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introduction

We study some spectral properties of the adja-

cency operator of non homogeneous networks.

The graphs under investigation are obtained by

adding density zero perturbations to the homo-

geneous Cayley Trees. Apart from the natural

mathematical meaning, such spectral proper-

ties are relevant for the Bose Einstein Con-

densation for the pure hopping model describ-

ing a sea of Bardeen–Cooper pairs in arrays

of Josephson junctions on non homogeneous

networks. The resulting topological model is

described by a one particle Hamiltonian which

is, up to an additive constant, the opposite

of the adjacency operator on the graph. It

is known that the Bose Einstein condensation

already occurs for unperturbed homogeneous

Cayley Trees. However, the particles conden-

sate even in the configuration space, because

of the nonhomogeneity. Even if the graphs



under consideration are exponentially growing,

we show that it is enough to perturb in a neg-

ligible way the original homogeneous graph, in

order to obtain a new network whose math-

ematical and physical properties dramatically

change. Among such results, we mention the

following ones. The appearance of the Hidden

Spectrum near the zero of the Hamiltonian, or

equivalently below the norm of the adjacency.

The latter is related to the value of the critical

density and then with the appearance of the

condensation phenomena. The investigation

of the recurrence/transience character of the

adjacency, which is connected to the possibil-

ity to construct locally normal states exhibit-

ing the Bose Einstein condensation. Finally,

the study of the volume growth of the wave

function of the ground state of the Hamilto-

nian, which is nothing but a suitable general-

ized Perron Frobenius eigenvector of the adja-

cency. This Perron Frobenius weight describes



the spatial distribution of the condensate and

its shape is connected with the possibility to

construct locally normal states exhibiting the

Bose Einstein condensation at a fixed density

greater than the critical one.

The present talk is based on the following pa-

per:

–Fidaleo F. Harmonic analysis on perturbed

Cayley trees, J. Funct. Anal. 261 (2011),

604–634.

Some results from the previous paper:

–Fidaleo F., Guido D., Isola T. Bose-Einstein

condensation in inhomogeneous amenable graphs,

Infin. Dimens. Anal. Quantum Probab. Re-

lat. Top. 14 (2011)

DOI: 10.1142/S0219025711004389

are also briefly discussed



the model

The framework is a sea of Bardeen–Cooper
pairs in arrays of Josephson junctions on a
network G: particles are located on vertices
V G, and edges EG describe the presence of a
Josephson junction. The networks consist of
density zero additive perturbations of homoge-
neous ones

The comb graph G1 = Z1 a Z

G4,3: The Cayley Tree G4 per-
turbed along G3



The Hamiltonian of the system is the Bose

Hubbard Hamiltonian

HBH = m
∑
i

ni +
∑
i,j

Ai,j
(
V ninj − J0a

†
iaj

)
. (1)

Here, a†i is the Bosonic creator, and ni = a
†
iai

the number operator on the site i. Finally,

A is the adjacency operator whose matrix el-

ement Ai,j in the place ij is the number of

the edges connecting the site i with the site

j. When m and V are negligible with respect

to J0, the hopping term dominates the physics

of the system. Thus, under this approxima-

tion, (1) becomes the quadratic pure hopping

Hamiltonian given by

HPH = −J
∑
i,j

Ai,ja
†
iaj , (2)

where the constant J > 0 is a mean field cou-

pling constant which might be different from

the J0 appearing in the more realistic Hamilto-

nian (1).



mathematical aspects

The previously described model is a free theory

(the Hamiltonian (2) is quadratic). Then it is

enough to study the selfadjoint operator −A on

the one–particle space `2(V G). We put J0 = 1

in (2), and normalize such that the bottom

of the spectrum of the energy is zero. The

resulting Hamiltonian for the purely topological

model under consideration is

H = ‖A‖1I−A , (3)

where A is the adjacency of the fixed graph G,

acting on the Hilbert space `2(V G).

The appearance of the BEC is connected with

the asymptotics, close to zero, of the spectrum

of the Hamiltonian. For free Bosonic mod-

els, mathematically described by the Canonical

Commutation Relations, most of the physical

relevant quantities are computed by using the



functional calculus of suitable functions of the

Hamiltonian. The critical density (cf. (4)) is

one of them. But, the asymptotic behavior of

the Hamiltonian (3) near zero corresponds to

the asymptotic of the spectrum of A close to

‖A‖. Indeed, by using the Taylor expansion,

we heuristically get for the function appearing

in the Bose Gibbs occupation number for the

chemical potential µ < 0 at small energies,

1

eH−µ1I − 1
≈ (H − µ1I)−1

=((‖A‖ − µ)1I−A)−1 ≡ RA(‖A‖ − µ) .

By following the previous considerations, it is

proved that the mathematics of the BEC is

reduced to the investigation of the behavior of

the more familiar object for mathematicians,

the resolvent RA(λ), for λ ≈ ‖A‖.

By following the lines of the previous paper

(Fidaleo F., Guido D., Isola T.: Bose Einstein



condensation on inhomogeneous amenable graphs,

cited above), the non homogeneous graphs we

deal with are density zero additive perturba-

tions of homogeneous Cayley trees. The emerg-

ing results are quite surprising even if the graphs

under consideration are exponentially growing,

and even when the additive perturbation is only

finite.

hidden spectrum

The appearance of the hidden spectrum is the

combination of two opposite phenomena aris-

ing from the perturbation. If the perturbation

is sufficiently big (even if in many cases it is

enough a finite perturbation), the norm ‖Ap‖ of

the adjacency of the perturbed graph becomes

bigger than the analogous one ‖A‖ of the un-

perturbed adjacency. On the other hand, as



the perturbation is sufficiently small (i.e. den-

sity zero), the part of the spectrum σ(Ap) in

the segment (‖A‖, ‖Ap‖] does not contribute

to the density of the states. This allows us

to compute any function of the perturbed ad-

jacency by using the integrated density of the

states F of the unperturbed one. For example,

we get for the critical density ρc(β) at the in-

verse temperature β for the perturbed model,

ρc(β) =
∫

dFX(x)

eβ(x+(‖Ap‖−‖A‖)) − 1
. (4)

The resulting effect on the critical density of

the perturbed model exhibiting the hidden spec-

trum (i.e. when ‖Ap‖ − ‖A‖ > 0) is that it is

always finite. This is because

FY (x) = FX(x+ δ) , (5)

being FX, FY be the integrated density of the

states of the adjacency and the perturbed adja-

cency, respectively, and δ := ‖AX‖−‖AY ‖ < 0.∗

∗δ has the meaning of a chemical potential, see (4).



Notice that in presence of the hidden spectrum
the critical density of the model is always finite
independently on the geometrical dimension of
the network.†

for finite additive perturbation, in order
to check if the adjacency exhibits hidden
spectrum it is enough to find out whether
‖Ap‖ > ‖A‖

This can be done by solving the secular equa-
tion (see FGI).

To simplify the computations, we deal with
perturbations by self loops. On the other hand,
†The linearized part of (1) has the form −∆ + V (x),
where ∆ is the discrete Laplacian given by ∆ = A−D,
with Di,j := (deg i)δi,j. Notice that −∆ is positive
but not positive preserving, whereas A is not posi-
tive but positive preserving. They differ by a diago-
nal term which is constant for homogeneous graphs.
Thus, when the graph is not homogeneous they are
completely different operators. The possibility to have
BEC shall depend on V . For example, if V = 0 we can
show (cf. FGI) that we cannot have hidden spectrum.



it is expected (cf. FGI) that our simplified

model captures all the qualitative phenomena

appearing in more complicated examples rel-

ative to general additive negligible perturba-

tions.

(finite) additive perturbations

by self loops

In our situation, secular equation is written as

‖P`2(S)RAGQ
(λ)P`2(S)‖ = 1 , (6)

where S ∈ GQ is the density zero set of vertices

where are localized the self loops. As ‖S(λ)‖
is decreasing in λ ∈ (‖A‖,+∞), where

S(λ) := P`2(S)RAGQ
(λ)P`2(S) ,



(6) has at most one solution which is proven to
be precisely ‖Ap‖. In addition, S(λ) is analytic
for λ > λ∗ where λ∗ is such a solution of (6)
and allows us to write the explicit formula for
RAp(λ).‡

transience character

By using the explicit formula for the resolvent
of the perturbed adjacency, we are able to in-
vestigate the transience character of the adja-
cency, that is when

lim
λ↓‖A‖

〈RA(λ)δx, δx〉 < +∞ ,

which does not depend on the point x ∈ V G.§

In our situation, the matter is reduced to the
‡By using the Neumann series, it is shown that the Krein
formula for the perturbed resolvent can be then ana-
lytically continued on the complex plane for ‖λ‖ > λ∗.
§If the generator of the process is the Laplacian, the
transience character is connected with probabilistic
properties of the random walk on the graph under con-
sideration.



investigation of the limit when λ ↓ λ∗ of〈
RAp(λ)δ0, δ0

〉
=
〈
S(λ)

(
1I`2(S)− S(λ)

)−1
δ0, δ0

〉
.

The above limit can be computed, via the

Spectral Mapping, by using Complex Analysis

and then the Residue Theorem in all the cases

under consideration.¶

The transience character is connected to the

possibility to exhibit locally normal states en-

joying BEC. A locally normal state ω describes

a situation for which the local density of the

particles

ρΛ(ω) :=
1

|Λ|
∑
j∈Λ

ω(a†(δj)a(δj))

is finite. If the adjacency is recurrent it is ex-

pected that, for each choice of a sequence of
¶It is straightforward for GQ,2 (Fourier Analysis by using
the Poisson Kernel). It is quite complicated for HQ

(same techniques as before). It is heavy (Harmonic
Analysis on Cayley trees: Figà–Talamanca, Picardello
book) for the last situation GQ,q considered here.



chemical potentials µΛn ↑ 0 for the finite vol-

ume Gibbs grand canonical ensemble state ωΛn,

Λn ↑ G, we get that the two–point function di-

verges:

lim
n
ωΛn(a†(δj)a(δj)) = +∞ .

Namely, it is impossible to construct any

locally normal state exhibiting BEC if the

adjacency is recurrent. Conversely, in the

transient case we are able to construct locally

normal states describing BEC. The last result

holds true in the amenable cases treated in the

FGI article cited above.

the Perron Frobenious weight

Let B be a bounded matrix with positive en-

tries acting on `2(V X). Such an operator is

called positive preserving as it preserves the

elements of `2(V X) with positive entries. A



sequence {v(x)}x∈V X is called a (generalized)

Perron Frobenius eigenvector (or equivalently

Perron Frobenius weight) if it has positive en-

tries and∑
y∈V X

Bxyv(y) = ‖B‖v(x) , x ∈ V X .

For finite additive perturbations the (`2) Per-

ron Frobenius (normalized at 1 on a fixed root)

can be explicitly written (cf. FGI). If S ∈ GQ

is a finite connected set supporting the pertur-

bation by self loops, we get

vS(x) = a(λS)d(x,S)wS(y(x)) .

Here,

a(λ) :=
1−

√
1− 4(Q−1)

λ2

2(Q−1)
λ

, (7)

λS is the unique solution of the secular equa-

tion, wS is the unique Perron Frobenius eigen-

vector for the convolution operator TSa on S



by the function fa := ad( · ,0) (0 is a fixed root

on S), and finally y(x) is the unique nearest

element of S to x.‖

Consider an infinite, connected and density zero

set S ∈ GQ, together with the elements Sn :=

S
⋂
Bn of S in the ball of the radius n centered

in a fixed root 0. As a(λSn) → a(λS), we can

prove that

vSn(x)→ a(λS)d(x,S)wS(y(x)) ,

provided the sequence {wSn} of the Perron Frobe-

nius eigenvectors of the convolution operator

TSna converges to a Perron Frobenius weight of

TSa .∗∗ We show that this is the case for all the

situation under consideration.

‖Notice that S(λ) appearing in the secular equation is
expressed in terms of such a convolution operator.

∗∗Notice that such a Perron Frobenius weight is unique
if T Sa is recurrent.



We can prove that the finite volume sequence

of the Perron–Frobenius eigenvectors, normal-

ized to 1 in a ”root”, converges pointwise to

a (generalized) PF eigenvector for the adja-

cency.†† The surprising fact is that it decays

exponentially far away from the perturbed zone

of the graph.

The PF (generalized) eigenvector is nothing

but the (generalized) wave function of the phys-

ical ground state.‡‡. Then it describes the

distribution of the condensate in the config-

uration space (due to nonhomogeneity, parti-

cle condensate on the network as well). As

it exponentially decreases far away to the per-

turbation (even for the exponentially growing

networks under consideration here), the con-

densate distribution is concentrated nearby the

††When the graph is transient the set of Perron–
Frobenius eigenvectors might be not unique.
‡‡Here ”generalized” stands for non normalizable.



base space S supporting the perturbation. Such

results are in accordance with the other amenable

models previously considered in FGI.

the graphs under consideration

We briefly describe the networks under consid-

erations.

the perturbation

of G3 and G4 by self loops in a fixed root

When Q = 3 it is enough only one self loop,

for Q = 4 we need at least two. Such graphs

are recurrent and the Perron Frobenius weight

is normalizable and unique.



G3,2: the perturbation of G3

along S ∼ Z

Such a graph is recurrent, then the Perron

Frobenius weight is unique.

H3: the perturbation of G3 along

S ∼ N

Such a graph is transient. For the case GQ,2

and HQ, we get hidden spectrum for 2 < Q < 8.



G4,3: the perturbation of G4

along S ∼ G3

For such graphs, after fixing q ≥ 2 we can com-

pute Q(q) ≥ q such that GQ,q exhibits hidden

spectrum. Such graphs are transient.


