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                        Abstract 

We provide answers to some questions raised by recent papers in the field of 
Econophysics Haven (2008), where ideas from quantum field theory try to fill 
the gap between empirical studies on option pricing and the economic 
forecasting based on diffusion processes. We indicate where these theoretical 
tools were already applied in Finance; we found Hopf algebraic structures, we 
wrote down a PDE characterizing certain local volatility models and a class of 
hypergeometric solutions and we have a simple test to check if a basket 
option is heat-solvable.  
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                     I. Introduction 

(possible applications) The stochastic behavior of certain asset prices (energy, 
market indexes)  which influence the prices of-for example- plane tickets, 
suggests that the discounted airfares could be studied with the methodology 
and mathematical tools of European call options. These topics made me 
review the following basic problems: 
- examples where there is a closed formula for the price of an European call 
option with fixed interest rate and  
- examples of stochastic processes where Monte Carlo simulations were 
successfully applied.                                              Page 1. 
 
We would like to review certain above mentioned mathematical keywords 
recently connected with financial mathematics. 

mailto:gbarad@gmail.com
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 1. Malham and Wiese (2009) use the Hopf algebra structure of iterated 
Stratonovich integrals to prove that the error generated by a numerical method 
of approximation of the stochastic flow associated with sinh-log series is 
smaller than the stochastic Taylor error; they apply the method to simulate  the 
Heston model for derivative pricing. 
 
2.Hudson and  Parthasarathy are the creators of the first quantum stochastic 
calculus. In their lines, a quantum Black-Scholes formula was obtained by 
Boukas and Accardi (2007). Hudson(2009) generalized Ito calculus for 
differentials introducing the concept of Ito Hopf algebra associated with an 
arbitrary associative algebra. Hudson analized quasitriangular structures 
associated with these Hopf algebras, as well as a concrete formula for its 
antipode. The nice formula of Hudson and Pulmannova gives a hint of a 
formula for the antipode of a very important Hopf algebra met in Schneps 
(2004, p.38).  
 
3. The Hopf algebra structure of multiple stochastic integrals was used by 
Henry-Labordere (2009, p. 353), who studied abelian and 2-step nilpotent 
local volatility models for option pricing. He also use a differential geometry 
approach: a heat kernel approximation in his study of Heston and SABR 
stochastic volatility models. 
 
4. A path integral approach to option pricing was studied by Linetzky (1998) 
and Taddei (1999). They associate to any stochastic differential equation a 
Lagrangian functional, as well as a Van Vleck determinant required to 
compute a path integral, which is computable in very few cases:  Gaussian 
models and models that can be reduced to Gaussians by changes of variables, 
reparametrizations of time and projections (the Black–Scholes model, Ornstein– 
Uhlenbeck, Cox–Ingersoll–Ross model, Bessel process. Linetsky (1998, p.146) . For 
other cases there are well developed approximation techiques. We did not find 
cases where we don’t know to compute the theoretical option prices using 
partial differential equation techniques but we know to compute them using 
path integral approaches. 
 
we study some questions raised by one and multi-dimensional Black-Scholes 
local volatility models, concerning solvability and changes of variables using 
Hopf algebraic and differential geometry tools (traditionally connected with the 
concepts of quantum/background independent and Lie/classical symmetries). 
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2. Classical and quantum symmetries. Local volatility models 

2.1.0   We consider a risky asset driven by a Brownian motion; the dynamics 
of its prices is described by the following Ito process: 

( ) ( )= +, ,t t tdx a x t dt b x t dW  
W is a Brownian motion. The bond price is a deterministic process: 

−= ⇒ =0 0 0 ( )( ) r t Tdx rx dt x t e ;       The Black-Scholes equation is the following 
partial differential equation in the unknown function f(x,t):   
∂ ∂ ∂

+ + =
∂ ∂ ∂

2
2

2

1
2

f f f
rx b rf

t x x
      (3) 

Under reasonable assuptions for the drift and volatility functions a(x,t) and 
b(x,t), there is a unique strong solution on [0,T] for the stochastic process and 
for f, with f(x,T) =h(x) a given function.  Usually h(x) = max (x-K,0); K is the 
strike price.  f(x,0) is the price of an European call option with maturity T and 
strike price K,  for a given asset price x at t=0. 
 
In general there is no closed formula for f(x,t), unless the above mentioned 
stochastic differential equation has a = constant and b(x,t)/x = constant.  
 
When can we make a change of variables to transform the equation (3) to the 

heat  equation  + =
1

0
2t xxh h  (4)?  By a change of variables , we mean the 

existence of functions c(t) and H(x,t), such that for any f  which is solution of 
equation (3) ,  c(t)f(H(x,t), t) will be a solution for  the equation 4).  
                               
 We will discuss the same question if we have a basket or rainbow option ( it 
depends on at least two assets) .  We have in fact an equivalence relation on 
the set of PDE’s defined by (a,b,r), if we require (x,t) à (H(x,t), t) to be a 
diffeomorfism. 
 
2.1.1.If f satisfies (3) and ( )−= ⇒( , ) , ,rt rtf x t e g e x t  = + −rt

t t x xf rf e g r g ,             

=x xf g  −= rt
x xxf e g  ⇒ g  satisfies + =21

0
2t xxg B g , where ( ) −=( , ) ,rt rtB x t b e x t e  

If ( )=( , ) ( , ),g x t u H x t t , where + = ⇒
1

0
2t xxu u  
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( )

= +
   = ⇒ + = − + + =     

= + 

2 2 2 2

2

1 1
1 0

2 2

t t x t

x x x t xx t x x t xx

xx xx x x xx

g u u H

g u H g B g u B H u H B H

g u H u H

 

 

For the particular case   = ⇒( , )u y t y H  is a solution of + =21
0

2t xxH B H   

⇒ − = ⇒ = ±2 2 1
1 0x xB H H

B
    

 ∂
= − = = ± 

∂  
2

1 1 1 1
2 2 2

xx
t x

xx

H
H B

x HH
 

 
 
∂ ∂ ∂ ∂ = ⇔ ± = ± ⇔ + = ∂ ∂ ∂ ∂ 

21 1 1
0, (5)

2 2x t x t xxH H B B B B
t x t B x

 

 
 
 

Also up to a sign = +∫
1

( , )
x

a

H y t dy C
B

. (8)    The general solution for the heat 

equation solution u is,  = − 
 

( , ) ,
2

xuxt V T t  

where  
− −

=
π ∫R

e

2| |
41

( , ) ( )
4

x y
tV x t e f y dy

t
   Jost  (2002, p.87, Section 4.2 multidim 

heat eq.) 
 
 
 

If B = 1/f, where + =21
0

2t xxB B B , then ∂  + = ∂  
2

1 1
0

2t xf f
x f

          (5) 

This is the necessary and sufficient condition, (5) which has to be satisfied by 
the local volatility b, or equivalently B,or f,  for the existence of a function H 
which transforms any solution of the heat equation in a solution of (3). c(t) is 
an exponential function. In this case, the volatility b itself will be an option price 
for its own Black-Scholes equation. 
 
2.1.2   The Lie symmetries of this nonlinear heat equation were studied in 
Vaneeva (2008). In Nadjafikhah (2010) appears as a particular case of a 
general type of   Burgers equation. Both papers study the infinitesimal 
generators of 1-dim symmetry groups. The following solution was extracted 
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from Polyanin (2004, pag 43), having in this way a class of parameter-
dependent solvable stochastic models to be calibrated    against real data:   
 

1
2 222(   )

( , ) ( ) , ( ) 2 (2 2) ,
( )

x A
w x t B x A t t C a t

t

−
 − +

= + + ϕ ϕ = − + ϕ 
 

 
2.2.   We will show that  the theory of Hermite polynomials in two variables  
provide solutions of the equation 5) above „for free”.   
2.2.1 Theorem 2.2.1. Let = ( , )t n ty H B t be  the stochastic process defined by 
the nth Hermite polynomial in two variables. Then ty satisfies a driftless Ito 
stochastic differential equation whose local volatility function satisfies the 
equation above. 
 
There are several ways to define Hermite polynomials in one and two 
variables: 

=0 1H      =1H x        = −2
2H x t         = −3

3( , ) 3H x t x xt         
= − +4 2 2

4 ( , ) 6 3H x t x x t t  
 

�

−
= −

2 2

2 2( ) ( 1)
x xn

n
n n

d
H x e e

dx
        

∞ −

=

=∑
2

2

0

( , )
!

y tn xy

n
n

y
H x t e

n
       �

 
=  

 
2( , )
n

n n

x
H x t t H

t
, 

where �nH  are above defined Hermite polinomials of one variable. 

They are monic polinomials which satisfy  � � = π γ∫
2

2( ) ( ) 2 !
x

m n mnH x H x e n  and  

(eq. 9)  + =
1

0
2t xxH H   Widder (1975) p. 9.    

 
 In stochastic Ito integration theory, they satisfy the fundamental relation:         

( ) ( )+=
+∫

1

0

,
,

1

t
n t

n S S

H B t
H B S dB

n
       

2.2.2.  Quasi-homogenity. Partial differential equations. 

  We have saw that if 21
0

2t xxB B B+ = ⇒  there is W, solution for the heat 

equation  1
0

2t xxW W+ =  such that 1
( , ) ,

x

B x t W t
B

 
=  

 
∫ . In the special  case of the 
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Hermite polynomials, 1
'n

B
f

=  where ( ) ( )= ⇒ =, ,n n nH f t x B W f t .For 

( ) ( )= ⇒ =, ( , ), ( , )n n nx H f t B H x t t W x t .  
So B is determined by a solution W of the heat equation. (but not on any 
solution) 

( ) ( )2 ( ), ,
n

nB t h x t W x t t= ,  where h is a one variable Hermite polynomial. 

It is easy to see from the definition of nH  that ( )α β=( , )B x t t q xt , which forces  

( , )
x

W x t ta
t

 
=  

 
.  An easy computation show − + ='' 2 ' 0a xa a  in order for w to 

satisfy the heat equation.  For = fa e  

( )( )⇒ + − + =
2

'' ' 2 ' 0f f fe f f xe f e ( ) ( )2 2 2'' ' 2 ' 1 0 '' ' 1f f xf f f x x⇒ + − + = ⇔ + − = − . 

 

If = − ⇒ = − ⇒ + + = − ⇒2 2' ' '' 1 ' 1 1g f x g f g g x  
2 2' 2g g x+ = −    (2) 

 

If ( ) ( )= ⇒ + = − ⇒ = − ⇒
||2 2 2' '' ( ') 2 2h hg h h h x e x e  ( )2'' 2A x A= −    (1) 

 
These are the ordinary differential equations connected with 
quasihomogenous solutions of eq. 5   The general solution of eq. 1 is 

( ) ( )1 1 2 3
2 2

( ) 2 2y x c D x c D i x
−

= +  , where VD  is the parabolic cylinder function.  
2

22 4 1 1 1
( ) 2 , ,

2 2 2

V z

VD z e U V z
−  = − 

 
  , U is the confluent hypergeometric function of 

the first kind. The equation 2 is a Riccati equation, whose general solution is 

also written using VD . 
1

1 1

0

( )
( , , ) (1 )

( ) ( )
t a b ab

U a b z e t t dt
b a a

− − −Γ
= −
Γ − Γ ∫ , where     

1

0

( ) z tz t e dt
∞

− −Γ = ∫ .  

 
3. In a totally different context, the equation 5) , and one of its solution which 
generate the hyperbolic model in finance is mentioned in the book of Henry-
Labordere (p.367 eq. B.7).  
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The hyperbolic model is given by 2( , ) ( ) ( ) ( )t f a t f b t f c tσ = + + , , 0( )a t a= , 

0( )b t b= , ( )0 0
0( ) a t a tc t c e K e− −= +  

 
He proves that if the forward satisfies Ito SDE   ty =σ( , )ty t dW and  σ satisfies 
the equation 5), then ty  can be exactly simulated using Monte Carlo methods, 
because ty  is a functional of Brownian motion, according to Yamato theorem. 
We shortly review theoretical elements of his approach: 

Let  tX n-dimensional solution of the Stratonovich SDE   0
1

m
i

t i t
i

dX V dt V dW
=

= +∑ o   

(12) 
   Notation: 0

tdt dW= . For any differentiable function f, we have the 
Stratonovich Taylor  expansion 
( ) ( ) ( )1

1 2 1

1 1 2

0 0
, , 0

Iterated  Stratonovich  Integrals

, ,k

k k

k k

i i
T i i i t t r

i i r t t t T

f X V V V f X dW dW R T X f
≤ ≤ ≤ ≤ ≤

= +∑ ∫
K

K

o oKo oKo

1444442444443

 

 
(2) A Hopf algebra is a vector space H together with operations m, ∆ , E, η  
and S such that ( ),H m  is an associative algebra  ( ) ( )a bc ab c= . ( , )H ∆  is a 
coalgebra ∆ → ⊗:H H H , ∆⊗ ∆ = ⊗ ∆ ∆o o( ) ( )id id , ,ε η  unit and counit such that 

( ) ( )( )xy x y∆ = ∆  (compatibility between algebra and coalgebra structures. 
 
S is called the antipode of H.    :S H H→  such that  

( ) ( )= = ε∑ ∑1 2 1 2 ( )1H
S a a a S a a , where ∆ = ⊗∑ 1 2( )a a a .     The vector fields 

0 1, , , mV V VK  form a Hopf algebra; multiplication is given by concatenation of 
vector based “words” 

1 2
, , ,

ki i iV V VK ,         ( ) 1 1V V V∆ = ⊗ + ⊗      

( )
1 2 1 1
, , , ( 1) , , ,

k k k

k
i i i i i iS V V V V V V

−
= −K K . 

 
Definition. L H∈  is called primitive if ∆ = ⊗ + ⊗( ) 1 1L L L . g H∈  is called 

grouplike if ( )g g g∆ = ⊗ .The exponential map 
0

1
exp( )

!
k

k

x X
K

∞

=

=∑  make sense if 

the series is finite or we work in a certain completion of H. If L is primitive, 
then exp( )L  is grouplike. 
 
Theorem (Chen)  
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1

1 2 1

1 1 2

0,1
, , 0 1

( ) , , , k

k k

k k

i i
i i i t t

i i t t t

X W V V V dW dW
≤ ≤ ≤ ≡

= ∑ ∫
K

K

K oKo  is grouplike 0,1( ) exp( )X W L=  for 

L a primitive series. 
 
Theorem (Yamoto). The solution tX  of the equation (12) is represented as 

( ) 0expt tX L X= , where    
1

0
1 2 , , k

m
i j j

t t i j t
i r i i r

L tV W V c W V
∞

= = ≤

= + +∑ ∑ ∑
K

, 

j
tW  are iterated Stratonovich integrals      

1 2 1
,

n

j
j j jV V V V

+

   =    
K  iterated Lie brackets of vector fields. 

 
Corollary.(B1, pag. 366 Lobordere 2009 ) ( ),t t tdf t f dW= σ . If σ  satisfies 
equation 5), then 0V  and 1V  commute, they form a abelian Lie algebra and the 
SDE can be simulated exactly using Monte-Carlo methods. 
 
3.1    Hopf algebra structures in the theory of the classical and quantum 
stochastic flow. 
 
We review the appearance of Hopf algebras in the Hudson’s approach on 
quantum stochastic calculus, an Ito differential calculus for quantum noises. 
(Belavkin 2008, pag 34) 
Let A be an associative algebra over the complex numbers. 

Over the tensor algebra 
∞

⊗

=

= ⊕⊕
1

( ) K

k

T A AC  there are two structures of Hopf 

algebras, with the same comultiplication, but different multiplications 

( ) ( ) ( )+
=

∆ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗∑K K K1 2 1 2 1
0

n

j j nn
j

L L L L L L L L  

The shuffle product#  between two homogenous elements is 
( ) ( ) ( )+⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗∑K K K1 2 1 2 1 2n m m na a a b b b c c c# , where the sum is 

over all 
m n

n

+ 
 
 

 ways to “shuffle” 'a s  among 'b s : the elements 1 2, , , na a aK  will 

appear in the some order in 'c s . The some for 'b s .  Example:  
⊗ ⊗ = ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ +

+ ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗ + ⊗ ⊗ ⊗

( ) ( )a b x y x a b y a x b y a b x y

x y a b x a y b a x y b

#
 

#  is called shuffle product; together with the comultiplication ∆ , ( )T A  is a 
Hopf algebra.   The Ito product (called sometimes the “Stuffle” product) uses 
the algebra structure of A: 
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( ) � ( ) ( )+ −
=

⊗ ⊗ ⊗ ⊗ ⊗ ⊗ = ⊗ ⊗ ⊗∑ ∑K K K

min( , )

1 2 1 2 1 2
0

m n

n m m n j
j

a a a b b b c c c#  

In the second sum, ic  is equal to on aα , bβ  or a product i ja b . 
As in the #  product, the order, the appearance of a’ and b’ respects the initial 
order of 1 2 na a a⊗ ⊗ ⊗K  and 1 2 mb b b⊗ ⊗ ⊗K  
The Shuffle product is in fact an Ito product for the trivial algebra 0,xy x= ∀  
and y . The antipode 

�
( ) −⊗ ⊗ ⊗ = − ⊗ ⊗ ⊗ +K K1 2 1 1( 1)mn n nS a a a a a a

#
  lower order 

terms  It was described in Hudson (2009, section 4) 
 
The algebra of Ito differentials of on n-dimensional  quantum stochastic 
calculus is , , 0,1, ,A dA nβ

α= < α β = >KC ,    β γ β
α αγ= ρx xdA dA dA   ρ  is Kronecker 

symbol.  
In this case the Ito Hopf ( )T A  acts weekley on the Fock space ( )2 nL + ⊗R C . 

There are also well defined iterated stochastic integrals ( )β β
α α⊗ ⊗K

1
1

b
n

a n
J dA dA  

= ( ) ( ) ( )β β β
α α α

< < < < <

⊗ ⊗ ⊗∫
K

K

1 2

1 2

1 2

1 2
n

n

n

n

a s s s b

dA s dA s dA s   seen as operators in the Fock 

space. In this way, Fubini and integration by parts theorems in Ito calculus are 
retrievied using the concept of Ito Hopf algebra and its (weekly) 
representation. 
 
Examples:Theorem 5.1. (Belavkin 2008, pag 42) 

( ) ( ), ( ) ( ) ( ), ( ) ( )b b b
a a aJ x e f J y e g e f J xy e g< >=< >  

Theorem 5.2. (Belavkin 2008, pag 43):   ( )( )c c b c
a a a bF b J J J= ⊗ ∆ , where ( )c

aF b  is a 

splitting isomorphism for a b c +< < ∈R .  (Guta 2008, pag 42-43) Hudson 
obtained in this way a Fock space representation of Brownian motion and 
Poisson processes. A Fock space is  the Hilbert space completion of the 
space of exponential vectors ( )jΨ , ( )2 ,f L +∈ R C  unde the inner 

product.
0

, ( ) ( )f g f s g s ds
∞

= ∫ .         

 
We prove the following:  
Theorem 3.2. There  is a Hopf algebra isomorphism between the shuffle Hopf 
algebra ( )T A#  and the Ito Hopf algebra ( )T A , where A is the algebra of   Ito 
differentials, for the special algebra A associated with the classical Ito 
calculus:     = =K0 1, , , , 0n i jA a a a a aR , for i j≠ , 2

0ia a=  for 0i ≠ . 
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Proof:  The result is algebraic; but the proof is based on the interplay between 
Ito and Stratonovich iterated integrals.   We define →: ( ) ( )f T A T A#  

( )
1 2 1 2n ki i i i i if a a a a a a⊗ ⊗ ⊗ = ⊗ ⊗ ⊗∑∏K K  is such a way that the Ito iterated 

integral with respect to the n-dim Wiener process 
1 2

0
n

t

i i iI dW dW dW= ∫ K  is a sum 

of products of Stratonovich integrals;  to prove that f is bijective:  using 
Corollary 5 and Proposition 6 from (Gaines 1995); which says that the Ito Hopf 
algebras ( )T A  and ( )T A#  have the same basis formed by Lyndon words; 
 
         

Platen-Kloeden (1992, pag 174) 
( )

( )

1
2w nn u

u D w

J I
∈

= ∑     ( )D w = the set of word 

obtained from W by replacing two adjacent equal indices of W by 0.    
−

−
= ∫ ∫ ∫K K

1 2

2

2 1
0 0 0

( )
n

k n

n n

t tt
a a a

W t t tI t dW dW dW   are Ito iterated integrals.    

( )

( )
( )

( 1)
2

u
Ito Strat
W un u

u D W

J J
∈

−
= ∑ .     

references very helpful in describing the relations between multiple Ito and 
Stratonovich integrals, as well as Ito and Stratonovich stochastic Taylor 
expansions:Kim, Jong (2006), Kloeden, Platen (1991), Gaines (1994), Ben 
Arous (1989), Kallianpur (1997), Takanobu (1995), Hu (1988) 
 
The Hopf algebras met in Mathematical Finance ( that of Malham (2009, Sect 
2b,c), Hudson (2005, Section 4) and Foissy (2010) are graded and connected 
bialgebras, so they have automatically an antipode according to Milnor-Moore 
Theorem. There is also a specific formula for the antipode of these Hopf 
algebras (called Takeuchi or Milnor-Moore formula), described in Mahajan & 
Aguiar (2010, pag 248, Prop. 8.13 and 8.14, and pag 36, formula 2.55 and 
remark 2.10) . 
 In Econophysics (quantum field theory) and the applications above, the 
antipode is used in the way iterated stochastic integrals are changing if we 
change the orientation of the simplex. 
 
4.0. Multi-dimesional diffusion processes. Reduction to the heat 
equation. 
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A similar question is : given an n-dimensional stochastic differential equation 
which describes the evolution of a basket of n asset prices, when does the 
option pricing Black-Scholes equation can be transformed, in a specific sense 
which is described below, to the heat equation in nR ? {

iW } are n 
independent standard Brownian motions. The risk neutral dynamics of n 
stocks is given by:  µ µ µ= + σ∑ ( ( ), )t t i i

i

dX rX dt X t t dW .  r is a constant interest rate.   

Define       ( , ) i i
i

G x tαβ α β= σ σ∑  

Following Henry-Labordere (2009) (The reference contains the sufficient 
conditions for the existence and uniqueness of the strong solutions for a 
stochastic differential equation SDE (e.g.Kunita-Watanabe conditions, as well 
as the equivalence between 2 Ito forms of SDE using correlated or 
uncorrelated Brownian motions, via Choleski decomposition of the matrix 

αβ( , )G x t ), the multidimensional Black-Scholes option pricing equation is : 

( )1
( , )

2t i if x t G f r f x fαβ
αβ∂ + = − ∂    (1) Then 

( ) ( )1 2 1 2, , , , , , , ,rt rt rt rt
n nh x x x t e f x e x e x e t−=K K  satisfies      1

0
2th g hαβ

αβ+ =    (2)            

where ( )αβ αβ −= 2( , ) ,rt rtg x t G xe t e .    

   ( αβh    partial derivatives of h  with respect to 2 variables ) 
Definition: We say that the eq. 2 is equivalent to the heat equation if there are 
n functions 1( , ), , ( , )nH x t H x tK , t time and x in nR   such that for any W, solution 

of 
2

2
1

1
0

2

n

t
i i

W
W

x=

∂
+ =

∂∑  (6), ( )1( , ), , ( , ), ( , )nW H x t H x t t h x t=K  is a solution of (2). And 

for any h solution of (2), there is a W as above. 
 
  
4.1 Econophysics.   There is a path integral approach in computing certain 
financial and quantum mechanics observables. A path integral is a limit of a 
sequence of finite dimensional integrals. Also, Feynman –Kac formula 
connects the solution of  the B.S. equation with probability theory .    The 
transition probability function, or the Green kernel is computed as an integral 
over the space of all paths, where we assign a probability to each path.  
 

, ( ) ( )( , ) ( ( )) ( ) ( ( )) ( ( ), | ( ), )t x r T t r T tf t x E e h XT dXT e h XT p XT T xT t− − − − = =  ∫    

 
, ( ) ( )( ( ), ) ( )t S t r X TO S t t E e e− τ =  F , T tτ = −  
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Taddei and Linetzki  proposed a Lagrangian functional which can be used to 
approximate the Green kernel. Instantons are solutions of the Euler-Lagrange 

equation , ( ( ), ( ), ) 0
( ) ( )

d
L x t x t t

dt x t x t

  ∂ ∂
− =  ∂ ∂  

&     which are paths with extreme 

probabilities and which can be used to approximate p(a,b| x,y).  Geodesics of 
a Riemannian manifold are also solutions of the the Euler-Lagrange equation 
associated with the energy functional, and this could be the first interplay with 
differential geometry. Batard and Henry-Labordere wrote down a covariant 
formulation of the Black-Scholes equation, involving a generalized Laplacian 
associated with a connection in a vector bundle.  Roughly speaking, a 
covariant formulation implies to write equations and formulas using quantities 
which behave like covariant or contravariant tensors, as in  a change of 
variables in a multiple integral.  
 
Page 2-3 
 
 We go back to the equation 2 from this chapter:  

( ) ( ) 1ijg g
−

αβ =  is the inverse of the matrix given by αβ ( , )g x t . Taddei(1999)  

define a general Lagrangian, which for a driftless SDE is equal to   

[ ] 1 1
, ,

2 12
L x x t g x x Rα β

αβ= +& & & , where R is defined in the following way:  

, ,

ij k
ikj

i j k

R g R= ∑ ,
a a

a k a k abc ad
bcd bc dk bd ck

kd c

P P
R P P P P

X X
∂ ∂

= − + −
∂ ∂ ∑ , where P are defined below: 

1
2

a ka ck bk bc
bc

k b c k

g g g
P g

X X X

 ∂ ∂ ∂
= + − 

∂ ∂ ∂ 
∑ .  

     
If  0R ≡  in a coordinate system (that of the heat  equation) ⇒ 0R ≡  in any 
coordinates ⇒ we have an easy test to check if (2) could be equivalent to (6). 
For 2n = , the condition R=0 is not only necessary, but also sufficient. 

For 3n ≥  Eqs. ⇔(2) (6)  if and only if all 0a
bcdR = . These conclusions are the 

consequences of Rosenberg (1997, Theorem 2.10 pag 57, Ex.5 pag 60) and 
the following proposition: 
Proposition 4.1. If (2) ⇔  the heat equation in nR , then iH  and ( )ijg  do not 

depend on time. 
 
Page 3. 
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If the coefficients g’s depend on time, a covariant formulation of the Black-
Scholes equation is written as a generalized Laplacian which acts on the 
sections  Sect(E) of a vector bundle over a Riemann manifold. Any 
generalized Laplacian is equal to a connection Laplacian plus a linear 
endomorfism of Sect(E), according to a theorem of Berline, Getzler, Vergne . 
Batard (2011, Sections 3.1 ; 2.1).   The same problem, to simplify the form of 
the Kolmogorov (or Fokker-Planck) equations is sligthly more complicated; it 
implies that a sequence of scalar functions built using a metric of a 
differentiable manifold are invariant to coordinate-change; and we don’t have a 
simple answer  if the necessary conditions obtained using heat kernel 
expansion are also sufficient  (Vassilievich 2003, pag.31). 
 
 
 
 
5. Conclusions; possible applications and further directions. 
- the Hopf algebra structure of Ito differentials is isomorphic with a shuffle 
algebra. These shuffle algebras play an important role in the theory of Rota-
Baxter algebras  which contain a lot of algebraic and combinatorial identities.  
( Spitzer identity) 
 
The equation (5) which was written down in Section 2.1.1., related to 1-dim Ito 
processes for which we have a formula for the option pricing function, appears 
in different contexts: non-linear heat equations, solvable stochastic models 
from the point of view of Monte-Carlo simulation methods and computable 
path integrals.  The solutions of this equation generated by (the x-inverse of) 
Hermite polynomials are quasi-homogenous and their differential equations 
are solvable using hypergeometric functions.  Hermite polynomials appear in 
the theory of Wiener chaos (or polynomial chaos decomposition). Also, there 
are variants of multi-variables Hermite polynomials. We mention relevant 
references connected with orthogonal polynomials for Levy processes and 
Wiener chaos: Lawi (2008), Sole (2008), Peccati (2003), Wu (2010), 
Schoutens(1998), Debusschere (2004). 
 
Page 5 
 
We can begin with a given „basic” market model described by a stochastic 
differential equation, for which we have a formula for the Green kernel or 
Black-Scholes option pricing equation, and try to find, to write down, the partial 
differential equations satisfied by the local volatility function obtained using a 
change of variables, as above, where we start with the heat equation. Other 
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solvable models to start with , which are classified according to their Lie 
symmetries, can be found in Carr(2006).  
      
The applications of this approach goes back to the results of Dupire and 
Gatheral on local volatility surface and implied volatility surface. The local 
volatility fuction is equal to a functional of the Black-Scholes implied volatility 
surface and its one and second order derivatives Gatheral (2002, Section 2.3) 
Lee (2001, Section 2.2.1 ).  So, a partial differential equation (pde) satisfied by 
the local volatility will generate a pde satisfied by the implied volatility surface, 
and we have a class of implied volatility surfaces, determined by pds’s and 
boundary conditions, to be compared with real data. Dupire (1994), Armeanu 
(2009), Dumas (1998), Turinici (2009).   Page 6 
 
We have simple tests given by Prop. 4.1 and Riemann tensor { a

bcdR } to check 
if the Black-Scholes solutions are coordinate-changed solutions of the heat 
equations, for which we have a well –developed theory.   
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