Dyson series and short time asymptotics for the Green function of stochastic volatility models in Finance

Wen Cheng Nick Costanzino Anna Mazzucato Victor Nistor ¹ Radu Constantinescu ² John Liechty ³

> ¹Department of Mathematics Penn State University

²Interest Rate Quantitative Group JPMorgan Chase

³Departments of Marketing and Statistics Penn State University

Abstract

- The main result: a method to numerically approximate the solutions of certain parabolic equations.
- Ultimate applications: to Finance (option pricing).
- Connection through Probability and Stochastic calc.
- Techniques from Geometric analysis (complete metrics) and Numerical methods for polyhedral domains (Melrose, Struwe, Dauge, Schwab, ...).
- ► Error estimates using pseudodifferential operators (Farkas, Schulze, Triebel, ...).

Outline

Introduction

Motivation (finance)
Green's Function

Main Result

Statement Assumptions

Examples and tests

Sketch of Proof

Pertubative expansion Commutator Estimates Error Estimates

Motivation

- General Problem: Find fast, precise numerical methods to price Financial Derivatives (Contingent Claims).
- Almost 600 Trillion on the market (US 14T).
- Lehman Broth. deriv. (2T) > Stimulus package (800B).
- ► The pricing problem can be reduced to solving a (backw.) parabolic partial differential equation (Kolmogorov).
- Difficult to solve numerically (evolution equations, curse of dimensionality, non-bounded domains).

Black-Scholes-Merton model

Risky asset X_t modeled by *geometric Brownian* motion (w. drift)

$$dX_t = \mu X_t dt + \sigma X_t dW_t.$$

with σ the *volatility* and μ the *average rate of return* (**constant**).

The **no arbitrage** value of a *European Option U* on X_t with payoff $h(X_T)$ at maturity T is then the discounted expectation

$$U_{BSM}(t,x) = \mathbb{E}^{\mathcal{Q}}[e^{-r(T-t)}h(X_t) \mid X_t = x]$$

$$= \int_0^\infty \mathcal{G}_{T-t}^{BSM}(x,y)h(y)dy,$$

 $\mathcal{G}_{T-t}^{BSM}(x,y)=$ risk-neutral transition density kernel = **Green** function and r= risk free interest rate. We approximate \mathcal{G}_t for personal models.

Black-Scholes-Merton formula

For *Call Options* (the right to buy the asset X at time T for the price K)

$$h(X_T) = \max\{0, X_T - K\}$$

and explicit evaluation of the above integral is possible:

$$U_{BSM}(t,x) = x\mathcal{N}(d_{-}) + Ke^{-r(T-t)}\mathcal{N}(d_{+}),$$

where $\mathcal{N}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$ and

$$d_{\pm} = \frac{\ln(x/K) + (r \pm \sigma^2/2)(T-t)}{\sigma\sqrt{T-t}}.$$

Very few other explicit formulas are known.

4 D > 4 P > 4 E > 4 E >

Black-Scholes PDE

Let us change $\tau = T - t$ and denote

$$LU(\tau,x) = \frac{\sigma^2 x^2}{2} \partial_x^2 U(\tau,x) + rx \partial_x U(\tau,x) - rU(\tau,x)$$

(Black-Scholes). Then the option price $U = U_{BSM}$ satisfies

$$\begin{cases} (\partial_{\tau} - L)U(\tau, x) = 0, \\ U(0, x) = h(x), \end{cases}$$

Therefore $\mathcal{G}_{\tau}^{BSM}(x,y)$ is the **Green function** (fundamental solution) of $\partial_{\tau} - L$, namely,

$$U_{BSM}(au,x)=\int_0^\infty \mathcal{G}_{ au}^{BSM}(x,y)h(y)dy.$$

Other equations

The **Black-Scholes Partial Differential Equation** (PDE) will be a **test case** for the results to follow.

Problems in practice:

- ► The prices of stocks are not log-normal (fat tails, driven by a Levy process: Schwab-Farkas).
- ► The implied volatility is not constant (volatility smile).

Other models were also proposed

$$dX_t = \mu X_t dt + \sigma(t) X_t^{\beta} dW_t.$$

time-dependent CEV model, with PDE $\partial_t - L$

$$LU(\tau,x) = \frac{\sigma(t)^2 x^{2\beta}}{2} \partial_x^2 U(\tau,x) + rx \partial_x U(\tau,x) - rU(\tau,x).$$

SABR Model

Lesniewsky and all.: the volatility is not only non-constant, it is even **stochastic** (μ , ν const., often $C(x) = x^{\beta}$)

$$\begin{cases} dX_t = \mu X_t dt + \sigma_t C(X_t) dW_t \\ d\sigma_t = \nu \sigma_t dZ_t. \end{cases}$$

For two (correlated) Gaussian processes W_t and Z_t ,

$$d[W_t, Z_t] = \rho dt,$$

the PDE is $\partial_t - L$ with (y = volatility)

$$2L = y^2 (C(x)^2 \partial_x^2 + 2\rho \nu C(x) \partial_x \partial_y + \nu^2 \partial_y^2).$$

SABR Solutions

- No exact (closed form) solutions are known.
- Approximate solutions using the natural metric defined by the SABR PDE (Varadhan metric).
- **Varadhan metric** = hyperbolic metric for C(X) = X.
- ▶ The Laplace operator L_0 associated to the hyperbolic metric on \mathbb{R}^2_+ is such that $\partial_t L_0$ has an explicit Green function
- ▶ $L = L_0 + V$, with V of order one. Use Dyson series (below).

Green's Function

▶ Our Main Problem: Solve numerically the parabolic partial differential equation

$$\begin{cases} \partial_t u(t,x) - Lu(t,x) = f(t) \\ u(0,x) = h(x), \quad x \in \mathbb{R}^n, \end{cases}$$
$$L = \sum_{i,j} a_{ij}(x)\partial_i\partial_j + \sum_j b_j(x)\partial_j + c(x),$$

Often (!) $\partial_t u - Lu = 0$ and u(0) = h is given by

$$u(t,x) = \int \mathcal{G}_t^L(x,y)h(y)dy =: e^{tL}u(x).$$

► Our main result: explicitly computable approximations of the Green function $\mathcal{G}_t^L(x,y)$ that is accurate to order t^k .

Geometry

Assumptions (and results): in terms of geometry

 $[a_{ij}]^{-1} = [a^{ij}]$ symmetric, positive definite, and $\sum_{ij} a^{ij} dx^i dx^j$ (Varadhan metric).

Length of a curve $\gamma:[a,b]\to\mathbb{R}^n$ is then

$$\ell(\gamma) = \int_a^b \sqrt{\sum_{ij} a^{ij} \gamma_i'(t) \gamma_j'(t)} dt$$

$$d(x, y) = \inf \ell(\gamma)$$
, for $\ell(a) = x$, $\ell(b) = y$.

$$\lim_{t\to 0+}t\ln\mathcal{G}_t(x,y)=-d(x,y)^2/4.$$

Varadhan for time independent case

4 D > 4 P > 4 E > 4 E >

WKB Heat Kernel short-time asymptotic

Short-time asymptotic expansions well-known in literature: Assume L = Laplace-Beltrami operator

$$G_t(x,y) = \frac{e^{-\frac{d(x,y)^2}{4t}}}{(4\pi t)^{N/2}} \left(G_0(x,y) + G_1(x,y)t + G_2(x,y)t^2 + \ldots \right),$$

d(x, y) distance in Varadhan metric (McKean-Singer, Atiyah-Singer, Bismut, Avellaneda, ...).

More generally, operators of the form $\nabla^*\nabla + V$ for a potential V, the famous WKB approximation (Henry-Labordere, Kampen, Gatheral and Lawrence, ...).

For the CEV model

$$d(x,y) = \frac{\sqrt{2}}{\sigma} \Big| \int_{x}^{y} t^{-\beta} dt \Big|,$$

so $d(0, x) < \infty$ for $\beta \in (0, 1)$, incomplete metric.

For the Black-Scholes-Merton PDE ($\beta=1$), the metric is $d(x,y)=\sqrt{2}\left|\ln(x/y)\right|/\sigma$, complete: $d(0,x)=\infty$, and

$$\mathcal{G}_{\tau}(x,y) = \frac{1}{\sigma x \sqrt{2\pi\tau}} e^{-\frac{\left(\ln(x/y) + \sigma^2 \tau/2\right)^2}{2\sigma^2 \tau}}$$

Issues: In general, the distance d(x, y) and the coefficient functions G_i are difficult to compute.

Semi-classical Heat Kernel asymptotics

Let
$$w = (x - y)/\sqrt{t}$$

$$\begin{split} \mathcal{G}_t^L(x,y) &\sim t^{-n/2} \sum_{j \geq 0} t^{j/2} p_j(x,w) e^{\frac{-w^T A(x)^{-1} w}{4}} \\ &= \sum_{j \geq 0} t^{(j-n)/2} p_j(x,t^{-1/2}(x-y)) e^{\frac{-(x-y)^T A(x)^{-1}(x-y)}{4t}}, \end{split}$$

 $p_j(x, w)$ a polynomial of degree j in w (Greiner, Taylor, us, ...).

Issues: Computation of p_j ? Approximating the diffusion (covariance) matrix by A(x) seems not to be the best choice.

Our results:

- An algorithm to compute the polynomials p_j
- error estimates for the remainder and tests,
- \triangleright x replaced by z(x, y) between x and y in exponential.

Let
$$w = (x - y)/\sqrt{t}$$
, $\xi = (x - z)/\sqrt{t}$,

$$\mathcal{G}_t^L(x,y) \sim \sum_{j\geq 0} t^{(j-n)/2} p_j(z,\xi,\partial_x) e^{\frac{-w^T A(z)^{-1}w}{4}}$$

$$= \sum_{j\geq 0} t^{(j-n)/2} \mathfrak{P}_{j}(z, t^{-1/2}(x-z), t^{-1/2}(x-y)) e^{\frac{-(x-y)^{T} A(z)^{-1}(x-y)}{4t}}.$$

$$\mathcal{G}_{t}^{[\mu,z]}(x,y) = \sum_{i=0}^{\mu} t^{(i-n)/2} \mathfrak{P}_{j}(z,t^{-1/2}\xi,t^{-1/2}w) e^{\frac{-w^{T}A(z)^{-1}w}{4t}}.$$

Main Result

We can find explicit polynomials $\mathfrak{P}^{\ell}(z, x, y)$ such that the error

$$e^{tL}f(x) = \int_{\mathbb{R}^N} \mathcal{G}_t^{[\mu,z]}(x,y)f(y)dy + t^{(\mu+1)/2}\mathcal{E}_t^{[\mu,z]}f(x).$$

satisfies

$$\|\mathcal{E}_{t}^{[\mu,z]}f\|_{W_{a}^{m+k,p}}\leq Ct^{-k/2}\|f\|_{W_{a}^{m,p}},$$

with *C* independent of $t \in [0, T]$, $0 < T < \infty$.

Here $W_a^{m,p}$ are **weighted Sobolev spaces** (derivatives up to order m in $e^{a|x|}L^p$).

Suitable for the computation of greeks.

Our expansion

▶ parabolic rescaling, z = dilation center, $s = \sqrt{t}$:

$$u^{s,z}(t,x) := u(s^2t, z + s(x - z)),$$

$$L^{s,z} := \sum_{i,j=1}^{N} a_{ij}^{s,z}(x)\partial_i\partial_j + s\sum_{i=1}^{N} b_i^{s,z}(x)\partial_i + s^2c^{s,z}(x),$$

$$(\partial_t - L^{s,z})u^{s,z} = 0.$$

- Compute e^{Ls,z} instead of e^{tL}.
- ► Taylor expansion in *s* coupled with time-ordered perturbative expansion via Duhamel's principle.
- Eventually, the dilation center z will be allowed to be a function of x, y (improved accuracy).

Assumptions

- ▶ We work with $u:[0,\infty)\times\mathbb{R}^N\to\mathbb{C}$.
- ► The **main assumptions:** $[a_{ij}]$ is symmetric, positive definite, and the functions a_{ij} , b_i , c, and $det([a_{ij}])^{-1}$ and their derivatives are bounded.
- ▶ $det([a_{ij}])^{-1}$ bounded means uniform ellipticity.
- ▶ In particular, the Varadhan metric is complete.
- Extends to other cases (Black-Scholes-Merton), but we need a complete metric.
- ▶ $z : \mathbb{R}^{2N} \to \mathbb{R}^N$ satisfies z(x, x) = x and has bounded derivatives (admissible). Ex: z(x, y) = x, y, or (x + y)/2.

Some remarks

- First few terms of expansion agrees with semi-classical approx if z = x. Otherwise, more general.
 - Choice of z = x not always optimal.
- ► Error estimates are global on \mathbb{R}^N (generalize to *complete non-compact* manifolds).
- Even when z = x, our method is more easily implementable in practice.
- Solution has closed form in term of Error Functions if initial data is piece-wise linear (e.g. option pricing data).
- Very fast implementation is crucial in applications

1D Formulas

Let $L(x) = \frac{1}{2}a(t,x)^2\partial_x^2 + b(t,x)\partial_x + c(t,x)$, second-order approx kernel:

$$\begin{split} G_2(x,y;z) &= \left(\frac{1}{2}L_{2,\tau}^z + L_{2,x}^z + \frac{1}{2}[L_0^z, L_{2,x}^z] + \frac{1}{6}[L_0^z, [L_0^z, L_{2,x}^z]] \right. \\ &+ \frac{1}{2}L_1^{z,2} + \frac{1}{3}L_1^z[L_0^z, L_1^z] + \frac{1}{6}[L_0^z, L_1^z]L_1^z + \frac{1}{8}[L_0^z, L_1^z]^2\right) e^{L_0^z} \\ &= \left(P_0 + \sum_{i=1}^6 P_i H_i(x-y)\right) e^{L_0^z}(x-y) \,. \end{split}$$

where H_j are Hermite polynomials and P_j are polynomials in x - z with coefficients given in terms of the values of the functions a, b, and c, and their derivatives, all evaluated at z = z(x, y), as follows

$$P_{0} = \mathbf{c} = \mathbf{c}(0, z), \quad P_{1} = b'(x - z),$$

$$P_{2} = \frac{1}{2} \left[\frac{1}{2} a^{3} a'' + a^{2} b' + a^{2} a'^{2} / 2 + b^{2} + a'^{2} (x - z)^{2} + a \left(b a' + \dot{\mathbf{a}} + a'' (x - z)^{2} \right) \right],$$

$$P_{3} = a(x - z) (a'b + \frac{1}{2} a^{2} a'' + \frac{3}{2} a a'^{2}),$$

$$P_{4} = \frac{a^{2}}{3} \left[\frac{1}{2} a^{3} a'' + 2a^{2} a'^{2} + \frac{3}{2} a a' b + \frac{3}{2} a'^{2} (x - z)^{2} \right],$$

$$P_{5} = \frac{1}{2} a^{4} a'^{2} (x - z), \quad P_{6} = \frac{1}{8} a^{6} a'^{2}.$$

$$(1)$$

The CEV Model

J.C. Cox, S. A. Ross (skewed "smiles")

$$L(x) = \frac{1}{2}\sigma(t)^2 x^{2\alpha} \partial_x^2 + rx \partial_x - r, \qquad \alpha > 0.$$

Series solution formulas exist (Cox-Ross, D.Emanuel-J. MacBeth) in terms of Bessel's functions.

Our 1st-order approximate solution for z = x:

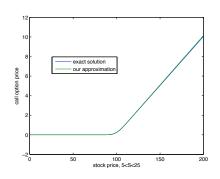
$$U_{CEV}^{[1]}(\tau, x) = \frac{\sigma x^{\alpha - 1} \sqrt{\tau}}{2\sqrt{2\pi}} e^{-\frac{(x - K)^2}{2\sigma^2 \alpha_\tau}} \left((2 - \alpha)x - \alpha K \right) + \frac{1}{2} \cdot \left(\operatorname{erf} \left(\frac{x - K}{\sqrt{2\tau} \sigma x^{\alpha}} \right) + 1 \right) \left((1 + r\tau)x - K \right)$$

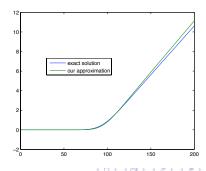
Numerical Test

For $\beta=1$ (Black-Scholes-Merton) our second order approximation is as good as the exact formula for $\sigma^2\tau<.01$. For CEV $\beta=\frac{2}{3}$, K=15, $\sigma=0.3$, r=0.1, 5< x<25 we get

Figure:
$$\tau = 0.1$$

Figure: $\tau = 0.5$



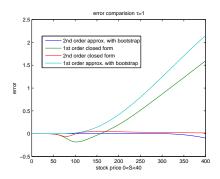


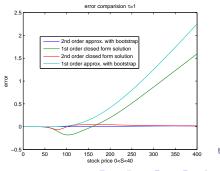
Large time solutions

BSM model: maturity $\tau = 1$, K = 20 (100 on picture), r = 10%, and $\sigma = 0.5$.

n = 10 bootstrap steps (interm. val. $\tau = k/10$).

Numerical integration on (0, 200) (400).





Duhamel's Formula

Consider the equation

$$\begin{cases} (\partial_t - L)u(t,x) = 0, \\ u(0,x) = h(x), \end{cases}$$

Then $u = e^{tL}h$, with e^{tL} an analytic semigroup. The equation

$$\begin{cases} (\partial_t - L)u(t, x) = f(\tau), \\ u(0, x) = h(x), \end{cases}$$

has solution

$$u(t) = e^{tL}h + \int_0^t e^{(t-s)L}f(s)ds.$$

Time ordered products

Let us write $L = L_0 + V$ and our equation in the form

$$\begin{cases} (\partial_t - L_0)u(t,x) = Vu, \\ u(0,x) = h(x), \end{cases}$$

Since $u = e^{tL}h$, we obtain from Duhamel's formula

$$e^{tL}h = e^{tL_0}h + \int_0^t e^{(t-s)L_0} Ve^{sL}uds.$$

Iterating Duhamel's gives time-ordered (Dyson) expansion:

$$\begin{split} e^{L} &= e^{L_{0}} + \int_{0}^{1} e^{(1-\tau_{1})L_{0}} V e^{\tau_{1}L_{0}} d\tau_{1} \\ &+ \int_{0}^{1} \int_{0}^{\tau_{1}} e^{(1-\tau_{1})L_{0}} V e^{(\tau_{1}-\tau_{2})L_{0}} V e^{\tau_{2}L_{0}} d\tau_{2} d\tau_{1} + \dots + \\ &+ \int_{0}^{1} \int_{0}^{\tau_{1}} \dots \int_{0}^{\tau_{d-1}} e^{(1-\tau_{1})L_{0}} V e^{(\tau_{1}-\tau_{2})L_{0}} \dots e^{(\tau_{d-1}-\tau_{d})L_{0}} V e^{\tau_{d}L_{0}} d\tau_{d} \dots d\tau_{1} \\ &+ \int_{0}^{1} \dots \int_{0}^{\tau_{d}} e^{(1-\tau_{1})L_{0}} V e^{(\tau_{1}-\tau_{2})L_{0}} \dots e^{(\tau_{d}-\tau_{d+1})L_{0}} V e^{\tau_{d+1}L} d\tau_{d+1} \dots d\tau_{1} \end{split}$$

$$L_0 = L^{0,z} = \sum a_{ij} \partial_i \partial_j$$
 from parabolic rescaling,

The idea is that we can compute $e^{\tau L_0}$ and the integrals, except the last term, which will be included in the error.

Dilation and Taylor expansion

Given fixed point z

$$L^{s,z} := \sum_{i,j=1}^{N} a_{ij}^{s,z}(x) \partial_i \partial_j + s \sum_{i=1}^{N} b_i^{s,z}(x) \partial_i + s^2 c^{s,z}(x) \quad \Rightarrow \quad$$

$$\mathcal{G}_t^L(x,y) = s^{-N} \mathcal{G}_1^{L^{s,z}}(z+s^{-1}(x-z),z+s^{-1}(y-z)), \quad t=s^2.$$

So it is enough to compute $e^{L^{s,z}}$, for all s, and then by rescaling back we obtain e^L , where $u(t) = e^{tL}h$.

Taylor expansion

Taylor expand $L^{s,z}$ to order n = d in s at 0:

$$L^{s,z} = \sum_{m=0}^{n} s^{m} L_{m}^{z} + s^{n+1} L_{n+1}^{s,z} = L_{0} + V$$

where all the term containing powers of s are contained in V. Then collect the powers of s.

Thus $L_0 = L_0^z = \sum_{ij} a^{ij}(z) \partial_i \partial_j$, constant-coefficient operator:

$$e^{L_0^z}(x,y) = \frac{1}{\sqrt{4\pi \det(A(z))}} e^{-\frac{(x-y)^TA^{-1}(z)(x-y)}{4}}.$$

Collecting the powers of *s*, Dyson expansion becomes:

$$e^{\mathcal{L}^{s,z}} = \ e^{\mathcal{L}^z_0} + \sum_{\ell=1}^{\mu} s^\ell \Lambda_z^\ell + \sum_{\ell=\mu+1}^{\max(\ell,n+1)} s^\ell \Lambda_z^\ell = \sum_{\ell=0}^{\mu} s^\ell \Lambda_z^\ell + s^{\mu+1} \mathbb{E}_\mu^{s,z},$$

$$\mathbb{E}_{\mu}^{s,z}=$$
 the error, and $\Lambda_z^0=e^{L_0^z}$

In

$$e^{\mathcal{L}^{s,z}} = \ e^{\mathcal{L}^{z}_{0}} + \sum_{\ell=1}^{\mu} s^{\ell} \Lambda^{\ell}_{z} + \sum_{\ell=\mu+1}^{\max(\ell,n+1)} s^{\ell} \Lambda^{\ell}_{z} = \sum_{\ell=0}^{\mu} s^{\ell} \Lambda^{\ell}_{z} + s^{\mu+1} \mathbb{E}^{s,z}_{\mu},$$

we decompose $\Lambda_{z}^{\ell} := \sum_{\alpha} \Lambda_{\alpha,z}$

$$\Lambda_{\alpha,z} := \int_{\Sigma_k} e^{\tau_0 L_0^z} L_{\alpha_1}^z e^{\tau_1 L_0^z} L_{\alpha_2}^z \cdots L_{\alpha_k}^z e^{\tau_k L_0^z} d\tau,$$

for $1 \le k \le n$, while if k = n + 1,

$$\Lambda_{\alpha,\mathbf{Z}} := \int_{\Sigma_{n+1}} \mathbf{e}^{\tau_0 L_0^{\mathbf{Z}}} L_{\alpha_1}^{\mathbf{Z}} \mathbf{e}^{\tau_1 L_0^{\mathbf{Z}}} L_{\alpha_2}^{\mathbf{Z}} \cdots L_{\alpha_{n+1}}^{\mathbf{Z}} \mathbf{e}^{\tau_{n+1} L^{\mathbf{S},\mathbf{Z}}} d\tau.$$

Commutators

If $\alpha \in \mathfrak{A}_{\ell}$, $T = L_{\alpha}^{z}$ differential operator of order 2 and degree ℓ polynomial coefficients.

Introduce
$$ad_T(L) = [T, L] = TL - LT$$
, $ad_T^j(L) = ad_T(ad_T^{j-1}(L))$.

We prove a Campbell-Baker-Hasdorff formula

$$e^{\theta L_0}T = P_{\alpha}(L_0, T, \theta)e^{\theta L_0},$$

where

$$P_{\ell}(L, T, \theta) := \sum_{k=0}^{\ell} \frac{\theta^k}{k!} \operatorname{ad}_L^k(T).$$

Expansion revisited

For $\ell \leq n$, then have

$$\Lambda_{\alpha}^{z} = \int_{\Sigma_{k}} \prod_{i=1}^{k} P_{\alpha_{i}}(L_{0}^{z}, L_{\alpha_{i}}^{z}; 1 - \tau_{i}) d\tau e^{L_{0}^{z}} := \mathcal{P}_{\alpha}(x, z, \partial) e^{L_{0}^{z}},$$

with

$$\mathcal{P}_{\alpha}(x,z,\partial) = \sum_{|\beta| \leq \ell} \sum_{|\gamma| \leq \ell+2k} a_{\beta,\gamma}(z) (x-z)^{\beta} \partial_{x}^{\gamma},$$

 $\mathbf{a}_{\beta,\gamma}$ smooth, bounded function.

Using explicit formula for $e^{L_0^z}(x, y)$, dilating back, substituting z = z(x, y) gives the final formula for the approximation kernel.

Error Estimates

Let z = z(x, y) admissible, $s = t^{1/2}$. Two types of error terms in $\mathcal{E}_t^{[\mu, z]}$, operator with kernel:

$$s^{-N} \mathbb{E}^{s,z}_{\mu}(z+s^{-1}(x-z),z+s^{-1}(y-z)).$$

1. For $\mu < \ell \le n$, operators $\mathcal{L}_{s,\ell}$ with kernel

$$s^{-N}\Lambda_z^{\ell}(z+s^{-1}(x-z),z+s^{-1}(y-z)).$$

2. For $\ell \geq n+1$, operators $\mathcal{L}_{s,\ell}$ with kernel

$$s^{-N}\Lambda_z^{s,\ell}(z+s^{-1}(x-z),z+s^{-1}(y-z)).$$

1. For $\mu < \ell \le n$, obtain error bounds *uniformly* in s in $W_a^{r,p}$, for all $r \in \mathbb{R}$ by showing:

$$\mathcal{L}_{s,\ell} = b_s(x,\partial), \qquad b_s(x,\xi) = a_s(x,s\xi),$$

for some family of symbols a_s bounded in $S_{1,0}^0$.

2. For $\ell \ge n+1$, use Riesz Lemma along with:

$$\partial_{\mathbf{x}}^{\beta}\partial_{\mathbf{z}}^{\beta'}\partial_{\mathbf{y}}^{\beta''}\Lambda_{\mathbf{z}}^{\mathbf{s},\ell}(\mathbf{x},\mathbf{y}) = \langle \partial^{\beta}\delta_{\mathbf{x}}, \partial_{\mathbf{z}}^{\beta'}\Lambda_{\mathbf{z}}^{\mathbf{s},\ell}\partial^{\beta''}\delta_{\mathbf{y}}\rangle \Rightarrow$$

$$\|\mathcal{L}_{s,\ell}\|_{W^{r+k,p}\to W^{r,p}}\leq C_T\,t^{-k/2},\qquad t\in(0,T].$$

This bound not optimal, but sufficient to prove *sharp* estimate for $\mathcal{E}_t^{[\mu,z]}$ by choosing $n > \mu + N - 1$.

