z = dilation center, s =

√
t :

us,z(t , x) := u(s2t , z + s(x − z)),

Ls,z :=
N∑

i,j=1

as,z
ij (x)∂i∂j + s

N∑
i=1

bs,z
i (x)∂i + s2cs,z(x),

(∂t − Ls,z)us,z = 0.

I Compute eLs,z
instead of etL.

I Taylor expansion in s coupled with time-ordered
perturbative expansion via Duhamel’s principle.

I Eventually, the dilation center z will be allowed to be a
function of x , y (improved accuracy).
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Assumptions

I We work with u : [0,∞)× RN → C.

I The main assumptions: [aij ] is symmetric, positive
definite, and the functions aij , bi , c, and det([aij ])

−1 and
their derivatives are bounded.

I det([aij ])
−1 bounded means uniform ellipticity.

I In particular, the Varadhan metric is complete.

I Extends to other cases (Black-Scholes-Merton), but we
need a complete metric.

I z : R2N → RN satisfies z(x , x) = x and has bounded
derivatives (admissible). Ex: z(x , y) = x , y , or (x + y)/2.
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Some remarks

I First few terms of expansion agrees with semi-classical
approx if z = x . Otherwise, more general.

Choice of z = x not always optimal.
I Error estimates are global on RN (generalize to complete

non-compact manifolds).
I Even when z = x , our method is more easily

implementable in practice.
I Solution has closed form in term of Error Functions if initial

data is piece-wise linear (e.g. option pricing data).
I Very fast implementation is crucial in applications
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1D Formulas
Let L(x) = 1

2a(t , x)2∂2
x + b(t , x)∂x + c(t , x), second-order

approx kernel:

G2(x , y ; z) =

(
1
2

Lz
2,τ + Lz

2,x +
1
2

[Lz
0,L

z
2,x ] +

1
6

[Lz
0, [L

z
0,L

z
2,x ]]

+
1
2

Lz,2
1 +

1
3

Lz
1[Lz

0,L
z
1] +

1
6

[Lz
0,L

z
1]Lz

1 +
1
8

[Lz
0,L

z
1]2
)

eLz
0

=

(
P0 +

6∑
i=1

PiHi(x − y)

)
eLz

0 (x − y) .

where Hj are Hermite polynomials and Pj are polynomials in
x − z with coefficients given in terms of the values of the
functions a, b, and c, and their derivatives, all evaluated at
z = z(x , y), as follows
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P0 = c = c(0, z), P1 = b′(x − z),

P2 =
1
2

[1
2

a3a′′ + a2b′ + a2a′2/2 + b2 + a′2(x − z)2

+ a
(

ba′ + ȧ + a′′(x − z)2
) ]
,

P3 = a(x − z)(a′b +
1
2

a2a′′ +
3
2

aa′2),

P4 =
a2

3

[1
2

a3a′′ + 2a2a′2 +
3
2

aa′b +
3
2

a′2(x − z)2
]
,

P5 =
1
2

a4a′2(x − z), P6 =
1
8

a6a′2.

(1)
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The CEV Model
J.C. Cox, S. A. Ross (skewed “smiles”)

L(x) =
1
2
σ(t)2x2α∂2

x + rx∂x − r , α > 0.

Series solution formulas exist (Cox-Ross, D.Emanuel-J.
MacBeth) in terms of Bessel’s functions.

Our 1st-order approximate solution for z = x :

U [1]
CEV (τ, x) =

σxα−1√τ
2
√

2π
e−

(x−K )2

2σ2ατ ((2− α)x − αK )

+
1
2
·
(

erf
(

x − K√
2τσxα

)
+ 1
)

((1 + rτ)x − K )
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Numerical Test
For β = 1 (Black-Scholes-Merton) our second order
approximation is as good as the exact formula for σ2τ < .01.
For CEV β = 2

3 ,K = 15, σ = 0.3, r = 0.1, 5 < x < 25 we get

Figure: τ = 0.1
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Figure: τ = 0.5
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Large time solutions
BSM model: maturity τ = 1, K = 20 (100 on picture), r = 10%,
and σ = 0.5.
n = 10 bootstrap steps (interm. val. τ = k/10).
Numerical integration on (0,200) (400).
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Duhamel’s Formula
Consider the equation{

(∂t − L)u(t , x) = 0,
u(0, x) = h(x),

Then u = etLh, with etL an analytic semigroup. The equation{
(∂t − L)u(t , x) = f (τ),

u(0, x) = h(x),

has solution

u(t) = etLh +

∫ t

0
e(t−s)Lf (s)ds.
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Time ordered products

Let us write L = L0 + V and our equation in the form{
(∂t − L0)u(t , x) = Vu,
u(0, x) = h(x),

Since u = etLh, we obtain from Duhamel’s formula

etLh = etL0h +

∫ t

0
e(t−s)L0VesLuds.
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Iterating Duhamel’s gives time-ordered (Dyson) expansion:

eL = eL0 +

∫ 1

0
e(1−τ1)L0Veτ1L0dτ1

+

∫ 1

0

∫ τ1

0
e(1−τ1)L0Ve(τ1−τ2)L0Veτ2L0dτ2dτ1 + · · ·+

+

∫ 1

0

∫ τ1

0
. . .

∫ τd−1

0
e(1−τ1)L0Ve(τ1−τ2)L0 . . . e(τd−1−τd )L0Veτd L0dτd . . . dτ1

+

∫ 1

0
. . .

∫ τd

0
e(1−τ1)L0Ve(τ1−τ2)L0 . . . e(τd−τd+1)L0Veτd+1Ldτd+1 . . . dτ1

L0 = L0,z =
∑

aij∂i∂j from parabolic rescaling,

The idea is that we can compute eτL0 and the integrals, except
the last term, which will be included in the error.
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Dilation and Taylor expansion

Given fixed point z

Ls,z :=
N∑

i,j=1

as,z
ij (x)∂i∂j + s

N∑
i=1

bs,z
i (x)∂i + s2cs,z(x) ⇒

GL
t (x , y) = s−NGLs,z

1 (z + s−1(x − z), z + s−1(y − z)), t = s2.

So it is enough to compute eLs,z
, for all s, and then by rescaling

back we obtain eL, where u(t) = etLh.
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Taylor expansion

Taylor expand Ls,z to order n = d in s at 0:

Ls,z =
n∑

m=0

smLz
m + sn+1Ls,z

n+1 = L0 + V

where all the term containing powers of s are contained in V .
Then collect the powers of s.
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Thus L0 = Lz
0 =

∑
ij aij(z)∂i∂j , constant-coefficient operator:

eLz
0 (x , y) =

1√
4π det(A(z))

e−
(x−y)T A−1(z)(x−y)

4 .

Collecting the powers of s, Dyson expansion becomes:

eLs,z
= eLz

0 +

µ∑
`=1

s`Λ`z +

max(`,n+1)∑
`=µ+1

s`Λ`z =

µ∑
`=0

s`Λ`z + sµ+1Es,z
µ ,

Es,z
µ = the error, and Λ0

z = eLz
0
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In

eLs,z
= eLz

0 +

µ∑
`=1

s`Λ`z +

max(`,n+1)∑
`=µ+1

s`Λ`z =

µ∑
`=0

s`Λ`z + sµ+1Es,z
µ ,

we decompose Λ`z :=
∑

α Λα,z

Λα,z :=

∫
Σk

eτ0Lz
0Lz
α1

eτ1Lz
0Lz
α2
· · · Lz

αk
eτk Lz

0dτ,

for 1 ≤ k ≤ n, while if k = n + 1,

Λα,z :=

∫
Σn+1

eτ0Lz
0Lz
α1

eτ1Lz
0Lz
α2
· · · Lz

αn+1
eτn+1Ls,z

dτ.
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Commutators

If α ∈ A`, T = Lz
α differential operator of order 2 and degree `

polynomial coefficients.

Introduce adT (L) = [T ,L] = TL−LT , ad j
T (L) = adT (ad j−1

T (L)).

We prove a Campbell-Baker-Hasdorff formula

eθL0T = Pα(L0,T , θ)eθL0 ,

where

P`(L,T , θ) :=
∑̀
k=0

θk

k !
adk

L(T ).
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Expansion revisited

For ` ≤ n, then have

Λz
α =

∫
Σk

k∏
i=1

Pαi (L
z
0,L

z
αi

; 1− τi)dτeLz
0 := Pα(x , z, ∂)eLz

0 ,

with
Pα(x , z, ∂) =

∑
|β|≤`

∑
|γ|≤`+2k

aβ,γ(z)(x − z)β∂γx ,

aβ,γ smooth, bounded function.

Using explicit formula for eLz
0 (x , y), dilating back, substituting

z = z(x , y) gives the final formula for the approximation kernel.
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Error Estimates
Let z = z(x , y) admissible, s = t1/2.
Two types of error terms in E [µ,z]

t , operator with kernel:

s−N Es,z
µ (z + s−1(x − z), z + s−1(y − z)).

1. For µ < ` ≤ n, operators Ls,` with kernel

s−NΛ`z(z + s−1(x − z), z + s−1(y − z)).

2. For ` ≥ n + 1, operators Ls,` with kernel

s−NΛs,`
z (z + s−1(x − z), z + s−1(y − z)).
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1. For µ < ` ≤ n, obtain error bounds uniformly in s in W r ,p
a ,

for all r ∈ R by showing:

Ls,` = bs(x , ∂), bs(x , ξ) = as(x , sξ),

for some family of symbols as bounded in S0
1,0.

2. For ` ≥ n + 1, use Riesz Lemma along with:

∂βx ∂
β′

z ∂
β′′

y Λs,`
z (x , y) = 〈∂βδx , ∂

β′

z Λs,`
z ∂β

′′
δy 〉 ⇒

‖Ls,`‖W r+k,p→W r,p ≤ CT t−k/2, t ∈ (0,T ].

This bound not optimal, but sufficient to prove sharp
estimate for E [µ,z]

t by choosing n > µ+ N − 1.
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