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Introduction

My interest arises in the study of a portfolio optimization problem in a
financial market, with investment options in:

1 a money market account;
2 a stock;
3 a corporative bond (which may default at some random time τ ).

Main idea: to decompose the the original optimization problem (which is
posed in an incomplete market, due to the jump of the wealth process at
default) into two subproblems in complete markets:

a pre-default problem (considered till the default time);
a post-default problem (after the post-default time).

The post-default problem is stated in the Merton framework (with no default)
and thus the corresponding optimal portfolio should be given by the Merton
optimal portfolio.
In what follows, we shall consider the cases of CRRA utility functions

logarithmic utility – U(x) = ln(x);
power utility – U(x) = xγ

γ , for 0 < γ < 1.
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The free-default market

Consider a probability space (Ω,F ,P) endowded a filtration (Ft), which is
the default-free market filtration (it is also called the reference filtration); it
stands for the natural filtration generated by a two-dimensional standard
Brownian motion W(t) := (W1(t),W2(t)).
Here

1 W1(t) stands for the source of randomness of the default-free market;
2 W2(t) stands for the source of randomness generated by the defaultable

asset.

The dynamics of the money market account are given by

dR(t) = R(t)r(t)dt, (1)

Assume that the short rate r(t) is stochastic and follows a Hull-White process

dr(t) = (a1(t)− b1(t)r(t))dt + σ1(t)dW1(t).
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The setting

The stock price process is a geometric Brownian motion with time-dependent
coefficients

dS(t) = S(t)(µ(t)dt + σ(t)dW1(t)); S(0) = S0.

We adopt the reduced form approach for the defaultable asset, i.e. the bond
may default at some random time τ which is not a stopping time with respect
to the default-free market filtration (Ft).
It satisfies

P(τ = 0) = 0 (the default cannot arrive at the initial time);

For any 0 < t < T , P(τ > t) > 0 (default can arrive at any time till
maturity).
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The defaultable asset

Define

the default indicator process Ht := 1(τ≤t);

the filtration generated by the default indicator process,
Ht := σ(Hs; 0 ≤ s ≤ t) – the minimal filtration with respect to which τ
is a stopping time;

the enlarged filtration (called also the full filtration) Gt := Ft ∨Ht.

Remark
Clearly τ is a stopping time with respect to the enlarged filtration!

Let Q be a risk-neutral probability (it will be specified later).
Set Ft := Q(τ ≤ t|Ft).
Then Ft is clearly a bounded non-negative Ft - submartingale.
According to the Doob-Meyer decomposition it can be written as the sum of a
martingale and an increasing process. Assume that the martingale part is 0.
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The defaultable asset

If Ft is absolutely continuous with respect to the Lebesque measure, then

Ft = Q(τ ≤ t|Ft) =

∫ t

0
fsds,

where (ft) is a non-negative Ft-adapted process.

Define Γt := − ln(1− Ft). Γt is called the hazard process of τ under Q,
conditionally on Ft.
Since Ft is increasing, then Γt is also increasing and Γt =

∫ t
0 λsds. λt is called

the conditional hazard rate of τ given the free default filtration.
We have the following formula relating λt to ft

λt =
1− Ft

ft
.

We assume that λ(t) follows a Hull-White process

dλt = (a2(t)− b2(t)λt)dt + σ̃1(t)dW1(t) + σ̃2(t)dW2(t). (2)

Bogdan Iftimie (IMAR) A Portfolio Optimization Problem with Stochastic Interest Rate and a Defaultable Bond 6/267.10.2011 6 / 26



The defaultable asset

If Ft is absolutely continuous with respect to the Lebesque measure, then

Ft = Q(τ ≤ t|Ft) =

∫ t

0
fsds,

where (ft) is a non-negative Ft-adapted process.
Define Γt := − ln(1− Ft). Γt is called the hazard process of τ under Q,
conditionally on Ft.
Since Ft is increasing, then Γt is also increasing and Γt =

∫ t
0 λsds. λt is called

the conditional hazard rate of τ given the free default filtration.

We have the following formula relating λt to ft

λt =
1− Ft

ft
.

We assume that λ(t) follows a Hull-White process

dλt = (a2(t)− b2(t)λt)dt + σ̃1(t)dW1(t) + σ̃2(t)dW2(t). (2)

Bogdan Iftimie (IMAR) A Portfolio Optimization Problem with Stochastic Interest Rate and a Defaultable Bond 6/267.10.2011 6 / 26



The defaultable asset

If Ft is absolutely continuous with respect to the Lebesque measure, then

Ft = Q(τ ≤ t|Ft) =

∫ t

0
fsds,

where (ft) is a non-negative Ft-adapted process.
Define Γt := − ln(1− Ft). Γt is called the hazard process of τ under Q,
conditionally on Ft.
Since Ft is increasing, then Γt is also increasing and Γt =

∫ t
0 λsds. λt is called

the conditional hazard rate of τ given the free default filtration.
We have the following formula relating λt to ft

λt =
1− Ft

ft
.

We assume that λ(t) follows a Hull-White process

dλt = (a2(t)− b2(t)λt)dt + σ̃1(t)dW1(t) + σ̃2(t)dW2(t). (2)

Bogdan Iftimie (IMAR) A Portfolio Optimization Problem with Stochastic Interest Rate and a Defaultable Bond 6/267.10.2011 6 / 26



The defaultable asset

If Ft is absolutely continuous with respect to the Lebesque measure, then

Ft = Q(τ ≤ t|Ft) =

∫ t

0
fsds,

where (ft) is a non-negative Ft-adapted process.
Define Γt := − ln(1− Ft). Γt is called the hazard process of τ under Q,
conditionally on Ft.
Since Ft is increasing, then Γt is also increasing and Γt =

∫ t
0 λsds. λt is called

the conditional hazard rate of τ given the free default filtration.
We have the following formula relating λt to ft

λt =
1− Ft

ft
.

We assume that λ(t) follows a Hull-White process

dλt = (a2(t)− b2(t)λt)dt + σ̃1(t)dW1(t) + σ̃2(t)dW2(t). (2)

Bogdan Iftimie (IMAR) A Portfolio Optimization Problem with Stochastic Interest Rate and a Defaultable Bond 6/267.10.2011 6 / 26



A Remark

Remark
It is usually assumed that market risk and default risk are correlated, so it
would be convenient to represent f (t) as

dλt = (a2(t)− b2(t)λt)dt + σ1(t)dB(t), (3)

where the Brownian motions W1(t) and B(t) are correlated and let
ρ(t) := E(W1(t)B(t)) = 〈W1,B〉t their cross variation process which it is
assumed deterministic in the subsequent.
Notice that this leads to the same formulation, since if we define

W̃1 := W1(t)

and

W̃2(t) :=

∫ t

0

1√
1− ρ2(s)

dB(s)−
∫ t

0

ρ(s)√
1− ρ2(s)

dW1(s),
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Recovery at Default

then W̃1(t) and W̃2(t) are independent standard Brownian motions.
We would get then for λ(t) a similar dynamics similar to (3).

We adopt the recovery rate at default given by the recovery of the market
value at default RMV (see Duffie and Singleton (1999)).

At the time of occurence of the default (if it occurs) the bond cesses to exist
and the holder of the bond receives a compensation z(t) given by a proportion
of the pre-default value of the bond

z(t) = (1− L(t))D(t−,T),

where

D(t,T) stands for the value of the bond at time t (it has a jump at the
default time τ ) and D(τ−) stands for the value prior to default;

L(t) stands for the loss-rate.
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Price of the defaultable bond

The price at time t of a defaultable zero-coupon bond with maturity T and
recovery z(t) is given by (see Bielecki and Rutkovski (2004))

D(t,T) = EQ
(

1(τ>T)e
−

∫ T
t ruduX + 1(t<τ≤T)e

−
∫ τ

t rudszτ
∣∣∣Gt

)
= 1(τ>t)E

Q
(

e−
∫ T

t (ru+λu)duX +

∫ T

t
e−

∫ s
t (ru+λu)duzsλsds

∣∣∣Ft

)
,

(4)

where EQ stands for the expectation with respect to the probability measure Q.

In the case of recovery of the market value at default

D(t,T) = 1(τ>t)E
Q
(

e−
∫ T

t (rs+λsLs)ds)X|Ft

)
:= 1(τ>t)B(t,T), (5)

where B(t,T) can be viewed as the pre-default value of the bond and may be
seen as the value of a non-defaultable bond with

default-risk adjusted interest rate r̂t := rt + λtLt;

credit spread given by r̂t − rt = λtLt.
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The wealth process

Consider an investor who can invest in the assets specified from above.
We denote by NR(t), NS(t) and ND(t) the quantity of each asset (money
market, stock respectively defaultable bond) detained by the investor at time t.
NR(t) and NS(t) are assumed (Ft) predictable processes and ND(t) a (Gt)
predictable process.

The wealth process is given by

X(t) = NR(t)R(t) + NS(t)S(t) + ND(t)D(t,T)

and is assumed self-financed, which means that

dX(t) = NR(t)dR(t) + NS(t)dS(t) + ND(t)dD(t,T). (6)

Set πR(t), πS(t) and πD(t) the corresponding fractions of wealth, i.e.

πR(t) :=
NR(t)R(t)

X(t−)
, πS(t) :=

NS(t)S(t)
X(t−)

, πD(t) :=
ND(t)D(t−,T)

X(t−)
.
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Decomposition of the investment strategy

The self-financing condition imposed on the portfolio reads

dXπ(t) = Xπ(t−)

(
πR(t)

dR(t)
R(t)

+ πS(t)
dS(t)
S(t)

+ πD(t)
dD(t,T)

D(t−,T)

)
. (7)

The strategy π(t) adopted by the investor can be decomposed in a pre-default
strategy π(t) (for t < τ ) and a post-default strategy π(t) (for t > τ ), according
to which the wealth process evolves as

dXπ(t) = Xπ(t)
(

(1− πS(t)− πD(t))r(t)dt + πS(t)µ(t)dt

+ πS(t)σ(t)dW1(t) + πD(t)
1

B(t,T)
dB(t,T)

)
, for t < τ,

(8)

respectively
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Admissible portfolios

The jump of the wealth process in the default time τ is

∆Xπ(τ) = Xπ(τ)− Xπ(τ−) = ND(τ)z(τ)− ND(τ−)B(τ−,T)

= −ND(τ)L(τ)B(τ,T) = −Xπ(τ−)πD(τ)L(τ),

by the left-continuity of πD(t) and the continuity of B(t,T).
Then

Xπ(τ) = ∆Xπ(τ) + Xπ(τ−) = Xπ(τ−) (1− πD(τ)L(τ)) .

The set A(x) of the admissible portfolios is determined by the bounded and
left-continuous portfolio processes (π(t))0≤t≤T such that

all the integrals appearing in the formulas (8) and (9) are well defined;

the initial endownement is given by the positive amount x, Xπ(0) = x;

the wealth remains positive during the investment process, i.e. for each
t ∈ [0,T], Xπ(t) ≥ 0, P a.s.
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The optimization problem

Our interest→ to maximize the expected utility (under the historical
probability P) of the investor from the final wealth over the class A(x) of
admissible portfolios.

The optimization problem is stated as

V(x) := sup
π∈A(x)

E[U(Xπ(T))] = sup
π∈A(x)

J(π), (10)

where the utility function U : (0,∞)→ R describing the preferences of the
investor

is a strictly increasing, strictly concave and continuously differentiable
function;

satisfies the Inada conditions: limx→0 U′(x) = +∞ and
limx→∞U′(x) = 0.
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Related citations

Continuous-time portfolio optimization problems were studied starting with
the papers of Merton ((1969), (1971), (1973)).
Other significant contributions

in the case of complete financial markets: Karatzas, Lehoczky and
Shreve (1987); Korn and Kraft (2001) - where the interest rate is
stochastic; Blanchet-Scaillet, El Karoui, Jeanblanc and Martellini (2008)
- where the time-horizon is random.

in the case of incomplete financial markets: Kramkov and
Schachermayer (1999), Jiao and Pham (2010) and Lim and Quenez
(2010) - in a market with counterparty default risk.
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Approaches

There are two possible approaches
1 the dynamic programming approach (as a tool of stochastic control

theory), leading to, in the case of
complete markets to some nonlinear PDE→ the Hamilton-Jacobi-Bellman
equation (which generally is not easy to solve);
incomplete markets to some BSDE;

2 the martingale approach→ using convex duality arguments (using the
properties of the convex dual of U).
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The convex dual of U

In this spirit of the martingale approach, define the convex dual function of U

U∗(x) := sup
y>0

(U(y)− xy). (11)

Remark
The function U∗(x) stands for the Legendre transform of the function
−U(−y).

Under the assumptions imposed on U,

U′ is invertible;

if I := (U′)−1 then (U∗)′ = −I;

the supremum in the formula (11) is attained for y = I(x), which leads to

U(y)− xy ≤ U(I(x))− xI(x),

for any x, y > 0.
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A result of Kramkov and Schachermayer

Using Theorem 2.2 from Kramkov and Schachermayer (1999), we know that
the optimization problem (10) admitts a solution under the assumptions

(i) The asymptotic elasticity of the utility function U(x) satisfies

AE(U) := lim sup
x→∞

xU′(x)

U(x)
< 1;

(ii) There exist at least an equivalent local martingale measure, i.e. a
probability measure Q equivalent with P under which the discounted
wealth process is a (local) martingale;

(iii) for some x > 0 the value function V(x) is finite.

The assumption (i) is obviously satisfied for our choices of CARA utility
functions (power utility and logarithmic utility).
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An existence result

Next, it can be shown that the price of the defaultable bond satisfies

D(t,T) = H̃tB(t,T) = D(t,T)(rt − λt(1− Lt))dt + H̃te
∫ t

0 r̂(s)dsp(t)dW(t)

− B(t,T)dMt,

(12)

where

H̃t := 1(τ>t) = 1− Ht;

recall that r̂t := rt + λtLt;

p(t) appears when we apply the Representation of Brownian Martingales
Theorem for the process mt := EQ[e

∫ T
0 r̂(s)dsX|Ft], i.e. dmt = p(t)dW(t);

The process Mt := Ht −
∫ t∧τ

0 λsds is a G – martingale.
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An existence result

With a properly defined random variable FT – measurable random variable Z
(via a stochastic exponential), the probability Q which is absolutely
continuous with respect to the historical probability P, having the
Radon–Nikodym density Z is such that, under Q, the discounted price of the
defaultable asset, e−

∫ t
0 r(s)dsD(t,T) becomes a local martingale. This leads

clearly to (ii).

Next, according to Theorem 2.2 from Kramkov and Schachermayer (1999),
V(x) is finite for some positive x if the conjugate function of the value
function V , denoted V∗, is finite at y = V ′(x).
A sufficient condition for the last assertion to hold is

E[U∗(yZ)] <∞, for some y > 0, (13)

which we assume in the subsequent.
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An existence result

We are now in position to state an existence result

Theorem
Under our standing assumptions, the optimization problem (10) has a
solution.

Remark
Theorem 2.2 from Kramkov and Schachermayer (1999) allows us to provide a
dual characterization of the value function in (10) and the associated optimal
portfolio but not to obtain explicit formulas!

Our next goal is to characterize the optimal portfolio for our choices of utility
functions.
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Characterization of the optimal portfolio

The problem (10) is equivalent with the problem

V(x) = sup
π

E[V(τ, (Xπ(τ))] = sup
π

E[V(τ,Xπ(τ−)(1− πD(τ)L(τ)))]. (14)

Remark
We thus have to solve first the post-default optimization problem and the
solution of the pre-default problem will depend on the solution on the former.

Recall that the post-default value process satisfies

dXπ(t) = Xπ(t) [r(t) + πS(t)(µ(t)− r(t))] dt + πS(t)σ(t)dW1(t), (15)

for t > τ . Then

Xπ(t) = Xπ(τ) exp
(∫ t

τ

(
r(s) + πS(s)(µ(s)− r(s))− 1

2
π2

S(s)σ2(s)
)
ds
)

exp
(∫ t

τ
πS(s)σ(s)dW1(s)

)
.

(16)
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Logarithmic utility

Let U(x) = ln(x). Then

U(Xπ(T)) = ln(Xπ(τ)) +

∫ T

τ

(
r(t) + πS(t)(µ(t)− r(t))

− 1
2
π2

S(t)σ2(t)
)
dt + Mt,

(17)

where (Mt) is a (local) martingale (is a stochastic integral).

E (U(Xπ(T))) = E (ln(Xπ(τ))) + E
(∫ T

τ

(
r(t) + πS(t)(µ(t)− r(t))

− 1
2
π2

S(t)σ2(t)
)
dt
)
.

(18)

The second term on the r.h.s. of the last formula attains its maximum for

π∗S(t) =
µ(t)− r(t)
σ2(t)

,

which is exactly the Merton’s optimal strategy.
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Logarithmic utility

Next, we need to maximize

E (ln(Xπ(τ))) = E
(
ln
(
X̃π(τ)(1− πD(τ)L(τ))

))
,

where X̃(t) is the solution of

dX̃π(t) = X̃π(t)
(

(1− πS(t)− πD(t))r(t)dt + πS(t)µ(t)dt

+ πS(t)σ(t)dW1(t) + πD(t)
1

B(t,T)
dB(t,T)

)
, for 0 ≤ t ≤ T.

(19)

This is a maximization problem with uncertain time-horizon, for which we
may apply the results of Blanchet-Scaillet, El Karoui, Jeanblanc and
Martellini (2008).
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Martellini (2008).
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Power utility

We look now at the case U(x) = xγ
γ , with 0 < γ < 1. We have

U(Xπ(T)) =
(Xπ(τ))γ

γ
exp

(
γ

∫ T

τ
(r(t) + πS(t)(µ(t)− r(t))− 1

2
π2

S(t)σ2(t)
)
dt
)

× exp
(
γ

∫ T

τ
πS(s)σ(s)dW1(s)

)
.

(20)

If the interest rate r(t) is deterministic, by the so–called Change-of-Measure
Device (see Theorem 4.1 in Korn and Seifried (2009)), we know how to
compute the supremum of the first exponential term in the last formula, while
for the first one we could still apply the results of Blanchet-Scaillet, El
Karoui, Jeanblanc and Martellini (2008).
In the case of a stochastic interest rate, we think that the Change-of-Measure
Device for semimartingales (see Section 3 in Seifried ( 2010)) could be a
usefull tool.
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