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Introduction

Quantum logics are logic-algebraic structures that arise in the study of
the foundations of quantum mechanics.

According to the conventional Hilbert space formulation of quantum
mechanics, states and observables are represented by operators in a Hilbert
space associated to the quantum system under investigation, the so-called
state space. Propositions, which represent yes-no experiments concerning the
system, form an orthomodular lattice, isomorphic to the partially ordered
set of projection operators P(H) on the state space H. It is called the
logic associated to the quantum system. Thus, orthomodular lattices, which
are sometimes assumed to be complete, atomic and to fulfill the covering
property (just like P(H)) bear the name of quantum logics. We propose and
investigate the following question:

What amount of quantum mechanics is coded into the structure of the
propositional system?

In other words, we intend to investigate to what extent some of the
fundamental physical facts concerning quantum systems can be described in
the more general framework of orthomodular lattices, without the support
of Hilbert space–specific tools.

With this question in mind, we attempt to build, in abstract orthomod-
ular lattices, something similar to the spectral theory in Hilbert space. For
this purpose, we introduce and study spectral automorphisms.

According to the contemporary theory of quantum measurement, yes-no
measurements that may be unsharp, called effects, are represented by so-
called effect operators, self-adjoint positive operators on the state space H,
smaller than identity. As an abstraction of the structure of the set of effect
operators, the effect algebra structure is defined.

In the second part of the thesis, we move our investigation to the frame-
work of unsharp quantum logics, represented by effect algebras. We general-
ize spectral automorphisms to effect algebras and obtain in this framework
results that are analogous to the ones obtained in orthomodular lattices.

Finally, as a rather separate undertaking, we study atomic effect algebras
endowed with a family of morphisms called compression base, analyzing the
consequences of atoms being foci of compressions in the compression base.
We then apply some of the obtained results to the particular case of effect
algebras endowed with a sequential product.
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INTRODUCTION iv

The thesis is divided into two parts. The first part, composed of the
first three chapters, is devoted to the study of “sharp” quantum logics, as
represented by orthomodular lattices, arising from the conventional Hilbert
space formulation of the quantum mechanics. In the second part, consisting
of the chapters four to seven, we adopt the framework of “unsharp” quantum
logics, represented by effect algebras, emerging from the contemporary the-
ory of quantum measurement. A brief description of the chapters contents
follows.

Chapter 1. The first chapter of the thesis is devoted to a presentation
of orthomodular structures such as orthomodular posets and lattices and of
their basic properties. The physically meaningful relation of compatibility
is discussed. Blocks, commutants and center of such structures are covered.
The last section of the chapter is dedicated to atomicity, as well as covering
and exchange properties. The facts presented in this chapter are covered in
various monographs, such as, e.g., [38, 46, 51, 53, 62].

Chapter 2. The second chapter contains a discussion of the problem
concerning the possibility of embedding quantum logics into classical ones.
The origin of this problem can be traced back to a famous paper of Ein-
stein, Podolsky and Rosen, where authors conjectured that a “completion”
of quantum mechanical formalism, leading to its “embedding” into a larger,
classical and deterministic theory is possible.

We give an overview of classical and newer results concerning this matter
by Kochen and Specker [39], Zierler and Schlessinger [64], Calude, Hertling
and Svozil [6], Harding and Ptak [35] in a unitary treatment.

Chapter 3. The last chapter of the first part of the thesis consists of
the original results obtained concerning spectral automorphisms in ortho-
modular lattices. First, we introduce spectral automorphisms. We define
the spectrum of a spectral automorphism and study a few examples. Then,
we analyze the possibility of constructing such automorphisms in products
and horizontal sums of lattices. A factorization of the spectrum of a spec-
tral automorphism is found. We give various characterizations, as well as
necessary or sufficient conditions for an automorphism to be spectral or for
a Boolean algebra to be its spectrum. Then, we prove that the presence of
spectral automorphisms allows us to distinguish between classical and non-
classical theories. For finite dimensional quantum logics, we show that for
every spectral automorphism there is a basis of invariant atoms. This is an
analogue of the spectral theorem for unitary operators having purely point
spectrum. An interesting consequence is that, if there are physical moti-
vations for admitting that a finite dimensional theory must have spectral
symmetries, it cannot be represented by the lattice of projections of a finite
dimensional real Hilbert space. The last part of this chapter addresses the
problem of the unitary time evolution of a system from the point of view
of the spectral automorphisms theory. An analogue of the Stone theorem
concerning strongly continuous one-parameter unitary groups is given. The
results in this chapter have been published in the articles “Spectral auto-
morphisms in quantum logics”, by Ivanov and Caragheorgheopol (2010),
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and “Characterizations of spectral automorphisms and a Stone-type theo-
rem in orthomodular lattices”, by Caragheorgheopol and Tkadlec (2011),
both appeared in International Journal of Theoretical Physics.

Chapter 4. In the fourth chapter, we present background information
on unsharp quantum logics, as represented by effect algebras. We discuss
special elements, coexistence relation, which generalizes compatibility from
orthomodular posets, various substructures and important classes of effect
algebras, as well as automorphisms in effect algebras. The facts presented
in this chapter can be found, e.g., in the book of Dvurečenskij and Pulman-
nová [14] which gathers many of the recent results in the field of quantum
structures.

Chapter 5. In the fifth chapter, we present sequential, compressible
and compression base effect algebras, which will be needed in the sequel.
They were introduced by Gudder [28, 29] and Gudder and Greechie [31].

Sequential product in effect algebras formalizes the case of sequentially
performed measurements. The prototypical example of a sequential product
is defined on the set E(H) of effects operators by A ◦B = A1/2BA1/2.

The set E(H) of effect operators can be endowed with a family of mor-
phisms (JP )P∈P(H) defined by JP (A) = PAP , called compressions and in-
dexed by the projection operators P ∈ P(H) which are also called the foci
of compressions. The family (JP )P∈P(H) is said to form a compression base
of E(H). Inspired by the main features of the family (JP )P∈P(H), the no-
tions of compression, compression base and compressible efect algebra were
introduced in abstract effect algebras. As it turns out, compression base
effect algebras generalize sequential, as well as compressible effect algebras.

Chapter 6. In this chapter, we generalize spectral automorphisms to
compression base effect algebras, which are currently considered as the ap-
propriate mathematical structures for representing physical systems [21].
We obtain characterizations of spectral automorphisms in compression base
effect algebras and various properties of spectral automorphisms and of their
spectra. In order to evaluate how well our theory performs in practice, we
apply it to an example of a spectral automorphism on the standard effect
algebra of a finite-dimensional Hilbert space and we show the consequences
of spectrality of an automorphism for the unitary Hilbert space operator
that generates it. In the last section, spectral families of automorphisms
are discussed and an effect algebra version of the Stone-type theorem in
Chapter 3 is obtained. The results of this chapter are included in the arti-
cle “Spectral automorphisms in CB-effect algebras”, by Caragheorgheopol,
which was accepted for publication by Mathematica Slovaca and will appear
in Volume 62, No. 6 (2012).

Chapter 7. The last chapter of the thesis contains original results
concerning atomic compression base effect algebras and the consequences
of atoms being foci of compressions. Part of our work generalizes results
obtained by Tkadlec [59] in atomic sequential effect algebras. The notion of
projection-atomicity is introduced and studied and conditions that force a
compression base effect algebra or the set of compression foci to be Boolean
are given. We apply some of these results to the important particular case of
sequential effect algebra and strengthen previous results obtained by Gudder
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and Greechie [31] and Tkadlec [59]. The results of this chapter have been
published in the article “Atomic effect algebras with compression bases”, by
Caragheorgheopol and Tkadlec, which appeared in Journal of Mathematical
Physics (2011).



Part 1

Quantum Logics as Orthomodular
Structures



CHAPTER 1

Basics on orthomodular structures

In this introductive chapter we present the main orthomodular struc-
tures which arise from quantum mechanics—most notably, orthomodular
posets and lattices—and their properties. The different facts presented in
this chapter are covered in various monographs, like, e.g., [2, 38, 46, 49,
51, 53, 62].

1.1. Definitions of orthomodular structures

Definition 1.1.1. Let (P,≤) be a bounded poset. A unary operation ’
on P such that, for every a, b ∈ P , the following conditions are fulfilled:

(1) a ≤ b implies b′ ≤ a′,
(2) a′′ = a,
(3) a ∨ a′ = 1 and a ∧ a′ = 0,

is an orthocomplementation on P .

Definition 1.1.2. A bounded poset with an orthocomplementation is
an orthoposet. An orthoposet which is a lattice is an ortholattice.

Definition 1.1.3. A relation orthogonal, denoted by “⊥” is defined for
elements a, b of an orthoposet by

a ⊥ b ⇐⇒ a ≤ b′

Definition 1.1.4. An orthoposet (ortholattice) (P,≤,′ ) satisfies the or-
thomodular law if for every a, b ∈ P ,

(OM1) a ≤ b implies there exists c ∈ P, c ⊥ a such that b = a ∨ c

.

Definition 1.1.5. An orthoposet with the property that every pair of
orthogonal elements has supremum and satisfying the orthomodular law is
an orthomodular poset. If, moreover, the supremum exists for every count-
able set of pairwise orthogonal elements, it is a σ–complete orthomodular
poset.

Definition 1.1.6. An ortholattice satisfying the orthomodular law is
an orthomodular lattice.

1.2. Compatibility. Basic properties

Compatible pairs represent simultaneously verifiable events, hence their
importance in the axiomatics of quantum theories.

2



1.3. ORTHOMODULAR SUBSTRUCTURES 3

Definition 1.2.1. Let P be an orthomodular poset. Elements a, b ∈ P
are compatible (in P ) if there exist mutually orthogonal elements a1, b1, c ∈
P such that a = a1 ∨ c and b = b1 ∨ c. In this case we will write a↔P b, or
just a↔ b, when there’s no risk of confusion. For M a subset of P , we shall
write a↔M when a↔ m for every m ∈M .

Lemma 1.2.2. Let a and b be elements of an orthomodular poset P .
Then:

(1) a ≤ b implies a↔ b;
(2) a ⊥ b if and only if a↔ b and a ∧ b = 0;
(3) the following are equivalent: a↔ b, a′ ↔ b, a↔ b′, a′ ↔ b′.

Theorem 1.2.3. [38, Ch. 1, Section 3, Proposition 4] Let (L,≤,′ ) be an
orthomodular lattice and M be a subset such that

∨
M exists. If b ∈ L is

such that b↔M , then:

(1) b↔
∨
M

(2) b ∧ (
∨
M) =

∨
{b ∧m : m ∈M}

Proposition 1.2.4. [53, Proposition 1.3.11] Let (L,≤,′ ) be an ortho-
modular lattice and a, b, c ∈ L. If a ↔ b and a ↔ c, then {a, b, c} is a
distributive triple.

Corollary 1.2.5. An orthomodular poset is a Boolean algebra if and
only if every pair of its elements is compatible.

1.3. Orthomodular substructures

Definition 1.3.1. A subset of an ortholattice is a subalgebra if it con-
tains the least and greatest elements and it is closed under lattice operations
∨,∧ and orthocomplementation ′.

Definition 1.3.2. Let L be an ortholattice. A subalgebra of L which is a
Boolean algebra with the induced operations from L is a Boolean subalgebra
of L.

Definition 1.3.3. The maximal Boolean subalgebras of an orthomod-
ular lattice are called its blocks.

Definition 1.3.4. A subset of an orthomodular poset is a subortho-
poset if it contains the least and greatest elements and it is closed under
orthocomplementation and under suprema of orthogonal pairs.

Definition 1.3.5. A suborthoposet of an orthomodular poset P which
is a Boolean algebra with the induced from P order, orthocomplementation
and lattice operations, is called a Boolean subalgebra of the orthomodular
poset P .

If P is an orthomodular lattice, this notion of Boolean subalgebra coin-
cides with the one defined in 1.3.2.

Definition 1.3.6. Let P be an orthomodular poset. An element a ∈ P
is central if it is compatible with every other element of P . The set of central

elements of P is the center of P , denoted henceforth by C̃(P ).
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Proposition 1.3.7. The center of an orthomodular poset P is a Boolean
subalgebra of P .

Definition 1.3.8. Let P be an orthomodular poset and ∆ ⊆ P . The
commutant of ∆ in P is the set {a ∈ P : a ↔ ∆}. It will be denoted
henceforth by KP (∆) or, if there is no possibility of confusion about P ,
simply by K(∆).

1.4. Atomicity. Covering and exchange properties. Lattices with
dimension

Definition 1.4.1. Let L be a poset with least element 0. A minimal
non-zero element of L is an atom. L is atomic if every its element dominates
(at least) an atom of L. It is atomistic if every element is the supremum of
the atoms it dominates. Let Ωa denote the set of atoms dominated by an
element a ∈ L, and Ω(L) denote the set of atoms of L.

Proposition 1.4.2. Every atomic orthomodular lattice is atomistic.

Proposition 1.4.3. If B is a Boolean subalgebra of the orthomodular
lattice L, a is an atom of B and ω ∈ L such that ω ≤ a, then ω ↔ B.

Proposition 1.4.4. Let L be an atomic orthomodular lattice. For every
element a ∈ L, there exists a maximal family {αi}i∈I of mutually orthogonal
atoms in Ωa. Then, a =

∨
i∈I αi.

Definition 1.4.5. Let L be an atomic orthomodular lattice and a ∈ L.
A maximal family {αi}i∈I of mutually orthogonal atoms in Ωa is a basis of
a. A basis of 1 ∈ L is also called a basis of the lattice L.

Theorem 1.4.6 (see [38, Ch.1, Section 4, Lemma 2]). Let L be an
orthomodular lattice and B a Boolean subalgebra of L. If B is a block of
L then the atoms of B are atoms of L. Conversely, if B is atomic and its
atoms are atoms of L, it is a block of L.

1.5. Morphisms in orthomodular structures

Definition 1.5.1. Let L1, L2 be orthomodular posets. A mapping h :
L1 → L2 is a morphism of orthomodular posets if the following conditions
are satisfied:

(1) h(1) = 1;
(2) a ⊥ b implies h(a) ⊥ h(b), for every a, b ∈ L1;
(3) h(a∨b) = h(a)∨h(b), for every pair of orthogonal elements a, b ∈ L1.

Definition 1.5.2. Let L1, L2 be orthomodular lattices (Boolean alge-
bras). A mapping h : L1 → L2 is a morphism of orthomodular lattices
(Boolean algebras, respectively) if it is a morphism of orthomodular posets
and it preserves the join of arbitrary pairs of elements.

Definition 1.5.3. A morphism h : L1 → L2 of orthomodular posets (or
orthomodular lattices, or Boolean algebras, respectively) is an embedding if,
for every a, b ∈ L1, h(a) ⊥ h(b) implies a ⊥ b. It is an isomorphism if it is
bijective and its inverse h−1 : L2 → L1 is also a morphism. An isomorphism
h : L→ L is an automorphism of L.
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Proposition 1.5.4. Let L be an orthomodular poset (or an orthomodu-
lar lattice, or a Boolean algebra). A mapping h : L→ L is an automorphism
if and only if it satisfies the following conditions:

(1) h(1) = 1;
(2) a ⊥ b implies h(a) ⊥ h(b), for all a, b ∈ L;
(3) a ≤ b if and only if h(a) ≤ h(b), for all a, b ∈ L;
(4) h is surjective.

The following result shows that every automorphism of an atomic com-
plete orthomodular lattice is uniquely determined by its restriction to the
set of atoms, which is a bijective map that preserves orthogonality both
ways.

Theorem 1.5.5 (see [51, Theorem 2.46]). Let L be an atomic complete
orthomodular lattice. For every automorphism h of L, its restriction to Ω(L)
is χ : Ω(L)→ Ω(L) satisfying the conditions:

(1) χ bijective;
(2) α ⊥ β if and only if χ(α) ⊥ χ(β), for all α, β ∈ Ω(L).

Conversely, for every mapping χ : Ω(L) → Ω(L) satisfying the above con-
ditions (1), (2) there exists a unique automorphism h of L such that its
restriction to Ω(L) is χ.



CHAPTER 2

Understanding the logic of quantum mechanics in
classical terms

The problem of embedding quantum logics into classical ones is very old.
Its origin can be traced back to a well known article of Einstein, Podolsky
and Rosen (EPR) [15]. In this historic paper, the authors conjectured that a
“completion” of quantum mechanical formalism, leading to its “embedding”
into a larger, classical and deterministic theory (from the algebraic and logic
point of view) is possible.

We explore various possibilities to embed quantum logics into classical
ones. We discuss the different approaches and results obtained concerning
this matter by e.g., Kochen and Specker [39], Zierler and Schlessinger [64],
Calude, Hertling and Svozil [6], Harding and Ptak [35], thus offering an
overview of what can be achieved in terms of classical understanding of
quantum mechanics.

2.1. The impossibility of embedding a quantum logic into a
classical one

Assuming that a “proper” embedding of a non-Boolean orthomodular
lattice (a quantum logic) into a Boolean algebra (a classical logic) would
exist, it would preserve compatibility. Since every pair of elements is com-
patible in a Boolean algebra, the same would have to be true in the ortho-
modular lattice, which contradicts to our assumption.

In what follows, we try to weaken the notion of embedding, in order
to make it possible for an orthomodular lattice to be embedded (in this
weaker sense) into a Boolean algebra. A natural idea to overcome the above
mentioned contradiction is to only ask that an embedding preserves the
join for orthogonal elements. In such a case, we can as well generalize our
discussion to orthomodular posets instead of orthomodular lattices.

2.2. A characterization of orthomodular posets that can be
embedded into Boolean algebras

Before stating the main result of this section, let us introduce a few
important notions.

Definition 2.2.1. An orthomodular poset (P,⊆,c , ∅, X), where X is
a nonempty set, P ⊆ 2X , order is defined by set-theoretical inclusion, the
orthocomplement of an element A ∈ P is the set-theoretical complement of
A relative to X (denoted by Ac) and ∅ and X are the least and greatest
elements of P , respectively, is a set orthomodular poset .

6



2.3. THE ZIERLER-SCHLESSINGER THEORY 7

Definition 2.2.2. A set orthomodular poset with the property that, for
every A,B ∈ P , A∪B ∈ P whenever A∩B = ∅ is a concrete orthomodular
poset.

Definition 2.2.3. Let P be an orthomodular poset. A mapping s :
P → [0, 1] such that:

(1) s(1) = 1;
(2) s(a ∨ b) = s(a) + s(b), whenever a, b ∈ P , a ⊥ b

is a state on P . If, moreover, the range of s is {0, 1}, then s is a two- valued
state on P .

Definition 2.2.4. A set S of states on an orthomodular poset P is full
(or order determining) if, for every a, b ∈ P with a � b, there exists a state
s ∈ S such that s(a) � s(b) (i.e., s(a) ≤ s(b) for all s ∈ S implies a ≤ b).

Theorem 2.2.5 (see [53, Theorem 2.2.1] or [27]). An orthomodular
poset has a representation as a concrete orthomodular poset if and only if it
has a full set of two-valued states.

Let us remark that an orthomodular poset has a concrete representation
if and only if it can be embedded into a Boolean algebra and therefore, The-
orem 2.2.5 gives in fact a necessary and sufficient condition for the existence
of such an embedding—the existence of a full set of two-valued states defined
on the orthomodular poset. However, this condition is quite restrictive. For
instance, the standard Hilbert space orthomodular lattice of projectors, for
a Hilbert space H of dimension higher than 2, has no two-valued states, not
to mention a full set.

We must conclude that in general, we cannot embed orthomodular posets
or lattices into Boolean algebras, if we expect that such an embedding to
preserve the join of orthogonal elements.

2.3. The Zierler-Schlessinger theory

Let us further weaken the embedding notion, asking the join to be pre-
served only for central elements.

Definition 2.3.1. Let L be an orthomodular lattice and B a Boolean
algebra. A mapping h : L→ B is a Z-embedding of L into B if the following
conditions are satisfied:

(1) h(1) = 1;
(2) h(a′) = h(a)′ for every a ∈ L;
(3) a ⊥ b if and only if h(a) ⊥ h(b), for every a, b ∈ L;
(4) h(a ∨ b) = h(a) ∨ h(b), for every pair of central elements a, b ∈ L.

Theorem 2.3.2 ([64]). For every orthomodular lattice L, there exist a
Z-embedding into a power set Boolean algebra.

In many cases, the center of an orthomodular lattice is rather “poor” or
even trivial. In these cases, the above theorem gives us a type of embedding
that preserves the join of a very limited number of elements.
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2.4. The result of Harding and Pták

The following result of J. Harding and P. Pták [35] substantially im-
proves the properties that can be obtained for an embedding of an ortho-
modular lattice into a Boolean algebra.

Theorem 2.4.1 ([35]). Let L be an orthomodular lattice and let B be
a Boolean subalgebra of L. There exist a set S and a mapping h : L → 2S

such that:

(1) h(1) = S;
(2) h(a′) = h(a)c;
(3) a ⊥ b if and only if h(a) ∩ h(b) = ∅;
(4) h(a ∨ b) = h(a) ∪ h(b), for every a, b ∈ B;

(5) h(a ∨ b) = h(a) ∪ h(b) whenever a ∈ C̃(L).



CHAPTER 3

Spectral automorphisms in orthomodular lattices

In this chapter we present original research results that were published
in articles [36] and [11]. We develop the theory of spectral automorphisms
in orthomodular lattices and obtain in this framework some results that are
analogues of the ones in the spectral theory in Hilbert spaces.

3.1. Spectral automorphisms—the idea

Let H be a Hilbert space and P(H) the orthomodular lattice of pro-
jection operators on H. Automorphisms of P(H) are of the form ϕU :
P(H)→ P(H), ϕU (P ) = UPU−1, with U being a unitary or an antiunitary
operator on H. Let U be unitary and let BU be the Boolean subalgebra
of P(H) that is the range of the spectral measure associated to U . Then
P ∈ P(H) is ϕU -invariant if and only if UP = PU if and only if P com-
mutes with BU (i.e., commutes with every projection operator in BU ) if and
only if P ↔ BU . This suggests the definition of spectral automorphisms in
orthomodular lattices.

3.2. Definition and basic facts

Definition 3.2.1. Let L be an orthomodular lattice and ϕ be an au-
tomorphism of L. The automorphism ϕ is spectral if there is a Boolean
subalgebra B of L such that

ϕ(a) = a if and only if a↔ B .(P1)

A Boolean subalgebra of L satisfying condition (P1) is a spectral algebra of
ϕ. The set of ϕ-invariant elements of L is denoted by Lϕ.

Proposition 3.2.2. For any spectral automorphism, there exists the
greatest Boolean subalgebra having the property (P1)

Definition 3.2.3. If ϕ : L→ L is a spectral automorphism, the greatest
Boolean subalgebra having the property (P1) is called the spectrum of ϕ and
will be denoted by σϕ.

Corollary 3.2.4. If an orthomodular lattice has a nontrivial spectral
automorphism, then it cannot be Boolean.

Proposition 3.2.5. The automorphism ϕ : L → L is spectral if and
only if there is a Boolean subalgebra B of L such that Lϕ = K(B). In this

case, σϕ = C̃(Lϕ).

Corollary 3.2.6. The automorphism ϕ : L→ L is spectral if and only

if K(C̃(Lϕ)) ⊆ Lϕ

9
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3.3. Spectral automorphisms in products and horizontal sums

We discuss the construction of spectral automorphisms in products and
horizontal sums of orthomodular lattices. A factorization of the spectra of
spectral automorphisms is also studied.

Theorem 3.3.1. Let L be the product of a collection (Li)i∈I of ortho-
modular lattices and, for every i ∈ I, ϕi be an automorphism of Li. Let us
define the mapping ϕ : L→ L by ϕ

(
(ai)i∈I

)
=
(
ϕi(ai)

)
i∈I . Then:

(1) ϕ is an automorphism of L;
(2) ϕ is spectral if and only if ϕi is spectral for every i ∈ I; in this case,

σϕ =
∏
i∈I σϕi.

Lemma 3.3.2. Let L be the horizontal sum of a collection (Li)i∈I of
orthomodular lattices such that every summand is minimal, ϕ be an auto-
morphism of L such that ϕ(Li) ∩ Li 6= {0,1} for some i ∈ I. Then the
restriction ϕi of ϕ to Li is an automorphism of Li.

Theorem 3.3.3. Let L be the horizontal sum of a collection (Li)i∈I of
orthomodular lattices such that every summand is minimal and ϕ be an
automorphism of L.

(1) If ϕ is spectral then there is an i ∈ I such that Lϕ ⊂ Li, σϕ ⊂ Li and
the restriction ϕi of ϕ to Li is a spectral automorphism of Li with Lϕi = Lϕ
and σϕi = σϕ.

(2) If Lϕ 6= {0,1} and there is an i ∈ I such that Lϕ ⊂ Li and the
restriction ϕi of ϕ to Li is spectral then ϕ is a spectral automorphism of L
and Lϕ = Lϕi, σϕ = σϕi.

Theorem 3.3.4. Let L be an orthomodular lattice, ϕ be a spectral auto-
morphism of L and a ∈ L \ {0,1} be ϕ-invariant. Let us denote by ϕa the
restriction of ϕ to [0, a], and let Bx = x ∧ σϕ = {x ∧ b : b ∈ σϕ} for every
x ∈ L. Then:

(1) ϕa is a spectral automorphism of [0, a] and Ba is its spectral algebra;
(2) if a ∈ σϕ, then σϕa = Ba;
(3) σϕ is isomorphic to the product Ba ×Ba′.

Question 3.3.5. Is it possible to omit the condition a ∈ σϕ in Theo-
rem 3.3.4 (2)?

3.4. Characterizations of spectral automorphisms

Theorem 3.4.1. Let L be an orthomodular lattice. An automorphism

ϕ of L is spectral if and only if a ∧ b ∈ Lϕ for every a ∈ C̃(Lϕ) and b ∈
K
(
C̃(Lϕ)

)
.

Definition 3.4.2. Let L be an orthomodular lattice and ϕ an automor-
phism of L. An element a ∈ L is totally ϕ-invariant if ϕ(b) = b for every
b ∈ L with b ≤ a.

Theorem 3.4.3. Let L be a complete orthomodular lattice and ϕ be an

automorphism of L such that C̃(Lϕ) is atomic. Then ϕ is spectral if and

only if all atoms of C̃(Lϕ) are totally ϕ-invariant.
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Corollary 3.4.4. Let L be a complete orthomodular lattice and ϕ be

an automorphism of L such that C̃(Lϕ) is atomic. If all atoms of C̃(Lϕ)
are atoms of L then ϕ is spectral.

Theorem 3.4.5. Let L be a complete orthomodular lattice and ϕ be an

automorphism of L such that Lϕ and C̃(Lϕ) are atomic. If ϕ is spectral
then all atoms of Lϕ are atoms of L.

3.5. C-maximal Boolean subalgebras of an OML

Definition 3.5.1. Let L be an orthomodular lattice. A Boolean subal-
gebra B ⊆ L satisfying C̃(K(B)) ⊆ B is said to be C-maximal (i.e. maximal
with respect to its commutant).

Theorem 3.5.2. A Boolean subalgebra of an orthomodular lattice is C-
maximal if and only if it coincides with its bicommutant.

Theorem 3.5.3. If the automorphism ϕ is spectral, then the following
assertions are true:

(1) C̃(Lϕ) = K(Lϕ);

(2) C̃(Lϕ) is C-maximal.

3.6. Spectral automorphisms and physical theories

Let us consider a theory represented by an orthomodular lattice L, which
is atomic, complete and has the covering property. Assume also that this
theory has a spectral automorphism ϕ whose spectrum is atomic. Examples
of such theories exist, such as a finite dimensional quantum logic. Then,
we can construct a basis of L, whose elements are invariant under ϕ. This
result is an analogue of the spectral theorem for unitary operators having
purely point spectrum.

3.7. Spectral automorphisms and Piron’s theorem

Piron’s representation theorem (see [50]) allows us to consider that non-
classical theories are based on the Hilbert space formalism. However, a
question remains: is the Hilbert space real, complex or quaternionic?

We show that, if there are physical motivations for admitting that spec-
tral symmetries (other than simple reflexions relative to a hyperplane) must
exist in a theory, then the real Hilbert spaces have to be excluded from those
able to support quantum theories.

3.8. Spectral families of automorphisms and a Stone-type
theorem

Definition 3.8.1. Let L be an orthomodular lattice and Φ be a family of
automorphisms of L. The family Φ is spectral if there is a Boolean subalgebra
B of L such that:

(ϕ(a) = a for every ϕ ∈ Φ) if and only if a↔ B.(P2)

A Boolean algebra B satisfying condition (P2) is a spectral algebra of Φ.
The set of Φ-invariant elements of L (which is a subalgebra of L) is denoted
by LΦ.
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Proposition 3.8.2. For every spectral family Φ of automorphisms of an
orthomodular lattice L there exists the greatest spectral algebra of the family
Φ.

Definition 3.8.3. Let Φ be a spectral family of automorphisms of an or-
thomodular lattice. The spectrum σΦ of the family Φ is the greatest spectral
algebra of the family Φ.

Proposition 3.8.4. Let Φ be a spectral family of automorphisms of an
orthomodular lattice L. Then:

(1) σΦ = C̃(LΦ);

(2) σΦ = C̃
(
K(σΦ)

)
(i.e., σΦ is C-maximal);

(3) σΦ = K
(
K(σΦ)

)
.

Theorem 3.8.5. Let L be an orthomodular lattice and Φ be a family
of spectral automorphisms of L. Then Φ is a spectral family if and only if
σϕ ↔ σψ for every ϕ,ψ ∈ Φ. In this case, the spectrum σΦ of the family
contains all spectra σϕ, ϕ ∈ Φ.

The purpose of introducing and studying spectral automorphisms has
been to construct something similar to the Hilbert space spectral theory
without using the specific instruments available in a Hilbert space setting,
but using only the abstract orthomodular lattice structure. The next re-
sult is intended as an analogue of the Stone theorem concerning strongly
continuous uniparametric groups of unitary operators.

Theorem 3.8.6. Let L be an orthomodular lattice and Φ be a family of
spectral automorphisms of L. If Φ is an Abelian group and ϕ(Lψ) = Lϕψ
for every ϕ,ψ ∈ Φ with ψ /∈ {id, ϕ−1}, then:

(1) Lϕ = Lψ for every ϕ,ψ ∈ Φ \ {id};
(2) σϕ = σψ for every ϕ,ψ ∈ Φ \ {id};
(3) Φ is a spectral family.
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Unsharp Quantum Logics



CHAPTER 4

Basics on effect algebras

In this second part of the thesis, we move our investigations from the
framework of orthomodular posets or lattices—which may be considered
as representing “sharp” quantum logics—to the more general framework of
effect algebras—regarded as “unsharp” quantum logics.

The first chapter of this second part of the thesis is devoted to an intro-
duction to effect algebras and their basic properties. The facts presented in
this chapter can be found, e.g., in [22, 23, 24, 26, 40, 14].

4.1. Effect algebras. Basic definitions and properties

Definition 4.1.1. An effect algebra is an algebraic structure (E,⊕,0,1)
such that E is a set, 0 and 1 are distinct elements of E and ⊕ is a partial
binary operation on E, and the following conditions hold for every a, b, c ∈ E
(the equalities should be understood in the sense that if one side exists, the
other side exists as well):

(EA1) a⊕ b = b⊕ a (commutativity)
(EA2) (a⊕ b)⊕ c = a⊕ (b⊕ c) (associativity)
(EA3) for every a ∈ E, there exists a unique a′ ∈ E such that a⊕ a′ = 1

(orthosupplement)
(EA4) if a⊕ 1 is defined, then a = 0 (zero-unit law).

An orthogonality and a partial order relation are defined in an effect
algebra as follows:

Definition 4.1.2. Let E be an effect algebra. Elements a, b ∈ E are
called orthogonal (denoted by a ⊥ b) if the sum a ⊕ b is defined. We write
a ≤ b if there is an element c ∈ E such that a⊕ c = b.

The next couple of propositions gives a list of basic properties that hold
in effect algebras.

Proposition 4.1.3. Let E be an effect algebra. For every a, b ∈ E the
following properties hold:

(1) a′′ = a
(2) a ≤ b implies b′ ≤ a′
(3) 1′ = 0 and 0′ = 1.

Proposition 4.1.4. Let E be an effect algebra. For every a, b, c ∈ E the
following properties hold:

(1) 0 ≤ a ≤ 1.
(2) a⊕ 0 = a.
(3) a ⊥ b if and only if a ≤ b′.

14
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(4) If a ≤ b and c ∈ E is such that a ⊕ c = b, then c is uniquely
determined by the elements a and b, namely c = (a⊕ b′)′. We will
then denote c = b	 a.

(5) “≤” is a partial order on E.
(6) a⊕ b = a⊕ c implies b = c (cancellation law).
(7) a⊕ b ≤ a⊕ c implies b ≤ c (cancellation law).

Definition 4.1.5. Let E be an effect algebra and F ⊂ E. If 0,1 ∈ F ,
and F is closed to ⊕ and to orthosupplementation, then (F,⊕|F×F ,0,1) is
a sub-effect algebra of E.

4.2. Special elements. Coexistence

Definition 4.2.1. An element a of an effect algebra E is called:

• isotropic if a ⊥ a;
• sharp (a ∈ ES) if a ∧ a′ = 0;
• principal if for every orthogonal pair b, c ∈ E, b, c ≤ a we have
b⊕ c ≤ a;
• central if a, a′ are principal and for every b ∈ E, there are b1, b2 ∈ E

such that b1 ≤ a, b2 ≤ a′ and b = b1 ⊕ b2.

Proposition 4.2.2. In an effect algebra, the following assertions hold:

(1) every central element is principal;
(2) every principal element is sharp;
(3) every nonzero sharp element is nonisotropic.

In general, the converse statements do not hold.

Definition 4.2.3. An orthoalgebra is an effect algebra whose only isotropic
element is 0.

Definition 4.2.4. Let E be an effect algebra and let us denote by na
the sum of n copies of an element a ∈ E, if it exists. We call E Archimedean
if sup{n ∈ N : na is defined} <∞ for every nonzero element a ∈ E.

Remark 4.2.5. Let (E,≤,′ ,0,1) be an orthomodular poset and define
a⊕ b = a∨ b for every orthogonal (i.e. a ≤ b′) pair of elements a, b ∈ E. It is
a routine verification that (E,⊕,0,1) is an effect algebra (an orthoalgebra
even) and, moreover, the order and supplement in the effect algebra coincide
with the order and complement in the orthomodular poset.

Definition 4.2.6. Let E be an effect algebra and a, b ∈ E. Elements a
and b coexist in E if there are a1, b1, c ∈ E such that a = a1 ⊕ c, b = b1 ⊕ c
and a1 ⊕ b1 ⊕ c exists in E. In this case, we write a↔ b. For a subset M of
E, we write a ↔ M if a ↔ b for all b ∈ M . The commutant of M in E is
the set KE(M) = {a ∈ E : a ↔ M}. If there is no possibility of confusion
concerning E, we shall simply denote it by K(M).

Proposition 4.2.7. Let E be an effect algebra. Then:

(1) an element a ∈ E is central if and only if it coexists with all ele-
ments of E and a, a′ are principal;

(2) if E is an orthomodular poset, the set of central elements of E
coincides with the center of E as an orthomodular poset.
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Remark 4.2.8. Coexistence generalizes compatibility to effect algebras
(see Theorem 4.2.10). The two notions coincide in orthomodular posets.
This justifies the use of the same notation for coexistence and compatibility
and also for the commutant with respect to coexistence or compatibility.

The notion of center of an effect algebra, defined as the set of its central
elements, generalizes the notion of center in orthomodular posets, defined
as the set of its elements which are compatible with all the others. We shall

denote the center of an effect algebra E by C̃(E).

Theorem 4.2.9. [26, Theorem 5.4] The center C̃(E) of an effect algebra

E is a sub-effect algebra of E and as an effect algebra in its own right, C̃(E)

forms a Boolean algebra. Furthermore, if a, b ∈ C̃(E), then a ∧ b and a ∨ b
as calculated in C̃(E) are also the infimum and supremum of a and b as
calculated in E.

Theorem 4.2.10 (see [22, 23]). An effect algebra is:

(1) an orthoalgebra if and only if its every element is sharp if and only
if a⊕ b is a minimal upper bound of a, b for every orthogonal pair
a, b ∈ E;

(2) an orthomodular poset if and only if its every element is principal
if and only if a⊕ b = a ∨ b for every orthogonal pair a, b ∈ E;

(3) a Boolean algebra if and only if its every element is central.

4.3. Substructures in effect algebras

Definition 4.3.1. A Boolean subalgebra of an effect algebra E is a sub-
effect algebra of E which is a Boolean algebra with ′ and with the operations
∨, ∧ induced by the order in E.

Proposition 4.3.2. Let E be an orthoalgebra and let F ⊆ E be a
Boolean subalgebra of E. Then:

(1) If a, b ∈ F and a ∧E b exists, then a ∧E b = a ∧F b;
(2) If a, b ∈ F and a ∨E b exists, then a ∨E b = a ∨F b;

4.4. Important classes of effect algebras

We present a few important properties that an effect algebra may fulfill
and their correlations.

Definition 4.4.1. An effect algebra that is a lattice with respect to its
usual order relation, is called a lattice effect algebra.

Definition 4.4.2. Let E be an effect algebra. A system (ai)i∈I of ele-
ments of E is orthogonal if

⊕
i∈F ai is defined for every finite set F ⊂ I. A

majorant of an orthogonal system (ai)i∈I is an upper bound of {
⊕

i∈F ai :
F ⊂ I is finite}. The sum of an orthogonal system is its least majorant (if
it exists).

Definition 4.4.3. An effect algebra E is orthocomplete if every orthog-
onal system of its elements has a sum. An effect algebra E is weakly ortho-
complete if every orthogonal system in E has a sum or no minimal majorant.
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Definition 4.4.4. An effect algebra E has the maximality property if
the set {a, b} has a maximal lower bound for every a, b ∈ E.

Remark 4.4.5. The maximality property was introduced by Tkadlec
[58]. In [61, Theorem 2.2], he proved that effect algebras with the max-
imality property or the ones that are weakly orthocomplete are common
generalizations of lattice effect algebras and orthocomplete effect algebras.
Since finite or chain-finite effect algebras are orthocomplete (see [60, Theo-
rem 4.1]), they also must satisfy the maximality property.

Definition 4.4.6. E is determined by atoms if, for different a, b ∈ E,
the sets of atoms dominated by a and b are different.

Lemma 4.4.7 ([59, Lemma 2.2]). Every atomistic effect algebra is deter-
mined by atoms. Every effect algebra determined by atoms is atomic.

Examples showing that the converse implications do not hold can be
found in [25, 59].

4.5. Morphisms of effect algebras

Definition 4.5.1. Let E and E′ be effect algebras and let ϕ : E → E′

be a map. We call ϕ an additive map if a ⊥ b implies ϕ(a) ⊥ ϕ(b) and
ϕ(a ⊕ b) = ϕ(a) ⊕ ϕ(b), for every a, b ∈ E. We call ϕ is a morphism of
effect algebras if it is additive and ϕ(1E) = 1E′ . A morphism ϕ of effect
algebras which preserves the infimum (i.e., ϕ(a∧ b) = ϕ(a)∧ϕ(b), whenever
a ∧ b exists) is a ∧-morphism. A bijective morphism ϕ such that ϕ−1 is
also a morphism is an isomorphism. An isomorphism ϕ : E → E is an
automorphism.

Proposition 4.5.2. Let E and E′ be effect algebras and let ϕ : E → E′

be a map. Then ϕ is an isomorphism of effect algebras if and only if it is
bijective and, for every a, b ∈ E, a ⊥ b if and only if ϕ(a) ⊥ ϕ(b), in which
case ϕ(a⊕ b) = ϕ(a)⊕ ϕ(b). Moreover, if ϕ is an isomorphism, it is also a
∧-morphism.



CHAPTER 5

Sequential, compressible and compression base
effect algebras

In this chapter, we present the important established facts concerning
sequential, compressible and compression base effect algebras, laying the
foundation for the new results that will be the presented in the following
chapters. Our presentation is based on [28, 29, 31, 54].

5.1. Sequential effect algebras

The notion of a sequential product defined in general effect algebras was
introduced by Gudder and Greechie [31]. This sequential product satisfies
a set of physically motivated axioms as it formalizes the case of sequentially
performed measurements.

Definition 5.1.1. A sequential product on an effect algebra (E,⊕,0,1)
is a binary operation ◦ on E such that for every a, b, c ∈ E, the following
conditions hold:

(S1) a ◦ (b⊕ c) = (a ◦ b)⊕ (a ◦ c) if b⊕ c exists;
(S2) 1 ◦ a = a;
(S3) if a ◦ b = 0 then a | b (where a | b denotes a ◦ b = b ◦ a);
(S4) if a | b then a | b′ and a ◦ (b ◦ c) = (a ◦ b) ◦ c ;
(S5) if c | a, b then c | a ◦ b and c | (a⊕ b) (if a⊕ b exists).

An effect algebra E endowed with a sequential product is called a sequential
effect algebra.

5.2. Compressible effect algebras

Definition 5.2.1. Let E be an effect algebra and J : E → E be an
additive map. If a ≤ J(1) implies J(a) = a, then J is a retraction. In this
case, J(1) is the focus of J . If, moreover, J(a) = 0 implies a ≤ J(1)′, then
J is a compression. The focus of a retraction on E is a projection.

Proposition 5.2.2 (see [28, Lemma 3.1, Lemma 3.2, Lemma 3.3]). Let
E be an effect algebra and J : E → E be a compression with focus p. Then:

(1) J is idempotent;
(2) J preserves order;
(2) Ker(J) = [0, p′];
(3) J(E) = [0, p];
(4) p is principal and therefore sharp;

Definition 5.2.3. An effect algebra E is compressible if every retraction
on E is a compression and it is uniquely determined by its focus.

18



5.3. COMPRESSION BASES IN EFFECT ALGEBRAS 19

Remark 5.2.4. If E is a sequential effect algebra, the sequential product
with a sharp (and therefore principal) element p ∈ ES defines a compression
with focus p by Jp(a) = p ◦ a [29]. If, moreover, E is compressible, then
Jp : E → E, Jp(a) = p◦a is the unique compression on E with focus p. The
close relation between sequential and compressible effect algebras becomes
now evident.

5.3. Compression bases in effect algebras

Effect algebras with compression bases are a common generalization of
compressible and sequential effect algebras. Our presentation of compression
base effect algebras is based on [29, 54].

Definition 5.3.1. Let E be an effect algebra. A sub-effect algebra F
of E is normal if, for every a, b, c ∈ E such that a ⊕ b ⊕ c exists in E and
a⊕ b, b⊕ c ∈ F , it follows that b ∈ F .

Definition 5.3.2. Let E be an effect algebra. A system (Jp)p∈P of
compressions on E indexed by a normal sub-effect algebra P of E is called
a compression base for E if the following conditions hold:

(1) Each compression Jp has the focus p.
(2) If p, q, r ∈ P and p⊕ q ⊕ r is defined in E, then Jp⊕r ◦ Jr⊕q = Jr.

Theorem 5.3.3 ([29, Theorems 3.3 and 3.4]). (1) If E is a com-
pressible effect algebra, then the set P (E) of its projections is a
normal sub-effect algebra of E and (Jp)p∈P (E) is a compression base
for E.

(2) If E is a sequential effect algebra, then the set ES of its sharp
elements is a normal sub-effect algebra of E. If, for every p ∈ ES,
Jp is the compression on E defined by Jp(a) = p ◦ a, for every
a ∈ E, then (Jp)p∈ES

is a maximal compression base for E.

For an effect algebra E with a compression base (Jp)p∈P we will main-
tain, from now on, the following notations:

• p ◦ a = Jp(a) for every p ∈ P and a ∈ E;
• p | q if p, q ∈ P and p ◦ q = q ◦ p (i.e., Jp(q) = Jq(p));
• C(p) = {a ∈ E : a = Jp(a)⊕ Jp′(a)} for every p ∈ P .

Definition 5.3.4. A compression base (Jp)p∈P on the effect algebra E
has the projection cover property if for every element a ∈ E there exists the
least element b ∈ P (the projection cover of a) with b ≥ a.

Theorem 5.3.5 (see [54, Theorem 5.1]). Let E be an effect algebra with
a compression base (Jp)p∈P that has the projection cover property. Then P
is an orthomodular lattice.



CHAPTER 6

Spectral automorphisms in CB-effect algebras

In the third chapter we have introduced spectral automorphisms (see
also [36]). They resulted from our attempt to construct, in the abstract
framework of orthomodular lattices, an analogue of the spectral theory in
Hilbert spaces. We generalize spectral automorphisms to the framework
of compression base effect algebras, currently considered as the appropriate
mathematical structures for representing physical systems [21]. The results
presented here are accepted for publication in [8].

6.1. Spectral automorphisms: the idea and definitions

Let H be a Hilbert space and E(H) the corresponding standard effect
algebra. Automorphisms of E(H) are of the form ϕU : E(H) → E(H),
ϕU (A) = UAU−1, where U is a unitary or antiunitary Hilbert space oper-
ator [21]. An element A ∈ E(H) is ϕU -invariant if and only if ϕU (A) =
UAU−1 = A, i.e., operators U and A commute. Let BU be the Boolean
algebra of projection operators that is the image of the projection-valued
spectral measure associated to U . Then, operators A and U commutes if
and only if A commutes with BU (i.e., with every projection operator in
BU ) [34]. We are therefore led to the following definition of spectral auto-
morphisms in compression base effect algebras:

Definition 6.1.1. Let E be an effect algebra and (Jp)p∈P be a com-
pression base for E. An automorphism ϕ : E → E is spectral if there exists
a Boolean subalgebra B of P with the property:

ϕ(a) = a if and only if a↔ B(P1)

Proposition 6.1.2. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be a spectral automorphism. There exists the
greatest Boolean subalgebra B ⊆ P satisfying (P1).

Definition 6.1.3. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be a spectral automorphism. The greatest
Boolean subalgebra of P fulfilling (P1) is the spectrum of the automorphism
ϕ, denoted by σPϕ .

Proposition 6.1.4. Let E be an effect algebra and (Jp)p∈P be a com-

pression base for E. If P ⊆ C̃(E), then the identity is the only spectral
automorphism of E.

Remark 6.1.5. As a particular case, if E is a Boolean algebra, then
its identity is its only spectral automorphism. Therefore, the presence of
nontrivial spectral automorphisms allows us to distinguish between classical
(Boolean) and nonclassical theories.

20
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6.2. Characterizations and properties of spectral automorphisms

For an automorphism ϕ of an effect algebra E, we will denote by Eϕ
the set of ϕ-invariant elements of E. Due to the definition properties of
automorphisms, it is clear that Eϕ is a sub-effect algebra of E.

The following lemma and corollary, that will be useful in the sequel, are
related to [26, Theorem 4.2 and Lemma 5.2]. However, the statements we
prove are slightly more general and could be interesting in their own right.

Lemma 6.2.1. Let E be an effect algebra, {e1, e2, . . . , en} be an orthogo-
nal set of its elements (i.e., the sum

⊕n
i=1 ei exists) and consider p ∈ E such

that p =
⊕n

i=1 pi with pi ≤ ei. If ej is principal for some j ∈ {1, 2, . . . , n},
then p ∧ ej exists in E and pj = p ∧ ej.

Corollary 6.2.2. If a, a′ are principal elements of the effect algebra E,
b ∈ E and a↔ b, then a ∧ b and a′ ∧ b exist in E and b = (a ∧ b)⊕ (a′ ∧ b).

Theorem 6.2.3. Let E be an effect algebra and (Jp)p∈P be a compression

base for E. If ϕ : E → E is a spectral automorphism, then σPϕ = C̃(Eϕ)∩P .

Corollary 6.2.4. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be an automorphism. Then ϕ is spectral if and

only if K(C̃(Eϕ) ∩ P ) ⊆ Eϕ (the converse inclusion is always true).

Theorem 6.2.5. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be an automorphism. Then ϕ is spectral if and

only if a ∧ b ∈ Eϕ for every a ∈ C̃(Eϕ) ∩ P , b ∈ K(C̃(Eϕ) ∩ P ).

The search for the conditions that a Boolean algebra must fulfill in order
to be the spectrum of a spectral automorphism leads to the following notion.

Definition 6.2.6. Let E be an effect algebra and (Jp)p∈P be a compres-

sion base for E. A Boolean subalgebra B ⊆ P is C-maximal if C̃(K(B)) ∩
P ⊆ B.

Theorem 6.2.7. Let E be an effect algebra and (Jp)p∈P be a compression
base for E. A Boolean subalgebra B ⊆ P is C-maximal if and only if B =
K(K(B)) ∩ P .

Corollary 6.2.8. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and ϕ : E → E be a spectral automorphism. Then:

(1) σPϕ = C̃(Eϕ) ∩ P is C-maximal;

(2) σPϕ = K(K(σPϕ )) ∩ P ;

(3) σPϕ = K(Eϕ) ∩ P .

6.3. An application of spectral automorphisms to E(H)

The notion of spectral automorphism was introduced with the declared
intention to obtain an analogue of the Hilbert space spectral theory in the
abstract setting of compression base effect algebras. It is time to see if this
attempt was successful, by applying the abstract theory to the particular
case of the standard Hilbert space effect algebra. Therefore, we devote
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this section to the proof of a “spectral theorem” in E(H), the set of self-
adjoint operators between the null and the identity operators, for a finite-
dimensional Hilbert space H.

Let us denote in the sequel by ê the 1-dimensional subspace generated
by e ∈ H, ‖e‖ = 1 and Pê the corresponding projection operator, i.e.,
Pê : H → H, Pêx = 〈x, e〉e (where 〈·, ·〉 denotes the inner product of H).

Theorem 6.3.1. Let H be an n-dimensional Hilbert space, E(H) be its
standard effect algebra and (JP )P∈P(H) be the canonical compression base
for E(H). Let U : H → H be a unitary operator and ϕ : E(H) → E(H) be
the automorphism defined by ϕ(A) = UAU−1. If ϕ is spectral, then:

(1) There is an orthogonal basis {e1, e2, . . . , en} of H such that for
every i ∈ {1, 2, . . . , n}, Uei = λiei where λi is a scalar, |λi| = 1.

(2) There exists a partition Π of the set {1, 2, . . . , n} such that any ϕ-
invariant atom of P(H) is a 1-dimensional subspace in exactly one
of the subspaces

∨
j∈J êj, J ∈ Π.

(3) If the subalgebra E(H)ϕ of ϕ-invariant elements of E(H) is Boolean,

then the spectrum σ
P(H)
ϕ = E(H)ϕ ∩ P(H) is a block in P(H). In

this case all eigenvalues of U are distinct and Π =
{
{1}, {2}, . . . , {n}

}
.

(4) The spectrum σ
P(H)
ϕ is the Boolean algebra generated by

{∨
j∈J êj :

J ∈ Π
}

.
(5) If the effect A ∈ E(H) is ϕ-invariant and P ∈ P(H) is the smallest

projection that dominates A (namely the projection on the range of
A), then P is ϕ-invariant too.

(6) If A is a ϕ-invariant nonzero effect dominated by an atom of P(H),
then the range of A is included in one of the subspaces

∨
j∈J êj,

J ∈ Π.

Remark 6.3.2. The properties (1)–(6) from Theorem 6.3.1 were derived
only from the fact that ϕ is spectral, without any other information except
for the properties of unitary operators.

6.4. Spectral families of automorphisms

Let E denote, for the rest of this section, an effect algebra endowed with
a compression base (Jp)p∈P and let Φ be a family of automorphisms of E.

Definition 6.4.1. The family Φ of automorphisms of E is called a spec-
tral family of automorphisms if there exists a Boolean subalgebra BΦ of P
satisfying:

ϕ(a) = a, for all ϕ ∈ Φ if and only if a↔ BΦ(P2)

In the sequel, we denote EΦ = {a ∈ E : ϕ(a) = a, for all ϕ ∈ Φ}. Let
us remark that EΦ =

⋂
ϕ∈ΦEϕ and therefore it’s a sub-effect algebra of E.

Proposition 6.4.2. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a spectral family of automorphisms of E. There exists
the greatest Boolean subalgebra BΦ of P satisfying (P2).

Definition 6.4.3. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a spectral family of automorphisms of E. The spectrum
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(denoted by σPΦ ) of the spectral family Φ of automorphisms is the greatest
Boolean subalgebra B of P fulfilling (P2).

Theorem 6.4.4. Let E be an effect algebra, (Jp)p∈P be a compression

base for E and Φ be a spectral family of automorphisms of E. Then σPΦ =

C̃(EΦ) ∩ P .

Corollary 6.4.5. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a family of automorphisms of E. Then Φ is a spectral

family if and only if K(C̃(EΦ)∩P ) ⊆ EΦ (the converse inclusion is trivially
satisfied).

Proposition 6.4.6. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a spectral family of automorphisms of E. Then:

(1) σPΦ = C̃(EΦ) ∩ P is C-maximal;
(2) σPΦ = K(K(σPΦ )) ∩ P ;
(3) σPΦ = K(EΦ) ∩ P .

Theorem 6.4.7. Let E be an effect algebra, (Jp)p∈P be a compression
base for E and Φ be a family of spectral automorphisms of E. Then Φ is
a spectral family of automorphisms if and only if the spectra of the auto-
morphisms in the family are pairwise compatible, i.e., σPϕ ↔ σPψ for every

ϕ,ψ ∈ Φ. In this case, σPΦ includes all spectra of automorphisms in the
family.

Theorem 6.4.8. (A “replica” of Stone’s Theorem on strongly continu-
ous uniparametric groups of unitary operators.) Let E be an effect algebra,
(Jp)p∈P be a compression base for E and Φ be a family of spectral automor-
phisms of E. If the following conditions are fulfilled:
(i) Φ is an abelian group; (ii) ϕ(Eψ) = Eϕψ for every ϕ,ψ ∈ Φ such that
ψ /∈ {idE , ϕ−1}, then:

(1) Eϕ = Eψ for all ϕ,ψ ∈ Φ \ {idE};
(2) σPϕ = σPψ for all ϕ,ψ ∈ Φ \ {idE};
(3) Φ is a spectral family.

Let us remark that Theorem 6.4.8 generalizes Theorem 3.8.6 to spectral
automorphisms in CB-effect algebras.



CHAPTER 7

Atomic effect algebras with compression bases

In the first section we establish some properties of atoms in effect al-
gebras endowed with a compression base, mainly regarding coexistence and
centrality. Then, in the second section, we introduce the notion of projection-
atomicity—which is the property of a compression base effect algebra of hav-
ing the atoms compressions foci. Consequences of projection-atomicity are
studied, some of which generalize results obtained in [59]. A few conditions
for an atomic compression base effect algebra to be a Boolean algebra are
established. Finally, we apply these results to the particular case of sequen-
tial effect algebras and find a sufficient condition for them to be Boolean
algebras that strengthens previous results by Gudder and Greechie [31] and
Tkadlec [59]. The results presented here have been published in [10].

7.1. Atoms and centrality

Proposition 7.1.1. Let E be an effect algebra. If p is an atom in E
that is the focus of a compression and a ∈ E then p ≤ a or p ≤ a′.

Corollary 7.1.2. Distinct atoms that are foci of compressions in an
effect algebra are orthogonal.

Theorem 7.1.3. Let E be an effect algebra with a compression base
(Jp)p∈P . If E is determined by atoms and every atom is in P then P is a
Boolean algebra.

The conclusion of the above theorem cannot be improved to the state-
ment that E is a Boolean algebra as we show by an example.

Lemma 7.1.4. Let E be an effect algebra with a compression base (Jp)p∈P .
If p ∈ P is an atom in E then C(p) = E.

Theorem 7.1.5. Let E be an effect algebra with a compression base
(Jp)p∈P . Every p ∈ P that is an atom in E is central in E.

7.2. Projection-atomic effect algebras

Definition 7.2.1. An effect algebra E is projection-atomic if it is atomic
and there is a compression base (Jp)p∈P of E such that P contains all atoms
in E.

Proposition 7.2.2. Every projection-atomic effect algebra is an orthoal-
gebra.

Definition 7.2.3. A subset M of an effect algebra E is downward di-
rected if for every a, b ∈M there is an element c ∈M such that c ≤ a, b.

An effect algebra E is weakly distributive if a ∧ b = a ∧ b′ = 0 implies
a = 0 for every a, b ∈ E.

24
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Theorem 7.2.4 ([58, Theorem 4.2]). Every weakly distributive ortho-
modular poset with the maximality property is a Boolean algebra.

Lemma 7.2.5. Every projection-atomic effect algebra is weakly distribu-
tive.

Lemma 7.2.6. The set of upper bounds of a set of atoms in a projection-
atomic effect algebra with the maximality property is downward directed.

Lemma 7.2.7. Every element in a projection-atomic effect algebra is a
minimal upper bound of the set of atoms it dominates. Every projection-
atomic effect algebra with the maximality property is atomistic.

Lemma 7.2.8. Every projection-atomic effect algebra with the maximality
property is an orthomodular poset.

Theorem 7.2.9. Every projection-atomic effect algebra with the maxi-
mality property is a Boolean algebra.

We can replace the maximality property in Theorem 7.2.9 by various
stronger properties (see Remark 4.4.5), e.g., by the orthocompleteness. It
cannot be replaced by the weak orthocompleteness, as we show by an ex-
ample.

Theorem 7.2.10. Let E be a projection-atomic effect algebra. If a com-
pression base on E for which all atoms are projections has the projection
cover property, then E is a Boolean algebra.

Corollary 7.2.11. Every atomic sequential orthoalgebra is a Boolean
algebra.

The above corollary generalizes similar results obtained by Gudder and
Greechie [31, Theorem 5.3] and Tkadlec [59, Theorems 5.4 and 5.6]. The
first mentioned result assumes that the effect algebra is atomistic, the sec-
ond assumes it has the maximality property and the third assumes it is
determined by atoms.
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56. Riečanová, Z.: Generalization of blocks for D-lattice and lattice ordered effect
algebras. Internat. J. Theor. Phys. 39, 231–237 (2000)

57. Sikorski, R.: Boolean Algebras (second edition) Springer-Verlag, Berlin-Gottingen-
Heidelberg-New York (1964).

58. Tkadlec, J.: Conditions that force an orthomodular poset to be a Boolean algebra.
Tatra M. Math. Publ. 10, 55–62 (1997).

59. Tkadlec, J.: Atomic sequential effect algebras. Internat. J. Theoret. Phys. 47,
185–192 (2008). doi:10.1007/s10773-007-9492-1

60. Tkadlec, J.: Effect algebras with the maximality property. Algebra Universalis 61,
187–194 (2009). doi:10.1007/s00012-009-0013-3

61. Tkadlec, J.: Common generalizations of orthocomplete and lattice effect algebras.
Internat. J. Theoret. Phys., to appear. doi:10.1007/s10773-009-0108-9

62. Varadarajan, V. S. (1968), Geometry of Quantum Theory, vol. I, van Nostrand,
Princeton.

63. Wright, R. (1977), The structure of projection-valued states: A generalization of
Wigner’s theorem, Internat. J. Theoret. Phys. 16, No. 8, 567–573.

64. Zierler, N., Schlessinger, M.: Boolean embeddings of orthomodular sets and quan-
tum logic. Duke Mathematical Journal 32, 251–262, (1965).


	Introduction
	Part 1.  Quantum Logics as Orthomodular Structures
	Chapter 1. Basics on orthomodular structures
	1.1. Definitions of orthomodular structures
	1.2. Compatibility. Basic properties
	1.3. Orthomodular substructures
	1.4. Atomicity. Covering and exchange properties. Lattices with dimension
	1.5. Morphisms in orthomodular structures

	Chapter 2. Understanding the logic of quantum mechanics in classical terms
	2.1. The impossibility of embedding a quantum logic into a classical one
	2.2. A characterization of orthomodular posets that can be embedded into Boolean algebras
	2.3. The Zierler-Schlessinger theory
	2.4. The result of Harding and Pták

	Chapter 3. Spectral automorphisms in orthomodular lattices
	3.1. Spectral automorphisms—the idea
	3.2. Definition and basic facts
	3.3. Spectral automorphisms in products and horizontal sums
	3.4. Characterizations of spectral automorphisms
	3.5. C-maximal Boolean subalgebras of an OML
	3.6. Spectral automorphisms and physical theories
	3.7. Spectral automorphisms and Piron's theorem
	3.8. Spectral families of automorphisms and a Stone-type theorem


	Part 2.  Unsharp Quantum Logics
	Chapter 4. Basics on effect algebras
	4.1. Effect algebras. Basic definitions and properties
	4.2. Special elements. Coexistence
	4.3. Substructures in effect algebras
	4.4. Important classes of effect algebras
	4.5. Morphisms of effect algebras

	Chapter 5. Sequential, compressible and compression base effect algebras
	5.1. Sequential effect algebras
	5.2. Compressible effect algebras
	5.3. Compression bases in effect algebras

	Chapter 6. Spectral automorphisms in CB-effect algebras
	6.1. Spectral automorphisms: the idea and definitions
	6.2. Characterizations and properties of spectral automorphisms
	6.3. An application of spectral automorphisms to E(H)
	6.4. Spectral families of automorphisms

	Chapter 7. Atomic effect algebras with compression bases
	7.1. Atoms and centrality
	7.2. Projection-atomic effect algebras

	Bibliography


