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CHAPTER 1

Introduction

1. The goals of the course

This course is an introduction to the theory of “No Arbitrage Pric-
ing,” to some of the mathematical theories that it requires, and to some
of the mathematical questions that it raises. The theory that will be
presented in this course is useful and related to practice, but is often a
great simplification of the “real thing.” Nevertheless, the material that
we will cover is an important stepping stone towards more complicated
and more relevant theories.

Comentariu pentru studentii romani: aceste note sunt bazate pe
niste note de curs pe care le-am folosit semestrul trecut. Unele din con-
cepte din aceste note sunt mai elementare decat cele ce va fi acoperite
in cursul propriu zis. Aceasta este mai ales cazul pentru sectiunea ded-
icata masurii. De exemplu, noi voi lucra cu masuri generale si vom
folosi “continuous time” in a doua parte a cursului. Nu vom avea insa
timp sa discutam “stochastic calculus” in acest curs. Voi presupune
insa cunoscute majoritatea rezultatelor necesare de stochastic calcu-
lus. (Vedeti cursul domnului Profesor Lucian Beznea.) Vom incepe
insa cu “discrete time,” pentru ca ideile noi sunt mai usor de inteles in
acest context.

Carti recomandate.

• Steve Shreve, Stochastic calculus for finance I. The binomial
asset pricing model. Springer Verlag, 2004. xvi+187 pp.
ISBN: 0-387-40100-8.
• J.B. Hunt and J.E. Kennedy, Financial Derivatives in Theory

and Practice, Wiley, 2005.
• M. Baxter and A. Rennie, Financial Calculus: An introduction

to Derivative Pricing (Cambridge, UK) 1996.
• Victor Goodman and Joseph Stampfli, The mathematics of

finance: modeling and hedging. AMS 2001.
• John Hull, Options, Futures, and other derivatives.
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CHAPTER 2

‘No-arbitrage pricing’ and financial markets

This is a very brief introduction to “No-arbitrage pricing” and fi-
nancial markets.

1. Examples of financial instruments

To make things more concrete, let us start by looking at some ex-
amples of more often used financial instruments that will provide some
basic examples for the theory developed in this class. In fact, one of
the main goals of this course is to develop techniques to valuate
financial instruments similar to the Futures and Options introduced
below.

1.1. Forwards, Futures, and Options. The following is a rather
informal and very concise presentation. The student may wish to con-
sult additional sources for more information.

Forward contracts. A forward contract is a contract to buy a certain
asset at the specified (future) time T for K units of currency (say
USD). The time T is called delivery date or exercise time. The price K
is called the strike price or delivery price and is fixed at the time the
contract is signed.

The forward contracts are between two legal entities (banks, com-
panies, private investors, ... ). They are traded over the counter (not
on exchanges).

Futures contracts. A futures contract with delivery date T and strike
price K is similar to a forward contract with the same characteristics,
the difference is being that the futures contracts are traded on ex-
changes. This means that, typically, the buyer and seller do not know
each other and, in any case, do not deal with each other directly.

Examples are gold futures, SP500 futures, ... . We shall typically
ignore forward contracts, and concentrate instead on futures. It costs
nothing to enter a forward contract, but one needs to make margin
payments (deposits) to enter a futures contract. Thus in practice the
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8 2. ‘NO-ARBITRAGE PRICING’ AND FINANCIAL MARKETS

need to make margin payments will make the prices of futures and
forward contracts to be different, but we shall ignore this issue and
price futures as forward contracts.

Options. A European Call Option is a contract that gives the buyer
of the contract the right (but not the obligation) to buy a certain asset
for the exercise price K at the exercise time T from the seller of the
contract.

The futures and options are examples of derivative securities (of
financial derivative, or, simply, derivatives, or, yet, contingent claims)
since their value depends on the value of other assets, from which these
contracts derive their value. The exercise time is sometimes called
maturity time or even expiry time.

Another important type of derivative securities are the swaps,
which involve exchanges (swapping) cash flows. The swaps can the-
oretically be understood (or priced) in terms of futures and options,
so will be ignored in what follows. In practice, the swaps are very
important, however.

The “American” Call and Put Options are defined similarly, but can
be exercised any time before the expiry time T . Thus for a European
option, the exercise time t and the expiry time T are the same, whereas
for an American option we have t ≤ T .

For simplicity, in the following we shall usually assume that the
assets (or underlyings) used to define our options are stocks. We shall
denote by S(t) that price of that stock at time t (spot price). (Note,
however that once we’ll start following the book, time will become an
index, so we will write St instead of S(t). This is because St will be a
function on its own, St(ω), where ω a possible state of the economy at
time t. By “state of the economy” and “state of the world” we shall
mean the same thing.)

The above presentation is an extremely simplified exposition. The
student may want to read more about these derivatives from other
sources.
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1.2. Portfolio value and pay-off. Let us consider several assets
(stocks, futures contracts, option contracts, ... ) whose “fair value”
is typically denoted S1(t), S2(t), ... SN(t). By S0(t) we shall always
denote the value of a bank account paying interest rate r (the same
for deposits and loans!). The “fair value” is a theoretical concept. We
agree that if these assets are traded, and there is no arbitrage in the
economy, then their fair value is their market value. The assumption
that there is no arbitrage in the economy is not satisfied exactly in
practice, but is a good first order approximation. In our abstract mod-
els, we will always assume that there is no arbitrage in the economy.
To explain rigorously what we mean by the assumption that “there is
no arbitrage in the economy,” we need a few more definitions.

A portfolio P is simply a collection ak(t), 0 ≤ k ≤ N , where ak is
the position taken in each of these assets (how much is owned or owed
of that asset). We agree that a0(t) denotes how much cash is in that
portfolio, and this cash will always be invested in the bank account. We
stress that unless otherwise stated, we normally make no assumption
on the ak’s. In particular, ak(t) may take on negative values. The
meaning of this is that we allow the shorting of our assets. Saying that
a0(t) < 0 means that we have borrowed money from the “bank,” and
hence we owe money.

The value, or pay-off, of a portfolio (a0, a1, . . . , aN) at time t is
simply

eq.def.port_valeq.def.port_val (1) W (t) =
N∑
k=0

ak(t)Sk(t).

Assume that the underlying is a stock with price S(t) at time t.
The pay-off of a futures contract with strike price K and delivery date
T is

eq.payoff.Feq.payoff.F (2) W (T ) = S(T )−K.

If S(T ) > K, this is the amount to be gained by buying for K an asset
that is traded at that time for S(T ): buy for K and immediately sell
for S(T ). If S(T ) < K, the portfolio actually yields a loss.

Similarly, the pay-off of a European Call Option with strike K and
maturity T is given as follows. Let us denote by |x|+ := max{x, 0} and
similarly, |x|− := max{−x, 0} (to sketch the graphs). Then the pay-off
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of a European Call option with strike K, maturity T , and underlying
S is WEC(T ) = |S(T )−K|+, that is

WEC(T ) = |S(T )−K|+ :=

{
S(T )−K if S(T ) > K

0 otherwise.

On the other hand, the pay-off of a European Put Option with strike
K, maturity T , and the same underlying S is

WEP (T ) = |S(T )−K|− :=

{
−S(T ) +K if S(T ) < K

0 otherwise.

(Here S is the price of the underlying.) Note that |x|+ − |x|− = x.

2. The “no-arbitrage” principle

The pricing methods developed in this course will be based on the
“no arbitrage principle” and thus will be called “no arbitrage pricing.”

2.1. No arbitrage pricing. The form of “no arbitrage principle”
that we shall use is the following.

The no-arbitrage principle: Assume the pay-offs W1(t) and W2(t) of
two self-financing portfolios P1 and P2 are such that W1(T ) ≥ W2(T )
under all circumstances. Then W1(t) ≥ W2(t) at the present time
t ≤ T .

“Under all circumstances” refers to the fact that Wk(t) may depend
on certain circumstances that are outside our control. The mathemat-
ical term is that Sk(t) and hence also Wj(t) are stochastic variables,
meaning, in particular, that they are not deterministic variables (their
values in the future is not determined solely by their current values).

A self-financing portfolio is one that, informally, does not require
additional infusions of cash, except the initial investment. In continu-
ous time t, the precise definition of self-financing portfolios is outside
the scope of this course. It will be given in discrete time. Right now,
if is enough to know that if the weights (or positions) ak are constant
(i.e. independent of time) then the resulting portfolio is self-financing.

In practice, it is obvious that the positions aj(t) depend only on the
information available up to time t (excluding t). In a theoretical frame-
work, this assumption will have to be made explicit. Self-financing
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portfolios (or trading strategies) with this property are called admis-
sible. No arbitrage has to be formulated using admissible strategies.

(To complete the discussion of the pay-offs of European Call and
Put options.)

Note that by the no arbitrage principle, nobody will sell you an
option for nothing. So the pay-off of an option sometimes includes the
initial payment f .

A consequence of the no-arbitrage principle is that

W1(T ) = W2(T ) under all circumstances ⇒ W1(t) = W2(t), t < T.

In case of a single portfolio, this translates into

eq.no.arb2eq.no.arb2 (3) W (T ) = 0 under all circumstances ⇒ W (t) = 0, t < T.

The “no-arbitrage principle” could also be called the “no free lunch
principle.” In other words, there is no way you can start with a debt
and, no matter what, end up in positive territory without actually
doing something (providing some services).

2.2. The value of futures contracts. Let us use now the no-
arbitrage principle to price a futures contact whose underlying is a
no-dividend liquid stock (or some other liquid financial instrument).
To that end, we need to take into account the “time value of money.”
We shall then denote by r the interest rate, which we assume to be fixed
and to be the same for borrowing and for lending (depositing money).
Then a portfolio with B cash at time t will be worth Ber(T−t) at time
T > t.

Assume now that we want to price a futures contract. Denote by
F (t) its price at time t. Let K be the strike price and T the maturity
time (=delivery date). Let us assume that we start with a portfolio
consisting of B cash (or units of bank account) and the futures F and
−1 of the stock S. The initial value of the portfolio is thus

eq.initial.Feq.initial.F (4) W (t) = B + F (t)− S(t).

The value of this portfolio at time T is then

W (T ) = Ber(T−t) + F (T )− S(T ),

since it is reasonable to assume that we will keep the cash invested in
the bank account.
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We know that F (T ) = S(T )−K is the value of the futures contract
at the delivery date. Thus

W (T ) = Ber(T−t) −K.
Let us choose B so that W (T ) = 0, that is, B = e−r(T−t)K. Then
W (t) = 0, by the no arbitrage principle. Substituting into the Equation
(
eq.initial.F
4), we obtain

eq.initial.F2eq.initial.F2 (5) W (t) = e−r(T−t)K + F (t)− S(t) = 0,

and hence

eq.Futureseq.Futures (6) F (t) = S(t)− e−r(T−t)K.

Equation (
eq.Futures
6) gives the no-arbitrage value (or “fair price”) of a futures

contract with the specified parameters (K is the delivery price, S is the
spot price of the underlying, r is the interest rate, which is assumed to
be constant).

Let us also mention that the above pricing formulas do not apply to
certain commodity futures (sometimes due to seasonal circumstances,
lack of liquidity, storage costs, or other reasons).

Let us notice that in the above example B(T ) = Ber(T−t), the value
of the bank account at time T , is a deterministic variable (so it is
not “stochastic”), since the value of the bank account is completely
determined by the initial deposit (assume the interest rate r to be
constant).

(Alternative method using a replicating portfolio for the Forward
contract–to be included.)

2.3. The “forward price” of a futures contracts. This is an
example. Let t0 denote the “present time.” The forward price F (t, T )
of a forward (or futures) contracts is the value of the strike price K that
makes the value of the forward contract to be zero at time t, which may,
or may not be the present time. Given that F (t) = S(t) − e−r(T−t)K
by Equation (

eq.Futures
6), we obtain 0 = S(t)− e−r(T−t)F (t, T ), so

eq.ForwardPriceeq.ForwardPrice (7) F (t, T ) = er(T−t)S(t).

It is reasonable then, when entering into a forward contract, to take
K to be the forward price of the forward contract, unless one has ad-
ditional insight into the market (which would amount to speculation).
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Futures contracts are traded for K 6= F (t, T ) at time t. How can
you make money risk free, thus contradicting arbitrage?

2.4. Put-call parity. Let us consider the following two portfolios.
The first portfolio consists at the initial time t0 of one share of the stock
S and −Ke−r(T−t0) in a bank account. The second portfolio consists
of a call option (with weight one) and a put option (with weight one).
That is, the second portfolio is “long one call option and short one put
option.” The options also have strike K and maturity T .

The pay-off of the first portfolio at time t is W1(t) = S(t) −
Ke−r(T−t). Thus W1(T ) = S(T )−K. The pay-off of the second port-
folio at time T is |S(T )−K|+ − |S(T )−K|− = S(T )−K. Thus the
two portfolios have the same pay-offs at time T , and hence they have
the same value at any other previous time t. Let C(t) denote the value
of the given Call option at time t and P (t) the value of the given Put
option at time t. This gives

eq.PutCalleq.PutCall (8) C(t)− P (t) = S(t)−Ke−r(T−t),

a relation usually referred to as the Put-Call parity, which is valid only
for European options.

The quantity

D(t, T ) := e−r(T−t) ≤ 1

used to compare the value of money at time T with the value of money
at time t is called discount factor. The discount factor is defined also
in the case when r is not constant, but then it is a stochastic variable,
since its value will depend on future circumstances outside our control.
Many of the above equations remain valid in this more general setting,
provided that one uses the correct discount factor.

Determining the “fair price” (or arbitrage free value) of an option
is a much more complicated problem and solving it (and related prob-
lems) will be one of the main motivations for the theory developed in
this course.
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2.5. Theoretical assumptions. We have already made several
assumptions that are not realistic (not satisfied in practice). One is
that that the interest rates for lending and borrowing are the same.
Another one is that there are no transaction costs. We also assume that
the bid-ask spread is zero (the bid and ask price are the same). There
will be many such simplifying assumptions in the theory developed
below. Some of these assumptions will be explicit, but some will also
be implicit. Removing some of these assumptions will make the theory
more realistic, but also much more complicated. There is extensive
research devoted to fully developing more realistic theories, and most
of it falls outside the scope of this class.

2.6. Why do we want to know the “fair price”? Here are
some reasons why we may want to know the fair price: to price some-
thing that is not traded (new product or low liquidity product), to
estimate the price of an asset under extreme situations (risk manage-
ment), to find mispricings in the market and to take advantage of them.

Try to find an estimate (inequality) for the prices C(t) and P (t)
of a European Call and Put by comparing their pay-off with that of a
Forward contract.



CHAPTER 3

Measure and Probability

Comentariu pentru studentii romani. Toti cei cu o pregatire matem-
atica (universitate, ... ) nu vor gasi mai nimic nou in urmatoarele
definitii. Incercati insa sa lucrati exemplele martingalelor in cazul gen-
eral a doua σ-algebra.

This is a very brief introduction to measure spaces and probability.
To a large extent, we shall use only “finite probability spaces.” Nev-
ertheless, the modern theory of finance relies heavily on the language
and results of Probability theory, so a quick foray into measure spaces
and probability will be useful.

This will serve also as a reference dictionary that you can consult
in the future.

Some of the definitions and frameworks are more general than the
ones considered in the textbook.

1. Measure and probability spaces

Here is a long list of notations and definitions. They will be dis-
cussed in more detail in class.

1.1. Measure spaces. By P(X) we shall denote the set of all
subsets of the set X. (Example when X = {0, 1}.)

Definition 3.1. Let X be a set. A σ-algebra in X is a subset
M⊂ P(X) with the following three properties:

(1) X ∈M,
(2) If S ∈M, then Sc := X r S ∈M,
(3) If S1, S2, . . . , Sn, . . . is a sequence of subsets of X and each Sj

is in M, then ∪Sn ∈M.

The pair (X,M), whereM is a σ-algebra in X is called a measur-
able space. Examples will be given shortly.

15



16 3. MEASURE AND PROBABILITY

1.2. Positive measures.

Definition 3.2. A positive measure µ on a measurable space (X,M)
is a function µ : M → [0,∞] with the property that µ(∪Sn) =∑

n µ(Sn) for any sequence of disjoint subsets Sn ∈M.

The property µ(∪Sn) =
∑

n µ(Sn) that a measure must satisfy is
called countable additivity. The triple (X,M, µ) is called a measure
space.

In particular, we have

(9) µ(S ∪ S ′) = µ(S) + µ(S ′)

for any two disjoint, M–measurable sets. Similarly,
(10)

µ(∪Nk=1Sk) = µ(S1∪S2∪. . .∪SN) =
N∑
k=1

µ(Sk) = µ(S1)+µ(S2)+. . .+µ(SN).

1.3. Measurable functions. Let (X,M) be a measurable space.
A function f : X → R is called measurable if, for any real number a,
the set {x, f(x) < a} is in M (that is, it is measurable).

2. Examples

We now discuss the main examples we are interested in.

2.1. Finite measure spaces. Let X = {x1, x2, . . . , xN} be a fi-
nite set. We take M = P(X), so all sets are measurable. Similarly,
all functions f : X → R are measurable. A positive measure µ on X
will be uniquely determined by pj = µ({xj}). Then for any other set
S = {pi1 , pi2 , . . . , pik}, i1 < i2 < . . . < ik, we have

µ(S) =
∑
x∈S

µ({x}) = pi1 + pi2 + . . .+ pik .

So a finite measure on X is completely determined by the weights
p1, p2, . . . , pN ∈ [0,∞].
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2.2. Finite probability spaces. A positive measure µ is called
a probability measure if µ(X) = 1. The triple (X,M, µ) will then be
called a probability space. From now on, all our measure spaces will be,
in fact, probability spaces.

A finite probability space (X,P(X), µ) is then completely deter-
mined by the weights µ({p}) for p ∈ X. That is, ifX = {x1, x2, . . . , xN}
and pj = µ({xj}) as above, then the additional condition is

N∑
j=1

pj = p1 + p2 + . . .+ pN = 1.

In particular, the range of our measure satisfies µ(S) ∈ [0, 1] for any
S ∈M.

2.3. Finite partition probability spaces. A useful generaliza-
tion of the finite probability example is the example of a finite partition
probability space. This example can be skipped at first reading, since
it will not be needed for the first chapter of the textbook.

Let us assume that we are given a set X that is partitioned into N
disjoint sets P1, P2, . . . , PN :

P1 ∪ P2 ∪ . . . ∪ PN = X.

Then to this partition we associate the σ-algebra

M = {S ⊂ X, S = Pi1 ∪Pi2 ∪ . . .∪PiN , such that i1 < i2 < . . . < ik },
that is, M consists of all possible unions of some sets among the Pj’s.
A probability measure µ : M → [0, 1] will again be determined by
pj = µ(Pj) because if S = Pi1 ∪Pi2 ∪ . . .∪PiN ,, with i1 < i2 < . . . < ik,
then µ(S) = µ(Pi1) + µ(Pi2) + . . .+ µ(PiN ) = pi1 + pi2 + . . .+ piN .

A finite probability space is, in particular, a finite partition prob-
ability space by taking Pj = {xj}. More examples will be discussed
later.

A function f : X → R will be M–measurable if, and only if, it is
constant on each of the sets Pj.

(In this lecture we also discussed the example of the set ΩN .)
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2.4. Countable partition probability spaces. This example is
similar to the one above, except that X is a countable union of disjoint
sets Pn, n = 1, 2, . . .. Also, the condition that we have a probability
measure is that pj ≥ 0 and

∑
pj =

∑∞
j=1 = 1, this time the sum being

a series. (Recall that the sum of a series with positive terms always
makes sense, but it may be infinite.)

A finite partition probability space (and hence also a finite proba-
bility space) is a countable partition probability space.

A function f : X → R isM measurable if, and only if, it is constant
on all the sets Pj.

3. Expectation and integral

Let (X,M, µ) be a probability space. A measurable function f :
X → R is also called a random variable. An important quantity asso-
ciated to a random variable f is its expectation E(f). The expectation
is defined for any probability space and random variable f under some
mild conditions on f .

3.1. The countable case. Let X be a countable partition prob-
ability space. and let f : X → R be a M measurable function. Then
f is constant on each of the sets Pj. Let fj be that constant (the value
of f at any of the points of Pj). Then we define

(11) E(f) =

∫
X

fdµ =
∞∑
j=1

fjpj,

provided that the series is absolutely convergent (
∑

j |fj|pj <∞).

For a finite probability space X = {x1, x2, . . . , xN} we thus have

(12) E(f) =
N∑
j=1

f(xj)pj = f(x1)p1 + f(x2)p2 + . . .+ f(xN)pN .

In particular, we do not have to worry about the convergence of any
series.

The following notation is also sometimes use for the expectation of
f : E[f ] = Ef =

∫
X
fdµ = E(f).
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3.2. Properties of the expectation. The following properties of
the expectation may be useful. For simplicity, we shall assume that we
are in the case of a finite partition probability space. (In general, one
has to assume that the random variables that appear in the formulas
are “integrable.”)

• E(af) = aE(f) where f is a random variable (or measurable
function) and a ∈ R is a constant. The random variable af is
defined by the formula (af)(x) = af(x).
• E(f) ≥ 0 if f ≥ 0.
• If f is constant, f(pj) = a, then E(f) = a.
• If f and g are measurable, then E(f + g) = E(f) + E(g).
• More generally, if tj are real constants and fj are measurable

functions, j = 1, . . . , N , then

(13) E(
N∑
k=1

tjfj) =
N∑
k=1

tjE(fj).

• If f is a random variable such that |f(x)| ≤M , then |E(f)| ≤
M .
• If fn is a sequence of random variable such that fn(x)→ f(x)|

is monotone increasing for any x, then E(fn)| → E(f) (Mono-
tone convergence theorem).
• If fn is a sequence of random variable such that fn(x)→ f(x)|

and there is a random variable g ≥ 0, E(g) < ∞, such that
|fn(x)| ≤ g(x), then E(fn)| → E(f) (Bounded convergence
theorem).

3.3. Variation. Let f : X → R be a random variable (or measur-
able function). Let us denote X = E(X). We then define the variance
V ar(X) of X by the formula

V ar(X) := E[(X −X)2].

Notice that, by the properties of the expectation, the quantity V ar(X)
is always ≥ 0. The quantity σ := V ar(X)1/2 is usually called the
standard deviation of X.

In statistics, the sample standard deviation is a multiple of our
standard deviation for the finite probability space with equal weights.
(To discuss.)
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Let us assume that f and g are random variables such that E(f igj) =
E(f i)E(gj) (this happens, for instance, if f and g are independent ran-
dom variables). Then V ar(f + g) = V ar(f) + V ar(g).

4. States of the economy

This will be discussed in full detail sometimes later, but you may
want to read as a motivation for the above discussion. This model is
useful in the binomial asset pricing model.

Let N be a horizon (N = 1, 2, . . . ,∞). We consider the set ΩN

of sequences (ω1, ω2, . . . , ωN) with ωj ∈ {0, 1}. Thus, if N = ∞ we
consider infinite sequences of 0 and 1. We think of ωn as telling us if
the price of a stock that we are interested goes up (ωn = 1) or down
(ωn = 0) on the nth day. We assume that the price always moves up
or down by just one tick.

If k < N , we have a natural map ΩN → Ωk given by truncation
(we keep the first k terms of an N term sequence). For each k, we thus
obtain a partition of ΩN into as many disjoint sets as the elements of
Ωk. The elements of this partition are formed by sets Pj such that all
the sequences a ∈ Pj ⊂ ΩN begin with the same k terms. The set
Ωk has the meaning of how much information we have on the kth day
(we know the past behavior of the stock, but not the future one). The
resulting partition σ-algebra on ΩN will be denoted Fk and will have
the same meaning. In this way we obtain a sequence1 of σ-algebras

(14) F0 ⊂ F1 ⊂ F2 ⊂ . . .

This model applies to discrete time finance. For continuous time
finance we will need to use σ-algebras Ft, 0 ≤ t, such that Ft ⊂ Fs for
t < s. This falls outside the scope of this course, however.

In the book, the spaces Ω is called the coin toss space and the set
{0, 1} is replaced with {H,T} (Heads or Tails). For us, the space Ω
will represent the space of possible states of the Economy.

At this time, start reading from the book, beginning with
Chapter 1.

1this sequence may be finite if N is finite
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5. Conditional expectations: Definition and some examples

5.1. Definition. Let (Ω,P) be a finite probability space (i.e Ω is
a finite set and P is a probability measure for which every subset of
Ω is measurable). Let us assume we are given also a partition P =
{P1, P2, . . . , Pn} of Ω and let F be the partition σ-algebra associated
to P (i.e. F consists of all possible unions of the sets Pj.)

Let us denote by RΩ the set of all functions f : Ω→ R and by RP
the set of all F -measurable functions g : Ω → R. Since a function g
is F -measurable if, and only if, it is constant on each Pj, g is really
a function P → R, which justifies the notation RP for the set of F
measurable functions. For simplicity, we shall assume that P(Pj) > 0
for all j.

Definition 3.3. The conditional expectation with respect to P given
F (or conditioned by F) is the map EP

F : RΩ → RP defined by

EP
F [f ](ω) = EP[f |F ](ω) =

1

P(Pj)

∑
ω′∈Pj

P(ω′)f(ω′),

if ω ∈ Pj.

In case P(Pj) = 0, we define EP
F [f ](ω) arbitrarily for ω ∈ Pj, but

agree to identify two functions that differ only on a subset of measure
zero of Ω. For simplicity, we shall ignore this issue in what follows.

5.2. Product measure. Let (A, µA) and (B, µB) be two finite
probability spaces. We shall denote by Ω = A × B the set of pairs
(a, b), where a ∈ A and b ∈ B, as usual. We define µ = µA × µB, the
product measure, by P(a, b) = µA(a)µB(b). For each a ∈ A, we define

(15) Pa = {a} ×B ⊂ A×B.
This defines a partition P of Ω = A×B
(16) P = {Pa, a ∈ A}.
Let F be the corresponding finite partition σ-algebra in Ω. We want
to understand the conditional expectation given F .

Let ω ∈ Pa. That is, ω = (a, b). First, we need to compute P(Pa):

P(Pa) =
∑
b∈B

P(a, b) =
∑
b∈B

µA(a)µB(b) = µA(a)
∑
b∈B

µB(b) = µA(a).
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We then have for ω = (a, b) ∈ Ω given and ω′ = (a, b′) ∈ Ω, with b′

arbitrary

EP[f |F ](ω) = EP[f |F ](a, b) =
1

P(Pa)

∑
ω′∈Pa

P(ω′)f(ω′)

=
1

µA(a)

∑
b′∈B

µA(a)µB(b′)f(a, b′) =
∑
b′∈B

µB(b′)f(a, b′) =

∫
B

f(a, b′)dµB(b′).

The last integral is, of course, the partial integral (or expectation) with
respect to the last variable.

Let P1 be a measure on Ω1 := {H,T}. Then we can define induc-
tively Pn = Pn−1 × P1, which is a measure on

Ωn := {H,T}n = Ωn−1 × Ω1.

Then Pn+m = Pn × Pm as measures on Ωn+m = Ωn × Ωm and we
can apply to this product decomposition the results about conditional
expectations for product spaces.

More specifically, we are interested in the decomposition

eq.prodeq.prod (17) ΩN = Ωn × ΩN−n.

Using the measure PN and the product structure, we define the corre-
sponding conditional expectation. In particular, using the notation of
the above example, we have F = Fn, which was introduced earlier in
the course (recall that the Fn measurable functions are the functions
f : ΩN → R that depend only on the first n variables). The conditional
expectation

(18) En[f ] := EP[f |Fn]

is simply the integration with respect to the second variable in the
product decomposition (

eq.prod
17). You should compare now this approach

with the alternative one considered in the book.

Then we can say that the measure P = PN is the risk neutral
measure if, and only if, Sn = En(Sn+1

1+r
). If P is the risk neutral mesure,

then the fair prices of a security V (or contingent claim) will satisfy

Vn = En(Vn+1

1+r
). Again, one should compare our approach with that in

the book.

Let P1 be the risk neutral measure for a period one economy with
the same parameters u, d, and r (that is, P(H) = (1+r−d)/(u−d) and
P(T ) = (u−1−r)/(u−d)). The assumptions that Sn+1(ωH) = uSn(ω)
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and Sn+1(ωT ) = dSn(ω) then gurantee that that PN is the unique risk
neutral measure (here we use also d < 1 + r < u).

We will come back to these issues later on in the framework of
Martingales. In particular, we will define more general conditional
expectations En.

6. Properties of conditional expectations.

We now list some of the main properties of the conditional expecta-
tions. In the following, (Ω,P) will be a finite probability space. Also, let
P = {P1, P2, . . . , Pk} be a finite partition of Ω and F be the associated
σ-algebra. We shall denote by RΩ the set of functions f : Ω → R and
by RP the subset of RΩ consisting of F -measurable functions. Recall
that a function g : Ω→ R is F -measurable if, and only if, g is constant
on all sets Pj of our partition P . We shall denote, in particular, by
g(Pj) the value of such a g to an arbitrary element of Pj.

We denote as before by EP
F : RΩ → RP the conditional expectation

map. Recall that we also denote by EP[f |F ] = EP
F(f). We now list the

properties of EP
F .

1. For a, b ∈ R and f, g ∈ RΩ, let us denote by h = af+bg the function
h(ω) = af(ω) + bg(ω). Then we have that the conditional expectation
EP
F is linear:

(19) EP
F(af + bg) = aEP

F(f) + bEP
F(g).

2. EP
F(1) = 1, the constant function equal to 1.

3. If F = {∅,Ω}, that is, if P consists of the set Ω alone, then EP
F(f) =

EP(f), that is, the constant function equal to the expectation of f .

4. If F = P(Ω), that is, if P consists of all the single element subsets
of Ω, then EP

F(f) = f .

5. The projection property: Let h = EP
F(f). Then EP(fg) = EP(hg) for

any g ∈ RP (that is, for any F -measurable function g).

6. Conversely, let h be an F -measurable function such that EP(fg) =
EP(hg) for any g ∈ RP , then h = EP

F(f).

7. Taking out what is known: Assume g is F -measurable, then EP
F(gf) =

gEP
F(f).

8. Iterated projection property: Let F ′ ⊂ F be a smaller σ-algebra.
Then EP

F ′(EP
F(f)) = EP

F ′(f).
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Let us comment on these properties. Properties 2, 3, 4, and 5
follow from the definition using a direct calculation. Let us denote by
(u, v) = EP(uv). Then (u, v) is an inner product on RΩ (assuming that
P(ω) > 0 for any ω ∈ Ω). The subspace of F -measurable functions
forms a linear subspace RP of RΩ. Property 5 means that EP

F is the
orthogonal projection (with respect to this inner product) of RΩ onto
RP . This orthogonal projection is uniquely determined and is a linear
map (prove this as an exercise). Property 1 is then a consequence of
the linearity of the orthogonal projection. Properties 6, 7, and 8 are
consequences of the uniqueness of the orthogonal projection.

Property 8 is in fact a general property of orthogonal projections.
Indeed, let W ′ ⊂ W ⊂ V be linear subspaces of an inner product space
V . Let us denote by PW and PW ′ the orthogonal projections onto these
subspaces. Then PW ′PW = PW ′ (meaning PW ′(PWu) = PW ′u.

We will not use the following discussion, but it will help make Prop-
erty 8 clearer. Since Ω is a finite set, any σ-algebra F ′ ⊂ P(Ω) is
generated by a partition P ′ = {P ′1, P ′2, . . . , P ′q}. The assumption that
F ′ ⊂ F implies that each of the sets P ′j ⊂ F , and hence each of the sets
P ′j is a union of the sets Pi defining the partition P = {P1, P2, . . . , Pn}
that, in turn, defines F .

Here are two exercices.

1. Show that EP
F(f) ≥ 0 if f ≥ 0. (More precisely, EP

F(f)(ω) ≥ 0
for any ω ∈ Ω.)

2. Let g be a convex function (if g is twice differentiable, this is
equivalent to saying that g′′ ≥ 0). Then

(20) g(EP
F(f)) ≤ EP

F(g ◦ f).

Examples of g are g(x) = ex, g(x) = − lnx, and g(x) = xp, p > 1. (We
assume x > 0 in the last two examples.) This then gives

(21) eE
P
F (f) ≤ EP

F(ef ).

This is Jensen’s inequality. Prove it and write the resulting Jensen’s
inequality for the other two functions.


