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Weak and strong solutions of SDE’s
Consider the stochastic differential equation

Xt = X0 +

∫ t

0
σ (Xs) dBs +

∫ t

0
b (Xs) ds, t ≥ 0. (1)

A strong solution of (1) on a given probability space (Ω,F ,P) with respect to a fixed
Brownian motion Bt and with initial condition ξ is a continuous process (Xt)t≥0 with the
following properties:

i) Xt is adapted to the augmented filtration (Ft)t≥0 generated by B and ξ;

ii) P (X0 = ξ) = 1;
iii) P

(∫ t
0

∣∣σ2 (Xs)
∣∣+ |b (Xs)| ds <∞

)
= 1 holds for every t ≥ 0.

iv) Xt satisfies (1) for every t ≥ 0.

A weak solution of (1) is a triple (X,W), (Ω,F ,P), (Ft)t≥0, where

i) (Ω,F ,P) is a probability space and (Ft)t≥0 is a filtration on F ;
ii) Xt is a continuous Ft-adapted R-valued process;

iii) Bt is a Ft-adapted 1-dimensional Brownian motion starting at 0;
iv) (1) and P

(∫ t
0

∣∣σ2 (Xs)
∣∣+ |b (Xs)| ds <∞

)
= 1 hold for every t ≥ 0.
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Remarks

The main difference between the two notions is that the strong solutions require the
measurability of Xt with respect to the filtration FB of the driving Brownian motion Bt,
whereas the weak solution requires only the measurability of Xt and Bt with respect to some
filtration (not necessarily FB).

The value Xt (ω) of a strong solution at time t ≥ 0 is completely determined (a measurable
functional) of the path {Bs (ω) , 0 ≤ s ≤ t} and the value of the initial condition ξ (ω).
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Weak and strong uniqueness

We say that strong uniqueness holds for (1) if whenever Bt is a Brownian motion on some
probability space (Ω,F ,P) and Xt, X̃t are two strong solutions relative to Bt and with the same
initial condition ξ, then

P
(

Xt = X̃t for t ≥ 0
)

= 1.

We say that weak uniqueness holds for (1) if whenever (Xt,Bt) , (Ω,F ,P) , (Ft)t≥0 and(
X̃t, B̃t

)
,
(

Ω̃, F̃ , P̃
)
,
(
F̃t

)
t≥0

are two weak solutions with the same initial distribution (i.e.

P (X0 ∈ Γ) = P
(

X̃0 ∈ Γ
)

for any Γ ∈ B (R)), the processes X and X̃ have the same law.

Note that strong existence implies weak existence, and strong uniqueness implies weak
uniqueness (Yamada and Watanabe, 1971). Also, weak existence and strong uniqueness
implies strong existence.
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Results on weak existence and uniqueness

Consider the stochastic differential equation

Xt = X0 +

∫ t

0
σ (Xs) dBs, t ≥ 0, (2)

and define the zero set of σ by

Z (σ) = {x ∈ R : σ (x) = 0} , (3)

and the non-local integrability set of σ−2 by

I (σ) =

{
x ∈ R :

∫ ε

−ε

dy
σ2 (x + y)

=∞, ∀ε > 0
}
. (4)

Theorem (Engelbert and Schmidt, 1984)

The equation (2) has a weak solution if and only if I (σ) ⊂ Z (σ) .
Moreover, the solution is weakly unique if and only if I (σ) = Z (σ).
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Results on strong existence and uniqueness
Consider the SDE

Xt = X0 +

∫ t

0
σ (Xs) dBs +

∫ t

0
b (Xs) ds, t ≥ 0, (5)

and the following hypotheses:

(A) There exists an increasing function ρ : [0,∞)→ [0,∞) with
∫

0+
du
ρ(u) = +∞ such that

(σ (x)− σ (y))2 ≤ ρ (|x− y|) , x, y ∈ R. (6)

(B) There exists an increasing, bounded function f : R→ R such that

(σ (x)− σ (y))2 ≤ |f (x)− f (y)| , x, y ∈ R.

Theorem (Le Gall, 1983)

Suppose that σ and b are bounded measurable functions which satisfy one of the following hypotheses:

i) σ satisfies (A) and b is Lipschitz;

ii) σ satisfies (A) and there exists ε > 0 such that |σ| ≥ ε;

iii) σ satisfies (B) and there exists ε > 0 such that σ ≥ ε.

Then the solution of (5) is pathwise unique.

Remark: condition (A) does not allow for jump discontinuities of σ, and (B) can only be used if σ is bounded
below away from 0, so there is a GAP between the weak and the strong uniqueness.
What can be said about uniqueness in this case?
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ϕ-strong solution and ϕ-strong uniqueness of SDE

The principle of causality for dynamical systems shows that a SDE can be thought as a
machinery which given the “input” Bt and the initial condition ξ produces the “output” Xt. The
fact that the SDE does not have a strong solution shows that Xt cannot be determined from the
input Bt.

Even though the output Xt cannot be “predicted” from the input Bt, we can still say something
about the process Xt which satisfies the SDE.

Definition

Consider ϕ : R→ R a measurable function.
A ϕ-strong solution to (1) on a probability space (Ω,F ,P) with respect to the Brownian
motion Bt is a continuous process Xt for which (1) holds a.s., and such that ϕ (Xt) is adapted to
the augmented filtration generated by Bt and P

(∫ t
0 |b (Xs)|+ σ2 (Xs) ds <∞

)
= 1 holds for

every t ≥ 0.
We say that ϕ-strong uniqueness holds for (1) if whenever Xt and X̃t are two ϕ-strong solutions
relative to the same driving Brownian motion Bt, then

P
(
ϕ (Xt) = ϕ(X̃t), t ≥ 0

)
= 1.
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Remarks

If ϕ is an injective function, ϕ-strong solution/ϕ-strong uniqueness is the same as the classical
notion of strong solution/strong uniqueness.

In the previous definition, the process Xt is not required to be adapted with respect to the
filtration of the Brownian motion Bt. If Xt is adapted with respect to the σ-algebra generated by
σ (Bs : s ≤ t) ∪ Gt, then the σ-algebra Gt can be viewed as the extra source of randomness
needed to predict the output of the solution of (1).

The above notion of solution/uniqueness interpolates between the classical notions of weak
and strong solution, and is meant to show the amount of information that can be uniquely
determined from the SDE.
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A classical example

Consider the (singular) SDE

Xt =

∫ t

0
sgn (Xs) dBs, t ≥ 0. (7)

This is a classical example first considered by Tanaka, and later by many authors (e.g. Zvonkin
[Zv], or [KaSh], pp. 299) when the strong uniqueness fails.

Note that since sgn(x) is a discontinous function (which is not bounded below away from
zero), so the classical results on strong existence and uniqueness of solutions (e.g. Itô, Yamada
& Watanabe, Nakao, etc) do not apply here.

Also, since sgn−2(x) is everywhere locally integrable and sgn(x) has no zeroes, by the results
of Engelbert and Schmidt, (7) has a weak solution and the solution is weakly unique.
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Weak, but not strong existence and uniqueness

First note that if
(

X,B, (Ft)t≥0

)
is a weak solution for (7), then Xt is a continuous, square

integrable martingale with quadratic variation 〈X〉t = t, so by Lévy’s theorem Xt is a Brownian
motion, and therefore weak uniqueness holds for (7).

To prove the existence of a weak solution of (7), consider a 1-dimensional Brownian motion
Xt, and define Bt =

∫ t
0 sgn (Xs) dXs, so Bt is a 1−dimensional Brownian motion.

Then
∫ t

0 sgn (Xs) dBs =
∫ t

0 (sgn (Xs))
2 dXs = Xt, so

(
Xt,Bt, (Ft)t≥0

)
is a weak solution of (7).

Since Xt and −Xt are solutions of (7) at the same time, strong uniqueness cannot hold for (7).

If (7) had a strong solution Xt (so FX
t ⊂ FB

t for all t ≥ 0), then Bt =
∫ t

0 sgn (Xs) dXs, so
FB

t ⊂ FX
t , and therefore FX

t = FB
t .

By Tanaka formula we obtain Bt =
∫ t

0 sgn (Xs) dXs = |Xt| − L0
t , where

L0
t = limε↘0

1
2εmeas {s ∈ [0, t] : |Xs| ≤ ε} is the local time of X at the origin, so FB

t ⊂ F
|X|
t ,

which leads to a contradiction: FX
t ⊂ F

|X|
t .

The contradiction shows that (7) does not have a strong solution.
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Since Xt and −Xt are solutions of (7) at the same time, strong uniqueness cannot hold for (7).

If (7) had a strong solution Xt (so FX
t ⊂ FB

t for all t ≥ 0), then Bt =
∫ t

0 sgn (Xs) dXs, so
FB

t ⊂ FX
t , and therefore FX

t = FB
t .

By Tanaka formula we obtain Bt =
∫ t

0 sgn (Xs) dXs = |Xt| − L0
t , where

L0
t = limε↘0

1
2εmeas {s ∈ [0, t] : |Xs| ≤ ε} is the local time of X at the origin, so FB

t ⊂ F
|X|
t ,

which leads to a contradiction: FX
t ⊂ F

|X|
t .
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|x|-strong uniqueness for (7)

If Xt verifies (7), by the Tanaka formula we have

|Xt| =
∫ t

0
sgn (Xs) dXs + L0

t =

∫ t

0
(sgn (Xs))

2 dBs + L0
t = Bt + L0

t , t ≥ 0.

By classical results on the pathwise uniqueness of reflecting Brownian motion on [0,∞), |Xt|
is pathwise unique (it is the reflecting Brownian motion on [0,∞) with driving Brownian
motion Bt).

So although Xt is not uniquely determined by Bt, its absolute value |Xt| is, which shows that
|x|-strong uniqueness holds for (7).

To prove the existence of a |x|-strong solution, we introduce the notion of sign choice of a
process.
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Sign choice for a process

Definition

Given a non-negative continuous process (Yt)t≥0, a sign choice for Yt is a process (Ut)t≥0
taking the values ±1, such that (UtYt)t≥0 is a continuous process.

Remark (Construction of a sign choice)

Given a non-negative continuous process (Yt)t≥0 on a probability space (Ω,F ,P), consider a
process (Vt)t≥0 taking the values ±1 with probability P (Vt = 1) = 1− P (Vt) = p ∈ [0, 1].
The process (Ut)t≥0 defined by Ut = Vt if Yt = 0 and Ut = Us if Yt 6= 0, where
s = sup {u ≤ t : Yu = 0}, is a sign choice for Yt.

Remark

If Ut is a sign choice for Yt, then Ut is constant on each open connected component of
{t ≥ 0 : Yt 6= 0}, and the process UtYt is obtained from Yt by flipping with probability 1− p
the excursions of Yt away from zero.
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|x|-strong existence and uniqueness for (7)

Theorem

|x|-strong uniqueness holds for (7).
A |x|-strong solution (and a weak solution) of (7) exists, and its is explicitly given by(

UtYt,Bt, (Ft)t≥0

)
, where Yt is the reflecting Brownian motion on [0,∞) with driving

Brownian motion Bt, Ut is a sign choice for Yt taking the values ±1 with equal probability, and
(Ft)t≥0 is the filtration generated by Bt and Ut which satisfies the usual conditions.

Conversely, any weak solution
(

Xt,Bt, (Ft)t≥0

)
of (7) has the representation Xt = UtYt, where

U and Y are as above.
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A singular SDE

Consider the SDE

Xt =

∫ t

0
σa,b (Xs) dBs, t ≥ 0, (8)

where σa,b (x) =

{
a, x ≥ 0
b, x < 0 , and a, b ∈ R∗ are arbitrary constants.

Theorem

For any a > 0 > b, ϕa,b-strong uniqueness holds for (8), where ϕa,b (x) =

{ 1
a x, x ≥ 0
1
b x, x < 0

.

A ϕa,b-strong solution (and a weak solution) of (8) exists, and it is explicitly given by(
σab (Ut) Yt,Bt, (Ft)t≥0

)
, where Yt is the reflecting Brownian motion on [0,∞) with driving

Brownian motion Bt, Ut is a sign choice for Yt taking the values 1 and −1 with probabilities
−b
a−b respectively a

a−b , and (Ft)t≥0 is the augmentation of the filtration generated by B and U
which satisfies the usual conditions.
Conversely, any weak solution

(
Xt,Bt, (Ft)t≥0

)
of (8) has the representation Xt = σab (Ut) Yt,

where U and Y are as above.
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Proof.

(ϕ-strong uniqueness) If Xt satisfies (8), applying the Tanaka-Itô formula to the function ϕa,b and to the process Xt we obtain

Yt := ϕa,b (Xt) =

∫ t

0
ϕ
′
a,b (Xs) dXs +

1

2

(
ϕ
′
a,b (0+)− ϕ′a,b (0−)

)
L0

t (X) = Bt +
1

2

( 1

a
−

1

b

)
L0

t (X) ,

where L0
t (X) denotes the (symmetric) semimartingale local time of X at the origin.

It can be shown that L0
t (Y) = 1

2

(
1
a −

1
b

)
L0

t (X), so the process Yt verifies the SDE

Yt = Bt + L0
t (Y) , t ≥ 0,

that is, Yt is the reflecting Brownian motion on [0,∞) with driving Brownian motion Bt .
In particular, Yt = ϕa,b (Xt) is adapted with respect to the filtrationFB of the Brownian motion Bt and it is pathwise unique. This shows
that ϕa,b-strong uniqueness holds for (8).
(ϕ-strong existence) It can be shown that Xt = σa,b (Ut) Yt is a weak solution of (8), by using the representation

∫ t

0
σa,b (Xs) dBs − Xt = −ε

Dt(ε)∑
i=1

σa,b

(
Uσi

)
+ σa,b (Ut) Yt

∑
i≥1

1[τi−1,σi)
(t) (9)

−εσ a,b (Ut)
∑
i≥1

1[σi,τi)
(t) +

∑
i≥1

∫ σi∧t

τi−1∧t
σa,b (Us) 1R∗ (Xs) dYs,

and by showing that all the terms on the right converge in L2 to zero as ε↘ 0 (Levy’s characterization of local time, Wald’s second identity,
aso).
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Extensions

Theorem

Let σ : R→ R be a measurable odd function on R∗ such that |σ| is bounded above and below
by positive constants and suppose there exists a strictly increasing function f on R such that

(σ (x)− σ (y))2 ≤ |f (x)− f (y)| , x, y ∈ R. (10)

Given a 1-dimensional Brownian motion Bt, |x|-strong uniqueness holds for the SDE

Xt =

∫ t

0
σ (Xs) dBs, t ≥ 0. (11)

A |x|-strong solution (and a weak solution) exists, and is given by (UtYt,Bt,Ft) where Yt is the
pathwise unique solution to

Yt =

∫ t

0
|σ (Ys)| dBs + L0

t (Y) , t ≥ 0,

and Ut is a sign choice for Yt taking the values ±1 with equal probability.
Moreover, any weak solution has the representation Xt = UtYt where Ut and Yt are as above.
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