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abstract

We investigate the Bose–Einstein Condensa-

tion on nonhomogeneous amenable networks

for the model describing arrays of Josephson

junctions. The resulting topological model,

whose Hamiltonian is the pure hopping one

given by the opposite of the adjacency oper-

ator, has also a mathematical interest in it-

self. We show that for the nonhomogeneous

networks like the comb graphs, particles con-

densate in momentum and configuration space

as well. In this case different properties of the

network, of geometric and probabilistic nature,

such as the volume growth, the shape of the

ground state, and the transience, all play a

rôle in the condensation phenomena. The sit-

uation is quite different for homogeneous net-

works where just one of these parameters, e.g.

the volume growth, is enough to determine the



appearance of the condensation. The mathe-

matical aspects of the Bose–Einstein Conden-

sation on some nonamenable networks like the

Cayley Trees are also briefly discussed.

The present talk is based on the following pa-

per:

–Fidaleo F., Guido D., Isola T. Bose-Einstein

condensation in inhomogeneous amenable graphs,

Infin. Dimens. Anal. Quantum Probab. Re-

lat. Top. 14 (2011)

DOI: 10.1142/S0219025711004389

Some results concerning the mathematical as-

pects of the BEC described in:

–Fidaleo F. Harmonic analysis on perturbed

Cayley trees, J. Funct. Anal. 261 (2011),

604–634.

are also briefly discussed



the model

The framework is a sea of Bardeen–Cooper

pairs in arrays of Josephson junctions on a

network G: particles are located on vertices

V G, and edges EG describe the presence of a

Josephson junction.

The Hamiltonian of the system is the Bose

Hubbard Hamiltonian

HBH = m
∑
i

ni +
∑
i,j

Ai,j
(
V ninj − J0a

†
iaj

)
. (1)

Here, a†i is the Bosonic creator, and ni = a
†
iai

the number operator on the site i. Finally, A is

the adjacency operator whose matrix element

Ai,j in the place ij is the number of the edges

connecting the site i with the site j. When

m and V are negligible with respect to J0, it

might be expected that the hopping term dom-

inates the physics of the system. Thus, under



this approximation, (1) becomes the quadratic

pure hopping Hamiltonian given by

HPH = −J
∑
i,j

Ai,ja
†
iaj , (2)

where the constant J > 0 is a mean field cou-

pling constant which is in general different from

the J0 appearing in the more realistic Hamilto-

nian (1).

mathematical aspects

Being the previous Hamiltonian a free (quadratic)

one, it is enough to study the selfadjoint oper-

ator −A on the one–particle space `2(V G). We

put J0 = 1 in (2), and normalizing such that

the bottom of the spectrum of the energy is

zero. The resulting Hamiltonian for the purely

topological model under consideration is

H = ‖A‖1I−A , (3)



where A is the adjacency of the fixed graph G,

acting on the Hilbert space `2(V G).

The appearance of the BEC is connected with

the asymptotics near zero, of the spectrum of

the Hamiltonian. For vectors in the spectral

subspace near zero, the Taylor expansion for

the ”Bose occupation function” relative to the

chemical potential µ < 0 leads to

1

eH−µ1I − 1
≈H−1 = ((‖A‖ − µ)1I−A)−1

≡RA(‖A‖ − µ) .

Then the mathematics of the BEC is reduced

to the investigation of the spectral properties

of the (more familiar object for mathemati-

cians which is the) resolvent RA(λ), for λ ≈
‖A‖.

The non homogeneous graphs we deal with are

density zero additive perturbations of periodic



lattices (Fig 1: the comb graph Z a Z, see

also Fig 2: the star graph). We also briefly

discuss the mathematical aspects of the BEC

on homogeneous Cayley trees (Fig 3 and Fig

4).

We are able to find out when the perturba-

tion is sufficiently big to modify the norm of

the adjacency of the perturbed graph. Then

if it happens, being the perturbation of den-

sity zero, it does not modify the cumulative

function describing the density of the eigenval-

ues (called in physics integrated density of the

states) up to the shift due to the change of the

bottom of the spectrum (the norm of the adja-

cency is changing). Put δ := ‖AX‖ − ‖AY ‖ < 0

(it has the meaning of a chemical potential,

see below), we get for the integrated density

of the states of −AY ,

FY (x) = FX(x+ δ) . (4)



This always leads to the hidden spectrum, that
is the part of the spectrum close to the bottom
of the Hamiltonian which does not contribute
to the density of the states. The immediate
consequence is

ρYc (β) =
∫

dF (x)

eβ(x−δ)) − 1
= ρX(β, δ) < +∞ . (5)

Namely, in presence of the hidden spectrum
the critical density of the model is always
finite independently on the geometrical dimen-
sion of the network.

We are able to write down the formula for the
resolvent of the adjacency matrix of the per-
turbed graph then investigate the transience
character of the adjacency, that is when

lim
λ↓‖A‖

〈RA(λ)δx, δx〉 < +∞ ,

which does not depend on the point x ∈ V G.∗

∗If the generator of the process is the Laplacian, the
transience character is connected with probabilistic
properties of the random walk on the graph under con-
sideration.



We can prove that the finite volume sequence

of the Perron–Frobenius eigenvectors, normal-

ized to 1 in a ”root”, converges pointwise to

a (generalized) PF eigenvector for the adja-

cency.† The surprising fact is that it decays

exponentially far away from the perturbed zone

of the graph.

All the above properties have a precise

physical meaning as we are going to explain.

physical applications

We already explained that the appearance of

the hidden spectrum always leads to finite criti-

cal density. it is then possible to find nonho-

mogeneous networks exhibiting the BEC,

even if their geometrical dimension is ”small”.
†When the graph is transient the subspace of Perron–
Frobenius eigenvectors might be not one dimensional.



The transience character is connected with the

possibility to exhibit locally normal states en-

joying BEC. A locally normal state ω describes

a situation for which the local density of the

particles

ρΛ(ω) :=
1

|Λ|
∑
j∈Λ

ω(a†(δj)a(δj))

is finite. If the adjacency is recurrent we prove

that, for each choice of a sequence of chemical

potentials µΛn ↑ 0 for the finite volume Gibbs

grand canonical ensamble state ωΛn, Λn ↑ G,

we get that the two–point function diverges:

lim
n
ωΛn(a†(δj)a(δj)) = +∞ .

Namely, it is impossible to construct any

locally normal state exhibiting BEC if the

adjacency is recurrent. Conversely, in the

transient case we are able to construct locally

normal states describing BEC.



The PF (generalized) eigenvector is nothing

but the (generalized) wave function of the phys-

ical ground state.‡. Then it describes the dis-

tribution of the condensate in the configura-

tion space (due to nonhomogeneity, particle

condensate on the network as well). As it

exponentially decreases far away to the per-

turbation, the condensate distribution is well

described by the Perron–Frobenius dimension

dPF . Consider the ball Λn ↑ G of radius n cen-

tered in any fixed root of the graph. Consider

the Perron–Frobenius eigenvector v, previously

described. The geometrical dimension dG of G

is defined to be a if |Λn| ∼ na. The Perron–

Frobenius dimension dPF (G) of G is defined to

be b if
∥∥∥vd`2(Λn)

∥∥∥ ∼ nb/2.

If the critical density is finite and the graph

is transient (condition under which it is possi-

ble to exhibit locally normal states describing
‡Here ”generalized” stands for non normalizable.



BEC), we look at dPF . If dPF < dG it is im-

possible to exhibit such states whose particle

density

ρ(ω) := lim
Λ↑G

ρΛ(ω)

is greater than ρc. In this situation we are

able to construct only locally normal states

ω exhibiting BEC for which ρ(ω) = ρc. If

dPF = dG we can exhibit locally normal state

ω describing BEC such that ρ(ω) > ρc.

In addition, we remark that, if we use the per-

turbed Laplacian as the Hamiltonian of the sys-

tem, it is impossible to change the character of

the graph. Indeed the hidden spectrum never

happen.

The situation described is quite different from

the homogeneous case for which the condensa-

tion phenomena are uniquely described by the

dimension of the graph.



We end with the description of the properties
described above for some pivotal example of
the graphs under consideration.

finite additive perturbations (see Fig 1):
finite critical density (provided the perturba-
tion is sufficiently big to modify the norm of
the adjacency), recurrent (as the PF eigenvec-
tor is normalizable), dPF = 0.

Fig 1: the star graph.

Comb graphs Gd := Zd a Z (see fig):
finite critical density, recurrent if and only if
d ≤ 2, d = dPF < dG = d+ 1.



Fig 2: the comb graph Z a Z.

N:

infinite critical density, transient, 3 = dPF > 1.

Comb graphs H2 := N a Z2:

finite critical density, transient, 3 = dPF = dG.

The mathematical aspects of the BEC are ex-

tended to exponentially growing graphs such

as the perturbed Cayley tree.



Fig 3: finite perturbation of the

Cayley Tree of order 3.

It is recurrent and PF–”0” dimensional.

Fig 4: perturbation of the Cay-

ley Tree of order 3 along Z.

It is recurrent and PF–”1” dimensional.



Fig 4: perturbation of the Cay-

ley Tree of order 3 along N.

It is transient and PF–”3” dimensional.

Fig 5: perturbation of the Cay-

ley Tree of order 4 along a Cayley subtree of

order 3.

It is transient and has the same PF–behavior

as the basepoint.


