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In this paper we study the dynamics and ergodic theory of certain
economic models which are implicitly defined. We consider:

I 1-dimensional and 2-dimensional overlapping generations
models;

I a cash-in-advance model;

I and a cobweb model with adaptive adjustment.

We consider the inverse limit spaces of the associated chaotic
invariant fractal sets and their metric, ergodic and stability
properties.
The inverse limits give the set of intertemporal perfect foresight
equilibria for the economic problem considered.
The common feature of all these models is that they are given by
non-invertible dynamical systems and present chaotic behavior.



In some of these models, we have hyperbolic horseshoes (as in the
cobweb model, see Onozaki, Zhang), in others transversal
homoclinic/heteroclinic orbits from saddle points (see the
heterogeneous market model, as in Foroni), or yet in others there
exist snap-back repellers as in the 1-dimensional and 2-dimensional
overlapping generations models for certain offer curves (see
Gardini, Tramontana).
Also in the case of unimodal maps modelling some overlapping
generations scenarios, we have chaotic behavior on repelling
invariant Cantor sets (as for the logistic map Fν with ν > 4, see
Medio, Robinson).

For such noninvertible dynamical systems, the inverse limits are
very important since they provide a natural framework in which the
system ”unfolds” and they give sequences of intertemporal
equilibria.



Definition
Given a continuous map f : X → X on a metric space (X , d), we
form the inverse limit (X̂ , f̂ ), where
X̂ := {x̂ = (x , x−1, x−2, . . .), f (x−i ) = x−i+1, i ≥ 1} and
f̂ : X̂ → X̂ , f (x , x−1, . . .) = (f (x), x , x−1, . . .), x̂ ∈ X̂ . We consider
the topology induced on X̂ from the infinite product of X with
itself.

In fact X̂ is a metric space with the metric

d(x̂ , ŷ) =
∑
i≥0

d(x−i , y−i )

2i
, x̂ , ŷ ∈ X̂



Another important feature for economic dynamical systems is that
of stability. We are interested if a certain model is stable on
invariant sets at small fluctuations. In our case, since we work with
infinite sequences of intertemporal equilibria, one would like to
have stability of the shifts on the inverse limit spaces.

The standard method of studying evolution of a system in
economics is to use dynamical systems which transfer exogeneous
”shocks” to the system. However a system which presents chaotic
behavior, has also complicated endogeneous fluctuations.
Even if the system is defined deterministically, still it may be
impossible to describe quantitatively precisely its evolution, due to
sensitivity to initial conditions.

We will use the notion of chaotic map several times. We say that
f is chaotic on an invariant set X if f is topologically transitive on
X and f has sensitive dependence on initial conditions.



We study then utility functions on inverse limits for noninvertible
economic systems. Invariant measures for a dynamical system are
important since they preserve the ergodic and dynamical properties
of the system in time; in fact from any measure one can form
canonically an invariant measure by a well-known procedure.

For a central government it is important to know or to estimate
the average value of a certain utility function for a non-invertible
economic model.

We rank utility functions of systems given by certain unimodal
maps according to their average values with respect to invariant
borelian measures µ̂ on the inverse limits, especially with respect to
measures of maximal entropy. For certain expanding systems,
namely for logistic maps Fν , ν > 4 we are able to compare the
average utility values with respect to the corresponding measures
of maximal entropy when perturbing both the discount factor β of
the utility W , as well as the system parameter ν > 4.



Let us remind several examples of economic dynamical systems,
which are non-invertible:

1. The 1-dimensional overlapping generations model.
This model was proposed initially by Grandmont. In this model we
have an economy with constant population divided into young and
old agents, and with a household sector and a production sector. A
typical agent lives for the 2 periods, works when young and
consumes when old and receives a salary for his work in the first
period. There is a perishable consumption good and one unit of it
is produced with one unit of labour.

If money is supplied in a fixed amount, say M, then we have at
time t, that wt`t = M, where wt is the wage rate and `t is the
labour. At the same time, M = pt+1ct+1 where pt+1 is the
expected price of the consumption good at time t + 1 and ct+1 is
the amount of future consumption. Now agents have an utility
function of type U = V1(`∗ − `t) + V2(ct+1) where `∗ is the fixed
labour endowment of the young and `∗ − `t is the leisure at time t.



Agents would like to have both as much leisure currently as well as
consumption when old. Thus under the budget constraint from
above M = wy `t = pt+1ct+1 the optimization problem above
gives, by the method of Lagrange multipliers, an implicit difference
equation: `t = χ(ct+1), where χ(·) is the offer curve.

Since by assumption one unit of labour produces one unit of
consumption good, we have `t = ct , hence by denoting `t by yt ,
we obtain

yt = χ(yt+1) (1)

As Grandmont showed, in many cases the offer curve is not given
by a monotonic/injective function, making (1) a non-invertible
difference equation. Thus for a level of consumption at time t
there may be several levels of optimal consumption at time t + 1.
In this case we study the backward dynamics of the system, i.e the
sequences of future consumption levels allowed by (1).



The backward dynamics given by relation (1) is chaotic in certain
cases. For instance a condition was given by Mitra in order to
guarantee the existence of a snap-back repeller. Let us first recall
the definition of snap-back repeller and that of one-sided shift:

Definition
Let a smooth function f : U → U, where U is an open set in
Rn, n ≥ 1. Suppose that p is a fixed repelling point of f , i.e all the
eigenvalues of Df (p) are larger than 1 in absolute value, and
assume that there exists another point x0 6= p in a repelling
neighbourhood of p, so that f m(x0) = p and
detDf (f i (x0)) 6= 0, 1 ≤ i ≤ m. Then p is called a snap-back
repeller of f .

Definition
We will denote by Σ+

m (where m ≥ 2) the space of 1-sided infinite
sequences formed with m symbols, i.e
Σ+
m = {(i0, i1, i2, . . .), ij ∈ {1, . . . ,m}, j ≥ 0}. We have the shift

map on Σ+
m, namely σm : Σ+

m → Σ+
m, σm(i0, i1, . . .) = (i1, i2, . . .).

The space Σ+
m is compact with the product topology.



Snap-back repellers appear only for non-invertible maps, and are
important since they are similar to transverse homoclinic orbits.

Theorem (Marotto)

Let p a snap-back repeller for a smooth non-invertible map f and
O(x0) a homoclinic orbit of x0 towards the repelling fixed point p,
i.e O(x0) = {. . . , x−i , . . . , x0, f (x0), . . . , p}, with
f (x−i ) = x−i+1, i ≥ 1. Then in any neighbourhood of the orbit
O(x0) there exists a Cantor set Λ on which some iterate of f is
topologically conjugated to the shift on the space Σ+

2 of one-sided
infinite sequences on 2 symbols. Hence f itself is chaotic on Λ.



For many economic models, the offer curve χ(·) is given by a
smooth (or piecewise smooth) unimodal map.

A continuous map f : [a, b]→ [a, b] is called unimodal if f is not
monotone and there exists a point c ∈ (a, b) so that f (c) ∈ [a, b]
and f is increasing on [a, c) and decreasing on (c , b].

Type A unimodal maps are unimodal maps satisfying f (a) = a and
f (c) < b. Type B unimodal maps are those satisfying f (a) > a
and f (b) = a. Type C maps are of the form f : [a, b]→ R s. t f is
not monotone, f (a) = f (b) = a and f (c) > b. Type C maps are
not strictly speaking unimodal as the map f does not take
necessarily values inside the same interval [a, b], but in general
they are considered ”unimodal” too.



In certain cases when the offer curve χ is unimodal, one can find
snap-back repellers:

Theorem (Hommes, Tramontana)

Let χ : I → I be a unimodal smooth function on the unit interval,
with a maximum point at xm and a fixed point at x∗. If
χ3(xm) < x∗, then x∗ is a snap-back repeller and thus there exists
an invariant Cantor set Λ ⊂ I on which an iterate of χ is
topologically conjugate to the shift; so χ is chaotic and has
positive topological entropy.



2. The 2-dimensional overlapping generations model.
As before we have an economy with two sectors, a household and a
production sector. The household sector is the same, hence with
perfect foresight we have for the offer curve χ(·): `t = χ(ct+1).
By comparison, output is now produced both from labour `t
supplied at time t by the household sector, and by capital stock
kt−1 from the previous period t − 1, supplied by non-consuming
companies which tend to maximize profits. The output yt is the
minimum between `t and kt−1/a, where 1/a is the productivityy of
the capital. We assume that the capital stock available at the
begining of period t + 1 is kt = (1− δ)kt−1 + it , where 0 < δ < 1
is the depreciation rate of the capital and it is the investment, i.e
the portion of the output at time t which is invested in the next
period. Thus the consumption at time t is ct = yt − it , and at
equilibrium we have yt = `t = kt−1

a .
One obtains then the second order difference equation:

yt = χ[a(1− δ +
1

a
)yt+1 − ayt+2]



Hence by taking zt = yt and wt = yt+1 we obtain the implicitly
defined system of equations:{

zt = χ[a(1− δ + 1
a )zt+1 − awt+1]

wt = zt+1
(2)

In this model for certain parameter values, the fixed point x∗ is a
snap-back repeller, thus by the results of Marotto, in any
neighbourhood of the orbit of the snap-back repeller there is an
invariant set on which f is chaotic and conjugate to a 1-sided shift.



3. Cash-in-advance model.
There exists a government and an agent, where the government
consumes nothing and sets monetary policy. There exists also a
cash good and a credit good, and the agent has a utility function

of type
∞∑
t=0

βtU(c1t , c2t), where β ∈ (0, 1) is the discount factor.

The function U takes the form U(x , y) = x1−σ

1−σ + y1−γ

1−γ , with
σ > 0, γ > 0. The cash good c1t can be bought with money mt ,
which is carried over from period t − 1. The credit good c2t does
not require cash and can be bought on credit. Each period the
agent has an endowment y and c1t + c2t = y . We assume also
that the cash good costs the same price pt as the credit good. The
agent wants to maximize his utility function by a choice of
{c1t , c2t ,mt+1}t≥0 subject to constraints: ptc1t ≤ mt , and
mt+1 ≤ pty + (mt − ptc1t) + θMt − ptc2t , where Mt is the money
supply controlled by the government for a constant growth,
Mt+1 = (1 + θ)Mt . Denote by xt = mt/pt the level of real money
balance.



We obtain then an implicitly defined difference equation with a
non-invertible map f , i.e

xt = f (xt+1) (3)

For certain parameters, it can be shown that there exists an
invariant interval [xl , xr ] such that the map f has a periodic cycle
of period 3. Hence according to Li-Yorke classic result, the map f
is chaotic on that interval. In fact it can be shown that there exists
an invariant subset of [xl , xr ] on which the map is conjugate to a
subshift of finite type.



4. Cobweb model with adaptive adjustment.
In this model the supplier adjusts his production xt according to
the realities of the market while keeping the intention to reach a
profit maximum x̃t+1. It is met for instance in agricultural markets
where farmers who plant for example wheat cannot change their
crop during the same year/period. This is a hedging rule
xt+1 = xt + α(x̃t+1 − xt), with α ∈ (0, 1) the speed of adjustment.
The aggregate supply from n identical producers is Xt = nxt , and
the price is given by pt = c

Y β
t

, where Yt is the demand at period t

and c is a fixed parameter. We assume the market clears at each
period, i. e Xt = Yt . After a change of variable we obtain:

zt+1 = fα,β(zt) = (1− α)zt +
α

zβt
, (α, β) ∈ (0, 1)× (0,∞) (4)

This function has a unique fixed point z = 1, which is a repeller if
|f ′α,β(1)| > 1, i.e if β > 2−α

α .

Then Onozaki et. al. showed that there exists a number β̄ > 2−α
α

s.t for each β > β̄, f·,β(·) has a hyperbolic horseshoe in the plane.



Conclusions:
In the examples above there exist parametrizations in which the
noninvertible system is given implicitly as zt = f (zt+1) or directly
as zt+1 = f (zt), and has some hyperbolic set Λ (in general without
critical points) or a set where an iterate is conjugate to a 1-sided
shift. The hyperbolic case includes also the case with no
contracting directions, i.e the expanding case. The implicit
difference equation gives the backward dynamics of the model. We
notice that a point from the inverse limit Λ̂ given by
x̂ = (x , x−1, . . .) represents in fact a sequence of future equilibria
which are allowed by the backward dynamics; so in the notation
x̂ = (x , x−1, x−2, . . .), we start from a level of consumption of x ,
then at time 1 we have a level of consumption x−1, then x−2 at
time 2, and so on.



For the implicitly defined economic models given before, we have
seen that there exist invariant sets on which the function (or one
of its iterates) is conjugated to a shift on a symbol space; this
invariant limit set Λ is usually obtained from
homoclinic/heteroclinic orbits or snap-back repellers and thus we
have a hyperbolic structure on Λ.

Hyperbolicity is understood here in the sense of endomorphisms,
in which the unstable directions and unstable manifolds depend on
whole sequences of consecutive preimages (i.e elements of Λ̂), not
only on base points. We include in the hyperbolic case also the
case of no contracting directions, i.e the expanding case. For a
hyperbolic map f on a compact invariant set Λ and a small enough
δ > 0, we denote by W s

δ (x) the local stable manifold at the point
x ∈ Λ, and by W u

δ (x̂) the local unstable manifold corresponding to

the history x̂ ∈ Λ̂.



Let us prove that in this non-invertible hyperbolic case we have
stability of the inverse limits:

Theorem (M., 2011)

Let us consider one of the economic models from Section 1, given
by a dynamical system f having a hyperbolic invariant set Λ. Then
given any dynamical system g obtained by a small C2 perturbation
of the parameters of f , there exists a g-invariant set Λg and a
homeomorphism H : Λ̂→ Λ̂g such that ĝ ◦ H = H ◦ f̂ . Thus the
dynamics of ĝ on Λ̂g is the same as the dynamics of f̂ on Λ̂.



Notice also that by perturbations and by lifting to the inverse limit,
the topological entropy is not changed, i.e htop(g |Λg ) = htop(ĝ |Λ̂g

)

= htop(f |Λ) = htop(f̂ |Λ̂).

Definition
Consider a continuous function f : X → X which is non-invertible
on the compact set X contained in R or R2, and let X̂ be the
inverse limit. With β ∈ (0, 1) the discount factor, a utility
function on X̂ is a function W : X̂ → R,
W (x̂) =

∑
i≥0

βiU(x−i ), where

a) in the case X ⊂ (0,∞) we have

U(x) :=
min{1, x}1−σ

1− σ
+

(2−min{1, x})1−γ

1− γ
, x ∈ X , with σ > 0, γ > 0.

b) in the case X ⊂ (0, 1)× (0, 1), we have

U(x , y) :=
x1−σ

1− σ
+

y 1−γ

1− γ
, (x , y) ∈ X , with σ > 0, γ > 0.



The discount factor in the definition of W expresses the fact that
future levels of consumption in intertemporal equilibria become less
and less relevant to a representative consumer. In economic
models with backward dynamics we form as before the set of
intertemporal equilibria i.e the inverse limit Λ̂, where f |Λ : Λ→ Λ is
the restriction of the dynamical system f to a compact invariant
set Λ. In general f is assumed hyperbolic on Λ or conjugated to a
subshift of finite type of 1-sided sequences. The consumers/agents
have a utility function W given on Λ̂. A central government would
like to know the average value of W over Λ̂ with respect to certain
invariant probability measures.
In general one uses probability measures which are preserved by the
system; in fact from any arbitrary probability measure we can form
an invariant one, according to Krylov-Bogolyubov procedure.



For instance in the cash-in-advance model, the government is
controlling controls the money supply on the market by the growth
rule Mt+1 = (1 + θ)Mt , where θ > 0 is the growth rate. For each
θ there exists a different invariant interval [xl(θ), xr (θ)] and inverse
limit space Λ̂(θ). For a utility function W like in Definition 7,
economists are interested also in choosing the appropiate θ so that
the average value

∫
Λ̂(θ) Wd µ̂θ is largest, where µ̂ is an invariant

probability on Λ̂(θ). In this way given a certain utility function, we
can adjust the money growth rate θ in such a way that the average
utility value is largest.

Many times we want also to study systems from the point of view
of the measure of maximal entropy, which best describes the
chaotic nature of the model. Also one can be interested in
adjusting the discount factor β of W in order to maximize the
average utility value.



We will say below that a compact invariant set Λ is basic for f if
there exists an open neighbourhood V of Λ s.t Λ = ∩

n∈Z
f n(V ) and

if f is topologically (forward) transitive on Λ; such a set is also
called locally maximal. In general the invariant limit sets we have
considered in the economic models so far, are basic by
construction.

Theorem (M., 2011)

Let f : Λ→ Λ be a continuous topologically transitive map on a
basic set Λ as in the economic examples given, and let f̂ : Λ̂→ Λ̂
be its inverse limit space. Then there is a bijective correspondence
F between f -invariant measures on Λ and f̂ -invariant measures on
Λ̂, given by F(µ̂) = π∗(µ̂) (where π : Λ̂→ Λ, π(x̂) = x is the
canonical projection).
Moreover if in addition f is hyperbolic on the basic set Λ, then
there exists a unique measure of maximal entropy µ̂0 on Λ̂ such
that π∗(µ̂0) = µ0, where µ0 is the unique measure of maximal
entropy on Λ; and also hµ̂0(f̂ ) = hµ0(f ) = htop(f ).



We give now a formula for the average value of the utility with
respect to any invariant measure on the inverse limit.

Theorem (M. , 2011)

Consider a continuous non-invertible map f defined on an open set
V in R2 or in R, which has an invariant basic set Λ. Let also
W (x̂) =

∑
i≥0

βiU(x−i ) be a utility function on the inverse limit Λ̂ as

in Definition 7. Then for any f̂ -invariant borelian measure µ̂ on Λ̂
we have that the average value∫

Λ̂
Wd µ̂ =

1

1− β

∫
Λ

Udµ,

where µ = π∗(µ̂). If in addition f is hyperbolic on Λ and if µ0 is
the unique f -invariant measure of maximal entropy on Λ and µ̂0 is
the unique measure of maximal entropy on Λ̂, then µ0 = π∗(µ̂0)
and

∫
Λ̂ Wd µ̂0 = 1

1−β
∫

Λ Udµ0.



The average values of U on Λ̂g with respect to the corresponding
measures of maximal entropy, are easier to estimate than those on
inverse limits. Economists can use this information to compare
average utility values with respect to the corresponding measures
of maximal entropy for various perturbations, which in reality are
translated by adjustments of the money growth rates.

A case in which this average utility ranking can be applied nicely is
for the 1-dimensional overlapping generations economic model in
which the backward dynamics is given by a Type C unimodal map
(typically the logistic function Fν(x) = νx(1− x) with ν > 4). In
this case a central government can choose both the ν and the β
which maximize the average utility value over the set of
intertemporal equilibria, with respect to the measure of maximal
entropy (i.e the invariant measure describing the chaotic
distribution over time).



Corollary (M. , 2011)

Let a family of logistic maps given by Fν(x) = νx(1− x), x ∈ [0, 1]
with ν > 4; then Fν has an invariant expanding Cantor set Λν .
Consider also a utility function Wβ(x̂) =

∑
i≥0

βiU(x−i ) with

U(x) := min{1,x}1−σ

1−σ + (2−min{1,x})1−γ

1−γ , x ∈ (0, 1), for some σ >
0, γ > 0. Then∫

Λ̂ν

Wβd µ̂0 =
1

1− β

∫
Σ+

2

U ◦ h−1
ν dµ 1

2
, 1

2
,

where µ̂0 is the measure of maximal entropy on Λ̂ν , µ 1
2
, 1

2
is the

measure of maximal entropy on Σ+
2 and hν : Λν → Σ+

2 is the
itinerary map, i.e hν(x) = (j0, j1, . . .) s.t F k

ν (x) ∈ Ijk , k ≥ 0 where
F−1
ν ([0, 1]) = I1 ∪ I2, I1 ∩ I2 = ∅.


	Metric and ergodic properties on inverse limits of chaotic economic models.

