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Introduction

Quantum logics are logic-algebraic structures that arise in the study
of the foundations of quantum mechanics.

According to the conventional Hilbert space formulation of quan-
tum mechanics, states and observables are represented by operators
in a Hilbert space associated to the quantum system under investiga-
tion, the so-called state space. Propositions, which represent yes-no
experiments concerning the system, form an orthomodular lattice, iso-
morphic to the partially ordered set of projection operators P(H) on
the state space H. It is called the logic associated to the quantum
system. Thus, orthomodular lattices, which are sometimes assumed
to be complete, atomic and to fulfill the covering property (just like
P(H)) bear the name of quantum logics. We propose and investigate
the following question:

What amount of quantum mechanics is coded into the structure of
the propositional system?

In other words, we intend to investigate to what extent some of the
fundamental physical facts concerning quantum systems can be de-
scribed in the more general framework of orthomodular lattices, with-
out the support of Hilbert space–specific tools.

With this question in mind, we attempt to build, in abstract ortho-
modular lattices, something similar to the spectral theory in Hilbert
space. For this purpose, we introduce and study spectral automor-
phisms.

According to the contemporary theory of quantum measurement,
yes-no measurements that may be unsharp, called effects, are repre-
sented by so-called effect operators, self-adjoint positive operators on
the state space H, smaller than identity. As an abstraction of the
structure of the set of effect operators, the effect algebra structure is
defined.

In the second part of the thesis, we move our investigation to the
framework of unsharp quantum logics, represented by effect algebras.
We generalize spectral automorphisms to effect algebras and obtain
in this framework results that are analogous to the ones obtained in
orthomodular lattices.
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iv INTRODUCTION

Finally, as a rather separate undertaking, we study atomic effect
algebras endowed with a family of morphisms called compression base,
analyzing the consequences of atoms being foci of compressions in the
compression base. We then apply some of the obtained results to the
particular case of effect algebras endowed with a sequential product.

The thesis is divided into two parts. The first part, composed of the
first three chapters, is devoted to the study of “sharp” quantum logics,
as represented by orthomodular lattices, arising from the conventional
Hilbert space formulation of the quantum mechanics. In the second
part, consisting of the chapters four to seven, we adopt the framework
of “unsharp” quantum logics, represented by effect algebras, emerg-
ing from the contemporary theory of quantum measurement. A brief
description of the chapters contents follows.

Chapter 1. The first chapter of the thesis is devoted to a pre-
sentation of orthomodular structures such as orthomodular posets and
lattices and of their basic properties. The physically meaningful rela-
tion of compatibility is discussed. Blocks, commutants and center of
such structures are covered. The last section of the chapter is dedicated
to atomicity, as well as covering and exchange properties. The facts
presented in this chapter are covered in various monographs, such as,
e.g., [38, 46, 51, 53, 62].

Chapter 2. The second chapter contains a discussion of the prob-
lem concerning the possibility of embedding quantum logics into clas-
sical ones. The origin of this problem can be traced back to a famous
paper of Einstein, Podolsky and Rosen, where authors conjectured that
a “completion” of quantum mechanical formalism, leading to its em-
bedding” into a larger, classical and deterministic theory is possible.

We give an overview of classical and newer results concerning this
matter by Kochen and Specker [39], Zierler and Schlessinger [64],
Calude, Hertling and Svozil [6], Harding and Ptak [35] in a unitary
treatment.

Chapter 3. The last chapter of the first part of the thesis consists
of the original results obtained concerning spectral automorphisms in
orthomodular lattices. First, we introduce spectral automorphisms.
We define the spectrum of a spectral automorphism and study a few
examples. Then, we analyze the possibility of constructing such auto-
morphisms in products and horizontal sums of lattices. A factorization
of the spectrum of a spectral automorphism is found. We give various
characterizations, as well as necessary or sufficient conditions for an au-
tomorphism to be spectral or for a Boolean algebra to be its spectrum.
Then, we prove that the presence of spectral automorphisms allows us
to distinguish between classical and non-classical theories. For finite
dimensional quantum logics, we show that for every spectral automor-
phism there is a basis of invariant atoms. This is an analogue of the
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spectral theorem for unitary operators having purely point spectrum.
An interesting consequence is that, if there are physical motivations for
admitting that a finite dimensional theory must have spectral symme-
tries, it cannot be represented by the lattice of projections of a finite
dimensional real Hilbert space. The last part of this chapter addresses
the problem of the unitary time evolution of a system from the point
of view of the spectral automorphisms theory. An analogue of the
Stone theorem concerning strongly continuous one-parameter unitary
groups is given. The results in this chapter have been published in
the articles “Spectral automorphisms in quantum logics”, by Ivanov
and Caragheorgheopol (2010), and “Characterizations of spectral au-
tomorphisms and a Stone-type theorem in orthomodular lattices”, by
Caragheorgheopol and Tkadlec (2011), both appeared in International
Journal of Theoretical Physics.

Chapter 4. In the fourth chapter, we present background informa-
tion on unsharp quantum logics, as represented by effect algebras. We
discuss special elements, coexistence relation, which generalizes com-
patibility from orthomodular posets, various substructures and impor-
tant classes of effect algebras, as well as automorphisms in effect al-
gebras. The facts presented in this chapter can be found, e.g., in the
book of Dvurečenskij and Pulmannová [14] which gathers many of the
recent results in the field of quantum structures.

Chapter 5. In the fifth chapter, we present sequential, compress-
ible and compression base effect algebras, which will be needed in the
sequel. They were introduced by Gudder [28, 29] and Gudder and
Greechie [31].

Sequential product in effect algebras formalizes the case of sequen-
tially performed measurements. The prototypical example of a se-
quential product is defined on the set E(H) of effects operators by
A ◦B = A1/2BA1/2.

The set E(H) of effect operators can be endowed with a family of
morphisms (JP )P∈P(H) defined by JP (A) = PAP , called compressions
and indexed by the projection operators P ∈ P(H) which are also
called the foci of compressions. The family (JP )P∈P(H) is said to form
a compression base of E(H). Inspired by the main features of the
family (JP )P∈P(H), the notions of compression, compression base and
compressible efect algebra were introduced in abstract effect algebras.
As it turns out, compression base effect algebras generalize sequential,
as well as compressible effect algebras.

Chapter 6. In this chapter, we generalize spectral automorphisms
to compression base effect algebras, which are currently considered as
the appropriate mathematical structures for representing physical sys-
tems [21]. We obtain characterizations of spectral automorphisms in
compression base effect algebras and various properties of spectral au-
tomorphisms and of their spectra. In order to evaluate how well our
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theory performs in practice, we apply it to an example of a spectral
automorphism on the standard effect algebra of a finite-dimensional
Hilbert space and we show the consequences of spectrality of an au-
tomorphism for the unitary Hilbert space operator that generates it.
In the last section, spectral families of automorphisms are discussed
and an effect algebra version of the Stone-type theorem in Chapter
3 is obtained. The results of this chapter are included in the article
“Spectral automorphisms in CB-effect algebras”, by Caragheorgheopol,
which was accepted for publication by Mathematica Slovaca and will
appear in Volume 62, No. 6 (2012).

Chapter 7. The last chapter of the thesis contains original re-
sults concerning atomic compression base effect algebras and the con-
sequences of atoms being foci of compressions. Part of our work gen-
eralizes results obtained by Tkadlec [59] in atomic sequential effect
algebras. The notion of projection-atomicity is introduced and studied
and conditions that force a compression base effect algebra or the set
of compression foci to be Boolean are given. We apply some of these
results to the important particular case of sequential effect algebra and
strengthen previous results obtained by Gudder and Greechie [31] and
Tkadlec [59]. The results of this chapter have been published in the
article “Atomic effect algebras with compression bases”, by Caraghe-
orgheopol and Tkadlec, which appeared in Journal of Mathematical
Physics (2011).



Part 1

Quantum Logics as Orthomodular
Structures





Preliminaries

Finding a mathematical and logical model for quantum mechanics
has been a challenge since the first part of the twentieth century. Re-
searchers like von Neumann, Birkhoff, Husimi, Dirac, Mackey , Piron
and many others have contributed to this task. As a result of their
work, Hilbert space theory has been established as the appropriate
mathematical framework for the study of quantum mechanics. At the
same time, as it was clear that the facts concerning the measurements
of complementary variable in quantum mechanics, such as, e.g., posi-
tion and momentum, are inconsistent with the distributivity law that
works within classical Boolean logic, a new type of logic became neces-
sary. With their historical paper “The Logic of Quantum Mechanics”
(1936), Garrett Birkhoff and John von Neumann started the search for
a quantum logic.

In what follows, we will try to briefly explain the meaning of the
essential elements of the axiomatic model of such a quantum logic.
In the meantime, this will provide us with the physical interpretation
of the results obtained in the framework of this model. Detailed de-
scriptions of the way that this axiomatic model arises can be found
in, e.g., [2, 45, 51, 62]. The mathematical modeling in quantum
physics often has a speculative character, sometimes involving philo-
sophical problems of physics. After this short introduction, we will
devote ourselves to the study of the mathematical theory of quantum
logics. Nevertheless, we hope that our results remain meaningful from
a physical point of view.

The standard Hilbert space formulation of quantum mechanics is
based on a few essential notions such as states, observables, proposi-
tions pertaining to a quantum system under investigation. Following
mainly Mackey’s approach [45] and its discussion by Beltrametti and
Cassinelli in [2], let us try to sketch an explanation of their meaning,
mathematical models and mutual relations.

By a yes-no experiment, we mean a test performed on a physical sys-
tem using a measuring apparatus that has only two possible outcomes,
which can be labeled “yes” and “no”. By preparation procedure of
the physical system we understand all the information about the op-
erations performed on the system until the moment when the test is
performed.

3



4 PRELIMINARIES

We consider two preparation procedures of a physical system to be
equivalent if we cannot distinguish them by any yes-no experiment (i.e.,
every yes-no experiment has the same probability of a “yes” outcome for
both preparations). We shall call a state of the system an equivalence
class of preparation procedures. Let us denote by S the set of states
associated to a physical system.

An observable of a physical system is generally understood as re-
ferring to a measurable physical quantity of the system. It is assumed
that such a physical quantity denoted by A takes values on the real
axis. If M is a Borel subset of R, then the question whether the mea-
sured value of A lies in M is a yes-no experiment that we denote by
(A,M). We consider two such yes-no experiments (A,M) and (B,N)
to be equivalent if they have the same probability of a “yes” outcome
in every possible state of the system. An equivalence class of yes-no
experiments of the above type will be called a proposition about the
system. Let us denote by L the set of propositions associated to a
physical system.

Let us remark that every state s ∈ S of the system defines—and
can be regarded as being described by—a probability function defined
on the set L, taking values in the interval [0, 1] which associates to
every proposition p ∈ L the probability s(p) of a “yes” outcome when
the system is prepared in the state s.

It is now intuitively clear that an observable A of a system in a state
s can be completely described by the knowledge of the probability s(p)
for all propositions p represented by yes-no experiments (A,M), with
M spanning the Borel sets of R (i.e., by the knowledge, for all Borel
sets M , of the probability that the measuring of A in the state s will
yield a result in M).

A natural ordering is defined on the set L of propositions by putting
p ≤ q if and only if s(p) ≤ s(q) for all s ∈ S. Let us remark that the
yes-no experiment (A, ∅) is a representative of the trivial proposition
that has always (i.e., in all states) the answer “no”, which we will
denote by 0 and the yes-no experiment (A,R) is a representative of
the trivial proposition that has always the answer “yes”, which we will
denote by 1. Then 0 ≤ p ≤ 1 for all p ∈ L.

Orthogonality can be defined on L as follows: we call propositions
p and q orthogonal (in symbols, p ⊥ q) if s(p) + s(q) ≤ 1 for all states
s ∈ S.

To every proposition p, represented by (A,M), we can associate its
negation, represented by (A,R \M) and denoted by p′.

According to a crucial axiom of Mackey [45], for every sequence of
pairwise orthogonal propositions p1, p2, . . . ∈ L, there exist a proposi-
tion q ∈ L such that s(q) + s(p1) + s(p2) + . . . = 1 for all s ∈ S.
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Anticipating some terminology (for which the reader may consult
section 1.1), we can say that, as a consequence of this axiom, the map-
ping p 7→ p′ becomes an orthocomplementation and L becomes an
orthomodular lattice which is also σ–complete. Moreover, the proba-
bility function s : L → [0, 1] associated to every state s ∈ S becomes a
probability measure on L, in the sense of the following definition:

If L is a σ–complete orthomodular lattice, a mapping s : L → [0, 1]
is a probability measure on L if s(1) = 1 and for every sequence (pn)n∈N
of pairwise orthogonal elements in L, s(

∨
n∈N pn) = Σn∈Ns(pn).

We are led to the idea that the states of a physical system can
be identified with probability measures on the orthomodular lattice
of propositions of the system. Let us note, as a side remark, that
sometimes, the lattice of the propositions of a system is not assumed to
be σ–complete and the states (probability measures) are not assumed
to be σ–additive as in the above definition, but only additive, as in
Definition 2.2.4.

In his celebrated book, “Mathematical Foundations of Quantum
Mechanics” [48], John von Neumann introduced Hilbert space as the
appropriate mathematical framework for quantum mechanics. Accord-
ing to the conventional Hilbert space formulation of quantum mechan-
ics, observables are represented by self-adjoint operators on the Hilbert
space H associated to the quantum system, while states are represented
by density operators (i.e., trace class operators of trace 1) on H. At this
point, one might ask one’s self what is the connection between these
mathematical representations and the notions of state and observable
previously described here. To answer this question, an additional as-
sumption is necessary, and this assumption is precisely the content of
Mackey’s “quantum” axiom V II. This axiom states that the partially
ordered set of all propositions in quantum mechanics is isomorphic to
the partially ordered set of projection operators (or, equivalently, of
closed subspaces) of a separable, infinite dimensional, complex Hilbert
space.

Let us recall that projection operators on a Hilbert space H are
its self-adjoint idempotents. To each projection operator there corre-
sponds a unique closed linear subspace of the Hilbert space H which is
the range of the projection. This is a one-to-one correspondence. The
set of projection operators on a Hilbert space H, which we will denote
henceforward by P(H) is organized as a complete orthomodular lattice
which, by virtue of the above said correspondence, is isomorphical to
(and can be identified with) the complete orthomodular lattice of closed
subspaces of H (see, e.g., [34, 38]). To be precise, if P1, P2 ∈ P(H)
andM1,M2 are their respective ranges, the order relation in P(H) is
defined by putting P1 ≤ P2 whenever M1 ⊆ M2. The orthocomple-
mentation is defined on P(H) by P ′ = 1 − P (where 1 denotes the



6 PRELIMINARIES

identity of H), i.e., P ′ is the projection onto the closed subspace that
is orthogonal to the range of P .

Let us return to Mackey’s axiom V II which we also called the
“quantum” axiom. This name is a reference to the fact that it is pre-
cisely the assumption of this axiom that makes the difference between
quantum systems and other physical systems. We should remark that
Mackey himself commented [45] that this axiom seems “entirely ad
hoc” and that “we are far from being forced to accept this axiom as
logically inevitable”. He adds, however, that “we make it because it
’works’, that is, it leads to a theory which explains physical phenomena
and successfully predicts the results of experiments”.

By virtue of Mackey’s axiom V II, we can identify the lattice of
propositions L of a quantum system and the lattice P(H) of projec-
tors on the Hilbert space associated to the quantum system. A state,
represented by a density operator ρ, induces a probability measure on
P(H) by P 7→ tr(ρP ) for all P ∈ P(H). Conversely, according to a
famous and highly nontrivial theorem of Gleason (see, e.g., [62, 2]),
if dim(H) ≥ 3, then every probability measure on P(H) arises from a
density operator ρ on H by P 7→ tr(ρP ), for all P ∈ P(H). There-
fore, the set of density operators and the set of probability measures on
P(H) are in a one-to-one correspondence which, moreover, preserves
the convex structure of both sets. It should be mentioned here that the
extreme points of the convex set of states are called pure states and
they correspond to density operators which are projection operators
on unidimensional subspaces—so-called rays— of H. By a slight abuse
of language, the unit vectors generating the rays are called sometimes
pure states.

We have sketched, up to this point, the explanation of the corre-
lation between states seen as equivalence classes of preparation proce-
dures, probability measures on the orthomodular lattice of propositions
(or projection operators) and density operators. Let us try to accom-
plish the corresponding task concerning observables. This will also
allow us to add a final missing step to our explanation on states.

According to von Neumann, an observable A is represented by a
self- adjoint operator (which we will denote also by A) on the Hilbert
space H associated to the system. The spectral values of the operator
are interpreted as the possible outcome of the measurement of the
observable. According to the spectral theorem for self-adjoint operators
(see, e.g., [55, 34]), to A corresponds a spectral projection valued
measure (PV-measure), i.e. a mapping M 7→ PA(M) which associates
to every Borel set M of R a projection operator PA(M), such that:

• PA(∅) = 0, PA(R) = 1;
• PA(

⋃
n∈NMn) = Σn∈NPA(Mn) for every sequence of mutually

disjoint Borel sets (Mn)n∈N (the series on the right converges
in the strong operator topology);
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• PA(M1 ∩M2) = PA(M1)PA(M2).

By Mackey’s axiom V II, as mentioned before, the set L of proposi-
tions can be identified with the set of projection operators P(H). It is
natural to consider that the proposition p ∈ L represented by the yes-
no experiment (A,M) (i.e., by the question whether the measured value
of A lies in the Borel set M) corresponds to the projection operator
PA(M). Moreover, the probability of obtaining for the observable A a
measured value within the Borel set M , when the system is prepared in
a state s represented by the density operator ρ is given by tr(ρPA(M)).
It is not difficult to see that the mapping M 7→ tr(ρPA(M)) defined on
the Borel sets of R is a probability measure.

Summarizing, we have justified the correspondence between observ-
ables as self-adjoint operators and observables as PV-measures. More-
over, we have specified in what way, for an observable defined as a
self-adjoint operator A, we can compute the probability of obtaining
a measured value within a Borel set M , when the system is prepared
in a state s. As we mentioned before, when we introduced the notion
of observable, this intuitively corresponds to a complete description of
the observable.

Finally, let us remark, as an argument supporting Mackey’s axiom
V II, that if the spectrum of an observable represents the possible out-
comes of its measurements, the spectrum of projection operators is a
subset of {0, 1}, which suggests the interpretation of observable repre-
sented by projection operators as propositions corresponding to yes-no
experiments.

In view of the foregoing description of the mathematical model of
a quantum system, it should be clear why the partially ordered set
of propositions of the system is called the logic of the system and
hence, why orthomodular lattices (which are sometimes assumed to be
complete, or to have the covering property, like the lattice P(H) which
they generalize) are called quantum logics.

An important question that one might ask is formulated by Bel-
trametti and Cassinelli [2] as follows:

“The fact that states and physical quantities can be defined in terms
of P(H) suggests the following problem: Take from the outset a par-
tially ordered set L, to be physically interpreted as the set of ’propo-
sitions’ and having some of the properties of P(H) but without any
notion of Hilbert space. Consider the set S of all probability measures
on L and the set O of all functions from B(R) into L that have the
formal properties of spectral measures. Then, is it possible to deter-
mine a Hilbert space H such that L is identified with P(H), S with the
set of all density operators on H and O with the set of all self-adjoint
operators on H? Briefly, the question is: to what extent is the Hilbert
space description of quantum systems coded into the ordered structure
of propositions?”
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A great part of our research work presented here, is essentially mo-
tivated by another—in a way, complementary—question: is it possible
to avoid the use of Hilbert space specific tools and replace them with
instruments belonging to the lattice of propositions, in the description
of quantum systems?



CHAPTER 1

Basics on Orthomodular Structures

In this introductive chapter we will be concerned with presenting
the main orthomodular structures which arise from quantum mechanics—
most notably, orthomodular posets and lattices—and their properties.
We will also discuss important examples and ways to construct new
such structures from given ones. A separate section is devoted to the
very important—in view of its physical significance—notion of compat-
ibility and its properties. Here we also cover blocks, commutants and
center of such structures. The possibility of including a set of pair-
wise compatible elements of an orthomodular poset/lattice in a block
is discussed. Finally, the last section of this chapter is dedicated to
atomicity, covering and exchange property and the introduction of lat-
tices with dimension. The different facts presented in this chapter are
covered in various monographs, like, e.g., [2, 38, 46, 49, 51, 53, 62].

1.1. Definitions of orthomodular structures

Definition 1.1.1. If P is a set, endowed with a partial relation “≤”
which is reflexive, antisymmetric and transitive (i.e., a partial order
relation), then (P,≤) is a poset. If there exist the smallest element
and the greatest element of P (which will be denoted by 0 and 1,
respectively), then (P,≤) is a bounded poset.

Definition 1.1.2. Let (P,≤) be a poset and A ⊆ P . Then c ∈ P
is the infimum, or greatest lower bound, or meet of A (in P ) if (i)c ≤ a
for every a ∈ A and (ii) for every d ∈ P such that d ≤ a for every
a ∈ A it follows d ≤ c. We will denote the infimum of A by

∧
A. In

particular, a ∧ b will denote the infimum of {a, b}. If it is not clear
in what poset the infimum is taken, we will write ∧P for the infimum
taken in P .

Dually, e ∈ P is the supremum, or lowest upper bound, or join of A
(in P ) if (i)a ≤ e for every a ∈ A and (ii) for every f ∈ P such that
a ≤ f for every a ∈ A it follows e ≤ f . We will denote the supremum
of A by

∨
A. In particular, a ∨ b will denote the supremum of {a, b}.

If there is a risk of confusion about the poset in which the supremum
is taken, we shall write ∨P for the supremum taken in P .

Let us remark that infimum and supremum need not exist for every
subset of a poset (P,≤), or for every pair of elements a, b ∈ P .

9



10 1. BASICS ON ORTHOMODULAR STRUCTURES

Definition 1.1.3. A poset (P,≤) such that a ∧ b and a ∨ b exist
for every a, b ∈ P is a lattice. If

∧
A and

∨
A exist for every subset A

of P , it is a complete lattice. If
∧
A and

∨
A exist for every countable

subset A of P , it is a σ-complete lattice

Definition 1.1.4. Let (P,≤) be a bounded poset. A unary oper-
ation ’ on P such that, for every a, b ∈ P , the following conditions are
fulfilled:

(1) a ≤ b implies b′ ≤ a′,
(2) a′′ = a,
(3) a ∨ a′ = 1 and a ∧ a′ = 0,

is an orthocomplementation on P .

Definition 1.1.5. A bounded poset with an orthocomplementa-
tion is an orthoposet. An orthoposet which is a lattice is an ortholattice.

Example 1.1.6. Let P be the power set of a set M, partially ordered
by set inclusion. The empty set ∅ and M are the smallest and greatest
elements of P , respectively. An orthocomplementation can be defined
by the set-theoretical complement relative to M , i.e., A′ = M \ A for
every A ∈ P . Then (P,⊆,′ ) is an orthoposet, even ortholattice, with
set-theoretical intersection as infimum and set-theoretical reunion as
supremum.

Definition 1.1.7. A relation orthogonal, denoted by “⊥” is defined
for elements a, b of an orthoposet by

a ⊥ b ⇐⇒ a ≤ b′

It is easy to see that relation “⊥” is symmetric, since a ≤ b′ if and
only if b ≤ a′. Let us notice that, in Example 1.1.6, two elements of P
are orthogonal if they are disjoint subsets of M .

Remark 1.1.8. In an orthoposet (ortholattice), de Morgan’s laws
hold:

(1) (a ∨ b)′ = a′ ∧ b′
(2) (a ∧ b)′ = a′ ∨ b′

for every elements a, b (in the case of an orthoposet, the relations should
be understood in the sense that if one side exists, the other does too,
and the equality holds).

Definition 1.1.9. An orthoposet (ortholattice) (P,≤,′ ) satisfies
the orthomodular law if for every a, b ∈ P ,

(OM1) a ≤ b implies there exists c ∈ P, c ⊥ a such that b = a ∨ c
.

Definition 1.1.10. An orthoposet with the property that every
pair of orthogonal elements has supremum and satisfying the ortho-
modular law is an orthomodular poset. If, moreover, the supremum
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exists for every countable set of pairwise orthogonal elements, it is a
σ–complete orthomodular poset.

Definition 1.1.11. An ortholattice satisfying the orthomodular
law is an orthomodular lattice.

Proposition 1.1.12. Let P be an orthomodular poset and a, b ∈ P
such that a ≤ b. There exists a unique element c = a′ ∧ b of P such
that c ⊥ a and b = a ∨ c.

Proof. The orthomodular law asserts that an element c ∈ P such
that c ⊥ a and b = a∨c exists. The element a′∧b also exists, since a ≤ b
implies b′ ≤ a′, hence b′ ⊥ a, which in turn entails a∨ b′ exists, and, in
view of de Morgan’s law, a′ ∧ b exists as well. Clearly c ≤ a′, b, hence
c ≤ a′ ∧ b. It follows that b = a∨ c ≤ a∨ (a′ ∧ b) ≤ b, where a∨ (a′ ∧ b)
exists because a′ ∧ b ≤ a′ (i.e., a ⊥ a′ ∧ b) and the last inequality is a
consequence of a, a′ ∧ b ≤ b. We conclude that b = a ∨ c = a ∨ (a′ ∧ b).

Let us recall that c ≤ a′ ∧ b. According to the orthomodular law,
there exists d ∈ P such that d ⊥ c and c ∨ d = a′ ∧ b. It follows that
(a ∨ c) ∨ d = a ∨ (c ∨ d) = a ∨ (a′ ∧ b) = a ∨ c, hence d ≤ a ∨ c = b.
However, d ≤ c′ and d ≤ a′∧ b ≤ a′, therefore d ≤ a′∧c′ = (a∨c)′ = b′.
It follows that d ≤ b ∧ b′ = 0, hence d = 0 and c = a′ ∧ b. �

Remark 1.1.13. In view of Proposition 1.1.12, the orthomodular
law can be enounced equivalently as follows:

“An orthoposet (ortholattice) (P,≤,′ ) satisfies the orthomodular
law if for every a, b ∈ P ,

(OM2) a ≤ b implies b = a ∨ (a′ ∧ b).”
Example 1.1.14. In the introduction to the first part of the thesis,

we have presented the prototypical example of orthomodular lattice—
from which the entire discussion about orthomodular structures as
models for the logic of quantum mechanics arises— namely the lat-
tice P(H) of projection operators on a Hilbert space H. Recall that,
if P1, P2 ∈ P(H) and M1,M2 are their respective ranges, the order
relation in P(H) is defined by putting P1 ≤ P2 whenever M1 ⊆ M2.
The orthocomplementation is defined on P(H) by P ′ = 1− P (where
1 denotes the identity of H), i.e., P ′ is the projection onto the closed
subspace that is the orthogonal complement to the range of P . By
Sasaki’s theorem (see, e.g., [38, Section 5]), P(H) is a complete ortho-
modular lattice. Let us notice that P1 ∧ P2 is the projection on the
closed subspaceM1∩M2, while P1∨P2 is the projection on the small-
est closed subspace that includes M1 ∪M2. If P1 and P2 commute,
then their meet and join can be described by the algebraic relations:
P1 ∧ P2 = P1P2 and P1 ∨ P2 = P1 + P2 − P1P2.

Example 1.1.15. If L is an orthomodular lattice and a ∈ L \ {0},
then ([0, a],≤|[0,a],

∗,0, a) with [0, a] = {b ∈ L : b ≤ a} and ∗ : b 7→ b′∧a
for every b ∈ [0, a] is an orthomodular lattice.
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Definition 1.1.16. A lattice satisfies the distributive laws if, for
every its elements a, b, c, the following relations hold:

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c),(D)

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).(D*)

In this case, the lattice is distributive.

Remark 1.1.17. Let us remark that a lattice is distributive if and
only if the property (D) is satisfied for every its elements a, b, c if and
only if the property (D*) holds for every its elements a, b, c.

Clearly, distributivity of an ortholattice implies orthomodularity.
The converse, however, does not hold, as one can easily see by ana-
lyzing the example of the orthomodular lattice of closed subspaces of
a bidimensional Hilbert space H, with H as the greatest element of
the lattice, denoted by 1 and the {0} subspace as the least element,
denoted by 0. Indeed, if we consider three distinct 1-dimensional sub-
spaces of H and denote them as elements a, b, c of the lattice, we find
that a ∨ (b ∧ c) = a ∨ 0 = a, while (a ∨ b) ∧ (a ∨ c) = 1 ∧ 1 = 1, hence
the distributive law is not satisfied.

Definition 1.1.18. A distributive ortholattice is a Boolean algebra.

Let us remark that the above definition, which is suitable for our
purposes here, is not the usual one. In fact there are a few alternative
ways to define Boolean algebras. Such alternative definitions can be
found, e.g., in [49, 57]. In [49, Proposition 4.10.1] the equivalence of
the classical definition and the one presented here is proved.

1.2. Compatibility. Basic properties

In this section, we introduce the notion of compatibility and present
some of its properties. The importance of compatibility derives from
its physical meaning. Compatible pairs represent simultaneously ver-
ifiable events, hence their importance in the axiomatics of quantum
theories. Our presentation follows mainly the exposition in [53, Chap-
ter 1] although [46] was also used.

Definition 1.2.1. Let P be an orthomodular poset. Elements
a, b ∈ P are compatible (in P ) if there exist mutually orthogonal ele-
ments a1, b1, c ∈ P such that a = a1 ∨ c and b = b1 ∨ c. In this case
we will write a↔P b, or just a↔ b, when there’s no risk of confusion.
For M a subset of P , we shall write a ↔ M when a ↔ m for every
m ∈M .

Lemma 1.2.2. Let a and b be elements of an orthomodular poset P .
Then:

(1) a ≤ b implies a↔ b;
(2) a ⊥ b if and only if a↔ b and a ∧ b = 0;
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(3) the following are equivalent: a↔ b, a′ ↔ b, a↔ b′, a′ ↔ b′.

Proof. (1) According to the orthomodular law (Definition 1.1.9),
if a ≤ b, there exists c ∈ P , c ⊥ a such that b = a ∨ c. It follows
that a, c,0 are mutually orthogonal elements such that a = a ∨ 0 and
b = a ∨ c. Thus, a↔ b.

(2)“⇒” From a ⊥ b follows a ≤ b′. Let c ≤ a, b. Then, c ≤ b and
c ≤ a ≤ b′, therefore c ≤ b ∧ b′ = 0. It follows that a ∧ b = 0. Since
a, b,0 are mutually orthogonal and a = a ∨ 0, b = b ∨ 0, we conclude
that a↔ b.

“⇐” Since a↔ b, there exist a1, b1, c mutually orthogonal elements
such that a = a1 ∨ c and b = b1 ∨ c. Therefore, c ≤ a, b, hence
c ≤ a ∧ b = 0. It follows that c = 0, hence a = a1 and b = b1 and
therefore a ⊥ b.

(3) The only thing we need to prove is that a ↔ b implies a′ ↔ b
(and the rest of the statement (3) follows in an obvious way).

Let us assume a ↔ b. There exist then a1, b1, c ∈ P mutually
orthogonal such that a = a1∨c and b = b1∨c. Clearly a∨b = a1∨b1∨c,
and there exist d = (a ∨ b)′ = a′ ∧ b′. It follows that d is orthogonal
to a1, b1, c and a1 ∨ b1 ∨ c ∨ d = 1. It is then not difficult to see that
a′ = b1∨d, and we know b = b1∨c and b1, c, d are mutually orthogonal.
Therefore a′ ↔ b. �

Proposition 1.2.3. [53, Proposition 1.3.5] Let a and b be elements
of an orthomodular poset P such that a↔ b. Then a∧b and a∨b exist in
P . If a1, b1, c ∈ P are mutually orthogonal elements such that a = a1∨c
and b = b1 ∨ c, then c = a ∧ b, a1 = a ∧ b′ and b1 = b ∧ a′.

Corollary 1.2.4. Elements a and b of an orthomodular poset P
are compatible if and only if a = (a∧b)∨(a∧b′) and b = (b∧a)∨(b∧a′).

Proposition 1.2.5. [38, Ch. 1, Section 3, Theorem 2] If (L,≤,′ )
is an ortholattice, the following statements are equivalent:

(1) the orthomodular law holds, i.e., a ≤ b implies b = a∨ (a′∧ b),
for every a, b ∈ L;

(2) a ≤ b and a′ ∧ b = 0 imply a = b for every a, b ∈ L;
(3) a = (a ∧ b) ∨ (a ∧ b′) implies b = (b ∧ a) ∨ (b ∧ a′) for every

a, b ∈ L.

Corollary 1.2.6. Let (L,≤,′ ) be an orthomodular lattice. Then,
for every a, b ∈ L, a↔ b if and only if a = (a∧ b)∨ (a∧ b′) if and only
if b = (b ∧ a) ∨ (b ∧ a′).

Remark 1.2.7. In Boolean algebras, every pair of elements is com-
patible (since conditions in Corollary 1.2.6 are satisfied, due to dis-
tributivity). It follows that, according to Lemma 1.2.2 (2), in Boolean
algebras, a ⊥ b if and only if a ∧ b = 0, i.e., orthogonality is identi-
cal to disjunction. It should be mentioned that this is not the case in
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orthomodular lattices, where orthogonality is much stronger than dis-
junction (as one can easily see in the case of the orthomodular lattice
of subspaces of a Hilbert space).

Theorem 1.2.8. [38, Ch. 1, Section 3, Proposition 4] Let (L,≤,′ )
be an orthomodular lattice and M be a subset such that

∨
M exists. If

b ∈ L is such that b↔M , then:

(1) b↔
∨
M

(2) b ∧ (
∨
M) =

∨
{b ∧m : m ∈M}

The following corollary will be of practical use.

Corollary 1.2.9. Let (L,≤,′ ) be an orthomodular lattice and let
a, b, c ∈ L be such that a↔ {b, c}. Then:

(1) a↔ (b ∨ c);
(2) a↔ (b ∧ c)
Proof. (1) Follows from Theorem 1.2.8 (1), by taking M = {b, c}.
(2) Since a↔ {b, c}, according to Lemma 1.2.2 (3), it follows that

a ↔ {b′, c′}. According to (1), a ↔ b′ ∨ c′ and by Lemma 1.2.2 (3)
again, a ↔ (b′ ∨ c′)′. According to de Morgan’s laws (Remark 1.1.8),
(b′ ∨ c′)′ = b ∧ c, and thus a↔ b ∧ c. �

Definition 1.2.10. Let a, b, c be elements of a lattice L. We call
{a, b, c} a distributive triple if the distributive laws (D) and (D*) hold
for all permutations of the set {a, b, c}.

Proposition 1.2.11. [53, Proposition 1.3.11] Let (L,≤,′ ) be an
orthomodular lattice and a, b, c ∈ L. If a↔ b and a↔ c, then {a, b, c}
is a distributive triple.

Corollary 1.2.12. An orthomodular poset is a Boolean algebra if
and only if every pair of its elements is compatible.

Proof. Let (P,≤,′ ) be an orthomodular poset such that every
pair of its elements is compatible. According to Proposition 1.2.3, the
infimum and supremum exist for every pair of elements of P , hence
P is a lattice. According to Proposition 1.2.11, P is a distributive
orthomodular lattice, i.e., a Boolean algebra. The converse assertion
is trivial. �

Definition 1.2.13. A maximal set of mutually compatible ele-
ments of an orthomodular lattice is a C-class (compatibility class).

Remark 1.2.14. (1) It should be noted that C-classes are not
proper equivalence classes, since compatibility is not transitive.
For an example, let us consider a 3-dimensional Hilbert space
H and its associated lattice of subspaces, with 1 = H and
0 = {0} and let a, b, c be distinct unidimensional subspaces
such that a ⊥ b, a ⊥ c and b is not orthogonal to c. Then
a↔ b, a↔ c, but b= c, since (b∧c)∨(b∧c′) = 0∨0 = 0 6= b.
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(2) By a simple Zorn lemma argument, C-classes exist. To see
this, just considerM the set of all subsets with mutually com-
patible elements of the orthomodular lattice, ordered by set
inclusion. Let N be a subset of M that is a chain. The re-
union of elements of N is an upper bound for N , which is in
M. According to Zorn lemma,M has maximal elements, i.e.,
C-classes exist.

1.3. Orthomodular substructures

We shall first discuss the substructures of an ortholattice, which
can, in particular, be an orthomodular lattice or a Boolean algebra.

Definition 1.3.1. A subset of an ortholattice is a subalgebra if it
contains the least and greatest elements and it is closed under lattice
operations ∨,∧ and orthocomplementation ′.

Let us remark that such a subalgebra of an ortholattice (in par-
ticular, of an orthomodular lattice, Boolean algebra, respectively) is
an ortholattice itself (in particular, an orthomodular lattice, Boolean
algebra, respectively) with the induced operations.

Definition 1.3.2. Let L be an ortholattice. A subalgebra of L
which is a Boolean algebra with the induced operations from L is a
Boolean subalgebra of L.

It is a straightforward verification that the intersection of an ar-
bitrary family of subalgebras of an ortholattice (orthomodular lattice,
Boolean algebra, respectively) L is a subalgebra of L. Therefore, the
following definition makes sense.

Definition 1.3.3. Let L be an ortholattice (orthomodular lattice,
Boolean algebra, respectively) and A ⊆ L. The smallest subalgebra
that includes A is called the subalgebra generated by A and is the in-
tersection of all subalgebras containing A, denoted, in what follows, by
[A].

Definition 1.3.4. The maximal Boolean subalgebras of an ortho-
modular lattice are called its blocks.

Proposition 1.3.5. The blocks of an orthomodular lattice are its
C-classes.

Proof. Let (L,≤,′ ) be an orthomodular lattice. It suffices to prove
that its C-classes are subalgebras of L, i.e., they are closed under ∨ and
′ (closure under ∧ then follows).

Let B ⊆ L be a C-class. If a ∈ L and a ↔ B, then a ∈ B, due
to the maximality of C-classes. If b ∈ B, then b ↔ B, hence b′ ↔ B,
according to Lemma 1.2.2, and it follows that b′ ∈ B. Let now M ⊆ B
such that

∨
M exists in L. Since m↔ B for every m ∈ M , according

to Theorem 1.2.8,
∨
M ↔ B, hence

∨
M ∈ B. �
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Corollary 1.3.6. Every subset A with pairwise compatible ele-
ments of an orthomodular lattice L is part of a block of L.

Corollary 1.3.7. If A is a subset of pairwise compatible elements
of an orthomodular lattice L, then [A] is a Boolean algebra.

Proof. According to Corollary 1.3.6, there exists a block of L
which includes A. Then [A] is a Boolean subalgebra of that block,
hence a Boolean algebra. �

The following result is from [62]:

Proposition 1.3.8. Let {Bi}i∈I an arbitrary family of Boolean sub-

algebras of an orthomodular lattice L. Then
[⋃

i∈IBi

]
is a Boolean sub-

algebra of L if and only if Bi ↔ Bj for any i, j ∈ I.

Remark 1.3.9. Every element of an orthomodular lattice L is part
of a block, hence L is the set-theoretical union of its blocks. This
is especially significant if we take into account that in the context of
quantum logics, the blocks correspond to experimental arrangements
and their elements are the propositions that can be verified by the
arrangement.

We shall now consider the case of substructures in orthomodular
posets. As we shall see, their behavior is quite different from the or-
tholattice case.

Definition 1.3.10. A subset of an orthomodular poset is a sub-
orthoposet if it contains the least and greatest elements and it is closed
under orthocomplementation and under suprema of orthogonal pairs.

Remark 1.3.11. It is not difficult to see that a suborthoposet M of
an orthomodular poset P is itself an orthomodular poset with the order
and orthocomplementation inherited from P (see, e.g., [53, Section
1.2]). However, it should be noted that for a nonorthogonal pair of
elements of M , the supremum calculated in P (assuming it exists)
need not be in M . Moreover, there may exist the supremum calculated
in M which is different from the one calculated in P .

Before we can illustrate the above statements by an example, we
need the next definition and the proposition that follows.

Definition 1.3.12. Let P be an orthomodular poset and ∆ ⊆ P .
The commutant of ∆ in P is the set {a ∈ P : a ↔ ∆}. It will be
denoted henceforth by KP (∆) or, if there is no possibility of confusion
about P , simply by K(∆).

Remark 1.3.13. Let M,N be subsets of an orthomodular poset P.
It is then easy to see that M ⊆ K (K (M)) and M ⊆ N =⇒ K (N) ⊆
K (M).



1.3. ORTHOMODULAR SUBSTRUCTURES 17

Proposition 1.3.14. (see, e.g.,[53, Proposition 1.3.16]) If P is an
orthomodular poset and ∆ ⊆ P , ∆ 6= ∅, then K(∆) is a suborthoposet
of P (which is an orthomodular poset in its own right).

The following example is from [53, Section 1.3], although we use it
here for a different purpose.

Example 1.3.15. Let Ω be a finite set with an even number of ele-
ments. We denote by Ωeven the set of its subsets with an even number
of elements. Then, Ωeven ordered by set inclusion and with the ortho-
complement A′ defined as the set complement AC , for every A ∈ Ωeven,
is an orthomodular poset.

Let now Ω = {1, 2, 3, 4, 5, 6, 7, 8} and P = Ωeven. Let us consider
∆ ⊆ P , ∆ =

{
{1, 2, 3, 4}, {1, 2, 5, 6}, {1, 3, 5, 7}

}
and denote M =

K(∆). According to Proposition 1.3.14, M is a suborthoposet of P
and an orthomodular poset in its own right. The supremum in P of
the nonorthogonal elements {1, 2, 3, 4} and {1, 2, 5, 6} is {1, 2, 3, 4, 5, 6},
which is not an element of M . Indeed, assuming {1, 2, 3, 4, 5, 6} ∈
M = K(∆) it follows that {1, 2, 3, 4, 5, 6} ↔ {1, 3, 5, 7} which is false.
Moreover, in M , the same elements {1, 2, 3, 4} and {1, 2, 5, 6} have Ω
as supremum.

The next proposition shows a special type of suborthoposet of an or-
thomodular poset in which the “pathology” described in Remark 1.3.11
and illustrated by the above example cannot appear.

Proposition 1.3.16. Let P be an orthomodular poset and M a
suborthoposet of P . If M , with the order and orthocomplementation
inherited from P and the lattice operations ∨,∧ induced by the afore-
mentioned order, is a Boolean algebra, then, all suprema and infima
of pairs of elements of M as calculated in P exist and are in M(hence
they coincide with the ones calculated in M).

Proof. Let a, b ∈ M . Since M is a Boolean algebra, a ↔M b.
According to Proposition 1.2.3, there exist c = a ∧M b, a1, b1 mutually
orthogonal elements of M such that a = a1 ∨M c and b = b1 ∨M c. We
recall that for orthogonal elements of M , the supremum exists in P
and it belongs to M , hence it coincides with the supremum taken in
M . Therefore, a ↔P b and c, a1, b1 are mutually orthogonal elements
of P such that a = a1∨ c and b = b1∨ c. Using Proposition 1.2.3 again,
we conclude that c = a ∧P b. It follows that every pair of elements in
M have infimum in P which belongs to M . The dual statement for
suprema follows, since M is closed under orthocomplementation. �

The above result justifies the following definition:

Definition 1.3.17. A suborthoposet of an orthomodular poset P
which is a Boolean algebra with the induced from P order, orthocom-
plementation and lattice operations, is called a Boolean subalgebra of
the orthomodular poset P .
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Clearly, if P is an orthomodular lattice, this notion of Boolean
subalgebra coincides with the one defined in 1.3.2.

Remark 1.3.18. Let us remark that the statement in Corollary 1.3.6
cannot be extended to orthomodular posets. More precisely, in an or-
thomodular poset it is possible to have a set of pairwise compatible
elements which does not admit an enlargement to a Boolean subalge-
bra. Indeed, returning to Example 1.3.15, ∆ is a paiwise compatible
subset of the orthomodular poset P . Let us assume there exists a
Boolean subalgebra B of P of such that ∆ ⊆ B. Then, according to
Proposition 1.3.16, B contains all infima of pairs in ∆, as calculated in
P . For instance we have {1, 2, 3, 4} ∧ {1, 2, 5, 6} = {1, 2} ∈ B. Since B
is a Boolean algebra, this implies {1, 2} ↔ {1, 3, 5, 7}, which is false. It
follows that our assumption was wrong, and there is no such Boolean
algebra.

In [53, Section 1.3] the conditions for a subset of pairwise compati-
ble elements of an orthomodular poset P to admit an enlargement
to a Boolean subalgebra of P are studied. We are only interested in
presenting here the emerging conclusion. As it turns out, the following
notion plays a key role in this matter.

Definition 1.3.19. (see [53, Definition 1.3.26]) An orthomodular
poset P is regular if for every set {a, b, c} ⊂ P of pairwise compatible
elements we have a↔ b ∨ c.

Let us remark that the supremum b ∨ c has to exist, according to
Proposition 1.2.3. We now present the previously announced result.

Proposition 1.3.20. (see [53, Proposition 1.3.29]) An orthomod-
ular poset P is regular if and only if every pairwise compatible subset
of it admits an enlargement to a Boolean subalgebra of P .

In view of Theorem 1.2.8, it is clear that an orthomodular lattice is
a regular orthomodular poset. However, a regular orthomodular poset
need not be an orthomodular lattice, as one can see by considering
Ωeven for Ω = {1, 2, 3, 4, 5, 6} (see Example 1.3.15 for the definition of
Ωeven).

Definition 1.3.21. Let P be an orthomodular poset. An element
a ∈ P is central if it is compatible with every other element of P . The
set of central elements of P is the center of P , denoted henceforth by

C̃(P ).

Let us remark that in an orthomodular poset P , K(P ) = C̃(P ).

Proposition 1.3.22. The center of an orthomodular poset P is a
Boolean subalgebra of P .
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Proof. According to Lemma 1.2.2 and Theorem 1.2.8, C̃(P ) is a
subalgebra of P , hence an orthomodular poset in its own right. Ac-
cording to Corollary 1.2.12, the conclusion follows. �

Corollary 1.3.23. An orthomodular poset is a Boolean algebra if
and only if it coincides with its center.

Remark 1.3.24. The center of an orthomodular lattice is the set-
theoretical intersection of its blocks.

1.4. Atomicity. Covering and exchange properties. Lattices
with dimension

Definition 1.4.1. Let P be a poset with least element 0. The
element α ∈ P is an atom of P if α 6= 0 and 0 ≤ a ≤ α implies a = 0
or a = α. We shall denote the set of atoms of P by Ω(P ).

Remark 1.4.2. Let us remark that atoms are the minimal non-zero
elements.

Definition 1.4.3. A poset P with least element 0 is atomic if every
its element dominates (at least) an atom of P . It is atomistic if every
element is the supremum of the atoms it dominates. The set of atoms
dominated by an element a ∈ P will be denoted by Ωa.

Proposition 1.4.4. Every atomic orthomodular lattice is atom-
istic.

Proof. Let L be an atomic orthomodular lattice and a ∈ L, a 6= 0.
Since α ≤ a for all α ∈ Ωa, we only have to prove that every element
c ∈ L which is also an upper bound for Ωa is greater than or equal to
a.

Let c ≥ α for all α ∈ Ωa. Then, α ≤ a ∧ c for all α ∈ Ωa and
therefore, Ωa = Ωa∧c. Since a ∧ c ≤ a, according to the orthomodular
law, a = (a ∧ c) ∨

(
a ∧ (a ∧ c)′

)
. Let us assume that a ∧ (a ∧ c)′ 6= 0.

The lattice L is atomic, hence there exists an atom β ∈ Ω(L) such that
β ≤ a ∧ (a ∧ c)′. It follows β ≤ a, hence β ∈ Ωa = Ωa∧c and β ≤ a ∧ c.
On the other hand, β ≤ (a ∧ c)′, which is a contradiction. It follows
that a ∧ (a ∧ c)′ = 0. We conclude that a = a ∧ c, which is equivalent
to a ≤ c. �

Remark 1.4.5. (1) Two distinct atoms of an orthomodular
lattice are compatible if and only if they are orthogonal (ac-
cording to Lemma 1.2.2 (2)).

(2) Since in a Boolean algebra all atoms are compatible, they must
be pairwise orthogonal as well.

(3) If L is an orthomodular lattice and a ∈ L, α ∈ Ω(L), then
α↔ a if and only if α ≤ a or α ≤ a′.

The following assertion can be deduced easily from Remark 1.4.5.
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Proposition 1.4.6. If B is a Boolean subalgebra of the orthomod-
ular lattice L, ω ∈ L and ω ≤ a ∈ Ω(B), then ω ↔ B.

Proposition 1.4.7. Let L be an atomic orthomodular lattice. For
every element a ∈ L, there exists a maximal family {αi}i∈I of mutually
orthogonal atoms in Ωa. Then, a =

∨
i∈I αi.

Proof. Let a ∈ L. The existence of a maximal family of orthogo-
nal atoms from Ωa follows from Zorn’s lemma in a standard way. Let
us prove a =

∨
i∈I αi, for such a maximal family {αi}i∈I . Clearly,∨

i∈I αi ≤ a. To prove the equality, using Proposition 1.2.5 (2), it suf-
fices to show that a ∧ (

∨
i∈I αi)

′ = 0. Let us suppose, to the contrary,
that a ∧ (

∨
i∈I αi)

′ 6= 0.The lattice L is atomic, hence there exists an
atom β ∈ Ω(L) such that β ≤ a ∧ (

∨
i∈I αi)

′. Then, β ∈ Ωa and
β′ ≥

∨
i∈I αi ≥ αi, for all i ∈ I. This contradicts to the maximality of

the orthogonal family {αi}i∈I in Ωa. �

Definition 1.4.8. Let L be an atomic orthomodular lattice and
a ∈ L. A maximal family {αi}i∈I of mutually orthogonal atoms in Ωa

is a basis of a. A basis of 1 ∈ L is also called a basis of the lattice L.

Remark 1.4.9. For every element of an atomic orthomodular lat-
tice, the basis is not unique, in general.

The direct implication from the following theorem can be found,
e.g., in [38, Ch.1, Section 4, Lemma 2]

Theorem 1.4.10. Let L be an orthomodular lattice and B a Boolean
subalgebra of L. If B is a block of L then the atoms of B are atoms
of L. Conversely, if B is atomic and its atoms are atoms of L, it is a
block of L.

Proof. For the direct implication, let us assume that β ∈ Ω(B)
and there exists a ∈ L such that 0 < a < β (i.e., β /∈ Ω(L)). Then
a /∈ B. However, according to Remark 1.4.5 (3), β ≤ b or β ≤ b′

for every b ∈ B. Consequently, a < b or a < b′ for every b ∈ B
and therefore, a ↔ B. This contradicts to the maximality of B as a
Boolean subalgebra of L.

For the converse implication, let us assume that B is not maximal,
as a Boolean subalgebra of L. There exists then a block B′ of L such
that B ( B′, and let b ∈ B′ \ B. Then b ↔ β for all β ∈ Ω(B), by
Proposition 1.3.5. Since B is atomic, from Proposition 1.4.4 follows
that

∨
Ω(B) = 1. According to Theorem 1.2.8, b = b ∧ 1 = b ∧(∨

Ω(B)
)

=
∨
β∈Ω(B)(b ∧ β). Since the atoms of B are atoms of L, for

every β ∈ Ω(B) we have b∧ β = 0 or b∧ β = β. It follows that b is the
join of a subset of Ω(B), hence b ∈ B—a contradiction. �

We will now introduce, following mainly the exposition in [46], the
covering and the exchange properties, as well as the notion of dimension
in orthomodular lattices.
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Definition 1.4.11. Let L be a lattice and a, b ∈ L. The element
b covers a (denoted by a l b) if a < b and a ≤ c ≤ b implies c = a or
c = b (i.e., b is a minimal upper bound for a).

Definition 1.4.12. Let L be an atomic lattice. If, for every a ∈ L
and p ∈ Ω(L), a ∧ p = 0 implies a l a ∨ p, then L has the covering
property.

Definition 1.4.13. Let L be an atomic lattice. If, for every a ∈ L
and p, q ∈ Ω(L), p ≤ a ∨ q and a ∧ p = 0 imply q ≤ a ∨ p, then L has
the exchange property.

Theorem 1.4.14. (see [46, Theorem 7.10]) An atomic orthomodu-
lar lattice has the covering property if and only if it has the exchange
property.

Before introducing dimension, we need the following result.

Lemma 1.4.15. [46, Lemma 8.3] Let pi and qi (i = 1, 2, . . . , n) be
atoms of the atomic orthomodular lattice L with the covering property.
If (p1 ∨ p2 ∨ . . . ∨ pi−1) ∧ pi = 0 for i = 2, . . . , n and pi ≤

∨n
j=1 qj for

i = 1, . . . , n, then
∨n
i=1 pi =

∨n
j=1 qj.

Definition 1.4.16. An element of an atomic orthomodular lattice
with the covering property is finite if it is 0 or the join of a finite
number of atoms of L.

It is easy to see that, for a finite non-zero element a of an atomic
orthomodular lattice with the covering property L, there exists a finite
set of atoms {pi ∈ Ω(L) : i = 1, . . . , n}, (p1 ∨ p2 ∨ . . . ∨ pi−1) ∧ pi = 0
for i = 2, . . . , n such that a =

∨n
i=1 pi.

Theorem 1.4.17. [46, Theorem 8.4] Let L be an atomic ortho-
modular lattice with the covering property and a ∈ L be a finite non-
zero element. The finite cardinal n of the set of atoms {pi ∈ Ω(L) :
i = 1, . . . , n} such that (p1 ∨ p2 ∨ . . . ∨ pi−1) ∧ pi = 0 for i = 2, . . . , n
and a =

∨n
i=1 pi is uniquely determined.

Definition 1.4.18. Let L be an atomic orthomodular lattice with
the covering property and a ∈ L be a finite non-zero element. The
uniquely determined finite cardinal n of at set of atoms {pi ∈ Ω(L) :
i = 1, . . . , n} such that (p1 ∨ p2 ∨ . . . ∨ pi−1) ∧ pi = 0 for i = 2, . . . , n
and a =

∨n
i=1 pi is called the dimension (or height) of a, denoted by

h(a). If 1 ∈ L is finite, then h(1) is the dimension of L and L is said
to have finite dimension.

Remark 1.4.19. Obviously enough, in an atomic orthomodular lat-
tice with the covering property, the dimension of a finite element co-
incides with the number of elements of a basis of that element. In
particular, if the lattice is finite dimensional, its dimension coincides
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with the number of elements of a basis of the lattice. For an example,
in the lattice P(H), described in Example 1.1.14, which is atomic and
has the covering property, the finite elements are the projections onto
finite dimensional subspaces of the Hilbert space H. Moreover, their
dimension as elements of the lattice coincides with the dimension of
their range as a closed subspace of H.

1.5. Morphisms in orthomodular structures

Let us introduce now several types of morphisms for orthomodular
structures. There are a few equivalent possibilities to define such mor-
phisms, depending on which conditions are used in the definitions and
which conditions are obtained as properties. Our choice here is not the
most common in the literature. Instead, we tried to give a definition
that can be used with minimal changes in the different structures that
we are interested in.

Definition 1.5.1. Let L1, L2 be orthomodular posets. A mapping
h : L1 → L2 is a morphism of orthomodular posets if the following
conditions are satisfied:

(1) h(1) = 1;
(2) a ⊥ b implies h(a) ⊥ h(b), for every a, b ∈ L1;
(3) h(a ∨ b) = h(a) ∨ h(b), for every pair of orthogonal elements

a, b ∈ L1.

Definition 1.5.2. Let L1, L2 be orthomodular lattices (Boolean
algebras). A mapping h : L1 → L2 is a morphism of orthomodular
lattices (Boolean algebras, respectively) if the following conditions are
satisfied:

(1) h(1) = 1;
(2) a ⊥ b implies h(a) ⊥ h(b), for every a, b ∈ L1;
(3) h(a ∨ b) = h(a) ∨ h(b), for every a, b ∈ L1.

Remark 1.5.3. It can be easily checked, using condition (3) in
Definition 1.5.1 or Definition 1.5.2, respectively, and the orthomodular
law, that a morphism preserves order (i.e., a ≤ b implies h(a) ≤ h(b),
for all elements a, b ∈ L1). Also, a morphism preserves the orthocom-
plement, in the sense that h(a′) = h(a)′, for every a ∈ L1. Indeed,
for a ∈ L1, we have a ⊥ a′, hence h(a) ⊥ h(a′). On the other hand,
1 = h(1) = h(a ∨ a′) = h(a) ∨ h(a′). It follows that h(a′) = h(a)′.

Definition 1.5.4. A morphism h : L1 → L2 of orthomodular
posets (or orthomodular lattices, or Boolean algebras, respectively)
is an embedding if, for every a, b ∈ L1, h(a) ⊥ h(b) implies a ⊥ b (i.e.,
the converse of the condition (2) in Definition 1.5.1 or Definition 1.5.2,
respectively, holds).
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Definition 1.5.5. A morphism h : L1 → L2 of orthomodular
posets (or orthomodular lattices, or Boolean algebras, respectively)
is an isomorphism if it is bijective and its inverse h−1 : L2 → L1 is also
a morphism.

Definition 1.5.6. Let L be an orthomodular poset (or an ortho-
modular lattice, or a Boolean algebra). An isomorphism h : L → L is
an automorphism of L.

Remark 1.5.7. At a first glance, the condition in Definition 1.5.4
(that for every a, b ∈ L1, h(a) ⊥ h(b) implies a ⊥ b) seems unexpected.
At a closer look, one will discover that it implies that for every a, b ∈ L1,
h(a) ≤ h(b) implies a ≤ b (see the following Proposition 1.5.8). This,
in turn, entails the injectivity of h. Moreover, it entails the fact that,
if we restrict the function’s codomain to its image h(L1), which is a
suborthoposet (subalgebra, respectively) of L2, it becomes a bijective
mapping whose inverse is also a morphism. In view of Definition 1.5.5,
this means that h : L1 → h(L1) ⊆ L2 is an isomorphism. Finally, it
follows that a surjective embedding is an isomorphism.

Automorphisms can be characterized as follows:

Proposition 1.5.8. Let L be an orthomodular poset (or an ortho-
modular lattice, or a Boolean algebra). A mapping h : L → L is an
automorphism if and only if it satisfies the following conditions:

(1) h(1) = 1;
(2) a ⊥ b implies h(a) ⊥ h(b), for all a, b ∈ L;
(3) a ≤ b if and only if h(a) ≤ h(b), for all a, b ∈ L;
(4) h is surjective.

Proof. In view of Definitions 1.5.3, 1.5.4, 1.5.5, 1.5.6 and Re-
mark 1.5.7, an automorphism is a surjective mapping h : L → L such
that h(1) = 1, a ⊥ b if and only if h(a) ⊥ h(b), for every a, b ∈ L, and
h(a ∨ b) = h(a) ∨ h(b), for every (orthogonal—if L is an orthomodular
poset) a, b ∈ L.

For the direct implication, we only have to prove that an auto-
morphism h fulfills condition (3). If a ≤ b, according to the ortho-
modular law, there exists c ∈ L, c ⊥ a such that a ∨ c = b. Hence,
h(b) = h(a ∨ c) = h(a) ∨ h(c) ≥ h(a). Notice now, that since b ⊥ b′, it
follows that h(b) ⊥ h(b′) and 1 = h(1) = h(b ∨ b′) = h(b) ∨ h(b′) and
therefore, h(b′) = h(b)′. If h(a) ≤ h(b), then h(a) ⊥ h(b)′. In view of
the previous observation, this entails that h(a) ⊥ h(b′), hence a ⊥ b′,
i.e., a ≤ b.

The converse implication requires that we prove, for a mapping
fulfilling conditions (1)-(4), that h(a ∨ b) = h(a) ∨ h(b), for every
(orthogonal—if L is an orthomodular poset) a, b ∈ L, and also that
h(a) ⊥ h(b) implies a ⊥ b, for all a, b ∈ L. Since h preserves order,
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clearly h(a), h(b) ≤ h(a ∨ b). Let c ≥ h(a), h(b). Then, h being surjec-
tive, there exists d ∈ L such that c = h(d). It follows that d ≥ a, b,
hence d ≥ a ∨ b and therefore, c = h(d) ≥ h(a ∨ b). We conclude that
h(a∨ b) = h(a)∨ h(b). For the second assertion, let h(a) ⊥ h(b). Then
h(a) ≤ h(b)′. By the same argument as before, h(b′) = h(b)′, hence
h(a) ≤ h(b′) and it follows that a ≤ b′, i.e., a ⊥ b. �

Proposition 1.5.9. Let L be an orthomodular lattice and h : L→
L be an automorphism. Then, for every pair of elements a, b ∈ L,
a↔ b if and only if h(a)↔ h(b).

Proof. According to Definition 1.5.2 and Remark 1.5.3, h pre-
serves suprema, and the orthocomplement. Therefore, it must also
preserve the infima, by de Morgan’s law (Remark 1.1.8). Then, for a
pair of elements a, b ∈ L the following chain of equalities holds: h

(
(a∧

b)∨(a∧b′)
)

=
(
h(a)∧h(b)

)
∨
(
h(a)∧h(b′)

)
=
(
h(a)∧h(b)

)
∨
(
h(a)∧h(b)′

)
.

It follows, using Corollary 1.2.6, the chain of equalities just mentioned
and Corollary 1.2.6 again, that a↔ b if and only if a = (a∧ b)∨ (a∧ b′)
if and only if h(a) = h

(
(a∧ b)∨ (a∧ b′)

)
=
(
h(a)∧h(b)

)
∨
(
h(a)∧h(b)′

)
if and only if h(a)↔ h(b). �

Corollary 1.5.10. Let L be an orthomodular lattice and h : L→
L be an automorphism. For every block B of L, h(B) is also a block of
L.

The following result shed some light on the structure of automor-
phisms of an atomic complete orthomodular lattice. It can be sum-
marized by the statement that every automorphism of such a lattice is
uniquely determined by its restriction to the set of atoms, which is a
bijective map that preserves orthogonality both ways.

Theorem 1.5.11. Let L be an atomic complete orthomodular lat-
tice. For every automorphism h of L, its restriction to Ω(L) is χ :
Ω(L)→ Ω(L) satisfying the conditions:

(1) χ bijective;
(2) α ⊥ β if and only if χ(α) ⊥ χ(β), for all α, β ∈ Ω(L).

Conversely, for every mapping χ : Ω(L) → Ω(L) satisfying the above
conditions (1), (2) there exists a unique automorphism h of L such that
its restriction to Ω(L) is χ.

Proof. Let h : L → L be an automorphism, and χ be its restric-
tion to Ω(L). If α is an atom, we will prove that χ(α) is an atom as
well. According to Remark 1.5.7, a ≤ b if and only if h(a) ≤ h(b), for
all a, b ∈ L. Let us assume that χ(α) is not an atom. There exists
then an element b ∈ L such that 0 < b < χ(α) = h(α). Due to the
surjectivity of h, there exists a ∈ L such that h(a) = b. Therefore,
0 < h(a) < h(α), hence 0 < a < α, in contradiction with α being
an atom. We are now entitled to write χ : Ω(L) → Ω(L). Clearly,
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condition (2) is satisfied by χ, since it is fulfilled by h for arbitrary
elements (including atoms). Also the injectivity of χ follows from the
injectivity of h. For the first part of the theorem, we only have to prove
the surjectivity of χ : Ω(L)→ Ω(L). Let β be an arbitrary atom of L.
Since h : L → L is surjective, there exists a ∈ L such that h(a) = β.
However, a must be an atom (otherwise there exists α ∈ L such that
0 < α < a, which implies 0 < h(α) < h(a) = β, contradicting the fact
that β is an atom). It follows that h(a) = χ(a) = β, for some a ∈ Ω(L),
hence the surjectivity of χ.

Conversely, let χ : Ω(L) → Ω(L) be a bijective mapping such that
α ⊥ β if and only if χ(α) ⊥ χ(β), for all α, β ∈ Ω(L). We define
h : L→ L by h(a) =

∨
α∈Ωa

χ(α), for every a ∈ L. Clearly, if α ∈ Ω(L),
then h(α) = χ(α), therefore χ is the restriction of h to Ω(L). We have
to prove h is an automorphism.

First, h(1) =
∨
α∈Ω(L) χ(α) =

∨
Ω(L) = 1. Let us prove now that

a ⊥ b, if and only if h(a) ⊥ h(b), for every a, b ∈ L. Indeed, the
following assertions are equivalent: a ⊥ b, α ⊥ β for every α ∈ Ωa

and every β ∈ Ωb, χ(α) ⊥ χ(β) for every α ∈ Ωa and every β ∈
Ωb,

∨
α∈Ωa

χ(α) ⊥
∨
β∈Ωb

χ(β), h(a) ⊥ h(b). It is easy to see that h

also preserves order. Indeed, a ≤ b implies Ωa ⊆ Ωb, hence h(a) =∨
α∈Ωa

χ(α) ≤
∨
β∈Ωb

χ(β) = h(b).
To prove the bijectivity of h, we will construct its inverse. Let

ξ = χ−1. Then, ξ : Ω(L) → Ω(L) has exactly the same properties as
χ, and we can define g : L→ L by g(a) =

∨
α∈Ωa

ξ(α), for every a ∈ L.
Consequently, g has all the properties of h. We assert that g = h−1.
To prove it, a few more steps are necessary. Let a ∈ L and {αi}i∈I a
basis of a. Then, according to Proposition 1.4.7, a =

∨
i∈I αi. Since

χ preserves orthogonality, {χ(αi)}i∈I is an orthogonal family of atoms.
Also, χ(αi) ≤ h(a), for all i ∈ I. We will show that {χ(αi)}i∈I is a
basis of h(a), and for that, the maximality of the family {χ(αi)}i∈I is
required. Let us suppose, to the contrary, that β ∈ Ωh(a), β ⊥ χ(αi)
for all i ∈ I. By the surjectivity of χ, there exists an atom α such that
χ(α) = β. Hence, χ(α) ⊥ χ(αi) for all i ∈ I, and therefore, α ⊥ αi for
all i ∈ I. Since a =

∨
i∈I αi, it follows that α ⊥ a, hence β ⊥ h(a), in

contradiction to β ∈ Ωh(a). We have proved that {χ(αi)}i∈I is a basis of
h(a), hence h(a) =

∨
i∈I χ(αi). Since the analogue result holds for g and

ξ, we find that g(h(a)) = g(
∨
i∈I χ(αi)) =

∨
i∈I ξ(χ(αi)) =

∨
i∈I αi =

a. Similarly, h(g(a)) = h(
∨
i∈I ξ(αi)) =

∨
i∈I χ(ξ(αi)) =

∨
i∈I αi =

a, and it follows that g = h−1. It is now clear that h(a) ≤ h(b)
implies g(h(a) ≤ g(h(b) (due to the fact that g preserves order), hence
a ≤ b, for all a, b ∈ L and according to Proposition 1.5.8, h is an
automorphism.

Let us now prove that h is the only automorphism that extends χ to
L. Let h1 : L→ L be an automorphism such that its restriction to Ω(L)
is χ, and let a ∈ L. For every α ∈ Ωa, χ(α) = h1(α) ≤ h1(a), therefore,
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h(a) =
∨
α∈Ωa

χ(α) ≤ h1(a). According to Proposition 1.2.5 (2), to

prove the equality, it suffices to show that
(∨

α∈Ωa
χ(α)

)′ ∧ h1(a) = 0.
Let us assume the contrary. Then, there exists β ∈ Ω(L) such that

β ≤
(∨

α∈Ωa
χ(α)

)′ ∧ h1(a) and there exists δ ∈ Ω(L) such that χ(δ) =
β. It follows that χ(δ) ⊥ χ(α), for all α ∈ Ωa, and therefore, δ ⊥ α,
for all α ∈ Ωa, hence δ ⊥

∨
α∈Ωa

α = a. Then, δ ≤ a′ which implies
β = χ(δ) = h1(δ) ≤ h1(a′) = h1(a)′. On the other hand, β ≤ h1(a),
which is a contradiction, since β is an atom, and therefore β 6= 0. �

Remark 1.5.12. Theorem 1.5.11 offers a method to construct an
automorphism of an atomic complete orthomodular lattice L by defin-
ing, on the set of atoms, a bijection χ which preserves orthogonality
both ways and extending it to a lattice automorphism by putting, as
above, h(a) =

∨
α∈Ωa

χ(α), for every a ∈ L .

Example 1.5.13. We return to the prototypical example of the lat-
tice of projectors/subspaces of a Hilbert space (see Example 1.1.14).
Let H be a Hilbert space and P(H) the lattice of projection operators
on H. It is well known that the unitary operators are the automor-
phisms of a Hilbert space. It is interesting to note that they induce
corresponding automorphisms of the lattice structure of P(H). More
precisely, we assert that every unitary operator U : H → H induces
an automorphism h : P(H) → P(H) defined by h(P ) = UPU∗, for
every P ∈ P(H) (where U∗ denotes the adjoint of U). Let us briefly
justify this assertion. First, it is easy to see that h(P ) is a projec-
tor if P is one, since h(P )∗ = (UPU∗)∗ = UP ∗U∗ = UPU∗ = h(P )
and h(P )2 = (UPU∗)(UPU∗) = UP 2U∗ = UPU∗ = h(P ). To ver-
ify that h is an automorphism it is convenient to check the condi-
tions (1)–(4) from Proposition 1.5.8. This is straightforward, if we
consider the following facts: (a) P ≤ Q if and only if PQ = P , for
every P,Q ∈ P(H); (b)P ⊥ Q if and only if PQ = 0, for every
P,Q ∈ P(H); (c) h−1 : P(H) → P(H) defined by h−1(P ) = U∗PU ,
for every P ∈ P(H) is the inverse of h.
P(H) is an atomic complete orthomodular lattice. According to

Theorem 1.5.11, every automorphism of such a lattice is completely
determined by its action on the atoms of the lattice. Let us see how
the automorphism h acts on the atoms of P(H). An atom of P(H)
is a projector Pe : H → H, Pex = 〈x, e〉e, where e ∈ H, ‖e‖ = 1
and 〈·, ·〉 denotes the inner product of H (i.e., it is a projection on
a 1-dimensional subspace generated by a vector e ∈ H). It follows
that h(Pe)x = UPeU

∗x = U〈U∗x, e〉e = 〈x, Ue〉Ue = PUex for all
x ∈ H. This means that the atom Pe is transformed by h into the
atom PUe, thereby justifying our claim that h is induced by the unitary
U . Considering the properties of unitary operators, it follows that
the restriction of h to atoms is bijective and preserves orthogonality,
as expected, according to Theorem 1.5.11. Conversely, by the same
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theorem, the automorphism defined by h(P ) = UPU∗ for all P ∈ P(H)
is the only one that transforms the atom Pe of P(H) into PUe, for all
e ∈ H, ‖e‖ = 1.





CHAPTER 2

Understanding the Logic of Quantum Mechanics
in Classical Terms

The problem of embedding quantum logics into classical ones is very
old. Its origin can be traced back to a well known article of Einstein,
Podolsky and Rosen (EPR) [15]. In this historic paper, the authors
conjectured that a “completion” of quantum mechanical formalism,
leading to its “embedding” into a larger, classical and deterministic
theory (from the algebraic and logic point of view) is possible. Such a
theory would have to reproduce the results of quantum mechanics.

Their conjecture was based on the assumption that “elements of
physical reality” exist whether or not they are actually observed. A
formalization of EPR’s notion of “elements of physical reality” can be
given in terms of two-valued states (valuations) which take only values
of 0 and 1, corresponding to the classical logical “false” and “true”
notions, respectively.

The first to obtain a result that contradicts the EPR conjecture
were Kochen and Specker [39]. Their result suggests the impossibility
to “complete” quantum physics by introducing noncontextual hidden
parameter models. Indeed, any truth value assignment to quantum
propositions of a standard Hilbert space quantum logic of dimension
higher than two (represented by an orthomodular lattice) prior to the
actual measurement leads to a contradiction. On the other hand, for
classical propositional systems (identifiable with Boolean algebras) it
is always possible to prove the existence of separable valuations or
truth assignments. Hence, no embedding from a quantum logic into
some Boolean algebra can exist. In fact, the question of existence
of such an embedding can be translated into the following one [6]:
“How far might a classical understanding of quantum mechanics be, in
principle, possible?”. Although Kochen and Specker result mentioned
before suggests an answer to this question in the negative, one may
obtain a different answer by abandoning some of the restrictions on
(i.e., by weakening) the embedding notion.

It is our aim in this chapter to explore the various possibilities to ob-
tain such embeddings of quantum logics into classical ones. We intend
to discuss in detail the different approaches and results obtained con-
cerning this matter by e.g., Kochen and Specker [39], Zierler and Sch-
lessinger [64], Calude, Hertling and Svozil [6], Harding and Ptak [35],

29
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thus offering an overview of what can be achieved in terms of classical
understanding of quantum mechanics.

Let us briefly sketch the main ideas we intend to develop in our
exposition. It is a well known result, due to M.H.Stone, that every
Boolean algebra can be represented as a subalgebra of a powerset
Boolean algebra (see, e.g., [57]). However, this is not the case with
all orthomodular posets. A necessary and sufficient condition for an
orthomodular poset to have such a representation is to possess a full
set of two-valued states. This proves to be a quite restrictive condi-
tion, as it can be shown that for a Hilbert space of dimension higher
than three, the orthomodular lattice of its projection operators cannot
admit even one two-valued state, let alone a full set. It follows that in
general we cannot embed orthomodular lattices or posets into Boolean
algebras if we ask that such an embedding should preserve the join (i.e.,
suprema) of orthogonal elements (which is the natural first step when
relaxing the standard requirement that the embedding should preserve
all joins).

It follows that we have to ask even less of our embedding. A pos-
sibility to do this was explored by Zierler and Schlessinger [64]. They
only asked for an embedding to preserve the join of central elements of
an orthomodular lattice. In such a case, the attempt to embed a quan-
tum logic into a classical one proves successful. However, this result is
often not very useful, since the center of an orthomodular lattice can
be very “poor”, or even trivial – in which case the embedding notion
used here becomes too weak to be interesting.

A result of Harding and Ptak [35] brings great improvement to
the properties we can ask from such an embedding. Namely, for every
Boolean subalgebra B of an orthomodular lattice L, we can find an
embedding of L in a Boolean algebra of subsets of a certain set such
that the join is preserved on B and also for every pair of elements such
that at least one is central in L. Finally, the authors also show by an
example that this result can hardly be improved.

2.1. The impossibility of embedding a quantum logic into a
classical one

Let us show why it is impossible to have a “proper” embedding of
a non-Boolean orthomodular lattice (a quantum logic) into a Boolean
algebra (a classical logic).

Let L be an orthomodular lattice, B be a Boolean algebra and
h : L → B an embedding. Let us assume there exist a, b ∈ L that
aren’t compatible. Then a 6= (a∧ b)∨ (a∧ b′) and using the injectivity
of h, it follows that h(a) 6= h

(
(a∧b)∨(a∧b′)

)
. On the other hand, using

to the properties of embeddings, we find that h
(
(a ∧ b) ∨ (a ∧ b′)

)
=(

h(a) ∧ h(b)
)
∨
(
h(a) ∧ h(b′)

)
=
(
h(a) ∧ h(b)

)
∨
(
h(a) ∧ h(b)′

)
, hence
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h(a) 6=
(
h(a) ∧ h(b)

)
∨
(
h(a) ∧ h(b)′

)
, which means that h(a) and

h(b) aren’t compatible. However, B is Boolean and h(a), h(b) ∈ B,
hence h(a) ↔ h(b). We have reached a contradiction, therefore, our
assumption that there exist a, b ∈ L incompatible doesn’t hold. Since L
is an orthomodular lattice with the property that every pair of elements
is compatible, it must be Boolean.

In what follows, we will try to weaken the notion of embedding,
in order to make it possible for an orthomodular lattice to be embed-
ded (in this weaker sense) into a Boolean algebra. A natural idea to
overcome the above mentioned contradiction is to only ask that an em-
bedding preserves the join for orthogonal elements. In such a case, we
can as well generalize our discussion to orthomodular posets instead of
orthomodular lattices.

2.2. A characterization of orthomodular posets that can be
embedded into Boolean algebras

Before stating the main result of this section, let us introduce a few
important notions.

Definition 2.2.1. An orthomodular poset (P,⊆,c , ∅, X), where X
is a nonempty set, P ⊆ 2X , order is defined by set-theoretical inclu-
sion, the orthocomplement of an element A ∈ P is the set-theoretical
complement of A relative to X (denoted by Ac) and ∅ and X are the
least and greatest elements of P , respectively, is a set orthomodular
poset .

Definition 2.2.2. A set orthomodular poset with the property
that, for every A,B ∈ P , A∪B ∈ P whenever A∩B = ∅ is a concrete
orthomodular poset.

Remark 2.2.3. It can be shown that every orthomodular poset
can be represented as a set orthomodular poset. However, not every
orthomodular poset has a representation as a concrete orthomodular
poset, as we shall soon prove.

Definition 2.2.4. Let P be an orthomodular poset. A mapping
s : P → [0, 1] such that:

(1) s(1) = 1;
(2) s(a ∨ b) = s(a) + s(b), whenever a, b ∈ P , a ⊥ b

is a state on P . If, moreover, the range of s is {0, 1}, then s is a two-
valued state on P .

It is not difficult to see that a state preserves order on an ortho-
modular poset and that for every element a ∈ P , s(a′) = 1 − s(a). In
particular, it follows that s(0) = 0.

Definition 2.2.5. A set S of states on an orthomodular poset P
is full (or order determining) if, for every a, b ∈ P with a � b, there
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exists a state s ∈ S such that s(a) � s(b) (i.e., s(a) ≤ s(b) for all s ∈ S
implies a ≤ b).

Theorem 2.2.6 (see [53, Theorem 2.2.1] or [27]). An orthomodular
poset has a representation as a concrete orthomodular poset if and only
if it has a full set of two-valued states.

Proof. “⇒” Let P be an orthomodular poset that has a repre-
sentation as a concrete orthomodular poset, i.e., it is isomorphic to a
concrete orthomodular poset (M,⊆,c , ∅,S), where S 6= ∅ and M ⊆ 2S

and Ac denotes set-theoretical complement of A ∈ M in S. Let us
denote this isomorphism by h : P →M .

We will define on 2S a family of states “carried by a point” - for
every point in S. More precisely, we will consider the family of states
(ϕx)x∈S defined by:

ϕx : 2S → {0, 1}, ϕx(A) =

{
1 if x ∈ A
0 if x /∈ A.

It is a straightforward verification that ϕx ◦ h is a two-valued state
on P , for every x ∈ S. Moreover, it is easy to see that (ϕx ◦ h)x∈S is a
full set of two-valued states on P .

“⇐” Conversely, let S be a full set of two-valued states on an or-
thomodular poset P . We define h : P → 2S by h(a) = {s ∈ S :
s(a) = 1}, and we shall prove that if we restrict the codomain of h to
its image h(P ), we obtain an isomorphism from P onto the concrete
orthomodular poset (h(P ),⊆,c , ∅,S).

First let us notice that h(0) = ∅ and h(1) = S. Secondly, if a, b ∈ P ,
a ≤ b, then s(a) ≤ s(b) for every s ∈ S. Therefore, if s ∈ h(a), then
s ∈ h(b) for all s ∈ S, i.e., h(a) ⊆ h(b). Conversely, if h(a) ⊆ h(b), then
s(a) = 1 implies s(b) = 1 for every s ∈ S. It follows that s(a) ≤ s(b)
or every s ∈ S, hence a ≤ b, because S is a full set of states. We
have just proved that h preserves order, both ways. Further, we will
prove that h preserves orthocomplementation. Indeed, for every a ∈ P ,
h(a′) = {s ∈ S : s(a′) = 1} = {s ∈ S : s(a) = 0} = S \ h(a) = h(a)c.
Moreover, h preserves orthogonality, both ways, since the following
assertions are equivalent for every a, b ∈ P : a ⊥ b, a ≤ b′, h(a) ≤ h(b′),
h(a) ≤ h(b)c, h(a) ∩ h(b) = ∅, h(a) ⊥ h(b).

Finally, let a, b ∈ P , a ⊥ b. Since a, b ≤ a ∨ b, it follows that
h(a), h(b) ⊆ h(a∨b), hence h(a)∪h(b) ⊆ h(a∨b). To prove the converse
inclusion, let us consider s ∈ S such that s /∈ h(a) ∪ h(b). Then,
s(a) = s(b) = 0 and therefore, s(a ∨ b) = s(a) + s(b) = 0. It follows
that s /∈ h(a ∨ b). We have proved that h(a ∨ b) = h(a) ∪ h(b) ∈ h(P )
for all a, b ∈ P , a ⊥ b, which concludes our proof. �

Let us return to the problem of embedding an orthomodular poset
into a Boolean algebra (embedding which should preserve the join for
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orthogonal elements only). We notice that an orthomodular poset has
a concrete representation if and only if it can be embedded into a
Boolean algebra and therefore, Theorem 2.2.6 gives in fact a necessary
and sufficient condition for the existence of such an embedding—the
existence of a full set of two-valued states defined on the orthomodular
poset.

As it turns out, this condition is quite restrictive. For instance, it
can be shown that the standard Hilbert space orthomodular lattice of
projectors, for a Hilbert space H of dimension higher than 2, has no
two-valued states, not to mention a full set. This is a consequence of
Gleason’s well known theorem. In particular, for H = R3, a geometric
proof of this fact can be found in [6].

We must conclude that in general, we cannot embed orthomodular
posets or lattices into Boolean algebras, if we expect that such an
embedding to preserve the join of orthogonal elements. In the next
section, we discuss what happens if we further weaken the embedding
notion, asking the join to be preserved only for central elements.

2.3. The Zierler-Schlessinger theory

Definition 2.3.1. Let L be an orthomodular lattice and B a
Boolean algebra. A mapping h : L→ B is a Z-embedding of L into B
if the following conditions are satisfied:

(1) h(1) = 1;
(2) h(a′) = h(a)′ for every a ∈ L;
(3) a ⊥ b if and only if h(a) ⊥ h(b), for every a, b ∈ L;
(4) h(a∨b) = h(a)∨h(b), for every pair of central elements a, b ∈ L.

Remark 2.3.2. It can be easily checked that if h preserves ortho-
complements, then the preservation of orthogonality is equivalent to
the preservation of order, i.e., in the presence of condition (2) of the
above definition, condition (3) is equivalent to the following condition:

(3’) a ≤ b if and only if h(a) ≤ h(b), for every a, b ∈ L.

Following a well known result of N. Zierler and M. Schlessinger [64],
we shall prove that, for every orthomodular lattice, it is possible to con-
struct a Z-embedding into a power set Boolean algebra. The proof goes
along the same lines as in the Boolean case (i.e., the case of Stone’s
theorem -see, e.g., [57]). However, some notions need to be adapted to
the non-Boolean framework offered by orthomodular lattices. There-
fore, we shall need the notions of Z-ideal and Z-state.

For the remainder of this section, L will denote an orthomodular

lattice, and C̃(L) its center.

Definition 2.3.3. A mapping s : L→ [0, 1] such that:

(1) s(1) = 1;
(2) s(a′) = 1− s(a), for every a ∈ L;
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(3) a ≤ b implies s(a) ≤ s(b), for every a, b ∈ L;

(4) s(a ∨ b) = s(a) + s(b), whenever a, b ∈ C̃(L) and a ⊥ b

is a Z-state on L. If s : L→ {0, 1}, then we call s a two-valued Z-state.

Let us remark that, since states fulfill the conditions (2) and (3) in
Definition 2.3.3, a state is always a Z-state, but the converse doesn’t
hold, in general. We shall define the notion of full set of Z-states on
an orthomodular lattice L in the same way it was defined for states.

Definition 2.3.4. A set S of Z-states on an orthomodular lattice
L is full (or order determining) if, for every a, b ∈ L with a � b, there
exists a Z-state s ∈ S such that s(a) � s(b) (i.e., s(a) ≤ s(b) for all
s ∈ S implies a ≤ b).

Definition 2.3.5. Let B be a Boolean algebra. A subset F ⊂ B
is a filter of B if:

(1) for every a ∈ B and b ∈ F , a ≥ b implies a ∈ F ;
(2) a, b ∈ F implies a ∧ b ∈ F ;
(3) a ∈ F implies a′ /∈ F .

Definition 2.3.6. Let B be a Boolean algebra. A subset I ⊂ B is
an ideal of B if:

(1) for every a ∈ B and b ∈ I, a ≤ b implies a ∈ I;
(2) a, b ∈ I implies a ∨ b ∈ I;
(3) a ∈ I implies a′ /∈ I.

Let us notice that condition (3) in Definitions 2.3.5 and 2.3.6, re-
spectively, is equivalent to the fact that F ( B and I ( B, respectively.
Therefore, the notions of filter and ideal, as given in Definitions 2.3.5
and 2.3.6, correspond to the proper filters and ideals, as usually defined
in the literature.

Let us remark that the notion of filter is dual to that of ideal, hence
all the statements dual to statements that are true for ideals are true
for filters. For more details about ideals and filters in Boolean algebras,
we refer to, e.g., [57].

Definition 2.3.7. A subset I ⊂ L is a Z-ideal of the orthomodular
lattice L if:

(1) for every a ∈ L and b ∈ I, a ≤ b implies a ∈ I;

(2) a, b ∈ I ∩ C̃(L) implies a ∨ b ∈ I
(
∩C̃(L)

)
;

(3) a ∈ I implies a′ /∈ I.

Lemma 2.3.8. If I is a Z-ideal of L and a, a′ /∈ I, then J = {x ∈ L :

x ≤ m ∨ n,m ∈ I ∩ C̃(L), n ∈ 〈a〉 ∩ C̃(L)} ∪ I ∪ 〈a〉 is a Z-ideal of L
that includes I and a (where 〈a〉 = {x ∈ L : x ≤ a}).

Proof. Let us check that J satisfies conditions (1)–(3) from Def-
inition 2.3.7. Obviously, condition (1) is fulfilled. To verify condition
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(2), let u, v ∈ J ∩ C̃(L). Let us denote, for simplicity, W = {x ∈ L :

x ≤ m ∨ n,m ∈ I ∩ C̃(L), n ∈ 〈a〉 ∩ C̃(L)}. There are four possible
cases:

◦ u, v are in the same subset of J : W , I or 〈a〉;
◦ u ∈ 〈a〉, v ∈ I;
◦ u ∈ 〈a〉, v ∈ W ;
◦ u ∈ I, v ∈ W .

In all cases, the desired result is easily verified.
To check condition (3), two steps are necessary. First, we shall

prove that a′ /∈ J (hence J is a strict subset of L). We know a′ /∈ I
and clearly a′ /∈ 〈a〉. Assuming that a′ ∈ W , there exist m ∈ I ∩ C̃(L)

and n ∈ 〈a〉 ∩ C̃(L) such that a′ ≤ m ∨ n. It follows that a′ ≤ m ∨ a
and therefore, 1 = a ∨ a′ ≤ m ∨ a, hence m′ ∧ a′ = 0. However,

m ∈ C̃(L) implies a′ ↔ m, hence a′ = (a′∧m)∨ (a′∧m′) = (a′∧m). It
follows that a′ ≤ m and since m ∈ I, a′ ∈ I as well—in contradiction
to the hypothesis. We conclude that our assumption doesn’t hold and
therefore a′ /∈ J .

In the second step, we check that u ∈ J implies u′ /∈ J . Let us
assume to the contrary that u, u′ ∈ J . Again, we can distinguish four
cases:

◦ u, u′ are in the same subset of J : W , I or 〈a〉;
Since I, 〈a〉 are Z-ideals, they cannot contain u and u′

simultaneously. Then u, u′ ∈ W and there exist m,m1 ∈ I ∩
C̃(L) and n, n1 ∈ 〈a〉 ∩ C̃(L) such that u ≤ m ∨ n and u′ ≤
m1 ∨ n1. Hence 1 = u ∨ u′ ≤ (m ∨m1) ∨ (n ∨ n1), and since

m ∨m1 ∈ I ∩ C̃(L) and n ∨ n1 ∈ 〈a〉 ∩ C̃(L), it follows that
1 ∈ W ⊂ J—in contradiction to what we proved in the first
step (J 6= L).
◦ u ∈ 〈a〉, u′ ∈ I;

We have u ≤ a, hence a′ ≤ u′ ∈ I and therefore a′ ∈ I—a
contradiction.
◦ u ∈ 〈a〉, u′ ∈ W ;

Similarly, u ≤ a implies a′ ≤ u′ ∈ W , hence a′ ∈ W ⊂ J—
in contradiction to what we proved in the first step.
◦ u ∈ I, u′ ∈ W .

Since u′ ∈ W , there exist m ∈ I∩ C̃(L) and n ∈ 〈a〉∩ C̃(L)
such that u′ ≤ m ∨ n, hence m′ ∧ n′ ≤ u ∈ I, and m′ ∧ n′ ∈
I ∩ C̃(L) ⊂ J ∩ C̃(L). On the other hand, n ∈ J ∩ C̃(L) and it

follows that (m′ ∧ n′)∨ n ∈ J ∩ C̃(L), since we already proved
that J fulfills condition (2) from Definition 2.3.7. Since m,n

are central, (m′ ∧ n′) ∨ n = m′ ∨ n ∈ J , hence m′ ∈ J ∩ C̃(L).

However, m ∈ J ∩ C̃(L) and applying condition (2) again,
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1 = m ∨m′ ∈ J—in contradiction to what we proved in the
first step (J 6= L).

Since in all the cases we have obtained contradictions, our assump-
tion is false and condition (3) from the definition of Z-ideals is fulfilled
by J . �

The following two corollaries can be easily derived from Lemma 2.3.8.

Corollary 2.3.9. If I is a maximal Z-ideal in L and a ∈ L, then
either a ∈ I or a′ ∈ I.

Corollary 2.3.10. If a, b ∈ L such that a � b, then there exists a
maximal Z-ideal I in L such that b ∈ I, a /∈ I.

The following couple of lemmas show the one-to-one correspondence
between two-valued Z-states and maximal Z-ideals.

Lemma 2.3.11. Let s : L → {0, 1} be a two-valued Z-state and let
I = Ker(s). Then, I is a maximal Z-ideal in L.

Proof. First, we shall check conditions (1)–(3) from Definition 2.3.7.
For (1), let b ∈ I and a ≤ b. Then, s(a) ≤ s(b) = 0, hence a ∈ I. To

verify condition (2), let a, b ∈ I ∩ C̃(L). Since a ↔ b, there exist mu-

tually orthogonal elements a1, b1, c ∈ C̃(L) such that a = a1 ∨ c and
b = b1∨c. It follows that a∨b = a1∨b1∨c = a1∨b, and a1, b are central
orthogonal elements. Therefore, s(a∨b) = s(a1)+s(b) ≤ s(a)+s(b) = 0,
hence a∨b ∈ I. Condition (3), as well as the maximality of the Z-ideal
I follow from the condition that, for every a ∈ L, s(a) = 1 − s(a′)
and the converse of the statement in Corollary 2.3.9, which clearly
holds. �

Lemma 2.3.12. Let I be a maximal Z-ideal in L and let s : L →
{0, 1} be defined by s(a) = 0 whenever a ∈ I and s(a) = 1 otherwise.
Then, s is a two-valued Z-state on L.

Proof. Let us check conditions (1)–(4) from Definition 2.3.3. First,
1 /∈ I, hence s(1) = 1. For the second condition, there are two cases
to consider. If a ∈ I, then a′ /∈ I, hence s(a) + s(a′) = 1. If a /∈ I,
then, according to Corollary 2.3.9, a′ ∈ I and again s(a) + s(a′) = 1.
Let us verify condition (3). Let a ≤ b. If b ∈ I, then a ∈ I and
s(a) = s(b) = 0. If b /∈ I, then s(b) = 1 ≥ s(a). To check condi-

tion (4), let us consider a, b ∈ C̃(L), a ⊥ b. We have to prove that
s(a ∨ b) = s(a) + s(b). We shall distinguish three cases:

◦ a, b ∈ I. Then a ∨ b ∈ I, hence s(a) + s(b) = 0 = s(a ∨ b).
◦ a ∈ I, b /∈ I. It follows a ∨ b /∈ I and therefore s(a) + s(b) =

1 = s(a ∨ b).
◦ a, b /∈ I. We shall derive a contradiction, showing that this case

isn’t in fact possible. Indeed, a ⊥ b, hence a ≤ b′. However,
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in view of Corollary 2.3.9, b /∈ I implies b′ ∈ I. It follows
a ∈ I—a contradiction.

�

Finally, we are ready to prove the result of N. Zierler and M. Sch-
lessinger [64] that we have announced in the beginning of this section.

Theorem 2.3.13. For every orthomodular lattice L, there exist a
Z-embedding into a power set Boolean algebra.

Proof. We shall first built the power set Boolean algebra and
the Z-embedding. Let S be the set of all two-valued Z-states on L.
We define h : L → 2S by h(a) = {s ∈ S : s(a) = 1} and we shall
prove that h is a Z-embedding of L into the power set Boolean algebra
(2S ,⊆,c , ∅,S).

Clearly, h(0) = ∅ and h(1) = S. Moreover, it is easy to see
that for every a ∈ L, h(a′) = {s ∈ S : s(a′) = 1} = {s ∈ S :
s(a) = 0} = S \ h(a) = h(a)c. In view of Remark 2.3.2, instead of
proving that h preserves orthogonality, we can equivalently prove it
preserves order (i.e., it fulfills condition (3’) in the aforementioned re-
mark). Obviously, a ≤ b implies s(a) ≤ s(b) for every s ∈ S, hence
h(a) ⊆ h(b). Conversely, h(a) ⊆ h(b) means that s ∈ h(a) implies
s ∈ h(b) for all s ∈ S, i.e., s(a) = 1 implies s(b) = 1 for all s ∈ S. It
follows that s(a) ≤ s(b) for every s ∈ S. Now we only need to prove
that S is a full set of Z-states to obtain that a ≤ b, hence h satisfies (3’).
Indeed, according to Corollary 2.3.10, if a � b, then there exists a max-
imal Z-ideal I in L such that b ∈ I, a /∈ I. According to Lemma 2.3.12,
there exists a two-valued Z-state on L corresponding to the maximal
Z-ideal I, defined by s(a) = 0 whenever a ∈ I and s(a) = 1 otherwise.
Therefore, s(b) = 0 and s(a) = 1, hence s(a) � s(b). It follows that S
is a full set of Z-states.

Finally, we need to prove that h fulfills condition (4) in Defini-
tion 2.3.1, i.e., preserves the join of central elements. Let a, b ∈
C̃(L). Clearly, a, b ≤ a ∨ b, hence h(a), h(b) ⊆ h(a ∨ b) and there-
fore h(a) ∪ h(b) ⊆ h(a ∨ b). Let us prove the inverse inclusion. Since

a↔ b and C̃(L) is a Boolean subalgebra of L, there exist mutually or-

thogonal elements a1, b1, c ∈ C̃(L) such that a = a1 ∨ c and b = b1 ∨ c.
Let s ∈ h(a∨b). Then, s(a∨b) = s(a1∨c∨b1) = s(a1)+s(c)+s(b1) = 1,
and it follows that s ∈ h(a1)∪h(c)∪h(b1) ⊆ h(a)∪h(b). This concludes
the proof of condition (4) and of the theorem. �

A few remarks on this result are in order. First, let us notice that if

L is a Boolean algebra, then C̃(L) = L and the Z-embedding we have
built is just the embedding from Stone’s theorem.

In the opposite situation, when C̃(L) = {0,1}, the notion of Z-
embedding becomes very “weak”, as it doesn’t preserve the join (ex-
cept for trivial cases). In this case, the theorem justifies (after an easy
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generalization to orthomodular posets) our previous assertion accord-
ing to which every orthomodular poset has a representation as a set
orthomodular poset (Remark 2.2.3).

In many cases, the center of an orthomodular lattice is rather
“poor” or even trivial. In these cases, the above theorem gives us
a type of embedding that preserves the join of a very limited number
of elements. The next section is devoted to a result of J. Harding and
P. Pták [35] that substantially improves the properties that can be
obtained for an embedding of an orthomodular lattice into a Boolean
algebra.

2.4. The result of Harding and Pták

We intend to prove the following theorem (see [35]):

Theorem 2.4.1. Let L be an orthomodular lattice and let B be a
Boolean subalgebra of L. There exist a set S and a mapping h : L→ 2S

such that:

(1) h(1) = S;
(2) h(a′) = h(a)c;
(3) a ⊥ b if and only if h(a) ∩ h(b) = ∅;
(4) h(a ∨ b) = h(a) ∪ h(b), for every a, b ∈ B;

(5) h(a ∨ b) = h(a) ∪ h(b) whenever a ∈ C̃(L).

Let us notice that, in view of Remark 2.3.2, condition (3) in the
above theorem can be replaced by the following condition:

(3’) a ≤ b if and only if h(a) ≤ h(b), for every a, b ∈ L.

Before we can prove Theorem 2.4.1, some preparatives are neces-
sary. Our steps will be along the same lines as in the previous section,
but some changes are required. First, we need to define appropriate
versions for the notions of ideal and state.

Definition 2.4.2. Let L be an orthomodular lattice. A mapping
s : L→ [0, 1] such that:

(1) s(1) = 1;
(2) s(a′) = 1− s(a), for every a ∈ L;
(3) a ≤ b implies s(a) ≤ s(b), for every a, b ∈ L;

(4) s(a ∨ b) = s(a) + s(b), whenever a ∈ C̃(L) and a ⊥ b

is a centrally additive state on L. If s : L → {0, 1}, then we call s a
two-valued centrally additive state.

Definition 2.4.3. Let L be an orthomodular lattice and B a
Boolean subalgebra of L. A mapping s : L→ [0, 1] such that:

(1) s(1) = 1;
(2) s(a′) = 1− s(a), for every a ∈ L;
(3) a ≤ b implies s(a) ≤ s(b), for every a, b ∈ L;
(4) s(a ∨ b) = s(a) + s(b), whenever a, b ∈ B and a ⊥ b
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is a B-state on L. If s : L→ {0, 1}, then we call s a two-valued B-state.

Let us remark that a state is always a centrally additive state and
a B-state, but the converse statements do not hold, in general.

Definition 2.4.4. Let L be an orthomodular lattice and B a
Boolean subalgebra of L. A set S of B-states (centrally additive states,
respectively) on L is full (or order determining) if, for every a, b ∈ L
with a � b, there exists a B-state (centrally additive state, respec-
tively) s ∈ S such that s(a) � s(b) (i.e., s(a) ≤ s(b) for all s ∈ S
implies a ≤ b).

Definition 2.4.5. A subset I ⊂ L is a central ideal of the ortho-
modular lattice L if:

(1) for every a ∈ L and b ∈ I, a ≤ b implies a ∈ I;

(2) a, b ∈ I, b ∈ C̃(L) implies a ∨ b ∈ I;
(3) a ∈ I implies a′ /∈ I;

(4) I includes a maximal ideal of C̃(L).

Lemma 2.4.6 ([35, Lemma 3]). If I is a central ideal of an ortho-
modular lattice L and a′ /∈ I, then J = I ∪ {x ∈ L : x ≤ m ∨ a,m ∈
I ∩ C̃(L)} is a central ideal of L that includes I and a.

Proof. Let us check that J satisfies conditions (1)–(4) from Defi-
nition 2.4.5. Let us denote, for simplicity, W = {x ∈ L : x ≤ m∨a,m ∈
I ∩ C̃(L)}. Condition (1) is easily verified, since I is a central ideal.

To check condition (3), two steps are necessary. First, we shall prove
that a′ /∈ J (hence J is a strict subset of L). We know a′ /∈ I. Assuming

that a′ ∈ W , there exist m ∈ I ∩ C̃(L) such that a′ ≤ m∨ a. It follows
that a′ ≤ m ∨ a and therefore, 1 = a ∨ a′ ≤ m ∨ a, hence m′ ∧ a′ = 0.

However, m ∈ C̃(L) implies a′ ↔ m, hence a′ = (a′ ∧m) ∨ (a′ ∧m′) =
(a′ ∧ m). It follows that a′ ≤ m and since m ∈ I, a′ ∈ I as well—
in contradiction to the hypothesis. We conclude that our assumption
doesn’t hold and therefore a′ /∈ J .

In the second step, we check that u ∈ J implies u′ /∈ J . Let us
assume to the contrary that u, u′ ∈ J . We can distinguish the following
cases:

◦ u, u′ ∈ I—not possible since I is a central ideal.

◦ u, u′ ∈ W . Then there exist m,n ∈ I ∩ C̃(L) such that u ≤
m∨a and u′ ≤ n∨a. It follows that 1 = u∨u′ ≤ m∨n∨a. Since
m∨n ∈ I ∩ C̃(L), it results that 1 ∈ W ⊆ J—a contradiction.

◦ u ∈ I, u′ ∈ W . There exists m ∈ I ∩ C̃(L) such that u′ ≤
m ∨ a. Therefore, m′ ∧ a′ ≤ u ∈ I, hence m′ ∧ a′ ∈ I. Since

m ∈ I ∩ C̃(L) and I is a central ideal, m ∨ (m′ ∧ a′) ∈ I and
therefore, m ∨ a′ ∈ I, hence a′ ∈ I—a contradiction.
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Since in all the cases we have obtained contradictions, our assump-
tion is false and condition (3) from the definition of central ideals is
fulfilled by J .

To verify condition (4), we shall first prove that J∩C̃(L) is an ideal

in C̃(L) (which is a Boolean algebra). Indeed, if x, y ∈ C̃(L), x ≤ y
and y ∈ J , then x ∈ J (according to condition (1), that we already

verified for J). Secondly, if x, y ∈ J ∩ C̃(L), we have to show that

x ∨ y ∈ J ∩ C̃(L). The following cases are possible:

◦ x, y ∈ I. Then x ∨ y ∈ I ⊆ J , since x, y ∈ C̃(L) and I is a
central ideal.
◦ x ∈ I, y ∈ W . Then there exists m ∈ I ∩ C̃(L) such that
y ≤ m∨ a and therefore, x∨ y ≤ x∨m∨ a. However, x∨m ∈
I ∩ C̃(L), hence x ∨ y ∈ W ⊆ J .

◦ x, y ∈ W . Then there exist m,n ∈ I ∩ C̃(L) such that x ≤
m ∨ a, y ≤ n ∨ a and therefore, x ∨ y ≤ m ∨ n ∨ a. However,

m ∨ n ∈ I ∩ C̃(L), hence x ∨ y ∈ W ⊆ J .

The third and last condition for J ∩ C̃(L) to be an ideal in C̃(L),

namely that for an element x ∈ C̃(L), x ∈ J implies x′ /∈ J is easily
verified.

Let us now remark that I ∩ C̃(L) is an ideal in C̃(L). Since I is a

central ideal, it follows that I includes a maximal ideal of C̃(L), hence

I∩C̃(L) is a maximal ideal in C̃(L). On the other hand, we just proved

that J ∩ C̃(L) is an ideal in C̃(L) and since I ∩ C̃(L) ⊆ J ∩ C̃(L), it

follows that I ∩ C̃(L) = J ∩ C̃(L) and therefore J ∩ C̃(L) is a maximal

ideal of C̃(L).
We have yet to prove that J fulfills condition (2). Let u, v ∈ J ,

v ∈ C̃(L). We will show that u ∨ v ∈ J . The following cases may
occur:

◦ u, v ∈ I. Since I is a central ideal, it follows that u∨v ∈ I ⊆ J .

◦ u, v ∈ W . Then there exist m,n ∈ I ∩ C̃(L) such that u ≤
m ∨ a, v ≤ n ∨ a and therefore, u ∨ v ≤ m ∨ n ∨ a. However,

m ∨ n ∈ I ∩ C̃(L), hence u ∨ v ∈ W ⊆ J .

◦ u ∈ W , v ∈ I. Then there exists m ∈ I ∩ C̃(L) such that
u ≤ m∨ a and therefore, u∨ v ≤ v ∨m∨ a. However, v ∨m ∈
I ∩ C̃(L), hence u ∨ v ∈ W ⊆ J .
◦ u ∈ I, v ∈ W . In this case, we need to make use of the

previously proven fact that I ∩ C̃(L) = J ∩ C̃(L). Indeed,

v ∈ W ∩ C̃(L) ⊆ J ∩ C̃(L) = I ∩ C̃(L) and it follows that
u ∨ v ∈ I ⊆ J .

This concludes the proof of the lemma. �

Corollary 2.4.7. A central ideal I of an orthomodular lattice L
is maximal if and only if a /∈ I implies a′ ∈ I, for every a ∈ L.
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Like in the previous section, we will now establish a one-to-one
correspondence between a certain type of states and a certain type of
ideals (in the following two lemmas).

Lemma 2.4.8. Let L be an orthomodular lattice and B a Boolean
subalgebra of L. If s : L → {0, 1} is a two-valued centrally additive
B-state and I = Ker(s), then I is a maximal central ideal of L that
includes a maximal ideal of B.

Proof. First, let us check conditions (1)–(4) from Definition 2.4.5.
For (1), let b ∈ I and a ≤ b. Then, s(a) ≤ s(b) = 0, hence a ∈ I. To

verify condition (2), let a, b ∈ I and b ∈ C̃(L). Since a↔ b, there exist

mutually orthogonal elements a1, b1, c ∈ C̃(L) such that a = a1 ∨ c and
b = b1 ∨ c. It follows that a ∨ b = a1 ∨ b1 ∨ c = a1 ∨ b, with a1, b

orthogonal elements and b ∈ C̃(L). Therefore, s(a∨b) = s(a1)+s(b) ≤
s(a) + s(b) = 0, hence a ∨ b ∈ I. Condition (3) is obviously fulfilled,
since s(a′) = 1− s(a) = 1 whenever a ∈ I. To verify condition (4), let

us notice first that I ∩ C̃(L) is an ideal in C̃(L). It is also a maximal

one, since a ∈ C̃(L) \ I implies s(a) = 1, hence s(a′) = 0 and therefore

a′ ∈ I ∩ C̃(L). It follows that I is a central ideal of L. Moreover,
since a /∈ I implies s(a) = 1, hence s(a′) = 0 and thereby a′ ∈ I,
we conclude, according to Corollary 2.4.7, that I is a maximal central
ideal.

We have yet to prove that I includes a maximal ideal of B (namely
I∩B). This verification is straightforward and uses the same technique
as above, hence we omit it. �

Lemma 2.4.9. Let L be an orthomodular lattice and B a Boolean
subalgebra of L. If I is a maximal central ideal in L which includes a
maximal ideal of B and s : L→ {0, 1} is defined by s(a) = 0 whenever
a ∈ I and s(a) = 1 otherwise, then s is a two-valued centrally additive
B-state on L.

Proof. Firstly, 1 /∈ I, hence s(1) = 1. Further, if a ∈ I, then
a′ /∈ I, hence s(a)+s(a′) = 1 while if a /∈ I, according to Corollary 2.4.7,
a′ ∈ I and again s(a) + s(a′) = 1. Let us verify that s preserves order.
Let a ≤ b. If b ∈ I, then a ∈ I and s(a) = s(b) = 0. If b /∈ I,
then s(b) = 1 ≥ s(a). To check that s(a ∨ b) = s(a) + s(b), whenever

a ∈ C̃(L) and a ⊥ b, let us consider a ∈ C̃(L), b ∈ L such that a ⊥ b.
We shall distinguish three cases:

◦ a, b ∈ I. Then a ∨ b ∈ I, hence s(a) + s(b) = 0 = s(a ∨ b).
◦ a ∈ I, b /∈ I. It follows a ∨ b /∈ I and therefore s(a) + s(b) =

1 = s(a ∨ b).
◦ a, b /∈ I. We shall derive a contradiction, showing that this case

isn’t in fact possible. Indeed, a ⊥ b, hence a ≤ b′. However,
in view of Corollary 2.4.7, b /∈ I implies b′ ∈ I. It follows
a ∈ I—a contradiction.



42 2. UNDERSTANDING QUANTUM MECHANICS IN CLASSICAL TERMS

The proof that s(a ∨ b) = s(a) + s(b), whenever a, b ∈ B and a ⊥ b is
similar, and therefore we omit it. �

We have established a one-to-one correspondence between maximal
central ideals which include a maximal ideal of B and the two-valued
centrally additive B-states. Since the proof of Theorem 2.4.1 will follow
a similar pattern as the proof of Theorem 2.3.13, it will be necessary
to prove that the two-valued centrally additive B-states form a full set.
Hence, the following lemma.

Lemma 2.4.10 ([35, Lemma 5]). Let L be an orthomodular lattice

and B a Boolean subalgebra of L, such that C̃(L) ⊆ B and let a, b ∈ L
such that a � b. There exists then a central ideal I such that I ∩ B is
a maximal ideal in B and a′, b ∈ I.

Proof. Let X = {x ∈ B : a ≤ x}, Y = {y ∈ B : b′ ≤ y},
Z = {z ∈ C̃(L) : a ≤ z ∨ b} and let W = X ∪ Y ∪ Z. The set W
generates a proper filter F in B. Assuming the contrary would imply
that there exist x ∈ X, y ∈ Y and z ∈ Z such that x∧y∧ z = 0. Since
z is central, z ↔ x∧y, hence x∧y = (x∧y∧z)∨ (x∧y∧z′) = x∧y∧z′
and therefore x ∧ y ≤ z′ or equivalently, z ≤ x′ ∨ y′. On the other
hand, a ≤ x and therefore a ∧ z ≤ x ∧ (x′ ∨ y′) = x ∧ y′ ≤ y′ ≤ b.
Since a ∧ z ≤ z, it follows that a ∧ z ≤ b ∧ z. However, a ≤ z ∨ b
implies a ∧ z′ ≤ (z ∨ b) ∧ z′ = b ∧ z′, where the last equality is due to
the centrality of z. Using again the fact that z is central, we find that
a = (a ∧ z) ∨ (a ∧ z′) ≤ (b ∧ z) ∨ (b ∧ z′) = b—in contradiction to the
hypothesis. It follows that F is a proper filter in B.

Let Q be the maximal ideal of B which is the dual of the maximal
filter of B that includes F . It follows that Q∩W = ∅. We define I0 =
{x ∈ L : x ≤ p for some p ∈ Q}, with the intention to prove that I0 is
a central ideal and I0 ∩B is a maximal ideal in B. Clearly, y ≤ x ∈ I0

implies y ∈ I0. Let x, y ∈ I0 and y ∈ C̃(L). Then there exist p1, p2 ∈ Q
such that x ≤ p1 and y ≤ p2. It follows that x ∨ y ≤ p1 ∨ p2 ∈ Q,
hence x ∨ y ∈ I0. The third condition is easily verified, since x, x′ ∈ I0

would imply 1 ∈ Q—a contradiction, since Q is proper. For the fourth

condition, let us notice that Q ∩ C̃(L) is a maximal ideal of C̃(L) and

Q∩ C̃(L) ⊆ I0 ∩ C̃(L), hence I0 ∩ C̃(L) = Q∩ C̃(L) is a maximal ideal

of C̃(L). Moreover, I0 ∩B = Q is a maximal ideal of B.
We now show that a, b′ /∈ I0. Indeed, assuming a ∈ I0 implies a ≤ x

for some x ∈ Q, hence x ∈ Q ∩W = ∅—a contradiction. Similarly,
assuming b′ ∈ I0 implies b′ ≤ y for some y ∈ Q, hence y ∈ Q∩W = ∅—
a contradiction. According to Lemma 2.4.6, the set I1 = I0 ∪ {x ∈ L :

x ≤ m ∨ b,m ∈ I0 ∩ C̃(L)} is a central ideal containing b. Moreover,

a /∈ I1, since assuming the opposite leads to a ≤ z∨b, with z ∈ I0∩C̃(L)
and further to z ∈ Q∩W = ∅—a contradiction. Applying Lemma 2.4.6
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again, we find that the set I2 = I1∪{x ∈ L : x ≤ n∨a′, n ∈ I1∩ C̃(L)}
is a central ideal containing a′ and b, which concludes the proof. �

Corollary 2.4.11 (see [35, Theorem 6]). Let L be an orthomod-
ular lattice and B a Boolean subalgebra of L and let a, b ∈ L such that
a � b. There exists then s : L→ {0, 1} a two-valued centrally additive
B-state such that s(a) = 1 and s(b) = 0 (i.e., the set of two-valued
centrally additive B-states is a full set).

Proof. The result follows easily, using Lemma 2.4.10 and the one-
to-one correspondence between maximal central ideals which include
a maximal ideal of B and the two-valued centrally additive B-states.

Since we do not assume here that C̃(L) ⊆ B, we can, if necessary, take

the subalgebra generated by C̃(L) ∪B instead of B. �

We are now able to prove the result we announced at the beginning
of this section.

Proof. (Theorem 2.4.1) Let S be the set of two-valued centrally
additive B-states on L. We define the mapping h : L → 2S , h(a) =
{s ∈ S : s(a) = 1}. One can now easily verify, following the same steps
as in the proof of Theorem 2.3.13, that the mapping h fulfills conditions
(1)–(5) required. �





CHAPTER 3

Spectral Automorphisms in Orthomodular
Lattices

In this chapter we present original research results that were pub-
lished in articles [36] and [11]. We develop the theory of spectral
automorphisms in orthomodular lattices and obtain in this framework
some results that are analogues of the ones in the spectral theory in
Hilbert spaces.

3.1. Introduction

In quantum mechanics, the Hilbert space formalism might be phys-
ically justified in terms of some axioms based on the orthomodular
lattice mathematical structure [51]. Since the framework of orthomod-
ular lattices/quantum logics is, in a sense, more general than that of
Hilbert space, which is supported by specific mathematical structures,
we intend to investigate what amount of “quantum physics” is already
contained in the mathematical structure of orthomodular lattices. In
other words, the problem is to have some look on the dependence of
several fundamental physical facts on Hilbert space specific tools.

Towards this end, we introduced the notion of spectral automor-
phism and studied their fundamental mathematical properties and con-
nections with some quantum problems. We have also used spectral
automorphisms in our attempt to clarify the physical meaning of some
currently used Hilbert-space mathematical objects.

A very well known result in the theory of Hilbert space [1, 55] states
that there exists a one-to-one correspondence between three sets:

• the set of selfadjoint operators
• the set of spectral measures
• the set of all one-parameter strongly continuous groups of uni-

tary operators.

This observation is consistently used in the following considerations.
Before the definition enounced, let us explain the motivation and

the origin of the notion of spectral automorphism. One of the most fun-
damental objects in the Hilbert-space quantum theory is that of the
spectrum of an observable/selfadjoint operator. Its definition depends
strictly on the fact that the observable in the Hilbert-space framework
is a linear operator in a vector space endowed with a topology gener-
ated by a scalar product. On the other hand - and this is crucial for

45
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our approach - observables in orthomodular lattices are quite similar as
mathematical objects to spectral measures, which define the Hilbert-
space observables/selfadjoint operators. However, a notable difference
consists in the fact that the spectral measures have as values orthogonal
projectors in a Hilbert space but any observable of an orthomodular
lattice has as values elements of that orthomodular lattice. This ob-
servation leads to the idea that considering the properties of lattice-
automorphisms might be a “substitute” of Hilbert-space technique in
studying the spectral properties of observables in the more general
framework of orthomodular lattices.

3.2. Definition and basic facts about spectral automorphisms

Let H be a Hilbert space and P(H) the orthomodular lattice of
projection operators on H. According to a version of Wigner’s theo-
rem due to Wright [63], automorphisms of P(H) are of the form ϕU :
P(H) → P(H), ϕU(P ) = UPU−1, with U being a unitary or an an-
tiunitary operator on H. Let us assume that U is unitary and BU is
the Boolean subalgebra of P(H) that is the range of the spectral mea-
sure associated to U . Then P ∈ P(H) is ϕU -invariant if and only if
UP = PU if and only if P commutes with BU (i.e., commutes with ev-
ery projection operator in BU) if and only if P ↔ BU (for the last two
equivalences, see [34]). This inspired in a natural way the definition of
spectral automorphisms in orthomodular lattices.

Definition 3.2.1. Let L be an orthomodular lattice and ϕ be
an automorphism of L. The automorphism ϕ is spectral if there is
a Boolean subalgebra B of L such that

ϕ(a) = a if and only if a↔ B .(P1)

A Boolean subalgebra of L satisfying condition (P1) is a spectral algebra
of ϕ. The set of ϕ-invariant elements of L is denoted by Lϕ.

Proposition 3.2.2. Let L be an orthomodular lattice and ϕ : L→
L be an automorphism. Then Lϕ is a subalgebra of L.

Proof. The statement is a straightforward consequence of the
properties of ϕ. �

The next proposition is important, since it leads to the definition
of the spectrum of a spectral automorphism.

Proposition 3.2.3. For any spectral automorphism, there exists
the greatest Boolean subalgebra having the property (P1)

Proof. Let ϕ be a spectral automorphism of the orthomodular
lattice L and {Bi; i ∈ I} the set of all Boolean subalgebras of L having
the property (P1) with respect to ϕ. Then, for any i, j ∈ I, i 6= j
we have Bi ↔ Bj. Indeed, if a ∈ Bi then a ↔ Bi, hence ϕ(a) = a
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and therefore, a ↔ Bj. According to Proposition 1.3.8,
[⋃

i∈IBi

]
is a

Boolean algebra. Let us check that it satisfies (P1). Clearly, if a ∈ L
such that a ↔

[⋃
i∈IBi

]
, then a ↔ Bi for all i ∈ I, hence ϕ(a) = a.

Conversely, if ϕ(a) = a, then a ↔ Bi for all i ∈ I. Since for any
i, j ∈ I, i 6= j we have Bi ↔ Bj, it follows that {a} ∪

⋃
i∈IBi is a set

of pairwise compatible elements, therefore
[
{a} ∪

⋃
i∈IBi

]
is a Boolean

algebra, according to Corollary 1.3.7. As a belongs to this Boolean
algebra, a ↔

[
{a} ∪

⋃
i∈IBi

]
and since

[⋃
i∈IBi

]
⊆
[
{a} ∪

⋃
i∈IBi

]
, it

follows that a↔
[⋃

i∈IBi

]
. �

Definition 3.2.4. If ϕ : L → L is a spectral automorphism, the
greatest Boolean subalgebra having the property (P1) is called the spec-
trum of ϕ and will be denoted by σϕ.

A trivial example shows that in general there are several Boolean
subalgebras having the property (P1) with respect to a given automor-
phism. Indeed, let L be a Boolean algebra and id : L→ L its identity.
Obviously, id is an automorphism, and any Boolean subalgebra of L
has the property (P1). It follows that id is spectral and its spectrum
is L. We can prove even more:

Proposition 3.2.5. If L is a Boolean algebra, then its identity
id : L→ L is the only spectral automorphism of L.

Proof. Let ϕ be a spectral automorphism of the Boolean algebra
L and σϕ its spectrum. According to Remark 1.2.7, every element of L
is compatible with σϕ, hence every element is ϕ-invariant. Therefore,
ϕ = id. �

A simple, but very important consequence of this fact is:

Corollary 3.2.6. If an orthomodular lattice has a nontrivial spec-
tral automorphism, then it cannot be Boolean.

Lemma 3.2.7. Let L be an orthomodular lattice and ϕ : L → L a
spectral automorphism. Then σϕ ⊆ Lϕ.

Proof. Let a ∈ σϕ. Then, according to Corollary 1.3.23, a↔ σϕ,
hence a ∈ Lϕ, according to (P1). �

Lemma 3.2.8. Let L be an orthomodular lattice and ϕ : L → L a

spectral automorphism. Then σϕ ⊆ C̃(Lϕ).

Proof. Let a ∈ σϕ. Then, according to Definition 3.2.4, a ↔ Lϕ
and according to Lemma 3.2.7, a ∈ Lϕ. Therefore, a ∈ C̃(Lϕ). �

Lemma 3.2.9. Let L be an orthomodular lattice and ϕ : L → L a

spectral automorphism. Then a ∈ Lϕ if and only if a↔ C̃(Lϕ).

Proof. Let a ∈ Lϕ. If b ∈ C̃(Lϕ), then a↔ b by Definition 1.3.21.

Conversely, if a↔ C̃(Lϕ), then, by Lemma 3.2.8, it follows that a↔ σϕ
and therefore, by (P1), a ∈ Lϕ. �
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Figure 1. Greechie diagrams of orthomodular lattices
used in Examples 3.2.12, 3.2.13 and 3.8.9.

The following proposition is a characterization of spectral automor-
phisms and their spectra.

Proposition 3.2.10. The automorphism ϕ : L → L is spectral if
and only if there is a Boolean subalgebra B of L such that Lϕ = K(B).

In this case, σϕ = C̃(Lϕ).

Proof. The first statement is an obvious reformulation of the
property (P1). If ϕ is spectral, σϕ ⊆ C̃(Lϕ) according to Lemma 3.2.8.

On the other hand, C̃(Lϕ) has the property (P1), by Lemma 3.2.9.

Since C̃(Lϕ) is a Boolean algebra, by Proposition 1.3.22,and since the
spectrum of ϕ is the greatest Boolean algebra with this property, the
second assertion is proved. �

Let us remark the obvious fact that Lϕ ⊆ K(C̃(Lϕ)), hence the
following corollary holds:

Corollary 3.2.11. The automorphism ϕ : L → L is spectral if

and only if K(C̃(Lϕ)) ⊆ Lϕ

This means that Lϕ must be ”sufficiently large” for including the

commutant of its center. Similarly, we might say that the center C̃(Lϕ)
must have ”sufficiently many” elements for its commutant to be in-
cluded in the lattice of ϕ-invariant elements.

Let us discuss some examples of spectral automorphisms. We shall
use the technique of Greechie diagrams—see, e.g., [38]. A Greechie
diagram of an orthomodular lattice L consists of a set of points and
a set of lines such that points are in one-to-one correspondence with
atoms of L and lines are in one-to-one correspondence with blocks of
L. An automorphism of a finite orthomodular lattice is completely
determined by its values on atoms.

Example 3.2.12. Let L be the orthomodular lattice described by
the first Greechie diagram in Fig. 1. It is the union of two blocks,
one determined by atoms {a, b, c} and the other determined by atoms
{c, d, e}. Let ϕ be an automorphism of L such that a, b, c are ϕ-
invariant and d, e are permuted by ϕ. Then the set Lϕ of ϕ-invariant
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elements of L is the block of L determined by atoms {a, b, c}. Since Lϕ
is already Boolean, it coincides with its center C̃(Lϕ) and since it is a
block, x ↔ Lϕ if and only if x ∈ Lϕ for every x ∈ L. Therefore ϕ is

spectral and σϕ = Lϕ = C̃(Lϕ).

Example 3.2.13. Let L be the orthomodular lattice described by
the second Greechie diagram in Fig. 1. It is the union of three blocks,
the first determined by atoms {a, b, c}, the second determined by atoms
{c, d, e} and the last determined by atoms {e, f, g}. Let ϕ be an au-
tomorphism of L such that a, b, c, d, e are ϕ-invariant and f, g are per-
muted by ϕ. Then the set Lϕ of ϕ-invariant elements of L is not a
block but it is precisely the lattice from Example 3.2.12 which is the
union of blocks determined by atoms {a, b, c} and {c, d, e}. Its cen-

ter is C̃(Lϕ) = {0,1, c, c′} and for an element x ∈ L, x ↔ C̃(Lϕ) if
and only if x ↔ c if and only if x ∈ Lϕ. Therefore ϕ is spectral and

σϕ = C̃(Lϕ) = {0,1, c, c′}.

Example 3.2.14. LetH be an n-dimensional complex Hilbert space
and P(H) be the set of its projection operators. LetQ be a 1-dimensional
projection on H and Q′ be its orthogonal complement. We define
U : H → H as the symmetry of H with respect to the hyperplane
corresponding to Q′. It is easy to see that U is a unitary operator,
therefore ϕ : P(H) → P(H) defined by ϕ(P ) = UPU−1 is an au-
tomorphism of P(H). B = {0, Q,Q′,1} is a Boolean subalgebra of
P(H) fulfilling condition (P1) in Definition 3.2.1. Indeed, the set of
ϕ-invariant elements, as well as the set of elements that are compatible
with B, is P0 ∪ P ′0, where P0 = {A ∈ P(H) : A ≤ Q′} and P ′0 denotes
the set of orthocomplements of the elements of P0.

3.3. Spectral automorphisms in products and horizontal
sums

We shall discuss the construction of spectral automorphisms in
products and horizontal sums of orthomodular lattices. This will show
new ways to obtain spectral automorphisms, proving the richness of
this class of automorphisms. A factorization of the spectra of spectral
automorphisms is also discussed.

Let us begin by recalling the basic facts about products and hori-
zontal sums of orthomodular lattices (see, e.g., [53]). In what follows,
we refer to the smallest possible orthomodular lattice {0,1} as the
trivial orthomodular lattice. The product

∏
i∈I Li of a nonempty col-

lection (Li)i∈I of orthomodular lattices is obtained by endowing their
Cartesian product with the “component-wise” partial order and ortho-
complementation (i.e., for a, b ∈

∏
i∈I Li, we have a ≤ b if ai ≤ bi for

all i ∈ I and a = b′ if ai = b′i for all i ∈ I). The horizontal sum of
a nonempty collection (Li)i∈I of orthomodular lattices is constructed
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as the disjoint union of all Li’s with identifying their least (greatest)
elements to obtain the least (greatest) element of the horizontal sum,
the order and orthocomplementation in the horizontal sum are inher-
ited from Li. Two elements ai ∈ Li, aj ∈ Lj with i 6= j and such
that ai, aj /∈ {0,1} are incomparable. It follows that, if bi, bj are not
elements of the same summand (hence, bi, bj /∈ {0,1}), then, in the
horizontal sum, bi ∧ bj = 0 and bi ∨ bj = 1. A summand that is not a
horizontal sum of at least two nontrivial orthomodular lattices is min-
imal. (Every orthomodular lattice is the horizontal sum of itself and
of an arbitrary collection of trivial orthomodular lattices). Every sum-
mand is a subalgebra of the horizontal sum. Both the product and the
horizontal sum of a collection of orthomodular lattices are orthomod-
ular lattices.

Lemma 3.3.1. Let (Li)i∈I be a collection of orthomodular lattices
and let L be their product. The elements a = (ai)i∈I , b = (bi)i∈I of L
are compatible if and only if ai ↔ bi for all i ∈ I.

Proof. We have a↔ b if and only if there are pairwise orthogonal
elements c, d, e ∈ L, c = (ci)i∈I , d = (di)i∈I , e = (ei)i∈I , such that
a = c∨d and b = c∨e. This happens if and only if for every i ∈ I, there
are pairwise orthogonal elements ci, di, ei ∈ Li such that ai = ci ∨ di
and bi = ci ∨ ei, which is equivalent to ai ↔ bi, for all i ∈ I. �

Theorem 3.3.2. Let L be the product of a collection (Li)i∈I of
orthomodular lattices and, for every i ∈ I, ϕi be an automorphism of
Li. Let us define the mapping ϕ : L → L by ϕ

(
(ai)i∈I

)
=
(
ϕi(ai)

)
i∈I .

Then:

(1) ϕ is an automorphism of L;
(2) ϕ is spectral if and only if ϕi is spectral for every i ∈ I; in this

case, σϕ =
∏

i∈I σϕi
.

Proof. (1) It is a routine verification.
(2) An element (ai)i∈I ∈ L is ϕ-invariant if and only if ϕi(ai) =

ai for every i ∈ I, i.e., Lϕ =
∏

i∈I Lϕi
. According to Lemma 3.3.1,

C̃(Lϕ) =
∏

i∈I C̃(Lϕi
) and K

(
C̃(Lϕ)

)
=
∏

i∈I K
(
C̃(Lϕi

)
)
. According

to Corollary 3.2.11, ϕ is spectral if and only if K
(
C̃(Lϕ)

)
= Lϕ, i.e.,∏

i∈I K
(
C̃(Lϕi

)
)

=
∏

i∈I Lϕi
, i.e., K

(
C̃(Lϕi

)
)

= Lϕi
for every i ∈ I,

i.e., ϕi is spectral for every i ∈ I. Moreover, in such a case, σϕ =

C̃(Lϕ) =
∏

i∈I C̃(Lϕi
) =

∏
i∈I σϕi

. �

We shall turn now to spectral automorphisms in horizontal sums of
orthomodular lattices. Let us begin with some preparatory remarks.

Remark 3.3.3. Let L be an orthomodular lattice and ϕ be a spec-
tral automorphism of L. If Lϕ = {0,1} then L = {0,1}. This fol-

lows from the fact that σϕ = C̃(Lϕ) = {0,1} and {0,1} ↔ L, hence
L ⊆ Lϕ = {0,1}.



3.3. SPECTRAL AUTOMORPHISMS IN PRODUCTS AND SUMS 51

Remark 3.3.4. Let L be the horizontal sum of a collection (Li)i∈I
of orthomodular lattices. If ai ∈ Li \ {0,1} and aj ∈ Lj \ {0,1} for
some i, j ∈ I, i 6= j, then ai = aj. Indeed, ai ∧ aj = 0 and ai ∧ a′j = 0,
hence (ai ∧ aj) ∨ (ai ∧ a′j) = 0 6= ai, and thus ai = aj, according to
Corollary 1.2.6. Hence, every nontrivial block (i.e., every block if L is
nontrivial) of L is a subset of exactly one summand.

Lemma 3.3.5. Let L be the horizontal sum of a collection (Li)i∈I
of orthomodular lattices such that every summand is minimal, ϕ be an
automorphism of L such that ϕ(Li)∩Li 6= {0,1} for some i ∈ I. Then
the restriction ϕi of ϕ to Li is an automorphism of Li.

Proof. The horizontal sum L is nontrivial, hence, according to
Remark 3.3.4, every block of L is a subset of exactly one summand.
Let us denote Li,j =

⋃
{B ⊆ Li : B is a block in L, ϕ(B) ⊆ Lj}. We

will prove that Li is the horizontal sum of (Li,j)j∈I .
First, let us show that Li =

⋃
j∈I Li,j. Let us remark that the union

on the right-hand side of the equality includes all the blocks of Li, since,
according to Corollary 1.5.10, for every block B in Li (which is also a
block in L), ϕ(B) is a block in L, and according to Remark 3.3.4, it
is a subset of exactly one summand Lj. Since Li is the union of its
blocks, the equality Li =

⋃
j∈I Li,j follows.

Second, we will prove that for j 6= k, Li,j ∩ Li,k = {0,1}. Let
us assume to the contrary that there exists a ∈ Li,j ∩ Li,k \ {0,1}.
Then, there exist the blocks B1, B2 ⊆ Li such that a ∈ B1, B2 and
ϕ(B1) ⊆ Lj, ϕ(B2) ⊆ Lk. It follows that ϕ(a) ∈ Lj ∩ Lk = {0,1}, and
since ϕ is an automorphism, that a ∈ {0,1}—a contradiction.

Finally, we show that if aj ∈ Li,j \ {0,1} and ak ∈ Li,k \ {0,1},
j 6= k, then aj and ak are incomparable. Let us assume aj ≤ ak and
seek a contradiction. According to Lemma 1.2.2 (1), aj ↔ ak. Since
ϕ is an automorphism, ϕ(aj), ϕ(ak) /∈ {0,1} and by Proposition 1.5.9,
ϕ(aj) ↔ ϕ(ak). Since aj ∈ Li,j \ {0,1}, there exists a block Bj in Li
such that aj ∈ Bj and ϕ(Bj) ⊆ Lj. Therefore, ϕ(aj) ∈ Lj. Similarly,
we find that ϕ(ak) ∈ Lk. We have thus found ϕ(aj) ∈ Lj and ϕ(ak) ∈
Lk such that ϕ(aj)↔ ϕ(ak) and ϕ(aj), ϕ(ak) /∈ {0,1}, in contradiction
to Remark 3.3.4.

We can conclude now that Li is the horizontal sum of (Li,j)j∈I .
Since Li is a minimal summand and, due to the condition ϕ(Li)∩Li 6=
{0,1}, Li,i is nontrivial, we obtain Li,i = Li and therefore ϕ(Li) ⊆
Li. By applying the same reasoning to ϕ−1, which also satisfies the
condition ϕ−1(Li) ∩ Li 6= {0,1}, we find that ϕ−1(Li) ⊆ Li. Hence
ϕi is a bijection on Li and, since ϕ is an automorphism of L, ϕi is an
automorphism of Li. �

Theorem 3.3.6. Let L be the horizontal sum of a collection (Li)i∈I
of orthomodular lattices such that every summand is minimal and ϕ be
an automorphism of L.
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(1) If ϕ is spectral then there is an i ∈ I such that Lϕ ⊂ Li, σϕ ⊂ Li
and the restriction ϕi of ϕ to Li is a spectral automorphism of Li with
Lϕi

= Lϕ and σϕi
= σϕ.

(2) If Lϕ 6= {0,1} and there is an i ∈ I such that Lϕ ⊂ Li and the
restriction ϕi of ϕ to Li is spectral then ϕ is a spectral automorphism
of L and Lϕ = Lϕi

, σϕ = σϕi
.

Proof. (1) Let us assume that L is nontrivial (otherwise there is
nothing to prove). The spectrum σϕ of ϕ is a Boolean subalgebra of
L. According to Remark 3.3.4, there is an i ∈ I such that σϕ ⊂ Li.
For every a ∈ Lϕ, we have a ↔ σϕ and, according to Remark 3.3.4,
a ∈ Li. Hence, Lϕ ⊂ Li. According to Remark 3.3.3, there is an
a ∈ Lϕ \ {0,1} and, obviously, ϕ(a) = a ∈ Li. Hence, ϕ(Li) ∩ Li 6=
{0,1} and, according to Lemma 3.3.5, the restriction ϕi of ϕ to Li
is an automorphism of Li. Since Lϕ ⊂ Li, Lϕi

= Lϕ and C̃(Lϕi
) =

C̃(Lϕ) = σϕ. Therefore, since ϕ is spectral, ϕi is spectral, too, and

σϕi
= C̃(Lϕi

) = σϕ.
(2) Let us prove first that ϕ(Li) ∩ Li 6= {0,1}. According to the

hypothesis, Lϕ 6= {0,1}, hence there exists a ∈ Lϕ \ {0,1} ⊆ Li. It
follows that a ∈ Li and ϕ(a) ∈ ϕ(Li). Since a = ϕ(a) /∈ {0,1}, it
follows that a ∈ ϕ(Li) ∩ Li \ {0,1} and thus ϕ(Li) ∩ Li 6= {0,1}.

According to Lemma 3.3.5, the restriction ϕi of ϕ to Li is an auto-
morphism of Li which we assume by hypothesis to be spectral. Since

a ∈ Lϕ = Lϕi
if and only if a ↔ σϕi

, ϕ is spectral and σϕ = C̃(Lϕ) =

C̃(Lϕi
) = σϕi

. �

Theorem 3.3.7. Let L be an orthomodular lattice, ϕ be a spectral
automorphism of L and a ∈ L\{0,1} be ϕ-invariant. Let us denote by
ϕa the restriction of ϕ to [0, a] (see Example 1.1.15) and Bx = x∧σϕ =
{x ∧ b : b ∈ σϕ} for every x ∈ L. Then:

(1) ϕa is a spectral automorphism of [0, a] and Ba is its spectral
algebra;

(2) if a ∈ σϕ, then σϕa = Ba;
(3) σϕ is isomorphic to the product Ba ×Ba′.

Proof. (1) Let us denote by ∗ : b 7→ b′ ∧ a the orthocomple-
mentation in [0, a] and let us verify that ϕa is an automorphism of
[0, a]. For every b ∈ [0, a], ϕa(b) = ϕ(b) ≤ ϕ(a) = a. Hence, ϕa
is a mapping into [0, a]. Since ϕ is an automorphism of L, for every
b ∈ [0, a] there is a c ∈ L such that ϕ(c) = b ≤ a = ϕ(a) and therefore
c ≤ a. Hence, ϕa is a mapping onto [0, a]. Since ϕ is an automor-
phism of L, ϕa, ϕ

−1
a preserve the ordering and, for every b ∈ [0, a],

ϕa(b
∗) = ϕ(b′ ∧ a) = ϕ(b)′ ∧ ϕ(a) = ϕa(b)

∗.
Clearly, Ba ⊇ {0, a} and is closed under the operation ∧. Moreover,

for every b ∈ σϕ, a↔ b and, using Proposition 1.2.11, (a∧b)∗ = (a∧b)′∧
a =

(
(a∧b)∨a′

)′
=
(
(a∨a′)∧(b∨a′)

)′
= (b∨a′)′ = b′∧a ∈ Ba. Hence Ba
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is closed under the operation ∗ and therefore Ba is a subalgebra of [0, a].
For every b1, b2 ∈ σϕ, elements a, b1, b2 pairwise commute. It follows
that, since b1 ↔ {a, b2}, we have b1 ↔ (a ∧ b2), by Corollary 1.2.9 (2).
Similarly, since a↔ {a, b2}, a↔ (a∧ b2). Therefore, (a∧ b2)↔ {a, b1}
and using the same Corollary 1.2.9 (2) once more, we conclude that
a ∧ b1 ↔ a ∧ b2 and therefore Ba is a Boolean subalgebra of [0, a].

Let us prove now that Ba is a spectral algebra of ϕa. Every ϕa-
invariant c ∈ [0, a] is ϕ-invariant, hence c↔ σϕ. Since c ≤ a, we have
c↔ a and therefore, by Corollary 1.2.9 (2), c↔ a∧ b for every b ∈ σϕ,
i.e., c↔ Ba. Conversely, let c ∈ [0, a] with c↔ Ba. Hence c↔ a∧b for
every b ∈ σϕ. Since c ≤ a ≤ a∨b′ = (a′∧b)′, c↔ a′∧b, by Lemma 1.2.2.
Using Theorem 1.2.8, the fact that a↔ b and Corollary 1.2.6, we find
c↔ (a ∧ b) ∨ (a′ ∧ b) = b for every b ∈ σϕ. Hence c is ϕ-invariant and
therefore ϕa-invariant.

(2) Since Ba is a spectral algebra of ϕa, Ba ⊆ σϕa . Let b ∈ σϕa =

C̃(Lϕa). Since a ∈ σϕ = C̃(Lϕ), for every c ∈ Lϕ we have c ↔ a, i.e.,

c = (c ∧ a) ∨ (c ∧ a′). Since c ∧ a ∈ Lϕa and b ∈ C̃(Lϕa), we obtain
b ↔ (c ∧ a) and since b ≤ a and (c ∧ a′) ≤ a′, it follows b ⊥ (c ∧ a′)
and therefore, by Lemma 1.2.2, b↔ (c∧ a′). Since b↔ (c∧ a), (c∧ a′),
according to Theorem 1.2.8, b↔ (c∧ a)∨ (c∧ a′) = c for every c ∈ Lϕ.

Hence, b ∈ C̃(Lϕ) = σϕ and, since b ≤ a, b = a ∧ b, i.e., b ∈ Ba.
(3) We shall prove that f : σϕ → Ba × Ba′ defined by f(b) = (a ∧

b, a′∧b) is an isomorphism and g : Ba×Ba′ → σϕ with g(c1, c2) = c1∨c2

is its inverse. Since a↔ σϕ, we get g
(
f(b)

)
= (a ∧ b) ∨ (a′ ∧ b) = b for

every b ∈ σϕ. For every c1 ∈ Ba and c2 ∈ Ba′ there are b1, b2 ∈ σϕ such
that c1 = b1 ∧ a and c2 = b2 ∧ a′. Then, f

(
g(c1, c2)

)
= f

(
(b1 ∧ a)∨ (b2 ∧

a′)
)

=
(
a∧((b1∧a)∨(b2∧a′)), a′∧((b1∧a)∨(b2∧a′))

)
. Since b1∧a ≤ a,

b2∧a′ ≤ a′, a ⊥ (b2∧a′) and a′ ⊥ (b1∧a), it follows from Lemma 1.2.2
(1) and (2) that {a, a′} ↔ {b1 ∧ a, b2 ∧ a′}, and we obtain, according to
Proposition 1.2.11,

(
a∧ ((b1∧a)∨ (b2∧a′)), a′∧ ((b1∧a)∨ (b2∧a′))

)
=

(a ∧ b1, a
′ ∧ b2) = (c1, c2). Hence, f and g are bijective mappings

and g = f−1. Clearly, f preserve the operation ∧, g preserves the
operation ∨ and therefore both preserve the ordering. It remains to
prove that f preserves the orthocomplementation. Let ] denote the
orthocomplementation in Ba × Ba′ and ∗ the orthocomplementations
in Ba, Ba′ . For every b ∈ σϕ, we obtain f(b)] = (a ∧ b, a′ ∧ b)] =(
(a ∧ b)∗, (a′ ∧ b)∗

)
= (a ∧ b′, a′ ∧ b′) = f(b′). �

Question 3.3.8. Is it possible to omit the condition a ∈ σϕ in
Theorem 3.3.7 (2)?

3.4. Characterizations of spectral automorphisms

Theorem 3.4.1. Let L be an orthomodular lattice. An automor-
phism ϕ of L is spectral if and only if a ∧ b ∈ Lϕ for every a ∈ C̃(Lϕ)

and b ∈ K
(
C̃(Lϕ)

)
.
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Proof. “⇒” If ϕ is spectral then, according to Corollary 3.2.11,

K
(
C̃(Lϕ)

)
⊆ Lϕ. If a ∈ C̃(Lϕ) and b ∈ K

(
C̃(Lϕ)

)
then a, b ∈ Lϕ and,

since Lϕ is a subalgebra of L, we obtain a ∧ b ∈ Lϕ.

“⇐” Let b ∈ K
(
C̃(Lϕ)

)
. For every a ∈ C̃(Lϕ), we have, by Proposi-

tion 1.3.22, that a′ ∈ C̃(Lϕ) and, due to the hypothesis, a∧b, a′∧b ∈ Lϕ
and, since b↔ a and Lϕ is a subalgebra of L, b = (a∧b)∨(a′∧b) ∈ Lϕ.

Hence, K
(
C̃(Lϕ)

)
⊆ Lϕ and, according to Corollary 3.2.11, ϕ is spec-

tral. �

Definition 3.4.2. Let L be an orthomodular lattice and ϕ an au-
tomorphism of L. An element a ∈ L is totally ϕ-invariant if ϕ(b) = b
for every b ∈ L with b ≤ a.

Lemma 3.4.3. Let L be a complete orthomodular lattice and ϕ be an

automorphism of L such that C̃(Lϕ) is atomic with the set Ω(C̃(Lϕ))

of atoms. Then
∨

Ω(C̃(Lϕ)) = 1.

Proof. Let us denote, for simplicity, the set Ω(C̃(Lϕ)) by A. Since
L is complete,

∨
A exists in L. Since ϕ is an automorphism of L

and A ⊆ Lϕ, ϕ(
∨
A) =

∨
a∈A ϕ(a) =

∨
a∈A a =

∨
A and therefore∨

A ∈ Lϕ. Since Lϕ ↔ A, according to Theorem 1.2.8, Lϕ ↔
∨
A and

therefore
∨
A ∈ C̃(Lϕ). Since C̃(Lϕ) is atomic,

∨
A = 1. �

Theorem 3.4.4. Let L be a complete orthomodular lattice and ϕ be

an automorphism of L such that C̃(Lϕ) is atomic. Then ϕ is spectral

if and only if all atoms of C̃(Lϕ) are totally ϕ-invariant.

Proof. “⇒” Suppose ϕ is spectral. Let a be an atom of C̃(Lϕ)
and b ∈ L with b ≤ a. According to Propositions 1.4.6 and 3.2.10,

b ↔ C̃(Lϕ) = σϕ and therefore b is ϕ-invariant. Hence, a is totally
ϕ-invariant.

“⇐” Let b ∈ K
(
C̃(Lϕ)

)
and A be the set of atoms of C̃(Lϕ). Then,

according to Lemma 3.4.3,
∨
A = 1 and, according to Theorem 1.2.8,

since b↔ A, b = b ∧
∨
A =

∨
a∈A(b ∧ a). Since ϕ is an automorphism

and b ∧ a is ϕ-invariant for every a ∈ A, we obtain ϕ(b) =
∨
a∈A ϕ(b ∧

a) =
∨
a∈A(b ∧ a) = b and therefore b ∈ Lϕ. Hence, K

(
C̃(Lϕ)

)
⊆ Lϕ

and therefore, according to Proposition 3.2.10, ϕ is spectral. �

Corollary 3.4.5. Let L be a complete orthomodular lattice and ϕ

be an automorphism of L such that C̃(Lϕ) is atomic. If all atoms of

C̃(Lϕ) are atoms of L then ϕ is spectral.

Proof. It follows easily from Theorem 3.4.4 because atoms of

C̃(Lϕ) are ϕ-invariant and, being atoms of L, they are totally ϕ-
invariant. �
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Theorem 3.4.6. Let L be a complete orthomodular lattice and ϕ

be an automorphism of L such that Lϕ and C̃(Lϕ) are atomic. If ϕ is
spectral then all atoms of Lϕ are atoms of L.

Proof. First, let us prove that every atom of Lϕ is dominated by

an atom of C̃(Lϕ). Let us suppose that b is an atom of Lϕ that is

not dominated by any atom of C̃(Lϕ) and seek a contradiction. For

every atom a of C̃(Lϕ), since b ∈ Lϕ, we have b ↔ a and therefore
b = (b ∧ a) ∨ (b ∧ a′). Since b is an atom in Lϕ, according to Re-
mark 1.4.5 (3), either b ≤ a or b ≤ a′. Since we supposed that the
first inequality is not satisfied, we obtain b ≤ a′, i.e., a ≤ b′, hence∨
{a ∈ L : a is an atom in C̃(Lϕ)} ≤ b′. According to Lemma 3.4.3,∨
{a ∈ L : a is an atom in C̃(Lϕ)} = 1 and therefore b = 0, which is a

contradiction.
According to Theorem 3.4.4, all atoms of C̃(Lϕ) are totally ϕ-

invariant. Since all atoms of Lϕ are dominated by atoms of C̃(Lϕ),
all atoms of Lϕ are totally ϕ-invariant and therefore they are atoms of
L. �

3.5. C-maximal Boolean subalgebras of an OML

We intend to look into the following matter: what could be the
condition for a Boolean subalgebra of an orthomodular lattice L to
be the spectrum of an automorphism of L? It is clear, considering
Proposition 3.2.10 and Corollary 3.2.11, that for this to happen, the

Boolean algebra B must satisfy B = C̃(K(B)). Since we always have

B ⊆ C̃(K(B)), the condition reduces to the inverse inclusion. There-
fore, we give the following:

Definition 3.5.1. Let L be an orthomodular lattice. A Boolean
subalgebra B ⊆ L satisfying C̃(K(B)) ⊆ B is said to be C-maximal
(i.e. maximal with respect to its commutant).

C-maximality is, thus, a necessary condition for a Boolean subalge-
bra of an orthomodular lattice to be the spectrum of an automorphism
of that orthomodular lattice.

Example 3.5.2. Any maximal Boolean subalgebra (block) of an or-
thomodular lattice is C-maximal, since it coincides with its commutant.
On the other hand it is simple to find Boolean subalgebras which are
not maximal. Indeed, let us consider L an orthomodular lattice having
only two blocks, B1, B2 and having also the property B1∩B2 6= {0,1}.
Obviously, C̃(L) = B1 ∩ B2 and K({0,1}) = L . Therefore, {0,1} is
not C-maximal.

Theorem 3.5.3. A Boolean subalgebra of an orthomodular lattice
is C-maximal if and only if it coincides with its bicommutant (i.e., the
commutant of its commutant).
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Proof. Let B be a Boolean subalgebra of an orthomodular lattice
L. SupposeB = K(K(B)). This means thatB is the set of all elements
that are compatible with K(B). Since B ⊆ K(B), it is the center of
K(B), which means it is C-maximal.

Conversely, if B is C-maximal, we need to prove K(K(B)) ⊆ B,
since the inverse inclusion is trivial. Let b ∈ K(K(B)). Then we can
write:

(3.1) b↔ K(B)

Since B ⊆ K(B), according to (3.1), b↔ B, and therefore

(3.2) b ∈ K(B)

Now, if we put together (3.1) and (3.2), we deduce that b ∈ C̃(K(B)) =
B, which concludes the proof. �

Theorem 3.5.4. If the automorphism ϕ is spectral, then the fol-
lowing assertions are true:

(1) C̃(Lϕ) = K(Lϕ);

(2) C̃(Lϕ) is C-maximal.

Proof. It is obvious that C̃(Lϕ) ⊆ K(Lϕ). We shall prove the
inverse inclusion. Let a ∈ K(Lϕ). Since a ↔ Lϕ, it follows that
a ↔ σϕ (due to the fact that σϕ ⊆ Lϕ, according to Lemma 3.2.7).
But according to the definition property of σϕ, this means a ∈ Lϕ,

hence a ∈ C̃(Lϕ). This concludes the proof of the first statement.
The second assertion results easily because of Corollary 3.2.11. We

have Lϕ = K(C̃(Lϕ)), hence C̃(Lϕ) = C̃(K(C̃(Lϕ))). It follows that

C̃(Lϕ) is C-maximal. �

3.6. Spectral automorphisms and physical theories

Since orthomodular lattices have been considered in this work –
and not only – the roots of any physical theory, let us examine the
importance of spectral automorphisms for some fundamental problems
concerning their classification and also their structure.

Let us begin by reminding that in our discourse a physical theory is
an orthomodular lattice, which is occasionally assumed possessing some
supplementary properties, like having atoms, satisfying the covering
law or being complete.

Let us see now what is the essential difference between classical
and non-classical physical theories from the point of view of spectral
automorphisms. In Proposition 3.2.5, it has been shown that a classical
theory/Boolean algebra has no nontrivial spectral automorphisms, that
is, the only spectral automorphism is the identity of the theory in ques-
tion. So if a theory has at least one nontrivial spectral automorphism,
it has to be non-classic.
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We do not intend to prove here very general results concerning non-
classical theories, but we will show that in such theories there are states,
which are invariant under spectral automorphisms. For doing this there
will be considered some particular cases of spectral automorphisms and
non-classical theories.

Let us consider a theory L, which is atomic, complete and has the
covering property (Definition 1.4.12). Assume also that this theory has
a spectral automorphism ϕ whose spectrum is atomic. Below we will
show that examples of such theories exist, such as a finite dimensional
quantum logic. Then, given a ∈ Ω(σϕ) and ω ∈ Ω(L), ω ≤ a, by
Proposition 1.4.6, ω ∈ K(σϕ) . Moreover, ϕ being spectral, it follows
that ω is invariant under ϕ. Since L is atomic, complete and has the
covering property, it follows that each a ∈ Ω(σϕ) has a basis of atoms of
L, let us denote it by Ba (see Proposition 1.4.7). The conclusion is that⋃
a∈Ω(σϕ)Ba is a basis of L, whose elements are invariant under ϕ. It is

almost obvious that this result is an analogue of the spectral theorem
for unitary operators having purely point spectrum and also for the
corresponding selfadjoint operator. If L has a finite dimension, it is easy
to probe that all spectral automorpisms have atomic spectra, which
means that the just proved result may be applied with no modifications.

3.7. Spectral automorphisms and Piron’s theorem

Piron’s representation theorem (see [50]) is still the only fundamen-
tal result allowing us to consider that non-classical theories are based
on the Hilbert space formalism. However, a very delicate problem re-
mains to discuss: is the Hilbert space real, complex or quaternionic?
This problem is, in a sense, still open. Our intention is to prove that
choosing one of the first two possibilities depends strongly on a prop-
erty of the symmetries of the theory in question.

Let us remind a very important result concerning physical theories:
any symmetry of a physical theory is represented by an automorphism
of that theory [51]. Now if we apply the last result of the previous
section to spectral symmetries (i.e. symmetries that are represented
by automorphisms that are spectral) we reach the following interesting
conclusion: if admitted that a finite dimensional physical theory, repre-
sented by the lattice of projectors of a finite dimensional Hilbert space,
must have spectral symmetries other than simple reflexions relative to a
hyperplane, then the Hilbert space in question cannot be real. Indeed,
a well-known theorem affirms that no symmetry in such a space, with
the exception of the reflexions relative to hyperplanes, has a complete
system of invariant one-dimensional subspaces (see, for instance, [52]).
Therefore, if there are physical motivations for admitting that spectral
symmetries (other than reflexions relative to a hyperplane) must exist
in a theory, then the real Hilbert spaces have to be excluded from those
able to support quantum theories.
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3.8. Spectral families of automorphisms and a Stone-type
theorem

Definition 3.8.1. Let L be an orthomodular lattice and Φ be a
family of automorphisms of L. The family Φ is spectral if there is a
Boolean subalgebra B of L such that:

(ϕ(a) = a for every ϕ ∈ Φ) if and only if a↔ B.(P2)

A Boolean algebra B satisfying condition (P2) is a spectral algebra of
Φ. The set of Φ-invariant elements of L (which is a subalgebra of L) is
denoted by LΦ.

Let us remark that a family of (more than one) spectral automor-
phisms need not be a spectral family of automorphisms—see Exam-
ple 3.8.5.

Proposition 3.8.2. For every spectral family Φ of automorphisms
of an orthomodular lattice L there exists the greatest spectral algebra of
the family Φ.

Proof. Let {Bi : i ∈ I} be the set of spectral algebras of the
family Φ. Since Bi are Boolean algebras, if a ∈ Bi then a ↔ Bi,
hence a ∈ LΦ and a ↔ Bj, for every i, j ∈ I. Hence Bi ↔ Bj for
every i, j ∈ I and the subalgebra of L generated by {Bi : i ∈ I} is
a Boolean algebra, according to 1.3.8. Let us check that it satisfies
(P2). If a ∈ L such that a ↔

[⋃
i∈IBi

]
, then a ↔ Bi for all i ∈ I,

hence ϕ(a) = a for every ϕ ∈ Φ. Conversely, if ϕ(a) = a for every
ϕ ∈ Φ, then a ↔ Bi for all i ∈ I. Since for any i, j ∈ I, i 6= j
we have Bi ↔ Bj, it follows that {a} ∪

⋃
i∈IBi is a set of pairwise

compatible elements, therefore
[
{a} ∪

⋃
i∈IBi

]
is a Boolean algebra,

according to Corollary 1.3.7. As a belongs to this Boolean algebra,
a ↔

[
{a} ∪

⋃
i∈IBi

]
and since

[⋃
i∈IBi

]
⊆
[
{a} ∪

⋃
i∈IBi

]
, it follows

that a↔
[⋃

i∈IBi

]
.

We conclude that
[⋃

i∈IBi

]
satisfies condition (P2). Obviously, it

is the greatest spectral algebra of the family Φ. �

Definition 3.8.3. Let Φ be a spectral family of automorphisms
of an orthomodular lattice. The spectrum σΦ of the family Φ is the
greatest spectral algebra of the family Φ.

Proposition 3.8.4. Let Φ be a spectral family of automorphisms
of an orthomodular lattice L. Then:

(1) σΦ = C̃(LΦ);

(2) σΦ = C̃
(
K(σΦ)

)
(i.e., σΦ is C-maximal);

(3) σΦ = K
(
K(σΦ)

)
.

Proof. (1) According to Definition 3.8.1, B is a spectral algebra
of Φ if and only if LΦ = K(B); in such a case B ↔ B and therefore
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B ⊆ LΦ and B ⊆ C̃(LΦ). In particular, LΦ = K(σΦ) and σΦ ⊆ C̃(LΦ).

Obviously, LΦ ⊆ K
(
C̃(LΦ)

)
and, since σΦ ⊆ C̃(LΦ), K

(
C̃(LΦ)

)
⊆

K(σΦ) = LΦ, hence C̃(LΦ) is a spectral algebra of Φ. Since σΦ ⊆ C̃(LΦ)

and σΦ is the greatest spectral algebra of Φ, we obtain σΦ = C̃(LΦ).

(2) According to part (1) and Definition 3.8.1, σΦ = C̃(LΦ) =

C̃
(
K(σΦ)

)
.

(3) According to 3.5.3, σΦ = C̃
(
K(σΦ)

)
if and only if σΦ = K

(
K(σΦ)

)
.

�

Example 3.8.5. Let L be the lattice from Example 3.2.12, ϕ, ψ
be automorphisms of L such that a, b, c are ϕ-invariant, d, e are per-
muted by ϕ, c, d, e are ψ-invariant and a, b are permuted by ψ. Then
Φ = {ϕ, ψ} is a nonspectral family of spectral automorphisms. Indeed,
we have shown in Example 3.2.12 that ϕ is spectral, and, similarly, ψ is

spectral, too. On the other hand, LΦ = Lϕ∩Lψ = {0, c, c′,1} = C̃(LΦ),

hence K(C̃(LΦ)) = L 6= LΦ and therefore, according to Proposi-
tion 3.8.4, Φ is not a spectral family.

Theorem 3.8.6. Let L be an orthomodular lattice and Φ be a family
of spectral automorphisms of L. Then Φ is a spectral family if and only
if σϕ ↔ σψ for every ϕ, ψ ∈ Φ. In this case, the spectrum σΦ of the
family contains all spectra σϕ, ϕ ∈ Φ.

Proof. “⇒” Let ϕ ∈ Φ. For every a ∈ K(σΦ) = LΦ we have
ϕ(a) = a and therefore a ↔ σϕ. Hence, σϕ ↔ K(σΦ), and thus,
using Proposition 3.8.4, σϕ ⊆ K

(
K(σΦ)

)
= σΦ. Since σΦ is a Boolean

algebra, we get σϕ ↔ σψ for every ϕ, ψ ∈ Φ.
“⇐” Let us denote by B the subalgebra of L generated by

⋃
ϕ∈Φ σϕ.

A subalgebra of an orthomodular lattice generated by a family of pair-
wise commuting Boolean algebras is a Boolean algebra, according to
Proposition 1.3.8. The following statements are equivalent: ϕ(a) = a
for every ϕ ∈ Φ, a↔ σϕ for every ϕ ∈ Φ, a↔

⋃
ϕ∈Φ σϕ, a↔ B. Hence

B is a spectral algebra and Φ is a spectral family. �

From the very beginning, the purpose of introducing and study-
ing spectral automorphisms has been to construct something similar
to the Hilbert space spectral theory without using the specific instru-
ments available in a Hilbert space setting, but using only the abstract
orthomodular lattice structure. The next result is intended as an ana-
logue of the Stone theorem concerning strongly continuous unipara-
metric groups of unitary operators. Before stating it, we should notice
the following easily verifiable facts:

Remark 3.8.7. (1) The identity id : L→ L is a spectral automor-

phism and σid = C̃(L).
(2) The inverse ϕ−1 of a spectral automorphism ϕ of L is also spec-

tral and σϕ−1 = σϕ.
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Theorem 3.8.8. Let L be an orthomodular lattice and Φ be a family
of spectral automorphisms of L. If Φ is an Abelian group and ϕ(Lψ) =
Lϕψ for every ϕ, ψ ∈ Φ with ψ /∈ {id, ϕ−1} then:

(1) Lϕ = Lψ for every ϕ, ψ ∈ Φ \ {id};
(2) σϕ = σψ for every ϕ, ψ ∈ Φ \ {id};
(3) Φ is a spectral family.

Proof. (1) Let ϕ, ψ ∈ Φ. The following statements are equivalent
for every a ∈ L: a ∈ Lϕ, ϕ(a) = a, ψ

(
ϕ(a)

)
= ψ(a), ϕ

(
ψ(a)

)
= ψ(a),

ψ(a) ∈ Lϕ. Hence ψ(Lϕ) = Lϕ.
Let ϕ, ψ ∈ L \ {id} be different. If ψ = ϕ−1 then, obviously, Lϕ =

Lψ. Let us suppose that ψ 6= ϕ−1 and let us denote χ = (ϕψ)−1 =
ψ−1ϕ−1. Since χ ∈ Φ \ {id, ϕ−1, ψ−1}, we obtain Lϕ = Lχ−1ϕχ =
χ−1
(
ϕ(Lχ)

)
= χ−1

(
ψ(Lχ))

)
= Lχ−1ψχ = Lψ.

(2) According to part (1) and Proposition 3.8.4 (1), σϕ = C̃(Lϕ) =

C̃(Lψ) = σψ for every ϕ, ψ ∈ Φ \ {id}.
(3) According to Proposition 3.2.10, σid = C̃(L) and therefore σid ↔

L. Since σϕ ⊆ L for every ϕ ∈ Φ, it follows that σid ↔ σϕ for every
ϕ ∈ Φ. Since, according to part (2), the set {σϕ : ϕ ∈ Φ} is at most
2-element, σϕ ↔ σψ for every ϕ, ψ ∈ Φ. According to Theorem 3.8.6,
Φ is a spectral family. �

Let us show a non-trivial example of an abelian group of spectral
automorphisms satisfying the conditions of the Theorem 3.8.8.

Example 3.8.9. Let L be the orthomodular lattice described by
the third Greechie diagram in Fig. 1. L is the union of three blocks,
the first determined by atoms {a, b, c}, the second determined by atoms
{c, d, e} and the last determined by atoms {e, f, g, h, i}. Let ϕ be an
automorphism of L such that a, b, c, d, e are ϕ-invariant and ϕ performs
a cyclic permutation on the atoms f, g, h, i (i.e., ϕ(f) = g, ϕ(g) = h,
ϕ(h) = i and ϕ(i) = f). Clearly, ϕ4 = id and Φ = {id, ϕ, ϕ2, ϕ3} is an
abelian group of automorphisms of L. Lϕ = Lϕ2 = Lϕ3 = LΦ is the
set-theoretical union of the blocks determined by {a, b, c} and {c, d, e}.
C(Lϕ) = C̃(Lϕ2) = C̃(Lϕ3) = C̃(LΦ) = {0, c, c′,1} is the spectrum
of automorphisms ϕ, ϕ2, ϕ3, and therefore of the family Φ, because for
x ∈ L, x↔ {0, c, c′,1} if and only if x↔ c if and only if x ∈ LΦ.

Let us remark that Theorem 3.8.8 gives purely algebraic conditions
for a family of automorphisms to have a spectrum. The last hypothesis
(namely, that ϕ(Lψ) = Lϕψ) can be seen as a replacement for the
continuity condition in the original Stone theorem.
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Unsharp Quantum Logics





Preliminaries

In this second part of the thesis, we shall move our investigations
from the framework of orthomodular posets or lattices—which may
be considered as representing “sharp” quantum logics—to the more
general framework of effect algebras—regarded as “unsharp” quantum
logics. Before immersing into the mathematical universe of effect al-
gebras, let us explain briefly why they have become important in the
contemporary theory of quantum measurement. The reader interested
in a more detailed physical interpretation of the mathematical notions
presented here should refer to e.g. [4, 5, 41, 44, 43]. An interest-
ing description of how a quantum system with all its ingredients like
observables, states and symmetries can be represented using effect al-
gebras (with compression bases) can also be found in [21].

According to the operational approach to quantum mechanics (see,
e.g., [44, 43, 41]), states of a quantum system, which intuitively corre-
spond to a complete knowledge of the system, are described in terms of
preparation procedures (or classes of them). Moreover, effects, which
can be thought of as yes-no measurements that may be unsharp, are
defined as equivalence classes of so-called effect apparatuses—i.e., in-
struments that perform yes-no measurements. As we shall see, we can
regard the measurement of any observable as a combination of yes-no
measurements—which is why effects play such an important rôle in the
modern theory of quantum measurements.

According to the Hilbert space formalism of quantum mechanics,
the various quantities and relations pertaining to the quantum system
are representable in terms of operators defined on a complex separa-
ble Hilbert space H—the so-called state space of the system. More
precisely:

• states are represented by density operators ρ on H, i.e., trace
class operators of trace 1.
• effects are represented by effect operators A on H, i.e., el-

ements of the set E(H) of self-adjoint operators on H lying
between the null operator and the identity operator. Let us
remark that, in conventional quantum mechanics, yes-no mea-
surements were considered to be represented by projection op-
erators on H, the so-called “decision effects” [44], which form
a proper subset P(H) of E(H) (see also Example 4.2.8(a)).
While projections are interpreted as “sharp” events, the effects
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can be “unsharp” or “fuzzy”, and for instance may fail to sat-
isfy the principle of excluded middle, since the greatest lower
bound of effects A and A′ (“non-A”) may be different from the
null effect. Motivation for replacing projection operators with
the more general effect operators in representing quantum ef-
fects is by now well estabilished. We refer to, e.g., [4, 41]. An
argument concerning this matter will also be presented here in
Chapter 5, in connection to the notion of sequential product.
• the probability for the occurrence of an effect A (denoted with

the same letter as the corresponding operator) when the sys-
tem is prepared in a state ρ (again, denoted with the same let-
ter as the corresponding density operator) is pρ(A) = tr(ρA)
(where tr() denotes, of course, the trace).
• observable are represented as normalised positive operator val-

ued measures (POV-measures). A POV-measure is a mapping
E : F → E(H), where (X,F) is a measurable space (with
X interpreted as the set of possible outcomes of the measure-
ments performed on the observable), mapping which satisfies
E(X) = 1 and E(∪Mi) =

∑
E(Mi) for all disjoint sequences

(Mi) in F (the series converges in weak operator topology).
For comparation, let us remark that, according to conven-
tional quantum mechanics, observables were defined as projec-
tion valued measures (PV-measures), which can be regarded
as a particular case of POV-measures taking values in the set
P(H). It should be mentioned that usually, the measurable
space (X,F) is just the real Borel space (R,B(R)), in which
case a PV-measure is uniquely associated, by the spectral the-
orem, to a self-adjoint operator. This allows, for “conven-
tional” observables defined as PV-measures to be represented
by (or identified with) self-adjoint operators on the state space
H. One of the interesting consequences of the transition from
conventional observables, defined as self-adjoint operators or
the corresponding PV-measures to the observables defined as
POV-measures is the possibility of measuring together observ-
ables that do not commute (see [42]).

The interpretation of the above representation of observables as
POV-measures is as follows (see [41, 21, 4]). X represents the set of
possible outcomes of the measurements performed on the observable.
For a set M ∈ F , the question if a measurement of the observable
yields a value contained in M or not is a yes-no measurement, thereby
described by an effect operator E(M). If the result of the measure-
ment performed on the observable belongs to M , we say that the effect
E(M) is observed, whereas in the opposite case it is non-observed. In
both cases, E(M) is tested by the observable, since it is contained in its
range. An effect in E(H) that is not in the range of the POV-measure
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associated to an observable is not tested by that observable. The prob-
ability of the measured value of the observable to be in M when the
system is in the state ρ is pρ(E(M)) = tr(ρE(M)). Therefore, the map
E : M 7→ E(M) completely describe the “statistics” of the observable
in any state ρ of the system.

A set of effects is simultaneously testable or coexistent if there ex-
ist an observable whose range includes it [44, 42]. Later on, we shall
discuss in details the properties of the important notion of coexistence
in abstract effect algebras, which is the generalization of compatibil-
ity/commutativity as defined in orthomodular posets and orthomodu-
lar lattices.

The set E(H) of effects can be endowed with a family of morphisms
(JP )P∈P(H) indexed by the projection operators P ∈ P(H) and defined
by JP (A) = PAP , called compressions. They interact in useful ways
with states, observables and symmetries. The family (JP )P∈P(H) is said
to form a compression base of E(H).

Just like the structure of orthomodular lattice was introduced as an
abstraction of the important features of the lattice P(H) of projection
operators of a Hilbert space H, the algebraic structure of effect algebra
is an abstraction of the essential features of the set E(H) of effect
operators and compression base effect algebras (CB-effect algebras) are
an abstraction of the essential features of the set E(H) endowed with
the family of morphisms (JP )P∈P(H). Other structures that generalize
E(H) are D-posets, introduced by F. Kôpka and F. Chovanec [40] and
weak orthoalgebras, introduced by R. Giuntini and H. Greuling [24].
They all turned out to be equivalent structures. In order to avoid
confusion and make our exposition easier to follow, we will present all
the results in terms of the effect algebra structure, even those that were
originally formulated by their authors in terms of another equivalent
structure.

We conclude these introductory remarks with the words of D. Foulis
[21], which, we believe, could best motivate our study of CB-effect
algebras:

“ A physical system S, understood as the subject of experimental
investigation, is appropriately represented by a CB-effect algebra E,
which hosts the observables, states, symmetries and other ingredients
of a physical theory for S. Moreover, physical systems are classified by
the CB-effect algebras that represent them. ”





CHAPTER 4

Basics on Effect Algebras

The first chapter of this second part of the thesis is devoted to
an introduction to unsharp quantum logics—represented here by ef-
fect algebras or, equivalently, by D-posets—and their basic properties.
Special (isotropic, sharp, principal and central) elements are introduced
and the conditions for an effect algebra to be an orthoalgebra, an ortho-
modular poset or even a Boolean algebra are discussed. The coexistence
relation, which generalizes the compatibility defined for orthomodular
posets to effect algebras (and bears the corresponding physical mean-
ing), is discussed, as well as its connection to central elements. We then
introduce orthogonal systems, orthocompleteness and weak orthocom-
pleteness and also atomicity and related properties in the framework
of effect algebras. Finally, we introduce various types of maps on effect
algebras. The facts presented in this chapter can be found, e.g., in
the book of Dvurečenskij and Pulmannová [14] which gathers many
of the recent results in the field of quantum structures. A selection of
research articles which cover many of the facts presented here would
include [22, 23, 24, 26, 40].

4.1. Effect algebras. Basic definitions and properties

Definition 4.1.1. An effect algebra is a system (E,⊕,0,1) such
that E is a set, 0 and 1 are distinct elements of E and ⊕ is a partial
binary operation on E, and the following conditions hold for every
a, b, c ∈ E (the equalities should be understood in the sense that if one
side exists, the other side exists as well):

(EA1) a⊕ b = b⊕ a (commutativity)
(EA2) (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity)
(EA3) for every a ∈ E, there exists a unique a′ ∈ E such that a⊕a′ =

1 (orthosupplement)
(EA4) if a⊕ 1 is defined, then a = 0 (zero-unit law).

As it is usual, we will often refer to the effect algebra E instead of
(E,⊕,0,1), for brevity. An orthogonality and a partial order relation
are defined in an effect algebra as follows:

Definition 4.1.2. Let E be an effect algebra. Elements a, b ∈ E
are called orthogonal (denoted by a ⊥ b) if the sum a ⊕ b is defined.
We write a ≤ b if there is an element c ∈ E such that a⊕ c = b.

67
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The next couple of propositions gives a list of basic properties that
hold in effect algebras. We shall omit their simple verification, which
can be found, however, in [22].

Proposition 4.1.3. Let E be an effect algebra. For every a, b ∈ E
the following properties hold:

(1) a′′ = a
(2) a ≤ b implies b′ ≤ a′

(3) 1′ = 0 and 0′ = 1.

Proposition 4.1.4. Let E be an effect algebra. For every a, b, c ∈
E the following properties hold:

(1) 0 ≤ a ≤ 1.
(2) a⊕ 0 = a.
(3) a ⊥ b if and only if a ≤ b′.
(4) If a ≤ b and c ∈ E is such that a ⊕ c = b, then c is uniquely

determined by the elements a and b, namely c = (a⊕ b′)′. We
will then denote c = b	 a.

(5) “≤” is a partial order on E.
(6) a⊕ b = a⊕ c implies b = c (cancellation law).
(7) a⊕ b ≤ a⊕ c implies b ≤ c (cancellation law).

The following result gives some of the basic properties, which can
be found in [22], of the partial binary operation “	” introduced above.

Proposition 4.1.5. Let E be an effect algebra and a, b, c ∈ E.
Then:

(D1) if a ≤ b then b	 a ≤ b;
(D2) if a ≤ b then b	 (b	 a) = a;
(D3) if a ≤ b ≤ c then c	 b ≤ c	 a;
(D4) if a ≤ b ≤ c then (c	 a)	 (c	 b) = b	 a;
(D5) (a	 b)	 c = (a	 c)	 b (if one side exists, the other exists as

well).

Proof. (D1) and (D2) follow from a ⊕ (b 	 a) = b. (D3) and
(D4) follow from c	 a = (b	 a)⊕ (c	 b), which in turn follows from
a ⊕ (b 	 a) ⊕ (c 	 b) = b ⊕ (c 	 b) = c. To prove (D5), assume that
(a 	 b) 	 c exists and let d = (a 	 b) 	 c. Then a = d ⊕ c ⊕ b, hence
a	 c = d⊕ b and therefore (a	 c)	 b = d = (a	 b)	 c. �

Remark 4.1.6. A partially ordered set (poset) with a partial bi-
nary operation “	” such that b	a is defined whenever a ≤ b, and “	”
satisfies conditions (D1)–(D4) is called a D-poset. As mentioned previ-
ously, the D-poset structure is equivalent to the effect algebra structure
(and Proposition 4.1.5 proves one of the implications).

Definition 4.1.7. Let E be an effect algebra and F ⊂ E. If
0,1 ∈ F , and F is closed to ⊕ and to orthosupplementation, then
(F,⊕|F×F ,0,1) is a sub-effect algebra of E.
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Proposition 4.1.8. Let E be an effect algebra and F be a sub-effect
algebra of E. If a, b ∈ F , a ≤ b, then b	 a ∈ F .

Proof. According to Proposition 4.1.4 (4), b	a = (a⊕ b′)′. Since
a, b ∈ F and, by Definition 4.1.7, F is closed under ⊕ and to orthosup-
plementation, it follows that (a⊕ b′)′ ∈ F , hence b	 a ∈ F . �

4.2. Special elements. Coexistence

Definition 4.2.1. An element a of an effect algebra E is called:

• isotropic if a ⊥ a;
• sharp (a ∈ ES) if a ∧ a′ = 0;
• principal if for every orthogonal pair b, c ∈ E, b, c ≤ a we have
b⊕ c ≤ a;
• central if a, a′ are principal and for every b ∈ E, there are
b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′ and b = b1 ⊕ b2.

Proposition 4.2.2. In an effect algebra, the following assertions
hold:

(1) every central element is principal;
(2) every principal element is sharp;
(3) every nonzero sharp element is nonisotropic.

Proof. Let E be an effect algebra. Since by definition every cen-
tral element is principal, let us first prove that every principal element
is sharp. Assume a ∈ E is principal and b ≤ a, a′. Then a, b ≤ a and
a ⊥ b, hence a ⊕ b ≤ a and by the cancellation law, b = 0. It follows
that a ∧ a′ = 0, hence a is sharp.

Let us prove now that every sharp nonzero element is nonisotropic.
Assume a ∈ E, a 6= 0 and a ⊥ a. Then a ≤ a′, hence a ∧ a′ = a 6= 0
and it follows that a is not sharp. �

It is not difficult to find examples which show that in general, the
converse statements do not hold (see also Example 4.2.8).

Definition 4.2.3. An orthoalgebra is an effect algebra whose only
isotropic element is 0.

Definition 4.2.4. Let E be an effect algebra and let us denote
by na the sum of n copies of an element a ∈ E, if it exists. We call
E Archimedean if sup{n ∈ N : na is defined} < ∞ for every nonzero
element a ∈ E.

Let us remark that every orthoalgebra is Archimedean since no
nonzero element is orthogonal to itself.

Theorem 4.2.5. Let E be an effect algebra. The following condi-
tions are equivalent:

(1) E is an orthoalgebra;
(2) every element of E is sharp;
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(3) a⊕ b is a minimal upper bound of a, b for any orthogonal pair
a, b ∈ E.

Proof. “(1) ⇒ (2)” Let a ∈ E and assume b ≤ a, a′. Then b ≤
a ≤ b′, hence b ⊥ b and since E is an orthoalgebra, it follows b = 0.
We conclude that a ∧ a′ = 0, hence a is sharp.
“(2) ⇒ (1)” This follows trivially from the last statement of Proposi-
tion 4.2.2.
“(2) ⇒ (3)” Let a, b ∈ E be an orthogonal pair. Clearly a ⊕ b ≥ a, b.
Let us assume that there is another upper bound d ∈ E of a, b such
that a ⊕ b ≥ d ≥ a, b. Let e = (a ⊕ b) 	 d. Then, using (D3) from
Proposition 4.1.5, e = (a⊕b)	d ≤ (a⊕b)	b = a and e = (a⊕b)	d ≤
(a ⊕ b) 	 a = b ≤ a′. Since e ≤ a, a′ and a is sharp, it follows that
e = 0, hence d = a⊕ b.
“(3) ⇒ (2)” According to the hypothesis, for every element a ∈ E,
1 = a ⊕ a′ is a minimal upper bound of a, a′. Therefore 1 ≥ d ≥ a, a′

for some d ∈ E entails that d = 1. Since the only upper bound of
a, a′ is 1, we conclude that a ∨ a′ = 1, hence, by de Morgan’s law,
a ∧ a′ = 0. �

Remark 4.2.6. Let (E,≤,′ ,0,1) be an orthomodular poset and
define a⊕ b = a ∨ b for every orthogonal (i.e. a ≤ b′) pair of elements
a, b ∈ E. It is a routine verification that (E,⊕,0,1) is an effect alge-
bra (even an orthoalgebra) and, moreover, the order and supplement
in the effect algebra coincide with the order and complement in the
orthomodular poset.

Theorem 4.2.7. Let E be an effect algebra. The following condi-
tions are equivalent:

(1) E is an orthomodular poset (with the effect algebra order and
supplementation);

(2) every element of E is principal;
(3) a⊕ b is the lowest upper bound of a, b (i.e., a⊕ b = a ∨ b) for

every orthogonal pair a, b ∈ E.
(4) if a, b, c ∈ E are mutually orthogonal elements, then a⊕ b⊕ c

exists in E (coherence).

Proof. “(1) ⇒ (3)” If E is an orthomodular poset, a ∨ a′ = 1
or equivalently a ∧ a′ = 0 for every a ∈ E, which means that every
element of E is sharp. By Theorem 4.2.5, this implies that a ⊕ b is a
minimal upper bound of a, b for any orthogonal pair a, b ∈ E. But for
every such pair, a∨b exists in E and since a⊕b ≥ a∨b ≥ a, b it follows
that a⊕ b = a ∨ b.
“(3) ⇒ (1)” We have to check the conditions of Definition 1.1.10. We
will verify only the non-trivial ones, namely that a ∨ a′ = 1 for every
a ∈ E and the orthomodular law. Since for any orthogonal elements
a, b ∈ E, a ⊕ b is their lowest upper bound, a ⊕ b is also a minimal
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upper bound, hence according to Theorem 4.2.5, every element of E
is sharp, i.e. a ∧ a′ = 0 or a ∨ a′ = 1. For the orthomodular law, it
suffices to recall that if a ≤ b, there exists c ∈ E such that a ⊥ c and
a⊕ c = b and by our assumption, a⊕ c = a ∨ c.
“(2) ⇒ (3)” Let a, b ∈ E, a ⊥ b. Then a ⊕ b ≥ a, b. For every
c ∈ E, c ≥ a, b we have c ≥ a ⊕ b, since c is principal. It follows that
a⊕ b = a ∨ b.
“(3) ⇒ (2)” For every a, b, c ∈ E such that a ⊥ b and a, b ≤ c we have
a ∨ b ≤ c, hence a⊕ b ≤ c and therefore c is principal.
“(2) ⇒ (4)” Let a, b, c ∈ E be mutually orthogonal. Then a, b ≤ c′,
a ⊥ b and c′ is principal by our assumption, hence a ⊕ b ≤ c′ or
equivalently a⊕ b ⊥ c which means that a⊕ b⊕ c exists.
“(4)⇒ (2)” Let a, b, c ∈ E such that a ⊥ b and a, b ≤ c. It follows that
a ⊥ c′ and b ⊥ c′. According to our hypothesis, a⊕ b⊕ c′ exists, hence
a⊕ b ⊥ c′ or equivalently a⊕ b ≤ c. �

Let us mention that the above characterizations of orthoalgebras
and orthomodular posets (Theorems 4.2.5 and 4.2.7) are based on re-
sults in [22, 23].

Example 4.2.8. Let us now present a few classical examples of
effect algebras.
(a) We begin of course with the prototypical example of E(H). Let H
be a separable, complex Hilbert space and let 0,1 denote the zero and
identity operators on H. An ordering is defined on the set of bounded
self-adjoint operators on H by:

(4.1) A ≤ B ⇐⇒ 〈Ax, x〉 ≤ 〈Bx, x〉 for all x ∈ H

where 〈·, ·〉 denotes of course the inner product on H. Then E(H)
is defined as the set of self-adjoint operators on H lying between 0
and 1, in the sense of (4.1)– the so-called effect operators. A partial
binary operation “⊕” is defined on E(H) by A⊕B = A+B, whenever
A + B ∈ E(H). Then (E(H),⊕,0,1) is the so-called standard Hilbert
space effect algebra. The supplement of an effect operator A ∈ E(H)
is A′ = 1 − A. Let us remark that the effect algebra order relation
defined on E(H) according to Definition 4.1.2 coincides with the order
relation defined in (4.1). It is worth noting that there are nonzero
isotropic effects , e.g. 1

2
1 ∈ E(H) (which is even its own supplement).

Therefore, in view of Theorem 4.2.5, E(H) is not an orthoalgebra.
Its sharp elements are in fact the projection operators (self-adjoint
idempotents) on H, which form an orthomodular lattice which is also
a sub-effect algebra of E(H), denoted, as previously mentioned, by
P(H).
(b) The [0, 1] interval of the real numbers can be organized as an effect
algebra, with “⊕” defined by a ⊕ b = a + b for every pair a, b ∈ [0, 1]
such that a + b ∈ [0, 1] and of course 0 and 1 as zero and unit effects.
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In fact, for a 1-dimensional Hilbert space H, the effect algebra E(H)
can be identified with [0, 1] organized as described. Moreover, this is
the only case when E(H) is lattice ordered (even totally ordered), with
the effect algebra order coinciding with the usual real numbers order.
(c) The following example, due to R. Wright, is the simplest orthoalge-
bra which is not an orthomodular poset (all its elements are sharp, but
not all are principal). Let E = {0,1, a, b, c, d, e, f, a′, b′, c′, d′, e′, f ′} and
let “⊕” be a partial binary operation on E such that (E,⊕,0,1) is an
effect algebra and, in addition to the obvious relations, the following
ones hold:

a⊕ b⊕ c = 1, c⊕ d⊕ e = 1, e⊕ f ⊕ a = 1.

We can easily see that e.g. a′ is not principal, since c, e ≤ a′ and
c ⊕ e = d′ exists in E, but d′ ≤ a′ fails. On the other hand, let us
show that all the elements of E are sharp. Assume u ≤ a, a′ for some
u ∈ E. Since a is a minimal nonzero element, it is only possible that
u = a or u = 0. The first case leads us to a ≤ a′, but since a⊕ a is not
defined, this is not true. It then follows that u = 0, hence a ∧ a′ = 0
and therefore a, a′ are sharp elements. Applying the same reasoning
to b, c, d, e, f and their supplements, we find that all elements of E are
sharp.

Let us now turn to the important property of coexistence. Recall
that two effects are coexistent (or simultaneously testable) if they are
in the range of the same observable. Mathematically, this translates
(see [4]) into the following property:
Two effect operators A,B ∈ E(H) on the Hilbert space H coexist if
there exists A1, B1, C ∈ E(H) such that A = A1 ⊕ C, B = B1 ⊕ C and
A1 ⊕B1 ⊕ C exists in E(H).

Taking this property to abstract effect algebras leads us to the fol-
lowing definition:

Definition 4.2.9. Let E be an effect algebra and a, b ∈ E. Ele-
ments a and b coexist in E if there are a1, b1, c ∈ E such that a = a1⊕c,
b = b1⊕c and a1⊕b1⊕c exists in E. In this case, we write a↔E b or, if
there is no risk of confusion about E, just a↔ b. Elements a1, b1, c ∈ E
fulfilling this conditions are called a Mackey decomposition of a, b. For
a subset M of E, we write a ↔ M if a ↔ b for all b ∈ M . The com-
mutant of M in E is the set KE(M) = {a ∈ E : a ↔ M}. If there is
no possibility of confusion concerning E, we shall simply denote it by
K(M).

Remark 4.2.10. Recall that in an orthomodular poset P , elements
a and b are compatible (or commute) if there exist a1, b1, c ∈ P mutu-
ally orthogonal elements such that a = a1∨ c and b = b1∨ c. In view of
Theorem 4.2.7, it is then clear that coexistence generalizes compatibil-
ity to effect algebras and that the two notions coincide in orthomodular
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posets. This justifies the use of the same notation for coexistence and
compatibility and also for the commutant with respect to coexistence
or compatibility. In what follows, a pair of coexistent elements of an
effect algebra will be sometimes called compatible or commuting, if the
pair belongs to an orthomodular poset.

Furthermore, as the following Proposition 4.2.13 states, the notion
of center of an effect algebra, defined as the set of its central elements,
generalizes the notion of center in orthomodular posets, defined as the
set of its elements which are compatible with all the others.

We shall first need the following well known characterization of
coexistence:

Lemma 4.2.11. Let E be an effect algebra and a, b ∈ E. Then,
a↔ b if and only if there exist b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′ and
b = b1 ⊕ b2.

Proof. Let a, b be elements of E. There exist b1, b2 ∈ E such that
b = b1 ⊕ b2 and b1 ≤ a, b2 ≤ a′ if and only if b = b1 ⊕ b2, a = b1 ⊕ a1

(where a1 = a	 b1) and a ⊥ b2, i.e. a1 ⊕ b1 ⊕ b2 = a⊕ b2 exists. This
however is the same as a↔ b. �

A obvious corollary follows:

Corollary 4.2.12. Let E be an effect algebra and a, b ∈ E. Then,
a↔ b if and only if a′ ↔ b.

Proposition 4.2.13. Let E be an effect algebra. Then:

(1) an element of a ∈ E is central if and only if it coexists with
all elements of E and a, a′ are principal;

(2) if E is an orthomodular poset, the set of central elements of E
coincides with the center of E as an orthomodular poset.

Proof. (1) The result follows directly from Lemma 4.2.11.
(2) This is almost trivial, considering the fact that every element

of an orthomodular poset is principal, according to Theorem 4.2.7,
and the above remark that coexistence is the same as commutativ-
ity/compatibility in orthomodular posets. �

In view of the above result, we shall henceforth denote the center

(i.e., the set of central elements) of an effect algebra E by C̃(E).

Recall that the center of an orthomodular poset is a Boolean al-
gebra. In view of the above Proposition 4.2.13, it is legitimate to ask
ourselves if the same is not true in effect algebras in general. The
answer to this question is in the affirmative, as the following result
from [26] asserts. We omit here the proof which can be found in the
aforementioned paper.
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Theorem 4.2.14. [26, Theorem 5.4] The center C̃(E) of an effect
algebra E is a sub-effect algebra of E and as an effect algebra in its own

right, C̃(E) forms a Boolean algebra. Furthermore, if a, b ∈ C̃(E), then

a∧b and a∨b as calculated in C̃(E) are also the infimum and supremum
of a and b as calculated in E.

Remark 4.2.15. As a consequence of Theorems 4.2.5, 4.2.7 and
4.2.14, we can conclude that an effect algebra is:

• an orthoalgebra if and only if its every element is sharp
• an orthomodular poset if and only if its every element is prin-

cipal
• a Boolean algebra if and only if its every element is central

4.3. Substructures in effect algebras

In the first part of this thesis, we have defined Boolean subalgebras
in the context of ortholattices (Definition 1.3.2) and orthoposets (Defi-
nition 1.3.17). We shall now define them in the more general framework
of effect algebras.

Definition 4.3.1. A Boolean subalgebra of an effect algebra E is a
sub-effect algebra of E which is a Boolean algebra with ′ and with the
operations ∨, ∧ induced by the order in E.

We have seen that orthomodular posets can be considered special
cases of effect algebras (Remark 4.2.15). It is then clear that the above
definition should generalize Definition 1.3.17—and it is easy to see that
indeed it does.

However, in the case of orthomodular posets, Proposition 1.3.16
guarantees that all suprema and infima of pairs of elements of a Boolean
subalgebra exist and are the same if calculated in the orthomodular
poset or the subalgebra. It is a natural question if the analogue asser-
tion holds for a Boolean subalgebra of an effect algebra. As we shall
see, the answer is in the affirmative if we ask the effect algebra to be
an orthoalgebra. More precisely, the following result holds:

Proposition 4.3.2. Let E be an orthoalgebra and let F ⊆ E be a
Boolean subalgebra of E. Then:

(1) If a, b ∈ F and a ∧E b exists, then a ∧E b = a ∧F b;
(2) If a, b ∈ F and a ∨E b exists, then a ∨E b = a ∨F b;

Proof. Let a, b ∈ F . Since F is a Boolean algebra, we have
a ↔F b. Therefore, there exist the mutually orthogonal elements
a1, b1, c ∈ F such that a = a1 ⊕ c, b = b1 ⊕ c and a1 ⊕ b1 ⊕ c exist
in F . Since F is a Boolean algebra, it is clear that a ∧F b = c and
a ∨F b = a1 ∨ b1 ∨ c = a1 ⊕ b1 ⊕ c.

(1) Let us assume that a ∧E b exists. Then c = a ∧F b ≤ a ∧E b,
because F ⊆ E. There exists then an element d ∈ E such that c⊕ d =
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a ∧E b. But a ∧E b ≤ a, b, hence c⊕ d ≤ a1 ⊕ c, b1 ⊕ c. By cancellation
law, we find that d ≤ a1, b1. However, a1 ⊥ b1, hence b1 ≤ a′1 and it
follows that d ≤ a1, a

′
1. Since E is an orthoalgebra, d = 0 and therefore

c = a ∧F b = a ∧E b.
(2) If a ∨E b exists, then a ∨E b ≤ a ∨F b = a1 ⊕ b1 ⊕ c. There

exists then an element d ∈ E such that (a ∨E b) ⊕ d = a1 ⊕ b1 ⊕ c.
But a, b ≤ a ∨E b, hence a1 ⊕ c ⊕ d, b1 ⊕ c ⊕ d ≤ a1 ⊕ b1 ⊕ c. Again,
by cancellation, we find that d ≤ b1, a1 and it follows that d = 0 and
therefore a ∨E b = a ∨F b = a1 ⊕ b1 ⊕ c. �

The following Remark is rather obvious, but very useful:

Remark 4.3.3. If F is a sub-effect algebra of an effect algebra E,
the following statements hold:

(1) if a ∈ F and a is a principal element of E, then it is also
principal in F ;

(2) if a, b ∈ F coexist in F , then they coexist in E.

Of course, the converse statements need not be true.

4.4. Important classes of effect algebras

Let us present now a few important properties that an effect algebra
may fulfill and their correlations.

Definition 4.4.1. An effect algebra that is a lattice with respect
to its usual order relation, is called a lattice effect algebra.

Definition 4.4.2. An MV-effect algebra is a lattice effect algebra
E such that a ∧ b = 0 implies a ⊥ b for every a, b ∈ E.

Remark 4.4.3. Coexistence in lattice effect algebras has interesting
properties which can be found, e.g., in [14]. A review on this subject is
also included in [9]. Let us just mention here that the blocks in lattice
effect algebras (maximal subsets of mutually coexisting elements) are
MV-effect algebras, which in turn were proven to be equivalent to the
well known MV-algebras.

Definition 4.4.4. Let E be an effect algebra. A system (ai)i∈I of
elements of E is orthogonal if

⊕
i∈F ai is defined for every finite set

F ⊂ I. A majorant of an orthogonal system (ai)i∈I is an upper bound
of {

⊕
i∈F ai : F ⊂ I is finite}. The sum of an orthogonal system is its

least majorant (if it exists).

Definition 4.4.5. An effect algebra E is orthocomplete if every
orthogonal system of its elements has a sum. An effect algebra E is
weakly orthocomplete if every orthogonal system in E has a sum or no
minimal majorant.

Definition 4.4.6. An effect algebra E has the maximality property
if the set {a, b} has a maximal lower bound for every set {a, b} ⊆ E.
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Remark 4.4.7. The maximality property was introduced by Tkadlec
[58]. In [61, Theorem 2.2], he proved that effect algebras with the max-
imality property or the ones that are weakly orthocomplete are com-
mon generalizations of lattice effect algebras and orthocomplete effect
algebras. Since finite or chain-finite effect algebras are orthocomplete
(see [60, Theorem 4.1]), they also must satisfy the maximality property.

Definition 4.4.8. Let E be an effect algebra. A minimal non-zero
element of E is called an atom. E is atomic if every non-zero element
dominates an atom. E is atomistic if every non-zero element is the
supremum of the atoms it dominates. E is determined by atoms if, for
different a, b ∈ E, the sets of atoms dominated by a and b are different.

The relations between these notions are outlined in the following
result.

Lemma 4.4.9 ([59, Lemma 2.2]). Every atomistic effect algebra
is determined by atoms. Every effect algebra determined by atoms is
atomic.

Examples showing that the converse implications do not hold can
be found in [25, 59].

Proposition 4.4.10 ([59, Corollary 2.6]). Every atomic effect al-
gebra in which every its atom is sharp is an orthoalgebra.

4.5. Morphisms of effect algebras

Definition 4.5.1. Let E and E ′ be effect algebras and let ϕ : E →
E ′ be a map. We call ϕ an additive map if a ⊥ b implies ϕ(a) ⊥ ϕ(b)
and ϕ(a⊕ b) = ϕ(a)⊕ ϕ(b), for every a, b ∈ E.

Definition 4.5.2. Let E and E ′ be effect algebras and let ϕ : E →
E ′ be a map. Then ϕ is a morphism of effect algebras if it is additive
and ϕ(1E) = 1E′ .

Definition 4.5.3. A morphism ϕ of effect algebras which preserves
the infimum (i.e., ϕ(a ∧ b) = ϕ(a) ∧ ϕ(b), whenever a ∧ b exists) is a
∧-morphism.

Definition 4.5.4. A bijective morphism ϕ such that ϕ−1 is also a
morphism is an isomorphism.

Proposition 4.5.5. Let E and E ′ be effect algebras and let ϕ :
E → E ′ be a map. Then ϕ is an isomorphism of effect algebras if
and only if it is bijective and, for every a, b ∈ E, a ⊥ b if and only if
ϕ(a) ⊥ ϕ(b), in which case ϕ(a ⊕ b) = ϕ(a) ⊕ ϕ(b). Moreover, if ϕ is
an isomorphism, it is also a ∧-morphism.

Proof. The main point in proving both statements is to show that
a bijective map ϕ with the property that for every a, b ∈ E, a ⊥ b if



4.5. MORPHISMS OF EFFECT ALGEBRAS 77

and only if ϕ(a) ⊥ ϕ(b) in which case ϕ(a⊕ b) = ϕ(a)⊕ϕ(b) preserves
order both ways, i.e., it satisfies a ≤ b if and only if ϕ(a) ≤ ϕ(b), for
every a, b ∈ E. Let us prove this first.

Indeed, let a, b ∈ E, a ≤ b. Then, there exists c ∈ E such that
a ⊕ c = b and it follows that ϕ(a) ⊕ ϕ(c) = ϕ(b). Hence ϕ(a) ≤ ϕ(b).
Conversely, if ϕ(a) ≤ ϕ(b), there exists an element d ∈ E ′ such that
ϕ(a) ⊕ d = ϕ(b). However, since ϕ is surjective, there is an element
e ∈ E such that ϕ(e) = d. It follows that ϕ(a)⊕ϕ(e) = ϕ(a⊕e) = ϕ(b),
and by the injectivity of ϕ, a⊕ e = b, and therefore a ≤ b.

Now let us prove the first statement of the proposition. The direct
implication is straightforward. Conversely, we need to prove that a
bijective map ϕ such that for every a, b ∈ E, a ⊥ b if and only if
ϕ(a) ⊥ ϕ(b) in which case ϕ(a⊕ b) = ϕ(a)⊕ϕ(b) is a morphism. This
is evident except for the fact that ϕ(1E) = 1E′ . Let us assume that
ϕ(1E) = d ∈ E ′ and by surjectivity of ϕ, there exists c ∈ E such that
ϕ(c) = 1E′ . Then, ϕ(1E) ≤ ϕ(c) and since ϕ preserves order, it follows
that 1E ≤ c, hence c = 1E and ϕ(1E) = 1E′ . The proof that ϕ−1 is
also a morphism is now straightforward.

The second statement is a direct consequence of the fact proven in
the begining that an isomorphism preserves order both ways (and of
its bijectivity). �

Definition 4.5.6. Let E be an effect algebra. An isomorphism
ϕ : E → E is an automorphism.

Remark 4.5.7. Clearly, the results in Proposition 4.5.5 hold also if
we replace E ′ by E and the word “isomorphism” by “automorphism”.





CHAPTER 5

Sequential, compressible and compression base
effect algebras

The notion of a sequential product defined in general effect algebras
was introduced by Gudder and Greechie [31]. This sequential product
satisfies a set of physically motivated axioms as it formalizes the case
of sequentially performed measurements. The existence of a sequential
product in an effect algebra proves to be a restrictive condition, far
from being met by all effect algebras. An effect algebra on which a
sequential product is defined is called a sequential effect algebra.

Gudder [28] introduced compressions on effect algebras and also
compressible effect algebras. He was inspired by the work of David
Foulis on compressions and compressible groups [16, 17, 18, 19]. Al-
though the important examples of effect algebras proved to be com-
pressible, it seems that the concept of compressible algebras is too
restrictive, leaving out a rather large class of effect algebras.

As it turns out, the two notions (sequential effect algebra and
compressible effect algebra) are somehow related, since the sequential
product with a sharp element (of a sequential effect algebra) defines a
compression. Although the restrictions imposed by the existence of a
sequential product seem stronger than those determined by compress-
ibility, neither of the two notions is a generalization of the other, as an
example of a noncompressible sequential effect algebra confirms [28].

Again generalizing the work of Foulis in unital groups [20], Gud-
der introduced a common generalization of both sequential and com-
pressible effect algebras, namely effect algebras having a compression
base or CB-effect algebras [29]. Indeed, he proves that the compres-
sions of a compressible effect algebra form a compresion base and also
that a sequential effect algebra is naturally endowed with a maximal
compression base. Then, he generalize many of the results that hold
for sequential and compressible effect algebras to effect algebras hav-
ing a compression base. The investigation on compression base effect
algebras is continued by Pulmannová in [54], with many important
properties. Among them, the fact that the set of projections of a com-
pression base effect algebra is a regular orthomodular poset, or the
projection cover property and its implications for the set of projections
of a compression base effect algebra will be of special interest for our
work.

79
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In this chapter, we present the important (and useful, for our fur-
ther work) established facts concerning sequential, compressible and
compression base effect algebras, laying the foundation for the new re-
sults that will be the presented in the following chapters. For complete
details and proofs that are omitted here, we refer to [28, 29, 31, 54].

5.1. Sequential effect algebras

As previously mentioned, effect algebras appeared as an abstraction
of the structure of the standard Hilbert space effect algebra E(H) of ef-
fect operators (see Example 4.2.8 (a)), which is important in the theory
of quantum measurements (see, e.g., [4, 5, 41, 43, 44]). The notion of
sequential product in arbitrary effect algebras (and consequently, the
notion of sequential effect algebra) appeared in a similar manner, as
an abstraction of the sequential product that was defined in E(H) for
the purpose of studying the frequently occurring situation of quantum
measurements that are performed sequentially [33, 32, 30].

Let us briefly sketch here, for readers convenience, the reasoning
that leads to the definition of sequential product on the set of effect
operators E(H). We will follow the exposition from [33], to which we
also refer for further details.

Let A,B denote yes-no measurements (with only two possible out-
comes) that may be unsharp, called effects ([4, 5]). As previously
stated, in quantum mechanics, effects are represented by effect opera-
tors, i.e., elements of E(H). A density operator is an operator ρ ∈ E(H)
of trace class such that tr(ρ) = 1. Density operators represent quantum
states, and the probability that the effect A occurs when the system
is in the state ρ is pρ(A) = tr(Aρ). Let A,B ∈ E(H), ρ be a density
operator, and denote by A ◦B the sequential measurement in which A
is executed first and B second. It is then reasonable to consider that

(5.1) pρ(A ◦B) = pρ(A)pρ(B|A),

where pρ(B|A) denotes the conditional probability of B given A in the
state ρ. If A1/2 denotes the unique positive square root of A, then

(5.2) pρ(B|A) =
tr(BA1/2ρA1/2)

tr(Aρ)
=

tr(A1/2BA1/2ρ)

tr(Aρ)

when tr(Aρ) 6= 0 (see [5, 30, 32]). Let us notice that equation (5.2)
generalizes the von Neumann–Lüders formula in [48], which holds when
A,B ∈ P(H):

pρ(B|A) =
tr(BAρA)

tr(Aρ)

On the other hand, A1/2BA1/2 ∈ E(H), because 0 ≤ 〈A1/2BA1/2x, x〉 =
〈BA1/2x,A1/2x〉 ≤ 〈A1/2x,A1/2x〉 = 〈Ax, x〉 ≤ 〈x, x〉 for every x ∈ H.
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It follows from equations (5.1) and (5.2) that

pρ(A ◦B) = tr(A1/2BA1/2ρ) = pρ(A
1/2BA1/2),

for every quantum state ρ. It is then natural to define

A ◦B = A1/2BA1/2

and call it the sequential product of effects A and B. Effects A and B
are called sequentially independent if A ◦ B = B ◦ A. In this case, we
write A | B.

Let us remark, in view of these facts, the importance of considering
unsharp effects. Indeed, even if A,B ∈ P(H), A ◦ B = ABA is not a
projection operator unless AB = BA. However, 0 ≤ ABA ≤ I holds,
therefore ABA ∈ E(H).

The following interesting result is proved in [33, Corollary 2.2, The-
orem 2.3, Corollary 2.4].

Theorem 5.1.1. (1) For A,B ∈ E(H), A ◦ B = B ◦ A if and
only if AB = BA.

(2) For A,B ∈ E(H), if A ◦B ∈ P(H), then AB = BA.
(3) For A,B ∈ P(H), A ◦B ∈ P(H) if and only if AB = BA.

The next result we present shows that if dim(H) ≥ 3, then the effect
algebra structure of E(H) is determined by the sequential product.
More precisely, we have:

Theorem 5.1.2 ([31, Theorem 2.7]). Suppose that dim(H) ≥ 3. If
ϕ : E(H)→ E(H) is a bijection satisfying ϕ(A ◦B) = ϕ(A) ◦ ϕ(B) for
all A,B ∈ E(H), then ϕ is an effect algebra isomorphism.

Various properties of the sequential product defined on the Hilbert
space effect algebra are proved in [33, 32]. The essential ones—that
are also physically motivated, according to [31]—are used as axioms
for a sequential product in abstract effect algebras (and therefore, for
sequential effect algebras).

Definition 5.1.3. A sequential product on an effect algebra (E,⊕,0,1)
is a binary operation ◦ on E such that for every a, b, c ∈ E, the follow-
ing conditions hold:

(S1) a ◦ (b⊕ c) = (a ◦ b)⊕ (a ◦ c) if b⊕ c exists;
(S2) 1 ◦ a = a;
(S3) if a ◦ b = 0 then a | b (where a | b denotes a ◦ b = b ◦ a);
(S4) if a | b then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c ;
(S5) if c | a, b then c | a ◦ b and c | (a⊕ b) (if a⊕ b exists).

An effect algebra E endowed with a sequential product is called a
sequential effect algebra.

Definition 5.1.4. Let E be a sequential effect algebra. Elements
a, b ∈ E are sequentially independent if a◦b = b◦a. In this case, we will
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write a | b. If a | b for all a, b ∈ E, then E is a commutative sequential
effect algebra.

Some examples of sequential effect algebras are given in [31]:

Example 5.1.5. • Every Boolean algebra, endowed with the
sequential product a ◦ b = a ∧ b is a sequential effect algebra.
• Let X be a nonempty set and F ⊆ [0, 1]X such that:

(1) f0, f1 ∈ F , where f0(x) = 0 and f1(x) = 1 for all x ∈ X;
(2) f ∈ F implies f1 − f ∈ F ;
(3) f, g ∈ F and f + g ≤ f1 implies f + g ∈ F ;
(4) f, g ∈ F implies fg ∈ F .

Then, F is a sequential effect algebra if we define f⊕g = f+g
for f, g ∈ F such that f + g ≤ f1 and f ◦ g = fg.
• Obviously, the Hilbert space effect algebra E(H) is a sequential

effect algebra if we define the sequential product by A ◦ B =
A1/2BA1/2.

The following results give some of the important properties of the
sequential product. They are proved in [31].

Proposition 5.1.6 (see [31, Lemma 3.1, Lemma 3.3, Theorem
3.4]). Let E be a sequential effect algebra. For every a, b, c ∈ E, the
following properties hold:

(1) a ◦ 0 = 0 ◦ a = 0;
(2) a ◦ 1 = 1 ◦ a = a;
(3) a ◦ b ≤ a;
(4) a ≤ b implies c ◦ a ≤ c ◦ b;
(5) a ◦ b = 0 implies a ⊥ b.

If a is a sharp element of E, then:

(6) a ≤ b if and only if a ◦ b = b ◦ a = a;
(7) b ≤ a if and only if a ◦ b = b ◦ a = b;
(8) a ◦ b = 0 if and only if a ⊥ b;
(9) a | b implies a ◦ b = a ∧ b;

(10) a ⊥ b implies a⊕ b = a ∨ b = (a′ ◦ b′)′.

For the remainder of this chapter, let ES denote the set of sharp
elements of the effect algebra E. The following characterization of the
sharp elements of a sequential effect algebra holds:

Lemma 5.1.7 ([31, Lemma 3.2]). Let E be a sequential effect alge-
bra. The following statements are equivalent:

(1) a ∈ ES;
(2) a ◦ a′ = 0;
(3) a ◦ a = a.

Definition 5.1.8. The sequential center of the sequential effect
algebra E is the set C(E) = {a ∈ E : a | b for all b ∈ E}.
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Theorem 5.1.9 (see [31, Theorem 3.6, Lemma 4.2, Corollary 3.5,
Theorem 4.4]). Let E be a sequential effect algebra and let a, b ∈ E.
Then:

(1) a | b implies that a and b coexist; if b ∈ ES then the converse
implication holds as well;

(2) a is principal if and only if a ∈ ES;
(3) ES is a sub-effect algebra of E that is an orthomodular poset;

(4) C̃(E) = C(E) ∩ ES.

Lemma 5.1.10 ([31, Lemma 5.1]). An effect algebra E that, with the
binary operations ∨, ∧ induced by the partial order on E, and with the
orthosupplementation ′ is a Boolean algebra admits a unique sequential
product a ◦ b = a ∧ b.

Lemma 5.1.11 ([31, Lemma 5.2]). Let E be a sequential effect al-
gebra.

(1) If a ∈ E is an atom, then a ≤ b or a ≤ b′ for every b ∈ E.
(2) If a, b ∈ E are distinct atoms, then a ⊥ b.

Theorem 5.1.12 ([31, Theorem 5.3]). An atomistic orthoalgebra
admits a sequential product if and only if it is Boolean.

5.2. Compressible effect algebras

Let us present now the basic facts about retractions, compressions
and compressible effect algebras. We omit the proofs, which can be
found, along with many other results, in [28].

Definition 5.2.1. Let E be an effect algebra and J : E → E be
an additive map. If a ≤ J(1) implies J(a) = a, then J is a retraction.
In this case, J(1) is the focus of J . An element p ∈ E is a projection
if it is the focus of a retraction.

Let us remark, anticipating some terminology that will be defined
shortly, that usually, the term “projection” is used for retraction foci in
compressible or compression base effect algebras. Since we shall work
with retraction foci also in arbitrary effect algebras, we extend its use
to this more general framework.

Let us notice that, being additive, J preserves order, hence J(a) = a
implies a ≤ J(1).

Proposition 5.2.2. Let E be an effect algebra and J : E → E be
a retraction. If a ≤ b, then J(a) ≤ J(b) and J(b	 a) = J(b)	 J(a).

Proof. If a ≤ b, then a⊕(b	a) = b. Since J is additive, it follows
that J(a) ⊥ J(b 	 a) and J(b) = J(a) ⊕ J(b 	 a). We conclude that
J(a) ≤ J(b) and J(b	 a) = J(b)	 J(a). �

For a map J : E → E, we shall denote in the following Ker(J) =
{a ∈ E : J(a) = 0}.
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Proposition 5.2.3 (see [28, Lemma 3.1, Lemma 3.2]). Let E be
an effect algebra and J : E → E be a retraction with focus p. Then:

(1) J is idempotent;
(2) [0, p′] ⊆ Ker(J);
(3) p is principal and therefore sharp;
(4) p ≤ a implies J(a) = p;
(5) J(E) = [0, p].

Definition 5.2.4. Let E be an effect algebra and J : E → E be a
retraction. If J(a) = 0 implies a ≤ J(1)′, then J is a compression.

Proposition 5.2.5 ([28, Lemma 3.3]). Let E be an effect algebra
and J : E → E be a retraction with focus p. The following statements
are equivalent:

(1) J is a compression;
(2) J(a) = p implies p ≤ a;
(3) Ker(J) = [0, p′].

Definition 5.2.6. Let E be an effect algebra and I, J : E → E be
retractions. Then J is direct if J(a) ≤ a for every a ∈ E. Retractions
I and J are supplementary if Ker(I) = J(E) and Ker(J) = I(E).

Theorem 5.2.7 (see [28, Theorem 3.1]). Let E be an effect algebra
and J : E → E be a retraction with focus p.

(1) If J has a supplement I, then I and J are compressions and
p′ is the focus of I.

(2) If J is direct, then J has a supplement and therefore it is a
compression.

Definition 5.2.8. An effect algebra E is compressible if every re-
traction on E is uniquely determined by its focus and has a supplement.

Let E be a compressible effect algebra. According to Theorem 5.2.7,
every retraction on E is a compression. The set of projections in E
will be denoted by P (E) or just P , when no confusion is possible. For
a projection p ∈ P , Jp will denote the unique compression on E with
focus p. By the same Theorem 5.2.7, p′ is also a projection and Jp′ is
the supplement of Jp.

Remark 5.2.9. If E is a sequential effect algebra, the sequential
product with a sharp (and therefore principal) element p ∈ ES defines
a compression with focus p by Jp(a) = p ◦ a [29]. If, moreover, E
is compressible, then Jp : E → E, Jp(a) = p ◦ a is the unique com-
pression on E with focus p. The close relation between sequential and
compressible effect algebras becomes now evident.

In view of the above Remark 5.2.9, in a compressible effect algebra
E we will use the following notation: instead of Jp(a) we will write p◦a.
However, it should be remembered that p ◦ a only makes sense (unlike
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in a sequential effect algebra) if p is a projection (i.e., p ∈ P (E)).
Moreover, for p, q ∈ P (E), we will write p | q for p ◦ q = q ◦ p which
means of course that Jp(q) = Jq(p). Also, we will denote C(p) = {a ∈
E : a = Jp(a)⊕ Jp′(a)}, for every p ∈ P (E).

The following lemma summarizes the basic properties of compres-
sions that were given in the beginning of this section, using the new
notation “ ◦ ”. If E is a compressible effect algebra and P the set of
its compressions, we can also regard “ ◦ ” as a partial binary operation
◦ : P × E → E whose properties are given below.

Lemma 5.2.10 (see [28, Lemmas 3.1–3.3 and 4.1]). Let E be an
effect algebra, J a compression on E with the focus p and let us denote
p ◦ a = J(a) for every a ∈ E. Then, for every a, b ∈ E:

(1) p, p′ are principal and hence sharp;
(2) p ◦ (a⊕ b) = (p ◦ a)⊕ (p ◦ b);
(3) p ◦ a ≤ p ◦ b whenever a ≤ b;
(4) p ◦ 0 = 0, p ◦ 1 = p;
(5) p ◦ a = a if a ≤ p;
(6) p ◦ a ≤ p; p ◦ a = p if and only if p ≤ a;
(7) p ◦ a = 0 if and only if p ⊥ a (a ≤ p′).

Remark 5.2.11. In a compressible sequential effect algebra, the
partial binary operation ◦ : P ×E → E defined above is a restriction of
the sequential product ◦ : E×E → E. However, not every compressible
effect algebra can become a sequential effect algebra by extending the
product ◦ : P ×E → E to a sequential product on E (see [28, Section
5]).

Proposition 5.2.12 (see [28, Corollary 4.4, Corollary 4.5]). Let
E be a compressible effect algebra with P the set of projections and
p, q ∈ P .

(1) If p ⊥ q, then p⊕ q = p ∨ q = (p′ ◦ q′)′.
(2) P is a sub-effect algebra of E that is an orthomodular poset.

Theorem 5.2.13 (see [28, Theorem 4.2, Corollary 4.3]). Let E be
a compressible effect algebra and p, q ∈ P . The following statements
are equivalent:

(1) p ◦ q = q ◦ p;
(2) p ∈ C(q);
(3) p ◦ q ∈ P ;
(4) p and q coexist.

If any of these conditions hold, then p∧ q = p ◦ q = q ◦ p is the greatest
lower bound of p and q in both E and P .

Theorem 5.2.14 (see [28, Lemma 4.2, Lemma 4.3]). Let E be a
compressible effect algebra and p a projection. Then:

(1) C(p) = Jp(E)⊕Ker(Jp) = [0, p]⊕ [0, p′];
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(2) Jp is a direct retraction if and only if C(p) = E;

(3) C(p) = E if and only if p ∈ C̃(E).

Proof. Since the first two assertions are proved in the cited article,
let us only prove the last one.

If C(p) = E, then a = Jp(a) ⊕ Jp′(a), for every a ∈ E. According
to Lemma 5.2.10, p, p′ are principal, Jp(a) ≤ p and Jp′(a) ≤ p′, hence
p is a central element of E.

Conversely, let us suppose that p is a central element of E. For
every a ∈ E there are a1 ≤ p, a2 ≤ p′ such that a = a1 ⊕ a2. Hence
Jp(a) = Jp(a1 ⊕ a2) = Jp(a1) ⊕ Jp(a2) = a1 ⊕ 0 = a1 and similarly
Jp′(a) = a2. Thus a = a1 ⊕ a2 = Jp(a) ⊕ Jp′(a) and it follows that
a ∈ C(p). �

5.3. Compression bases in effect algebras

Effect algebras with compression bases are a common generalization
of compressible and sequential effect algebras. They prove to be very
useful, because they allow us to work with a well structured set of
compressions on almost any effect algebra, not only on the ones in
the rather restrictive categories that we mentioned (compressible or
sequential). Our presentation of compression base effect algebras is
based on [29, 54].

Definition 5.3.1. Let E be an effect algebra. A sub-effect algebra
F of E is normal if, for every a, b, c ∈ E such that a ⊕ b ⊕ c exists in
E and a⊕ b, b⊕ c ∈ F , it follows that b ∈ F .

Remark 5.3.2. Let us remark that the definition property of a
normal sub-effect algebra F of an effect algebra E implies that if two
elements of F coexist in E, they coexist in F as well ([29, Lemma 3.1]).

Definition 5.3.3. Let E be an effect algebra. A system (Jp)p∈P
of compressions on E indexed by a normal sub-effect algebra P of E is
called a compression base for E if the following conditions hold:

(1) Each compression Jp has the focus p.
(2) If p, q, r ∈ P and p⊕q⊕r is defined in E, then Jp⊕r◦Jr⊕q = Jr.

Let us remark here the obvious fact that every effect algebra has a
trivial compression base {J0, J1} where J0(a) = 0, J1(a) = a for every
a ∈ E.

It is easy to see that if J1 and J2 are compression bases for E,
then J1 ∩ J2 is also a compression base for E. If {Jα} is a chain of
compression bases for E then

⋃
α Jα is also a compression base for E.

As a consequence, according to Zorn lemma, every effect algebra has
a maximal compression base. If Jp and Jp′ are compressions, they are
contained in a maximal compression base.
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Example 5.3.4. (1) Let us present the canonical compression
base for the Hilbert space effect algebra E(H). The set of
sharp elements of this effect algebra is P(H), the set of pro-
jection operators on H. For every P ∈ P(H), let us define JP :
E(H) → E(H) by JP (A) = PAP for every A ∈ E(H). Then
(JP )P∈P(H) is a compression base for E(H). Clearly, the focus
of each compression JP is P , therefore the set of projections (in
the sense of foci of compressions) of E(H) is just P(H). One
can notice that the compressions in this compression base are
just the ones derived from the sequential product on E(H), by
JP (A) = P ◦ A = PAP .

(2) In every effect algebra E the center C̃(E) is a normal sub-effect
algebra and (Jp)p∈C̃(E) with Jp(a) = p∧a is a compression base

(see [54, Example 3.4]).

Theorem 5.3.5 ([29, Theorems 3.3 and 3.4]). (1) If E is a com-
pressible effect algebra, then the set P (E) of its projections is a
normal sub-effect algebra of E and (Jp)p∈P (E) is a compression
base for E.

(2) If E is a sequential effect algebra, then the set ES of its sharp
elements is a normal sub-effect algebra of E. If, for every
p ∈ ES, Jp is the compression on E defined by Jp(a) = p ◦ a,
for every a ∈ E, then (Jp)p∈ES

is a maximal compression base
for E.

For an effect algebra E with a compression base (Jp)p∈P we will
maintain, from now on, the notations introduced in the previous sec-
tion, namely:

• p ◦ a = Jp(a) for every p ∈ P and a ∈ E;
• p | q if p, q ∈ P and p ◦ q = q ◦ p (i.e., Jp(q) = Jq(p));
• C(p) = {a ∈ E : a = Jp(a)⊕ Jp′(a)} for every p ∈ P .

The properties of compressible effect algebras, as stated in Propo-
sition 5.2.12 and Theorems 5.2.13, 5.2.14 are generalizable to compres-
sion base effect algebras almost without modifications. More precisely,
the following results hold:

Proposition 5.3.6 (see [29, Lemma 3.5, Theorem 3.7]). Let (Jp)p∈P
be a compression base for the effect algebra E and let p, q ∈ P .

(1) If p ⊥ q, then p⊕ q = p ∨ q = (p′ ◦ q′)′.
(2) P is an orthomodular poset.
(3) Jp′ is a supplement of Jp for every p ∈ P .

Theorem 5.3.7 (see [29, see Theorem 4.2, Corollary 4.3]). Let E
be an effect algebra with a compression base (Jp)p∈P and p, q ∈ P . The
following statements are equivalent:

(1) p ◦ q = q ◦ p;
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(2) p ∈ C(q);
(3) p ◦ q ∈ P ;
(4) p and q coexist.

If any of these conditions hold, then p∧ q = p ◦ q = q ◦ p is the greatest
lower bound of p and q in both E and P .

Theorem 5.3.8 (see [29, Lemma 4.1] and proof of Theorem 5.2.14).
Let E be an effect algebra with a compression base (Jp)p∈P and let
p ∈ P . Then:

(1) C(p) = Jp(E)⊕Ker(Jp) = [0, p]⊕ [0, p′];
(2) Jp is a direct retraction if and only if C(p) = E;

(3) C(p) = E if and only if p ∈ C̃(E).

We shall need the following result.

Theorem 5.3.9 ([29, Theorem 3.6]). Let E be an effect algebra
with a compression base (Jp)p∈P . For every p, q ∈ P , the following
statements are equivalent:

(1) p ≤ q;
(2) Jq ◦ Jp = Jp;
(3) q ◦ p = p;
(4) Jp ◦ Jq = Jp;
(5) p ◦ q = p.

In [54], Pulmannová studied many properties of compression base
effect algebras. We shall reproduce here two results that are partic-
ularly important for our work. As we already know from Proposi-
tion 5.3.6, if (Jp)p∈P is a compression base for the effect algebra E,
then P is an orthomodular poset. However, this result admits the
following improvement:

Proposition 5.3.10 (see [54, Theorem 4.5, Corollary 4.2]). Let E
be an effect algebra and (Jp)p∈P be a compression base for E.

(1) If p, q ∈ P and p↔ q, then C(p)∩C(q) ⊆ C(p∧ q)∩C(p∨ q).
(2) If p, q, r ∈ P are pairwise compatible, then p ↔ r ∧ q and

p↔ r ∨ q, hence P is a regular orthomodular poset.

Remark 5.3.11. Let E be an effect algebra and (Jp)p∈P be a com-
pression base for E. In view of Lemma 4.2.11 and of Theorem 5.3.8
(1), if a ∈ E, p ∈ P , then a ∈ C(p) if and only if a↔ p. Therefore the
result of Proposition 5.3.10 (1) can be restated as follows: if p, q ∈ P ,
a ∈ E and p↔ q, then a↔ {p, q} implies a↔ {p ∧ q, p ∨ q}.

The second result from [54] that we are interested in involves the
projection cover property for compression base effect algebras.

Definition 5.3.12. A compression base (Jp)p∈P on the effect al-
gebra E has the projection cover property if for every element a ∈ E
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there exists the least element b ∈ P (the projection cover of a) with
b ≥ a.

Theorem 5.3.13 (see [54, Theorem 5.1]). Let E be an effect algebra
with a compression base (Jp)p∈P that has the projection cover property.
Then P is an orthomodular lattice.





CHAPTER 6

Spectral automorphisms in CB-effect algebras

In the third chapter we have introduced spectral automorphisms
(see also [36]). They resulted from our attempt to construct, in the
abstract framework of orthomodular lattices, an analogue of the spec-
tral theory in Hilbert spaces.

Since compression base effect algebras are currently considered as
the appropriate mathematical structures for representing physical sys-
tems, including observables, states and symmetries [21], it is only nat-
ural that we pursue the goal of generalizing spectral automorphisms,
along with most of their properties, to the framework of compression
base effect algebras. We obtain characterizations of spectral automor-
phisms as well as necessary conditions for an automorphism to be spec-
tral. In order to evaluate how well our theory performs in practice, we
apply it to an example of a spectral automorphism on the standard
effect algebra of a finite-dimensional Hilbert space and we show the
consequences of spectrality of an automorphism for the unitary Hilbert
space operator that generates it.

The last section is devoted to spectral families of automorphisms
and their properties. An attempt to clarify the connection between
spectral automorphisms and the classical discussion of unitary time
evolution of a system as one parameter family of automorphisms on
the associated logic of the system was made in the third chapter (see
also [11]). We take this attempt to effect algebras with compression
bases. An effect algebra version of the Stone-type theorem in [11] is
obtained.

The results presented here are accepted for publication in [8].

6.1. Spectral automorphisms: the idea and definitions

Before defining spectral automorphisms in the context of compres-
sion base effect algebras, let us see what are the facts, in the framework
of standard Hilbert space effect algebra, which suggest this notion. Let
H be a Hilbert space and E(H) the corresponding standard effect al-
gebra. Automorphisms of E(H) are of the form ϕU : E(H) → E(H),
ϕU(A) = UAU−1, where U is a unitary or antiunitary Hilbert space
operator [21]. An element A ∈ E(H) is ϕU -invariant if and only if
ϕU(A) = UAU−1 = A, i.e., operators U and A commute. Let BU be
the Boolean algebra of projection operators that is the image of the
projection-valued spectral measure associated to U . Then, operators

91
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A and U commutes if and only if A commutes with BU (i.e., with
every projection operator in BU) [34]. We are therefore led to the fol-
lowing definition of spectral automorphisms in compression base effect
algebras:

Definition 6.1.1. Let E be an effect algebra and (Jp)p∈P be a
compression base for E. An automorphism ϕ : E → E is spectral if
there exists a Boolean subalgebra B of P with the property:

ϕ(a) = a if and only if a↔ B(P1)

Before we can formulate, as it would be expected, the definition
of the spectrum of a spectral automorphism as the greatest Boolean
subalgebra of P fulfilling (P1), some more work is required. Indeed, it
is not clear at all if such a Boolean algebra exists. In order to prove
that it does, we will make use of a number of well known properties of
compatibility in orthomodular posets. For complete details, we refer
to [53, Section 1.3.].

Recall that in orthomodular lattices, every subset of pairwise com-
patible elements is a subset of a Boolean subalgebra of the lattice. How-
ever, this is not the case in orthomodular posets, unless they satisfy the
regularity property, according to Proposition 1.3.20. It is therefore for-
tunate that we can take advantage of the result in Proposition 5.3.10,
which asserts that the set of projections (i.e., compression foci) of a
compression base effect algebra is a regular orthomodular poset.

Although it might be considered as a known fact, the content of the
next lemma is tailored to suit our needs, as it will be used several times
throughout this chapter. The construction that is used in its proof is
inspired from [53, Proposition 1.3.23].

Lemma 6.1.2. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and M ⊆ P be a set of pairwise compatible elements. Then
there exists the smallest Boolean subalgebra B of P such that M ⊆ B.
Moreover, for this Boolean subalgebra B, K(M) = K(B) holds.

Proof. According to Propositions 1.3.20 and 5.3.10, there exists
a Boolean subalgebra of P which includes M . The smallest Boolean
subalgebra of P which includes M is then just the set-theoretical in-
tersection of all such Boolean algebras.

Let B be the smallest Boolean subalgebra of P which includes M
and a ∈ E. For the rest of the proof, let us keep in mind that, according
to Remark 4.2.10, coexistence, for elements of P , is the same thing as
compatibility, as defined in orthomodular posets. Clearly, if a ↔ B,
then a ↔ M , since M ⊆ B. Let us prove the converse. Let Q ⊆ M
be a finite set, and let us denote Q′ = Q ∪ {q′ ∈ E : q ∈ Q}. Since
Q ⊆ P and P is a sub-effect algebra of E, it follows that Q′ ⊆ P .
By Corollary 4.2.12, elements of Q′ are pairwise compatible. Let FQ
denote the set of infima of all subsets of Q′ and let B(Q) be the set
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of suprema of all subsets of FQ. Furthermore, let B̃ =
⋃
{B(Q) : Q ⊆

M, Q finite}. We omit here the routine verification of the fact that B̃ is
a Boolean algebra, which can be found in [53, Proposition 1.3.23]. Since

B̃ is a Boolean algebra that includes M , and every Boolean algebra

that includes M must include B̃ (obviously), it follows that B = B̃.
Since, for every Q ⊆ M , Q finite, we have B(Q) ⊆ B and B is a
Boolean algebra, it follows that the elements of B(Q) are pairwise
compatible (and so are the elements of FQ and Q′) for every such Q. If
a↔ M , then a↔ Q and by Corollary 4.2.12, a↔ Q′. Since elements
of Q′ are pairwise compatible, it follows from Proposition 5.3.10 that
a↔ FQ. Since elements of FQ are pairwise compatible, it follows, again
by Proposition 5.3.10, that a ↔ B(Q), for every Q ⊆ M , Q finite. It
follows that a↔ B, which concludes our proof. �

Let us now state the result that will allow us to define the spectrum
of a spectral automorphism.

Proposition 6.1.3. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and ϕ : E → E be a spectral automorphism. There
exists the greatest Boolean subalgebra B ⊆ P satisfying (P1).

Proof. Let {Bi : i ∈ I} be the set of all Boolean subalgebras
of P satisfying (P1). We will prove that

⋃
i∈I Bi is a set of pairwise

compatible elements of P . Indeed, for every i, j ∈ I, from a ∈ Bi

it follows that a ↔ Bi and, due to (P1), ϕ(a) = a. Applying (P1)
again for Bj, we conclude that a ↔ Bj. Hence Bi ↔ Bj for every
i, j ∈ I and every pair of elements of

⋃
i∈I Bi is compatible. According

to Lemma 6.1.2, there exists the smallest Boolean subalgebra B of P
containing

⋃
i∈I Bi.

We will now prove that B satisfies (P1), hence being the greatest
Boolean subalgebra of P with this property. Clearly, if a ↔ B, then
a ↔ Bi for every i ∈ I, hence ϕ(a) = a. Conversely, let us assume
ϕ(a) = a. It follows that a ↔ Bi for every i ∈ I, hence a ↔

⋃
i∈I Bi.

In view of the second assertion of Lemma 6.1.2, we conclude that a↔
B. �

Definition 6.1.4. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and ϕ : E → E be a spectral automorphism. The
greatest Boolean subalgebra of P fulfilling (P1) is the spectrum of the
automorphism ϕ, denoted by σPϕ .

As we already mentioned, spectral automorphisms in effect alge-
bras with compression base, as defined in this section, are intended as
generalizations of spectral automorphisms in orthomodular lattices, as
defined in the first part of this thesis. However, this is not a general-
ization in the strict sense of the term. Let us explain more precisely
what we mean.
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Let us consider E an effect algebra endowed with a compression
base (Jp)p∈P . Assume that E is an orthomodular lattice (with the
effect algebra order and orthosupplementation defined on E). It is then
a natural question if in this case, the notions of spectral automorphism
and its spectrum, as given in Definitions 3.2.1, 3.2.4, coincide with the
corresponding notions from Definitions 6.1.1,6.1.4. The answer is po-
sitive in what concerns spectrality, as can be easily verified. Indeed, if
ϕ : E → E a spectral automorphism, in the sense of Definition 6.1.1,
then it is also a spectral automorphism of the orthomodular lattice
E, in the sense of Definition 3.2.1, since σPϕ is a spectral algebra for
ϕ. However, its spectrum σϕ, as defined in 3.2.4 is not necessarily the
same as its spectrum σPϕ in the sense of the above Definition 6.1.4,
depending on the set P of projections. Indeed, as we shall prove in the

following section (Theorem 6.2.7), σPϕ = C̃(Eϕ)∩P , while according to

Proposition 3.2.10, σϕ = C̃(Eϕ). Therefore, σPϕ ⊆ σϕ and the inclusion

is strict, unless C̃(Eϕ) ⊆ P .
An interesting special case to consider is when the effect algebra

E is, in addition to being an orthomodular lattice, a sequential effect
algebra. Then, according to Theorem 5.3.5 (2), there exists a com-
pression base (Jp)p∈P of E such that P = E. In this case, we have
σPϕ = σϕ.

Proposition 6.1.5. Let E be an effect algebra and (Jp)p∈P be a

compression base for E. If P ⊆ C̃(E), then the identity is the only
spectral automorphism of E.

Proof. Let ϕ : E → E be a spectral automorphism. Then σPϕ ⊆
P ⊆ C̃(E). It follows that a ↔ σPϕ for every a ∈ E and, due to (P1),
every element of E is ϕ-invariant. �

Remark 6.1.6. As a particular case, if E is a Boolean algebra, then
its identity is its only spectral automorphism. Therefore, the presence
of nontrivial spectral automorphisms allows us to distinguish between
classical (Boolean) and nonclassical theories.

Before ending this section, let us discuss an example of a spectral
automorphism.

Example 6.1.7. ConsiderH a 3-dimensional complex Hilbert space,
E(H) the corresponding standard effect algebra and P(H) the set of
its projection operators or, equivalently, the set of its subspaces. Let
E(H) be endowed with its canonical compression base (JP )P∈P(H). Let
P ∈ P(H) be a 1-dimensional projector and denote SP the correspond-
ing subspace (i.e., its range). Then P ′ is its orthogonal complement
and define U : H → H as the symmetry of H with respect to the
plane SP ′ corresponding to P ′. Clearly U is a unitary operator, hence
ϕ : E(H) → E(H) defined by ϕ(A) = UAU−1 is an automorphism
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of E(H). We assert that B = {0, P, P ′,1} is a Boolean subalgebra
of P(H) satisfying (P1). To prove this assertion, let us notice that
A ∈ E(H) is ϕ-invariant if and only if A commutes with U (as opera-
tors). On the other hand, A ↔ B if and only if A ↔ P and it is well
known, since P is a projection operator, that this is equivalent to the
fact that A and P commute as operators (see, e.g., [41]). However,
by a classic Hilbert space theory result [34, Section 27, Theorem 2], A
and P commutes if and only if the range of P reduces A (i.e., SP and
SP ′ are invariant under A). To complete our proof, we only need to
show that A and U commute if and only if SP and SP ′ are invariant
under A. In order to do that, we need to remark that, considering
the definition of U , x ∈ SP if and only if Ux = −x and x′ ∈ SP ′ if
and only if Ux′ = x′. Now, let us assume that AU = UA. If x ∈ SP
then UAx = AUx = −Ax and therefore Ax ∈ SP . Also, if x′ ∈ SP ′
then UAx′ = AUx′ = Ax′ and therefore Ax′ ∈ SP ′ . Conversely, let
us assume that A(SP ) ⊆ SP and A(SP ′) ⊆ SP ′ . For an arbitrary
y ∈ H, there exist x ∈ SP and x′ ∈ SP ′ such that y = x + x′. Then
AUy = A(Ux+Ux′) = A(−x+x′) = −Ax+Ax′ = UAx+UAx′ = UAy,
which proves the commutativity. We conclude that ϕ is a spectral au-
tomorphism.

6.2. Characterizations and properties of spectral
automorphisms

For an automorphism ϕ of an effect algebra E, we will denote by Eϕ
the set of ϕ-invariant elements of E. Due to the definition properties
of automorphisms, it is clear that Eϕ is a sub-effect algebra of E.

The fact that the spectrum σPϕ of a spectral automorphism ϕ :
E → E fulfills (P1) can be written equivalently in the useful form of
the equality Eϕ = K(σPϕ ).

Let E be an effect algebra and M,N ⊆ E. The following properties
of commutants can be easily verified: (1) M ⊆ K(K(M)) and (2) if
M ⊆ N then K(N) ⊆ K(M).

Proposition 6.2.1. Let E be an effect algebra and (Jp)p∈P be a
compression base for E. If M ⊆ P then the commutant K(M) of M
is a sub-effect algebra of E.

Proof. Clearly, 0,1 ∈ K(M). According to Corollary 4.2.12, a↔
b if and only if a′ ↔ b for every a, b ∈ E. Hence a ∈ K(M) if and only
if a′ ∈ K(M). It remains to prove that, for every orthogonal pair of
elements a, b ∈ E, if a, b↔M , then a⊕ b↔M . Towards this end, we
will use the characterization of coexistence given in Lemma 4.2.11. Let
c ∈ M . Since a, b ↔ c, there exist a1, b1 ≤ c and a2, b2 ≤ c′ such that
a = a1⊕ a2 and b = b1⊕ b2. On the other hand, since a ⊥ b, it follows,
using Proposition 4.1.4 (3), that a1, a2 ≤ a ≤ b′ ≤ b′1, b

′
2 and therefore

a1 ⊥ b1, a2 ⊥ b2. It follows that a1 ⊕ b1 ≤ c and a2 ⊕ b2 ≤ c′, since c, c′
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are in P and therefore, according to Lemma 5.2.10, they are principal
elements of E. Taking into account that a⊕ b = (a1 ⊕ b1)⊕ (a2 ⊕ b2),
the desired conclusion that a⊕ b↔ c follows. �

Lemma 6.2.2. Let E be an effect algebra, (Jp)p∈P be a compression

base for E and F be a sub-effect algebra of E. Then C̃(F ) ∩ P is a
Boolean subalgebra of P .

Proof. First, let us remark that since F is a sub-effect algebra

of E, it makes sense to speak about its center C̃(F ), which is even a
Boolean algebra, according to Theorem 4.2.14. It is then clear that

C̃(F ) ∩ P is a sub-effect algebra of E (and of P as well). All its
elements are principal in E, according to Lemma 5.2.10, and therefore
in all sub-effect algebras of E, in view of Remark 4.3.3 (1). It follows

from Remark 4.2.15 that C̃(F )∩P is an orthomodular poset. To prove
it is a Boolean algebra, we need to show that its elements are pairwise

coexistent. Let a, b ∈ C̃(F ) ∩ P . Since C̃(F ) is a Boolean algebra,

a and b coexist in C̃(F ). Let a = a1 ⊕ c, b = b1 ⊕ c be a Mackey

decomposition of a, b in C̃(F ). Then a1 ⊕ c⊕ b1 exists in C̃(F ), hence
in E, a = a1⊕c ∈ P and b = b1⊕c ∈ P . Since P is a normal sub-effect
algebra of E, it follows that c ∈ P . Since a, b, c ∈ P and a1 = a 	 c,
b1 = b	 c, it follows, by Proposition 4.1.8, that a1, b1 ∈ P . This proves

that a1, b1, c is a Mackey decomposition of a, b in C̃(F ) ∩ P , hence a, b

coexist in C̃(F ) ∩ P , which concludes our proof. �

Corollary 6.2.3. Let E be an effect algebra, (Jp)p∈P be a compres-

sion base for E and ϕ : E → E be an automorphism. Then C̃(Eϕ)∩P
is a Boolean subalgebra of P .

Proof. Follows from Lemma 6.2.2 and the fact that Eϕ is a sub-
effect algebra of E. �

The following lemma and corollary, that will be useful in the se-
quel, are related to [26, Theorem 4.2 and Lemma 5.2]. However, the
statements we prove are slightly more general and could be interesting
in their own right.

Lemma 6.2.4. Let E be an effect algebra, {e1, e2, . . . , en} be an or-
thogonal set of its elements (i.e., the sum

⊕n
i=1 ei exists) and consider

p ∈ E such that p =
⊕n

i=1 pi with pi ≤ ei. If ej is principal for some
j ∈ {1, 2, . . . , n}, then p ∧ ej exists in E and pj = p ∧ ej.

Proof. Let us assume ej is principal. Clearly pj ≤ ej, p, and for
an arbitrary x ∈ E, x ≤ ej, p, we have to prove that x ≤ pj. Let
us denote by qi = ei 	 pi for all i ∈ {1, 2, . . . , n}. Then

⊕n
i=1 ei =⊕n

i=1(pi ⊕ qi) =
(⊕n

i=1 pi
)
⊕
(⊕n

i=1 qi
)

= p⊕ q, where q =
⊕n

i=1 qi. It
follows that qj ≤ q ≤ p′ ≤ x′, hence x ⊥ qj. Since x, qj ≤ ej and ej
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is principal, it results that x⊕ qj ≤ ej = pj ⊕ qj and therefore, by the
cancellation law, x ≤ pj. �

Corollary 6.2.5. If a, a′ are principal elements of the effect al-
gebra E, b ∈ E and a ↔ b, then a ∧ b and a′ ∧ b exist in E and
b = (a ∧ b)⊕ (a′ ∧ b).

Proof. According to Lemma 4.2.11, a ↔ b if and only if there
exist b1, b2 ∈ E such that b1 ≤ a, b2 ≤ a′ and b = b1 ⊕ b2. Since
{a, a′} form an orthogonal set of elements of E and a, a′ are principal,
it follows from Lemma 6.2.4 that a∧b and a′∧b exist in E and b1 = a∧b,
b2 = a′ ∧ b. Thus, b = b1 ⊕ b2 = (a ∧ b)⊕ (a′ ∧ b). �

Lemma 6.2.6. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be an automorphism. If a, a′ are principal
in E, a, b ∈ Eϕ and a, b coexist in E, then they coexist in Eϕ as well.

Proof. According to Corollary 6.2.5, a∧b and a′∧b exist in E and
b = (a∧ b)⊕ (a′∧ b). Since a, a′, b ∈ Eϕ, according to Proposition 4.5.5,
ϕ(a∧ b) = ϕ(a)∧ϕ(b) = a∧ b and ϕ(a′∧ b) = ϕ(a′)∧ϕ(b) = a′∧ b, and
therefore a∧ b, a′ ∧ b ∈ Eϕ. Considering that a∧ b ≤ a and a′ ∧ b ≤ a′,
it follows that a, b coexist in Eϕ, according to Lemma 4.2.11. �

The following theorem allows us to find the spectrum of a spectral
automorphism.

Theorem 6.2.7. Let E be an effect algebra and (Jp)p∈P be a com-
pression base for E. If ϕ : E → E is a spectral automorphism, then

σPϕ = C̃(Eϕ) ∩ P .

Proof. Let s ∈ σPϕ . Since σPϕ is a Boolean algebra, s commutes

with it and, according to (P1), s ∈ Eϕ. Since s ∈ σPϕ ⊆ P , s and s′

are principal elements of E, according to Lemma 5.2.10, and of Eϕ as
well, according to Remark 4.3.3 (1). Clearly, s ↔ K(σPϕ ) and using

(P1) again, K(σPϕ ) = Eϕ, hence s ↔ Eϕ, i.e., s coexists with every

element of Eϕ in E. To show that s ∈ C̃(Eϕ), we need this coexistence
to take place in Eϕ as well. This happens, according to Lemma 6.2.6.

It follows that s ∈ C̃(Eϕ) ∩ P , which proves that σPϕ ⊆ C̃(Eϕ) ∩ P .

To prove the converse inclusion, it suffices to show that C̃(Eϕ) ∩
P satisfies (P1), since it is a Boolean subalgebra of P , according to
Corollary 6.2.3, and σPϕ is the greatest Boolean subalgebra of P with
this property. Let a ∈ E be ϕ-invariant, i.e., a ∈ Eϕ. Then a ↔
C̃(Eϕ), hence a ↔ C̃(Eϕ) ∩ P . Conversely, since C̃(Eϕ) ∩ P ⊇ σPϕ ,

a ↔ C̃(Eϕ) ∩ P implies a ↔ σPϕ and, due to the spectrality of ϕ, this
entails that ϕ(a) = a. �

Corollary 6.2.8. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and ϕ : E → E be an automorphism. Then ϕ is
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spectral if and only if K(C̃(Eϕ) ∩ P ) ⊆ Eϕ (the converse inclusion is
always true).

Proof. According to Theorem 6.2.7, if ϕ is spectral, then σPϕ =

C̃(Eϕ) ∩ P , and due to (P1), K(σPϕ ) = Eϕ. Conversely, if K(C̃(Eϕ) ∩
P ) ⊆ Eϕ, then K(C̃(Eϕ) ∩ P ) = Eϕ and therefore C̃(Eϕ) ∩ P is a
Boolean subalgebra of P (according to Corollary 6.2.3) which satisfies
(P1), and it follows that ϕ is spectral. �

The following result characterizes spectral automorphisms in com-
pression base effect algebras.

Theorem 6.2.9. Let E be an effect algebra, (Jp)p∈P be a compres-
sion base for E and ϕ : E → E be an automorphism. Then ϕ is spectral

if and only if a ∧ b ∈ Eϕ for every a ∈ C̃(Eϕ) ∩ P , b ∈ K(C̃(Eϕ) ∩ P ).

Proof. “⇐” Let us denote C̃(Eϕ) ∩ P = B. According to Corol-
lary 6.2.3, B is a Boolean subalgebra of P . Let b be an element of E
such that b ↔ B. For every a ∈ B we have a′ ∈ B, a, a′ are principal
in E, according to Lemma 5.2.10, and a ↔ b, therefore, according to
Corollary 6.2.5, b = (a∧b)⊕(a′∧b). It then follows from our hypothesis
that a ∧ b, a′ ∧ b ∈ Eϕ, hence b ∈ Eϕ. Conversely, if b ∈ Eϕ, clearly

b ↔ C̃(Eϕ) ∩ P = B. It follows that B is a Boolean subalgebra of P
satisfying (P1), hence ϕ is a spectral automorphism.

“⇒” Let us assume ϕ is spectral and b ∈ K(C̃(Eϕ) ∩ P ), a ∈
C̃(Eϕ) ∩ P . Then a, a′ are principal elements of E, according to
Lemma 5.2.10, a ↔ b and, according to Corollary 6.2.5, the infimum
a ∧ b exists in E. Then, according to Proposition 4.5.5, ϕ(a ∧ b) =
ϕ(a) ∧ ϕ(b) = a ∧ b, since a ∈ Eϕ and, according to Corollary 6.2.8,
b ∈ Eϕ as well. It follows that a ∧ b ∈ Eϕ. �

The search for the conditions that a Boolean algebra must fulfill
in order to be the spectrum of a spectral automorphism leads to the
following notion.

Definition 6.2.10. Let E be an effect algebra and (Jp)p∈P be a
compression base for E. A Boolean subalgebra B ⊆ P is C-maximal if

C̃(K(B)) ∩ P ⊆ B.

Let us remark that, according to Proposition 6.2.1, K(B) is an effect
algebra, therefore its center exists. It is easy to see that, for example,
every block (i.e., maximal Boolean subalgebra) of P is C-maximal.

The following results from [54] will be used for the proof of our
next theorem.

Lemma 6.2.11. (see [54, Lemma 4.1, Theorem 4.5, Corollary 4.1])
Let E be an effect algebra and (Jp)p∈P be a compression base for E.
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(1) If p, q ∈ P and p ↔ q, then, for every a ∈ E, a ↔ {p, q}
implies a↔ p ∧ q.

(2) If p1, p2 ∈ P are orthogonal and a ∈ E, a ↔ {p1, p2}, then
(p1 ⊕ p2) ∧ a = (p1 ∧ a)⊕ (p2 ∧ a).

Theorem 6.2.12. Let E be an effect algebra and (Jp)p∈P be a com-
pression base for E. A Boolean subalgebra B ⊆ P is C-maximal if and
only if B = K(K(B)) ∩ P .

Proof. “⇐” Let B be a Boolean subalgebra of P such that B =

K(K(B))∩P , and let a ∈ C̃(K(B))∩P . Then a ∈ P and a↔ K(B),

hence a ∈ K(K(B))∩P = B. It follows that C̃(K(B))∩P ⊆ B, hence
B is C-maximal.

“⇒” Let B be a Boolean subalgebra of P such that C̃(K(B))∩P ⊆
B. The inclusion B ⊆ K(K(B))∩P is trivial. Let a ∈ K(K(B))∩P . It

suffices to prove that a ∈ C̃(K(B)). Since a↔ K(B) and B ⊆ K(B),
also a↔ B, hence a ∈ K(B). Since a, a′ ∈ P are principal elements of
E, and, according to Remark 4.3.3 (1), also of K(B), we only need to
prove that a coexists with every element of K(B) in K(B) too (not just
in E). Let b ∈ K(B). Since a ∈ K(K(B)), a↔ b in E and, according
to Corollary 6.2.5, a∧ b and a′ ∧ b exist in E and b = (a∧ b)⊕ (a′ ∧ b).
To prove a↔ b in K(B), it suffices to show that a ∧ b, a′ ∧ b ∈ K(B).
We will only prove that a ∧ b ∈ K(B), the proof for a′ ∧ b being
analogous. Let d ∈ B. We have to show that d ↔ a ∧ b in E. Let
us remark that, although a, b, d are pairwise coexistent, b need not
be in P and therefore we cannot use the regularity of P . We shall,
instead, use Lemma 6.2.11 (1). Indeed, a, d ∈ P , a ↔ d (in E and in
P , by Remark 5.3.2, since P is a normal sub-effect algebra of E) and
b↔ {a, d}, hence b↔ a∧ d. Similarly, b↔ a∧ d′. On the other hand,
applying Corollary 6.2.5 in P , we find that a ∧ d and a ∧ d′ exist in P
and a = (a∧d)⊕ (a∧d′). Applying Lemma 6.2.11 (2) with a∧d, a∧d′
as p1, p2, we find that

(
(a∧d)⊕(a∧d′)

)
∧b =

(
(a∧d)∧b

)
⊕
(
(a∧d′)∧b

)
.

Therefore, a∧ b =
(
(a∧d)⊕ (a∧d′)

)
∧ b =

(
(a∧ b)∧d

)
⊕
(
(a∧ b)∧d′

)
,

hence a ∧ b↔ d, according to Lemma 4.2.11. �

Let us apply the just proved result to the spectrum of a spectral
automorphism.

Corollary 6.2.13. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and ϕ : E → E be a spectral automorphism. Then:

(1) σPϕ = C̃(Eϕ) ∩ P is C-maximal;

(2) σPϕ = K(K(σPϕ )) ∩ P ;

(3) σPϕ = K(Eϕ) ∩ P .

Proof. (1) According to Theorem 6.2.7, σPϕ = C̃(Eϕ) ∩ P and,

according to (P1), Eϕ = K(σPϕ ). It results that σPϕ = C̃(K(σPϕ )) ∩ P .

Since σPϕ is a Boolean subalgebra of P , its C-maximality follows.
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(2) It follows directly from (1) and Theorem 6.2.12.
(3) It is a direct result of (2) and the fact that K(σPϕ ) = Eϕ, since

ϕ is spectral. �

6.3. An application of spectral automorphisms to E(H)

The notion of spectral automorphism was introduced with the de-
clared intention to obtain an analogue of the Hilbert space spectral
theory in the abstract setting of compression base effect algebras. It is
time to see if this attempt was succesful, by applying the abstract the-
ory to the particular case of the standard Hilbert space effect algebra.
Therefore, we devote this section to the proof of a “spectral theorem”
in E(H), for a finite-dimensional Hilbert space H.

Before we can prove the main result of this section, some prepara-
tions are needed. It is, of course, a well known fact that the set P(H)
of projection operators (or equivalently, the set of closed subspaces)
of a Hilbert space H forms an atomic complete orthomodular lattice
(see, e.g., [38, Section 5]). Its atoms are the 1-dimensional subspaces,
or the corresponding projectors. Let us denote in the sequel by ê the
1-dimensional subspace generated by e ∈ H, ‖e‖ = 1 and Pê the corre-
sponding projection operator, i.e., Pê : H → H, Pêx = 〈x, e〉e (where
〈·, ·〉 denotes the inner product of H).

Lemma 6.3.1. Let H be a Hilbert space. For every automorphism
ϕ : E(H) → E(H) defined by ϕ(A) = UAU−1, where U is a unitary
operator on H, and every atom Pê ∈ P(H), we have ϕ(Pê) = PÛe.

Proof. As previously mentioned, for e ∈ H, ‖e‖ = 1, Pê is defined
by Pê : H → H, Pêx = 〈x, e〉e. Since U is unitary, we have ‖Ue‖ =
1 and U−1 is also the adjoint of U . Then ϕ(Pê)x = UPêU

−1x =
U〈U−1x, e〉e = 〈x, Ue〉Ue = PÛex for every x ∈ H. �

Theorem 6.3.2. Let H be an n-dimensional Hilbert space, E(H) be
its standard effect algebra and (JP )P∈P(H) be the canonical compression
base for E(H). Let U : H → H be a unitary operator and ϕ : E(H)→
E(H) be the automorphism defined by ϕ(A) = UAU−1. If ϕ is spectral,
then:

(1) There is an orthogonal basis {e1, e2, . . . , en} of H such that
for every i ∈ {1, 2, . . . , n}, Uei = λiei where λi is a scalar,
|λi| = 1.

(2) There exists a partition Π of the set {1, 2, . . . , n} such that
any ϕ-invariant atom of P(H) is a 1-dimensional subspace in
exactly one of the subspaces

∨
j∈J êj, J ∈ Π.

(3) If the subalgebra E(H)ϕ of ϕ-invariant elements of E(H) is

Boolean, then the spectrum σ
P(H)
ϕ = E(H)ϕ ∩ P(H) is a block

in P(H). In this case all eigenvalues of U are distinct and
Π =

{
{1}, {2}, . . . , {n}

}
.
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(4) The spectrum σ
P(H)
ϕ is the Boolean algebra generated by

{∨
j∈J êj :

J ∈ Π
}

.
(5) If the effect A ∈ E(H) is ϕ-invariant and P ∈ P(H) is the

smallest projection that dominates A (namely the projection
on the range of A), then P is ϕ-invariant too.

(6) If A is a ϕ-invariant nonzero effect dominated by an atom of
P(H), then the range of A is included in one of the subspaces∨
j∈J êj, J ∈ Π.

Proof. (1) ϕ is a spectral automorphism, hence E(H)ϕ = K(σ
P(H)
ϕ ).

Since σ
P(H)
ϕ is a Boolean subalgebra of P(H), according to Corol-

lary 1.3.6 there exists a block B0 of P(H) such that σ
P(H)
ϕ ⊆ B0.

Obviously B0 ⊆ K(σ
P(H)
ϕ ) and it follows that B0 ⊆ E(H)ϕ ∩ P(H).

According to Theorem 1.4.10, the atoms of B0 are atoms of P(H), i.e.,
1-dimensional subspaces/projectors of H. Let B be the set of all atoms
of B0. Since B0 is Boolean, it follows that its atoms are mutually or-
thogonal and therefore the corresponding 1-dimensional subspaces and
the vectors that generate these subspaces are orthogonal. Since H is
n-dimensional, it follows that there are at most n atoms in B. How-
ever, since

∨
B = 1, it follows that there must be exactly n atoms

in B. Let B = {ê1, ê2, . . . , ên}. In view of the previous arguments, it
is clear that {e1, e2, . . . , en} is an orthogonal basis of H. Recall now
that B = {ê1, ê2, . . . , ên} ⊆ B0 ⊆ E(H)ϕ, hence ê1, ê2, . . . , ên are ϕ-
invariant. Then, according to Lemma 6.3.1, for every i ∈ {1, 2, . . . , n},
ϕ(Pêi) = PÛei = Pêi . It follows that Ûei = êi, hence Uei = λiei for

some scalar λi (which must be of modulus 1 since U is unitary), for
every i ∈ {1, 2, . . . , n}.

(2) Let ê ∈ P(H) be a ϕ-invariant atom such that ê /∈ B. Since
{e1, e2, . . . , en} is a basis of H, there exists J ⊆ {1, 2, . . . , n} such that
e =

∑
j∈J ajej, with aj 6= 0 for all j ∈ J . Due to the ϕ-invariance of

ê, it follows that there exists a scalar λ such that Ue = λe and since
Uej = λjej for every j ∈ J , we find that

∑
j∈J aj(λ − λj)ej = 0. We

conclude that λj = λ for all j ∈ J , and
∨
j∈J êj is the corresponding

eigenspace. It is now clear that each element J of the partition Π that
we are looking for corresponds to a distinct eigenspace of U .

(3) If E(H)ϕ is Boolean, according to Theorem 6.2.7, σ
P(H)
ϕ =

E(H)ϕ ∩ P(H). Let A ∈ E(H) such that A ↔ E(H)ϕ ∩ P(H). Then

A↔ σ
P(H)
ϕ , hence A ∈ E(H)ϕ. It follows that σ

P(H)
ϕ = E(H)ϕ ∩ P(H)

is a block of P(H), hence B = {ê1, ê2, . . . , ên} are the only ϕ-invariant
atoms in P(H). This implies that eigenvalues λ1, λ2, . . . , λn corre-
sponding to vectors {e1, e2, . . . , en} are distinct. Indeed, if more than
one of these vectors correspond to the same eigenvalue, than any sub-
space of their corresponding eigenspace is ϕ-invariant, in contradiction
to our previous assertion.



102 6. SPECTRAL AUTOMORPHISMS IN CB-EFFECT ALGEBRAS

(4) Since B = {ê1, ê2, . . . , ên} is the set of all the atoms of B0 and

σ
P(H)
ϕ ⊆ B0, it follows that every element, and in particular every atom

of σ
P(H)
ϕ is a supremum of a subset of B. Considering the fact that σ

P(H)
ϕ

is a Boolean algebra and therefore its atoms are mutually orthogonal
and their supremum is 1, we conclude that there exists a partition Π1 of

{1, 2, . . . , n} such that the atoms of σ
P(H)
ϕ are

{∨
i∈I êi : I ∈ Π1

}
. We

have to prove that Π1 = Π. Let ω ∈ H, ω̂ ≤
∨
i∈I êi for some I ∈ Π1.

According to Proposition 1.4.6, ω̂ ↔ σ
P(H)
ϕ and since ϕ is spectral,

ω̂ is ϕ-invariant. Therefore, all 1-dimensional subspaces dominated
by
∨
i∈I êi are ϕ-invariant and it follows that

∨
i∈I êi is included in

some eigenspace of U . Then there exists J ∈ Π such that I ⊆ J .
Since

∑
I∈Π1

card(I) =
∑

J∈Π card(J) = n, we only need to prove that
there are no distinct I1, I2 ∈ Π1 such that I1, I2 ⊆ J for some J ∈ Π.
Indeed, if that would be the case, we could choose ω1, ω2 ∈ H such that
ω̂1 ≤

∨
i∈I1 êi and ω̂2 ≤

∨
i∈I2 êi. Then let ω = ω1 + ω2 ∈ H and we

have ω̂ �
∨
i∈I1 êi, ω̂ �

∨
i∈I2 êi but ω̂ ≤

∨
j∈J êj, which in turn implies

ω̂ is ϕ-invariant, hence ω̂ ↔ σ
P(H)
ϕ and ω̂ ↔

∨
i∈I êi for every I ∈ Π1.

Since ω̂ is an atom of P(H) that is neither included nor orthogonal to∨
i∈I1 êi,

∨
i∈I2 êi, this is a contradiction.

(5) Let A ∈ E(H) be ϕ-invariant and P ∈ P(H) be the projection
on the range of A, which is the smallest projection that dominates
A. We have to prove that P is also ϕ-invariant. Since the automor-
phism ϕ is order-preserving, ϕ(P ) must be the smallest projection that
dominates ϕ(A), namely the projection on the range of ϕ(A). Since
ϕ(A) = A, it follows that ϕ(P ) = P .

(6) Follows from (5) and (2). �

Remark 6.3.3. The properties (1)–(6) from Theorem 6.3.2 were
derived only from the fact that ϕ is spectral, without any other infor-
mation except for the properties of unitary operators.

6.4. Spectral families of automorphisms

Let E denote, for the rest of this section, an effect algebra endowed
with a compression base (Jp)p∈P and let Φ be a family of automor-
phisms of E.

Definition 6.4.1. The family Φ of automorphisms of E is called a
spectral family of automorphisms if there exists a Boolean subalgebra
BΦ of P satisfying:

ϕ(a) = a, for all ϕ ∈ Φ if and only if a↔ BΦ(P2)

In the sequel, for a family Φ of automorphisms of E, we denote
EΦ = {a ∈ E : ϕ(a) = a, for all ϕ ∈ Φ}. Let us remark that EΦ =⋂
ϕ∈ΦEϕ and therefore it is a sub-effect algebra of E.
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Proposition 6.4.2. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and Φ be a spectral family of automorphisms of E.
There exists the greatest Boolean subalgebra BΦ of P satisfying (P2).

Proof. The proof relies heavily on Lemma 6.1.2 and it is com-
pletely similar to the proof of Proposition 6.1.3 (except instead of one
automorphism we have a family of automorphisms), therefore we omit
it. �

Definition 6.4.3. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and Φ be a spectral family of automorphisms of
E. The spectrum (denoted by σPΦ) of the spectral family Φ of automor-
phisms is the greatest Boolean subalgebra B of P fulfilling (P2).

Lemma 6.4.4. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a spectral family of automorphisms of E. Then

C̃(EΦ) ∩ P is a Boolean subalgebra of P .

Proof. Follows from Lemma 6.2.2 and the fact that EΦ is a sub-
effect algebra of E. �

Lemma 6.4.5. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a family of automorphisms of E. If a, a′ are
principal in E, a, b ∈ EΦ and a, b coexist in E, then they coexist in EΦ

as well.

Proof. The proof is analogous to the proof of Lemma 6.2.6. �

Theorem 6.4.6. Let E be an effect algebra, (Jp)p∈P be a compres-
sion base for E and Φ be a spectral family of automorphisms of E.

Then σPΦ = C̃(EΦ) ∩ P .

Proof. Property (P2) fulfilled by σΦ is equivalent to EΦ = K(σΦ).
Let a ∈ σΦ. Then a ↔ σPΦ and therefore a ∈ K(σΦ) = EΦ. Moreover,
since a ∈ σΦ, we obtain a ↔ K(σΦ) = EΦ, i.e., a coexists with every
element of EΦ in E. According to Lemma 6.4.5 and since a, a′ ∈ P are
principal elements of E, it follows that a coexists with every element

of EΦ in EΦ as well, hence a ∈ C̃(EΦ) ∩ P , and we conclude that

σΦ ⊆ C̃(EΦ) ∩ P .

For the converse inclusion, since, according to Lemma 6.4.4, C̃(EΦ)∩
P is a Boolean subalgebra of P , it suffices to prove it fulfills (P2). If

ϕ(a) = a, for all ϕ ∈ Φ, it follows a ∈ EΦ, hence a↔ C̃(EΦ) ∩ P . For

the converse implication, since C̃(EΦ) ∩ P ⊇ σΦ, a ↔ C̃(EΦ) ∩ P im-
plies a↔ σΦ and therefore, since σΦ satisfies (P2), ϕ(a) = a for all ϕ ∈
Φ. �

Corollary 6.4.7. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and Φ be a family of automorphisms of E. Then

Φ is a spectral family if and only if K(C̃(EΦ)∩P ) ⊆ EΦ (the converse
inclusion is trivially satisfied).
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Proposition 6.4.8. Let E be an effect algebra, (Jp)p∈P be a com-
pression base for E and Φ be a spectral family of automorphisms of E.
Then:

(1) σPΦ = C̃(EΦ) ∩ P is C-maximal;
(2) σPΦ = K(K(σPΦ)) ∩ P ;
(3) σPΦ = K(EΦ) ∩ P .

Proof. (1) The result follows from Theorem 6.4.6 and the fact
that EΦ = K(σPΦ), since Φ is a spectral family of automorphisms.

(2) It is a direct consequence of (1) and Theorem 6.2.12.
(3) The result follows from (2) and the fact that K(σPΦ) = EΦ. �

Theorem 6.4.9. Let E be an effect algebra, (Jp)p∈P be a compres-
sion base for E and Φ be a family of spectral automorphisms of E.
Then Φ is a spectral family of automorphisms if and only if the spec-
tra of the automorphisms in the family are pairwise compatible, i.e.,
σPϕ ↔ σPψ for every ϕ, ψ ∈ Φ. In this case, σPΦ includes all spectra of
automorphisms in the family.

Proof. “⇒” Let us assume Φ is a spectral family of automor-
phisms of E, with the spectrum σPΦ . We will prove that σPϕ ⊆ σPΦ , for

all ϕ ∈ Φ. Since σPΦ is a Boolean algebra, it will follow that σPϕ ↔ σPψ
for every ϕ, ψ ∈ Φ. Let ϕ ∈ Φ and b ∈ σPϕ . For every a ∈ K(σPΦ),

(P2) implies ϕ(a) = a for all ϕ ∈ Φ, hence a ↔ σPϕ and in particu-

lar a ↔ b. It follows that b ∈ K(K(σPΦ)), and since b ∈ P , we find
that b ∈ K(K(σPΦ)) ∩ P . However, according to Proposition 6.4.8,
K(K(σPΦ)) ∩ P = σPΦ , and therefore σPϕ ⊆ σPΦ .

“⇐” Conversely, let us assume σPϕ ↔ σPψ for every ϕ, ψ ∈ Φ. Then⋃
ϕ∈Φ σ

P
ϕ is a set of pairwise compatible elements of P . According to

Lemma 6.1.2, there exists the smallest Boolean subalgebra B ⊆ P
which includes

⋃
ϕ∈Φ σ

P
ϕ . Moreover, by the same Lemma 6.1.2, a ↔⋃

ϕ∈Φ σ
P
ϕ if and only if a↔ B. It follows that ϕ(a) = a for all ϕ ∈ Φ if

and only if a↔ σPϕ for all ϕ ∈ Φ if and only if a↔
⋃
ϕ∈Φ σ

P
ϕ if and only

if a ↔ B, which means that B is a Boolean subalgebra of P fulfilling
(P2). We conclude that Φ is a spectral family of automorphisms. �

Remark 6.4.10. The following useful facts hardly require verifica-
tion:

(1) If ϕ : E → E is a spectral automorphism, then ϕ−1 is also a
spectral automorphism, and σPϕ = σPϕ−1 .

(2) The identity idE : E → E, idE(a) = a for all a ∈ E is a

spectral automorphism and its spectrum is σPidE = C̃(E) ∩ P .

Theorem 6.4.11. (A “replica” of Stone’s Theorem on strongly con-
tinuous uniparametric groups of unitary operators.) Let E be an effect
algebra, (Jp)p∈P be a compression base for E and Φ be a family of
spectral automorphisms of E. If the following conditions are fulfilled:
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(i) Φ is an abelian group; (ii) ϕ(Eψ) = Eϕψ for every ϕ, ψ ∈ Φ such
that ψ /∈ {idE, ϕ−1}, then:

(1) Eϕ = Eψ for all ϕ, ψ ∈ Φ \ {idE};
(2) σPϕ = σPψ for all ϕ, ψ ∈ Φ \ {idE};
(3) Φ is a spectral family.

Proof. The proofs for (1) and (2) are completely similar to the
ones for Theorem 3.8.8 (1) and (2), respectively, therefore we omit
them.

(3) According to Theorem 6.4.9, Φ is a spectral family of auto-
morphisms if and only if their spectra are pairwise compatible. Since
all spectra except the spectrum of identity coincide, we only have to
prove that σPidE ↔ σPϕ for some ϕ ∈ Φ \ {idE}. We will even prove

that σPidE ⊆ σPϕ . Let ϕ ∈ Φ \ {idE}. Obviously K(E) ⊆ K(Eϕ), hence,

according to Corollary 6.2.13, σPidE = K(E)∩P ⊆ K(Eϕ)∩P = σPϕ . �

Let us remark that Theorem 6.4.11 generalizes Theorem 3.8.8 to
spectral automorphisms in CB-effect algebras. Its proof is similar to
the one for the case of orthomodular lattice spectral automorphisms.

Remark 6.4.12. An abelian group {ϕt}t of automorphisms of the
standard effect algebra E(H) of a Hilbert space H is generated, e.g.,
by a one-parameter abelian group {Ut}t of unitaries on H by taking
ϕt(A) = UtAU

−1
t .





CHAPTER 7

Atomic effect algebras with compression bases

In this chapter, we focus on atomic compression base effect alge-
bras and the consequences of atoms being foci (so-called projections) of
the compressions in the compression base. Tkadlec [59] proved various
conditions for an atomic sequential effect algebra or its set of sharp
elements to be a Boolean algebra. We generalize some of these condi-
tions to the case of effect algebras having a compression base, and also
present some new ones for this more general framework. The role of the
set of sharp elements of the SEA will be played by the orthomodular
poset of foci (or projections) of the effect algebra’s compression base.

In the first section we establish some properties of atoms in effect al-
gebras endowed with a compression base, mainly regarding coexistence
and centrality. Then, in the second section, we introduce the notion of
projection-atomicity which aims to be an analogue, in the framework
of effect algebras with a compression base, for the property of an effect
algebra of having sharp atoms—used in sequential effect algebras. Con-
sequences of projection-atomicity are studied, some of which generalize
results obtained in [59]. A few conditions for an atomic compression
base effect algebra to be a Boolean algebra are established. Finally,
we apply these results to the particular case of sequential effect alge-
bras and find a sufficient condition for them to be Boolean algebras
that strengthens previous results by Gudder and Greechie [31] and
Tkadlec [59]. The results presented here have been published in [10].

7.1. Atoms and centrality

Let us reiterate that for an effect algebra E with a compression
base (Jp)p∈P we maintain, from now on, the notations introduced in
Chapter 5, namely:

• p ◦ a = Jp(a) for every p ∈ P and a ∈ E;
• p | q if p, q ∈ P and p ◦ q = q ◦ p (i.e., Jp(q) = Jq(p));
• C(p) = {a ∈ E : a = Jp(a)⊕ Jp′(a)} for every p ∈ P .

Proposition 7.1.1. Let E be an effect algebra. If p is an atom in
E that is the focus of a compression and a ∈ E then p ≤ a or p ≤ a′.

Proof. Since p ◦ a ≤ p and p is an atom, either p ◦ a = 0 or
p ◦ a = p. Therefore, p ≤ a′ or p ≤ a, according to Lemma 5.2.10. �

107
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Corollary 7.1.2. Distinct atoms that are foci of compressions in
an effect algebra are orthogonal.

Corollary 7.1.3. Let E be an effect algebra with a compression
base (Jp)p∈P . If p, q ∈ P and p is an atom in E then p | q.

Proof. According to Proposition 7.1.1, p ≤ q or p ≤ q′. In the
first case, according to Theorem 5.3.9, p ◦ q = p = q ◦ p, hence p | q. If
p ≤ q′, then p ⊥ q and, according to Lemma 5.2.10, p ◦ q = 0 = q ◦ p,
hence p | q. �

Proposition 7.1.4. Let E be an effect algebra with a compression
base (Jp)p∈P and p, q, r ∈ P such that p ≤ q◦r and p | r. Then p ≤ r◦q.

Proof. According to Lemma 5.2.10, p ≤ q. According to Lemma 5.2.10,
Theorem 5.3.9, the assumption and Lemma 5.2.10 again, p = p◦(q◦r) =
Jp
(
Jq(r)

)
= Jp(r) = p ◦ r = r ◦ p ≤ r ◦ q. �

Proposition 7.1.5. Let E be an effect algebra with a compression
base (Jp)p∈P and p ∈ P be an atom in E. For every q, r ∈ P , p ≤ q ◦ r
if and only if p ≤ r ◦ q.

Proof. This is a straightforward consequence of Corollary 7.1.3
and Proposition 7.1.4. �

Theorem 7.1.6. Let E be an effect algebra with a compression base
(Jp)p∈P . If E is determined by atoms and every atom is in P then P
is a Boolean algebra.

Proof. Let q, r ∈ P . According to Proposition 7.1.5, q ◦ r and
r ◦ q dominate the same set of atoms (since all atoms are in P ). Since
E is determined by atoms, this means, in view of Definition 4.4.8,
that q ◦ r = r ◦ q and hence, according to Theorem 5.3.7, q, r coexist.
According to Lemma 5.3.6, P is an orthomodular poset. Hence, P is
an orthomodular poset with every pair of its elements coexistent and
therefore a Boolean algebra, according to Corollary 1.2.12. �

Let us remark that the conclusion of the above theorem cannot
be improved to the statement that E is a Boolean algebra. The effect
algebra in Example 7.2.13 satisfies the hypotheses (it is even atomistic),
however it is not a Boolean algebra.

Lemma 7.1.7. Let E be an effect algebra with a compression base
(Jp)p∈P . If p ∈ P is an atom in E then C(p) = E.

Proof. Let a ∈ E. First, let us remark that Jp(a)⊕ Jp′(a) exists,
since, according to Proposition 5.2.3, Jp(a) ≤ p and Jp′(a) ≤ p′ and
therefore, Jp′(a) ≤ p′ ≤ Jp(a)′, i.e., Jp(a) ⊥ Jp′(a).

According to Proposition 7.1.1, we have p ≤ a or p ≤ a′.
If p ≤ a (and therefore a′ ≤ p′), by Lemma 5.2.10, Jp(a) = p and

Jp′(a
′) = a′ and it follows that Jp(a) ⊕ Jp′(a) = p ⊕ Jp′(1 	 a′) =
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= p ⊕
(
Jp′(1) 	 Jp′(a′)

)
= p ⊕ (p′ 	 a′) = p ⊕

(
(1 	 p) 	 (1 	 a)

)
=

p ⊕ (a 	 p) = a, where we have used Proposition 5.2.2 for the second
equality and the fact that p ≤ a ≤ 1 and Proposition 4.1.5 (D3), (D4)
for the fifth equality.

If p ≤ a′ (and thus a ≤ p′), then Jp′(a) = a, Jp(a) = 0 and thus
Jp(a)⊕ Jp′(a) = a. �

Remark 7.1.8. Let E be an effect algebra with a compression base
(Jp)p∈P . The previous result implies that every atom p ∈ P in E
coexists with every element of E . Indeed, for every a ∈ E = C(p),
a = Jp(a) ⊕ Jp′(a). Since Jp(a) ≤ p, there exist p1 ∈ E such that
p = Jp(a) ⊕ p1. Taking into account that Jp′(a) ≤ p′, it follows that
the sum Jp′(a) ⊕ p = Jp′(a) ⊕ Jp(a) ⊕ p1 exists and therefore a and p
coexist.

Remark 7.1.9. Recall that we have shown in Theorem 5.3.8 (3)
that a compression focus p ∈ P is central in a compression base effect
algebra E if and only if C(p) = E. In particular, this is also true
if E is a sequential effect algebra endowed with the compression base
(Jp)p∈ES

, Jp(a) = p ◦ a.

Theorem 7.1.10. Let E be an effect algebra with a compression
base (Jp)p∈P . Every p ∈ P that is an atom in E is central in E.

Proof. Let p ∈ P be an atom in E. According to Lemma 7.1.7,
C(p) = E and, according to Theorem 5.3.8 (3), p is central in E. �

7.2. Projection-atomic effect algebras

The following property is intended as a substitute, in the framework
of atomic effect algebras having a compression base, for the property
of an effect algebra of having all the atoms sharp:

Definition 7.2.1. An effect algebra E is projection-atomic if it
is atomic and there is a compression base (Jp)p∈P of E such that P
contains all atoms in E.

In view of the above definition, the result of Theorem 7.1.10 im-
plies that atoms of a projection-atomic effect algebra are central. The
converse also holds, as it will be shown in the next remark.

Remark 7.2.2. Pulmannová [54, Example 3.4] proved that for ev-

ery effect algebra E the center C̃(E) is a normal sub-EA and (Jp)p∈C̃(E)

with Jp(a) = p ∧ a is a compression base. Hence, every atomic effect
algebra with all atoms central is projection-atomic.

Proposition 7.2.3. Every projection-atomic effect algebra is an
orthoalgebra.
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Proof. Let E be a projection-atomic effect algebra. Then E is
atomic and, according to Theorem 7.1.10, all its atoms are central,
hence sharp. According to Proposition 4.4.10, E is an orthoalgebra. �

We will need the following properties in the sequel:

Definition 7.2.4. A subset M of a poset P is downward directed
if for every a, b ∈M there is an element c ∈M such that c ≤ a, b.

Definition 7.2.5. An effect algebra E is weakly distributive if a∧
b = a ∧ b′ = 0 implies a = 0 for every a, b ∈ E.

Let us also recall that, according to Definition 4.4.6, an effect al-
gebra E has the maximality property if [0, a] ∩ [0, b] has a maximal
element for every a, b ∈ E.

Remark 7.2.6. The maximality property generalizes several im-
portant properties of effect algebras. E.g., every chain-finite, ortho-
complete or lattice effect algebra has the maximality property. For
details and more properties generalized by the maximality property
see [60, Theorem 4.1] and [61, Theorem 3.1].

Theorem 7.2.7 ([58, Theorem 4.2]). Every weakly distributive or-
thomodular poset with the maximality property is a Boolean algebra.

Lemma 7.2.8. Every projection-atomic effect algebra is weakly dis-
tributive.

Proof. Let E be a projection-atomic effect algebra and (Jp)p∈P a
compression base of E such that P contains all atoms in E. Suppose
that E is not weakly distributive. Then there are a, b ∈ E such that
a 6= 0, a ∧ b = 0 and a ∧ b′ = 0. Since E is projection-atomic, there is
an atom p ∈ P in E such that p ≤ a. Then p � b and p � b′, which
contradicts Proposition 7.1.1. �

Lemma 7.2.9. The set of upper bounds of a set of atoms in a
projection-atomic effect algebra with the maximality property is down-
ward directed.

Proof. Let E be a projection-atomic effect algebra with a com-
pression base (Jp)p∈P such that P contains the set of atoms of E, A ⊂ P
be a set of atoms, a, b be upper bounds of A. According to the max-
imality property, there is a maximal c ≤ a, b. Let us suppose that c
is not an upper bound of A and seek a contradiction. Then there is
an atom d ∈ A such that d � c, hence, according to Proposition 7.1.1,
d ≤ c′ and therefore d′ ≥ c. Let us remark that, since d is an atom and
d ∈ P , it follows that d is central, according to Theorem 7.1.10. Since,

by Theorem 4.2.14, C̃(E) is a sub-effect algebra of E, from d ∈ C̃(E)

follows d′ ∈ C̃(E). According to Proposition 4.2.2, since d′ is central,
it is also principal. Since d′ ≥ c, d ≤ a, b and therefore d′ ≥ a′, b′,
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c ⊥ a′, b′ and d′ is principal, we obtain d′ ≥ c ⊕ a′ and d′ ≥ c ⊕ b′.
Hence d ≤ (c⊕ a′)′ = a	 c and d ≤ (c⊕ b′)′ = b	 c. Then, there exist
elements e, f ∈ E such that d ⊕ e = a 	 c and d ⊕ f = b 	 c and it
follows that c⊕ (d⊕ e) = c⊕ (a	 c) and c⊕ (d⊕ f) = c⊕ (b	 c), since
the sums in the right-hand side of the equalities exist. We conclude
that (c ⊕ d) ⊕ e = a and (c ⊕ d) ⊕ f = b, hence c ⊕ d ≤ a, b—which
contradicts the maximality of c. �

Lemma 7.2.10. Every element in a projection-atomic effect alge-
bra is a minimal upper bound of the set of atoms it dominates. Every
projection-atomic effect algebra with the maximality property is atom-
istic.

Proof. Let E be a projection-atomic effect algebra, a ∈ E and
Aa be the set of atoms dominated by a. First, let us show that a is
a minimal upper bound of Aa. Let us suppose that there is an upper
bound b < a of Aa and seek a contradiction. Then a	 b 6= 0 and since
E is atomic, there is an atom p ∈ Aa such that p ≤ a 	 b = (b ⊕ a′)′
and therefore p′ ≥ b ⊕ a′ ≥ b. It follows that p ≤ b′. On the other
hand, b is an upper bound of Aa and p ∈ Aa, hence p ≤ b, and since
E is an orthoalgebra (Proposition 7.2.3), we obtain p ≤ b ∧ b′ = 0—a
contradiction.

If E has the maximality property then, according to Lemma 7.2.9,
the set of upper bounds of Aa is downward directed, hence a =

∨
Aa.
�

Lemma 7.2.11. Every projection-atomic effect algebra with the max-
imality property is an orthomodular poset.

Proof. Let E be a projection-atomic effect algebra with the max-
imality property, a, b ∈ E with a ⊥ b and Aa, Ab be the sets of atoms
dominated by a and b respectively. According to Lemma 7.2.10, E is
atomistic and therefore the set of upper bounds of {a, b} is the set of
upper bounds of Aa ∪ Ab. According to Proposition 7.2.3, E is an or-
thoalgebra and therefore, by Theorem 4.2.5, a ⊕ b is a minimal upper
bound of {a, b}. According to Lemma 7.2.9, the set of upper bounds
of Aa ∪Ab is downward directed, hence a⊕ b is the least upper bound
of {a, b}. Hence a ⊕ b = a ∨ b for orthogonal a, b ∈ E and therefore,
according to Theorem 4.2.7, E is an orthomodular poset. �

Theorem 7.2.12. Every projection-atomic effect algebra with the
maximality property is a Boolean algebra.

Proof. It follows from Lemma 7.2.8, Lemma 7.2.11 and Theo-
rem 7.2.7. �

In view of Remark 4.4.7, it is a natural question if the maximality
condition can be replaced in Theorem 7.2.12 by weak orthocomplete-
ness. The answer is in the negative, as the following example based on
Tkadlec [59, 61] shows.
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Example 7.2.13. Let X1, X2, X3, X4 be infinite and mutually dis-
joint sets, X =

⋃4
i=1Xi,

E ′ = {∅, X1 ∪X2, X2 ∪X3, X3 ∪X4, X4 ∪X1, X},
E = {(A \ F ) ∪ (F \ A) : A ∈ E ′ and F ⊂ X is finite}.

For disjoint A,B ∈ E we define A ⊕ B = A ∪ B. Then (E,⊕, ∅, X)
is an orthomodular poset, the orthosupplement is the set theoretic
complement in X and the partial ordering is the inclusion. E is atomic
and the set of its atoms is {{x} : x ∈ X}. Let us put

P = {F ⊆ X : F is finite or X \ F is finite}
and for every F ∈ P let us define JF : E → E by JF (A) = F ∩ A for
every A ∈ E.

It is a straightforward verification that
(
JF
)
F∈P is a compression

base for E and that P contains all atoms, hence E is projection-atomic.
E is weakly orthocomplete, because if an orthogonal system (Ai)i∈I has
a minimal majorant B ∈ E then B =

⋃
i∈I Ai is the sum of (Ai)i∈I .

Since all elements of [∅, X2] are finite, (X1 ∪X2) ∧ (X2 ∪X3) does not
exist and therefore E is not a lattice (and hence not a Boolean algebra).

Let us remark that P 6= E—e.g., X1 ∪X2 ∈ E \ P .

In Chapter 5, we have presented the projection cover property for a
compression base of an effect algebra (see Definition 5.3.12). It is now
time to make use of it.

Theorem 7.2.14. Let E be a projection-atomic effect algebra. If
a compression base on E for which all atoms are projections has the
projection cover property, then E is a Boolean algebra.

Proof. Let (Jp)p∈P be a compression base on E that has the pro-
jection cover property and such that all atoms are in P . According to
Theorem 5.3.13, P is an orthomodular lattice. Since P is atomic, it
is atomistic, according to Proposition 1.4.4. Since all atoms are mu-
tually orthogonal (see Corollary 7.1.2), every two elements of P are
compatible, and hence P is a Boolean algebra.

It remains to prove that E = P . Let a ∈ E and let us denote Aa
the set of atoms in E dominated by a and Pa = {p ∈ P : p ≤ a}. The
set of projection upper bounds of a′ is P ′a = {p′ ∈ P : p ∈ Pa} and, due
to the projection cover property, there is a projection cover

∧
P ′a ∈ P

of a′, hence a ≥
∨
Pa ∈ P . Since a is a minimal upper bound of Aa

(Lemma 7.2.10) and
∨
Pa is also an upper bound of Aa, it follows that

a =
∨
Pa ∈ P . �

Corollary 7.2.15. Every atomic sequential orthoalgebra is a Boolean
algebra.

Proof. According to Theorem 5.3.5 (2), every sequential effect al-
gebra E has a maximal compression base (Jp)p∈ES

, where ES denotes



7.2. PROJECTION-ATOMIC EFFECT ALGEBRAS 113

the set of sharp elements of E. It follows that every sharp element of
E is a projection (i.e., compression focus). Since E is an orthoalgebra,
according to Theorem 4.2.5, all its elements are sharp, and therefore,
all its elements are projections. Since E is atomic and all its atoms
are projections, it follows that E, endowed with the compression base
(Jp)p∈ES

, is projection-atomic. On the other hand, since all the ele-
ments of E are projections, every element is its own projection cover
(i.e., it is the smallest projection that dominates itself), therefore the
compression base (Jp)p∈ES

has the projection cover property. Accord-
ing to Theorem 7.2.14, E is a Boolean algebra. �

Let us remark that the above corollary generalizes similar results
obtained by Gudder and Greechie [31, Theorem 5.3] and Tkadlec [59,
Theorems 5.4 and 5.6]. The first mentioned result assumes that the
effect algebra is atomistic, the second assumes it has the maximality
property and the third assumes it is determined by atoms.
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