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H. Brezis & F. Browder: “Poincaré emphasized that a wide variety of
physically significant problems arising in very different areas (such as
electricity, hydrodynamics, heat, magnetism, optics, elasticity, etc...)
have a family resemblance — un “air de famille” in Poincaré’s words —
and should be treated by common methods. In the same Poincaré’s
paper in 1890, there is also a prophetic insight that quite different
equations of mathematical physics will play a significant role within
mathematics itself. This has indeed characterized the basic role of
PDE, throughout the whole 20th century as the major bridge between
central issues of applied mathematics and physical sciences on the
one hand and the central development of mathematical ideas in active
areas of pure mathematics.".
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Main direction of the talk: perturbed singular, nonsingular or
degenerate stationary problems.
Equation

sinx =c¢ ce(—-1,1),xeR
has infinitely many solutions, but the perturbed equation
sinx = ¢ + ex ce(—1,1),ee R\ {0}, xeR

has a finite number of solutions, which tends to +o0o as ¢ — 0.




Outline Main problems Singular solutions Bifurcation for singular L-E-F equations Bifurcation for nonhomogeneous operators

Main direction of the talk: perturbed singular, nonsingular or
degenerate stationary problems.
Elementary example: Equation

sinx = ¢ ce(—-1,1),xeR
has infinitely many solutions, but the perturbed equation
sinx=c+ex ce(—1,1),ecR\{0}, xR

has a finite number of solutions, which tends to +o00 as ¢ — 0.
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Figure: Equation sinx = 1/2 has infinitely many solutions.




Figure: Solutions of the equation sinx = 1/2 + 0.2x.




Figure: Solutions of the equation sinx = 1/2 — 0.1x.




An example in PDEs: Problem

—Au=u*¢ in Q
u>0 in
u=20 on 0f)

has a unique solution, provided that a > 0 (Crandall, Rabinowitz &
Tartar, 1977).




Consider the perturbed problem

—Au=u"*+AVuff  inQ
u>0 in )
u=20 on 05,

where p € (0,2) and A > 0.

Then (M. Ghergu, V.R., J. Diff. Equations, 2003):

(i) if p € (0, 1], existence of a solution for any A > 0;

(i) if p € (1,2), there exists A* such that a solution exists if and only
if A € (0,\%).
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Consider the perturbed problem

—Au=u"+ANVuf  inQ
u>0 in Q
u=0 on 012,

where p € (0,2) and A > 0.

Then (M. Ghergu, V.R., J. Diff. Equations, 2003):

(i) if p € (0, 1], existence of a solution for any A > 0;

(ii) if p € (1,2), there exists A* such that a solution exists if and only
if A € (0,\%).
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Consider the problem (P):
Au~+ Au = b(x)f (u) in Q,
ANER,LECH™(Q),0<pu<1,b>0,bZ£0inQ.

f € C'0, 00) satisfies

(A1) f > 0andf(u)/uis increasing on (0, c0)

O dt
(Ar) / = < 00, / f(s)ds.
J1 V F (7)
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Consider the problem (P):

Au~+ Au = b(x)f (u) in Q,

AER, b CO(Q),0< < 1,b>0,b%0in Q. Assume that
f € C'0, 00) satisfies
(A1) f >0andf(u)/uis increasing on (0, c0).

t

[e.9]

dr
1 VF(1)

(A2) <oo, F(t)= /0 (5) ds.




Consider the problem (P):

Au~+ Au = b(x)f (u) in Q,

AER, b CO(Q),0< < 1,b>0,b%0in Q. Assume that
f € C'0, o) satisfies
(A1) f >0andf(u)/uis increasing on (0, c0)

*dt
(A2) /1 F(t < oo, F(t /f ) ds.
Examples: (i) f(u) = e* — 1; (ii) f(u) = u”, p > 1;

(i) f(u) = ulln (u+ 1)|P, p > 2.
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Singular solutions of logistic-Malthusian problems

Consider the problem (P):
Au~+ Au = b(x)f (u) in Q,

ANER, b e CO(Q),0< < 1,b>0,b%0in . Assume that
f € C'0, 00) satisfies
(A1) f > 0andf(u)/uisincreasing on (0, c0)

(42) /1°°¢%<oo F(e /f )ds.

Examples: (i) f(u) = e* — 1; (ii) f(u) = u”, p > 1;

(iii) f(u) = ulln (u + 1), p > 2.

Problem (H. Brezis). Find a necessary and sufficient condition such
that problem (P) has a blow-up boundary solution.
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Set

Qo =int{x € Q: b(x) =0}

and assume that Qg C Q and b > 0in Q \ Q.
Denote A;(£) the first eigenvalue of (—A) in € and set
A1(Q0) = 00 if Qo = 0.




Set
Qo =int{x € Q: b(x) =0}

and assume that Qy C Qand b > 0in Q\ Q.
Denote A;(£) the first eigenvalue of (—A) in € and set
A1(Q0) = 00 if Qo = 0.

Assume f satisfies (A1) and (Az). Then problem (P) has a blow-up
boundary solution if and only if A € (—o0, A1(£0)).




R : [D,00) — [0, 00) measurable has regular variation at +oo of
index g € R (notation: R € RV,) provided that for all £ > 0,

lim R(éu)/R(u) = £/

q = 0: weak variation.




R : [D,00) — [0, 00) measurable has regular variation at +oo of
index g € R (notation: R € RV,) provided that for all £ > 0,

lim R(éu)/R(u) = £/

q = 0: weak variation.

R e RV, = R(u) =ulL(u), L € RV,.
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Definition

R : [D,00) — [0, 00) measurable has regular variation at 4+oco of
index g € R (notation: R € RV,)) provided that for all § > 0,

lim R(&u)/R(u) = &9.
U—00
q = 0: weak variation.

RERV, = R(u) = uiL(u), L € RV,

Examples: (i) R(u) = u?, R € RV,.

(i) The mappings In(1 + u), InIn(e + u), exp {(Inu)*}, o € (0, 1)
are in RV),.
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Assume (Ay). The following properties are equivalent:
a)f' €RV,

b) limy, o0 uf’ (1) /f (1) := 9 < 00

c)limy, oo (F/f) (1) := v > 0.
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Lemma

Assume (Ay). The following properties are equivalent:
a)f' €RV,

D) limy, oo uf’ (u) /f (u) := 19 < 00

) lim, o (F/f) (u) := v > 0.

Remark

We have:

(i)p=0;

(ii)y=1/(p+2) =1/ +1);

(iii) If p # 0, then (K — O). Converse not true: f(u) = uln*(u + 1).
It may happen that p = 0 and (K — O) is not fulfilled, so Eq. (P) does
not have blow-up boundary solutions. Examples: f(u) = u,

f(u) =uln(u+1).
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Let K denote the class of functions k : (0, ) — (0, 00) of class C!,
k(s as\"

k(1)
Then ¢y = 0 and ¢; € [0, 1], for all k € K.

increasing and such that lim,_, o+ =4, i=0,1.
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Karamata’s class.

Let K denote the class of functions k : (0, ) — (0, c0) of class C',

‘ ()
. . . Jo k(s) ds .
increasing and such that lim, ¢+ | =———— =4, i=0,1.

k(r)
Then ¢y = 0 and ¢; € [0, 1], forall k € K.

Lemma

Assume S € C'[D, 00) such that S' € RV,, g > —1. Then
a) Ifk(t) =exp{—S(1/t)} Vt<1/D,thenk € K and(; = 0.

b) Ifk(t) =1/S(1/t) Vt<1/D, thenk € K and
tr=1/(g+2) € (0,1).
¢) Ifk(t)=1/InS(1/t) Vt<1/D, thenk € K and {; = 1.
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IfS € C'[D, 00), then S' € RV, with q > —1 if and only if 3m > 0,
C > 0 and B > D such that S(u) = Cu™exp {fg y(T’) dt}, Vu > B,

where y € C[B, c0) satisfies lim,—.oc y(u) = 0. In such a case,
S € RV, withq =m — 1.
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Theorem

Assume (A1) and f' € RV, with p > 0. Suppose b = 0 on O such
that

(B) b(x) = ck*(d(x)) + o(k*(d(x))) as d(x) — 0, where ¢ > 0 and
ke K.

Then, for any A € (—00, Aso,1), problem (P) has a unique blow-up
boundary solution uy. Moreover,

o up(x)
1 —
A0 hd() ~ &
o) 1/p
where £y = <c(;_—f1pp)) and h is defined by

ds, Vre (0,v).

o vir =

Nonlinear bifurcation problems
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Examples of admissible functions &:
k(t) = —1/1Int,

k(t) = 1%, k(1) = exp{ 1/1%},

k(t) = exp {—In(1 + )/t"‘}

kEt; =exp{— [arctan ( )] /11,

k(t) =t*/In(1 + )Wherea>0.
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Letf : [0,00) — [0, 00) be a smooth, increasing, such that f(0) = 0

and f > 0 on (0, 00). According to Keller & Osserman, 1957,
problem

Au=f(u) inQ,
u>0 in €,
U= —+00 on 02

has a solution if and only if [ [F (t)]_l/ 2dt < oo, where

F(t) = [y f(s)ds.
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Case of non-monotone nonlinearities

Letf : [0,00) — [0, 00) be a smooth, increasing, such that f(0) = 0
and f > 0 on (0, 00). According to Keller & Osserman, 1957,

problem
Au=f(u) inQ,
u>0 in €,
U = —+00 on 0f)

has a solution if and only if [ [F (1)) V2 dr < 0o, where
F(r) = folf(s) ds.

Examples: (i) f(u) = e — 1; (i) f(u) = P, p > 1; (ii)
fu)=u’In(u+1),p > 1;({v) f(u) = u’ arctanu, p > 1; (v)
Fu) = ultn (u+ )P, p > 2.

Vicentiu D. Radulescu
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S
Letf : [0,+00) — [0, 400) be such that f(0) =

Au = f(u) in €, o
u=—+00o on 0f2,
(I) (\ f ([[
\f / VF(s) — Fla) (@) /
We say that f satisfies the
Ja >0 suchthat ®(a) < oc. (2)
We say that f satisfies the if
lim inf ®(ar) = 0. (3)




Outline Main problems Singular solutions Bifurcation for singular L-E-F equations Bifurcation for nonhomogeneous operators

Letf : [0,400) — [0,400) be such that f(0) = 0.

Au = f(u) in €,
u = +o00 on 02,

1 o ds §
@(a)—ﬁ/a p e ,F(s)—/of(t)dt

We say that f satisfies the Keller-Osserman condition if
Ja >0 suchthat @(a) < oo.
We say that f satisfies the strong Keller-Osserman condition if

liminf ®(a) = 0.

a— 00

Vicentiu D. Radulescu
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Letf : [0,400) — [0,400) be such that f(0) = 0.

Au = f(u) in €, |
u = -+00 on 0f), M

1 o ds §
@(a)—ﬁ/a F(s)_F(a),F(s)—/Of(t)dt

We say that f satisfies the Keller-Osserman condition if
Ja >0 suchthat @(a) < oo. (2)
We say that f satisfies the strong Keller-Osserman condition if

liminf ®(a) = 0. 3)
a—0o0
Example: f(u) = u?(1 + cosu) satisfies the strong Keller-Osserman
condition and limsup,,_, ., ®(a) = +o0.

Vicentiu D. Radulescu
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The function f satisfies the Keller-Osserman condition if and only if
the BVP (1) admits at least one positive large solution on some ball.
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Theorem

The function f satisfies the Keller-Osserman condition if and only if
the BVP (1) admits at least one positive large solution on some ball.

Theorem

The function f satisfies the strong Keller-Osserman condition if and
only if the BVP (1) has at least one positive large solution on each
smooth bounded domain ().

Vicentiu D. Radulescu
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Theorem

The function f satisfies the Keller-Osserman condition if and only if
the BVP (1) admits at least one positive large solution on some ball.

Theorem

The function f satisfies the strong Keller-Osserman condition if and
only if the BVP (1) has at least one positive large solution on each
smooth bounded domain ().

Theorem

Assume that the strong Keller-Osserman condition is fulfilled and let
u be a positive large solution of (1). Then

/°° dt
lim 2O VW _
X—X0 d(x)

Vicentiu D. Radulescu
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~Au=M@u) inQcCRY
u=20 on Of).

Flu,A\) = Au+ M(u), F:XxR-—>R,
where either
X:={ueC*@Q): u=00nd0}, Y =C"Q), 0<a<l)

or

X={uecW*(Q): u=00ndQ}, Y=1I7(Q), p>N.
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{ —Au=X(u) inQcCRY

u=20 on Of).

Implicit function theorem:
F(u,\) = Au+ M(u), F:XxR—-R,
where either
X:={uecC*™Q): u=00n0Q}, ¥ =C"Q), (0O<a<l)

or

X={uecW?>(Q): u=00ndQ}, Y=I(Q), p>N.
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{ —Au=X(u) inQcCRY

u=20 on Of).

Implicit function theorem:
F(u,\) = Au+ M(u), F:XxR—-R,
where either
X:={uecC*™Q): u=00n0Q}, ¥ =C"Q), (0O<a<l)
or

X={uecW>?Q): u= Q}, Y=I1/(Q), p>N.

Oonod
Then F(0,0) = 0 and F,,(0,0) = A, hence (IFT) there is A* > 0 such
€ X: F(u

that VX € (0, X*), 31u()\) € (\), A) = 0.




Equations with convection terms and singular nonlinearities and
potentials

—Au=p(d(x))gu) + A\[Vul* + pf (x,u)  inf,
u>0 in €2, “4)
u=20 on Of).

Notation: d(x) = dist(x,0Q2), A € R, x> 0,and 0 < a < 2.
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Equations with convection terms and singular nonlinearities and
potentials

—Au=p(d(x))gu) + A\[Vul* + pf (x,u)  inf,
u>0 in Q, “4)
u=20 on 0f).

Notation: d(x) = dist(x,0Q), A € R, x> 0,and 0 < a < 2.
Assumptions: g € C'(0, 00) verifies
(g1): g is a positive decreasing function such that limy\ o g(7) = +oc.

Vicentiu D. Radulescu
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Equations with convection terms and singular nonlinearities and
potentials

—Au=p(d(x))gu) + A\[Vul* + pf (x,u)  inf,
u>0 in Q, “4)
u=20 on 0f).

Notation: d(x) = dist(x,0Q), A € R, x> 0,and 0 < a < 2.
Assumptions: g € C'(0, 00) verifies

(g1): g is a positive decreasing function such that limy\ o g(7) = +oc.
Function f : Q x [0, 00) — [0, c0) is Holder continuous which is
nondecreasing with respect to the second variable and such that f is
positive in  x (0, 00).
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Equations with convection terms and singular nonlinearities and
potentials

—Au=p(d(x))gu) + A\[Vul* + pf (x,u)  inf,
u>0 in Q, “4)
u=20 on 0f).

Notation: d(x) = dist(x,0Q), A € R, x> 0,and 0 < a < 2.
Assumptions: g € C'(0, 00) verifies
(g1): g is a positive decreasing function such that limy\ o g(7) = +oc.
Function f : Q x [0, 00) — [0, c0) is Holder continuous which is
nondecreasing with respect to the second variable and such that f is
positive in  x (0, 00).
Let

m := lim g(t) € [0, 00).

—00

Vicentiu D. Radulescu
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Theorem
Assume thata =2, A> 0, u>0andp=1,f = 1.

(i) The problem (4) has a solution if and only if \(m + ) < Ap;

(ii) Assume 1 > 0 is fixed and let \* = \1/(m + p). Then (4) has a
unique solution uy for every 0 < A < \* and the sequence

(ux)o<r<a+ is increasing with respect to X. Moreover, if

limsupg o s¥g(s) < oo, for some o € (0, 1), then the sequence of
solutions (uy)o<a<x+ has the following properties:

(iil) there exist two positive constants ci, cy depending on \ such that
c1d(x) < uy < cpd(x) in Q;
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Theorem

Assume thata =2, A >0, u>0andp=1,f = 1.

(i) The problem (4) has a solution if and only if \(m + p) < \y;
(ii) Assume p > 0 is fixed and let \* = A1 /(m + p). Then (4) has a
unique solution uy for every 0 < A < \* and the sequence
(ux)o<r<a+ is increasing with respect to X. Moreover, if
limsupg o 5¥g(s) < oo, for some a € (0, 1), then the sequence of
solutions (uy)o<x<= has the following properties:

Vicentiu D. Radulescu
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Theorem

Assume thata =2, A >0, u>0andp=1,f = 1.

(i) The problem (4) has a solution if and only if \(m + p) < \y;

(ii) Assume p > 0 is fixed and let \* = A1 /(m + p). Then (4) has a
unique solution uy for every 0 < A < \* and the sequence
(ux)o<r<a+ is increasing with respect to X. Moreover, if

limsupg o 5¥g(s) < oo, for some a € (0, 1), then the sequence of
solutions (uy)o<x<= has the following properties:

(iil) there exist two positive constants ¢, cy depending on \ such that
c1d(x) < uy < cpd(x) in €

Vicentiu D. Radulescu
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Theorem

Assume thata =2, A >0, u>0andp=1,f = 1.

(i) The problem (4) has a solution if and only if \(m + p) < \y;

(ii) Assume p > 0 is fixed and let \* = A1 /(m + p). Then (4) has a
unique solution uy for every 0 < A < \* and the sequence
(ux)o<r<a+ is increasing with respect to X. Moreover, if

limsupg o 5¥g(s) < oo, for some a € (0, 1), then the sequence of
solutions (uy)o<x<= has the following properties:

(iil) there exist two positive constants ¢, cy depending on \ such that
c1d(x) < uy < cpd(x) in €

(ii2) uy € CH1=2(Q) N C2(Q);

Vicentiu D. Radulescu

Nonlinear bifurcation problems
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Theorem

Assume thata =2, A >0, u>0andp=1,f = 1.

(i) The problem (4) has a solution if and only if \(m + p) < \y;

(ii) Assume p > 0 is fixed and let \* = A1 /(m + p). Then (4) has a
unique solution uy for every 0 < A < \* and the sequence
(ux)o<r<a+ is increasing with respect to X. Moreover, if
limsupg o 5¥g(s) < oo, for some a € (0, 1), then the sequence of
solutions (uy)o<x<= has the following properties:

(iil) there exist two positive constants ¢, cy depending on \ such that
c1d(x) < uy < cpd(x) in €

(ii2) uy € CH1=2(Q) N C2(Q);

(ii3) limy ,\« u) = oo uniformly on compact subsets of 2.

Vicentiu D. Radulescu
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Case (i) for m = 0, resp. m > 0.

A A
W u

(0,0 A (0,0) AJm

Figure: The bifurcation diagrams in Case (i).




Case (ii), A > 0 and p = fixed.

A
u

A

(00) Y
S

Figure: The bifurcation diagram in Case (ii).
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Competition of terms and signs
Consider the problem

— Au p(d()g(w) = M(xu) + pl Tt in©,
u>0 in Q? (F')i
u=20 on 012,

where Q@ C RV (N > 2) is a bounded domain with smooth boundary,
d(x) = dist(x,00Q), A > 0,p € R,and 0 < a < 2.
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Competition of terms and signs
Consider the problem

— Au p(d()g(w) = M(xu) + pl Tt in©,
u>0 in Q? (F')i
u=20 on 012,

where Q@ C RV (N > 2) is a bounded domain with smooth boundary,
d(x) = dist(x,00Q), A > 0,p € R,and 0 < a < 2.

Assumptions:
(i) g € C'(0, 00) is a positive decreasing function and
(gl) lilgl+ g(t) = +o0.

—
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(i) £ : © x [0,00) — [0, 00) is a Holder continuous function which is
nondecreasing with respect to the second variable and such that f is
positive on Q x (0, 00). Furthermore, f is either linear or f is
sublinear with respect to the second variable. This last case means
that f fulfills the hypotheses

t —
(f1) (0,00) >t — f();’ ) is nonincreasing, for all x € €2;
t t
() lim f(xt’ ) 4o and thﬂloof(x; ) _
t— -

0, uniformly for x € Q.

(p) p : (0,400) — (0, +00) is nonincreasing and Holder continuous.
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Problem (P)™

Theorem
1

Assume that/ p(t)g(t)dt = +o00. Let @ : Q x [0, +00) — R be a
0
Holder continuous function. Then the inequality boundary value

problem

—Au+p(d(x))g(u) < ®(x,u) + C|Vu]* inQ,
u>0 in 2, 5)
u=0 on 02,

has no classical solutions.
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Problem (P)™

Theorem
1

Assume that/ p(t)g(t)dt = +o00. Let @ : Q x [0, +00) — R be a
Holder continuous function. Then the inequality boundary value
problem

—Au+p(d(x))g(u) < ®(x,u) + C|Vu]* inQ,
u>0 in 2, 5)
u=0 on 92,

has no classical solutions.

Corollary
1
Assume that/ p(t)g(t)dt = +o0. Then problem (P)™ has no

0
classical solutions.
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The next result shows that condition fOl p(t)g(t)dt < +o0 is sufficient
for the existence of a classical solution to (P)™ provided p < 0 and
A > 0 is sufficiently large.
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The next result shows that condition fol p(t)g(1)dt < 400 is sufficient
for the existence of a classical solution to (P)™* provided x < 0 and
A > 0 is sufficiently large.

Theorem
1
Assume that/ p(t)g(t)dr < +o0.
0

() If u = —1, then there exists \* > 0 such that (P)" has at least
one classical solution if \ > \* and no solution exists if
0< A <A™

(i) If p=+1and 0 < a < 1, then there exists \* > 0 such that
(P)* has at least one classical solution for all X\ > \* and no
solution exists if 0 < A < \*.

Vicentiu D. Radulescu

Nonlinear bifurcation problems



- Outine  Main problems _ Singular slutions  Bifurcaton fo sngular L-E-F equations._ Bifurcation for nonhomogencous operators
B
Problem (P)~

1
Assume that / tp(t)dt = +o00. Then the inequality boundary value
0
problem
—Au+ C|Vul> > p(d(x))g(u) inQ,

u>0 in €2,
u=~0 on 912,

has no classical solutions.
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Problem (P)~
Theorem

1
Assume that / tp(t)dt = +oc. Then the inequality boundary value
0

problem
—Au+ CIVuP = p(d()g(u) in
u>0 in €,
u=>0 on 0f),

has no classical solutions.

Corollary
1
Assume that / tp(t)dt = +oc. Then the problem (P)~ has no

0
classical solutions.

Vicentiu D. Radulescu

Nonlinear bifurcation problems



Outline Main problems Singular solutions Bifurcation for singular L-E-F equations Bifurcation for nonhomogeneous operators

Problem (P)~ in the sublinear case
Theorem

Assume A = 1, fol tp(t)dt < 400 and conditions (f1), (f2), (gl) and
0 < a < 2 are fulfilled.

(i) If0 < a < 1, then problem (P)~ has at least one solution, for all
uweR;
(i) If1 < a <2, then there exists ©* > 0 such that (P)~ has at least

one classical solution for all p < p* and no solution exists if
B>t
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Corollary
Assume p = £1, fol tp(t)dt < 400 and conditions (1), (f2), (g1)
and 0 < a < 2 are fulfilled.
(i) If0 < a < 1, then problem (P)~ has at least one solution, for all
A>0;
(i) If <1 < a <2and = —1, then problem (P)~ has at least one
solution, for all A\ > 0;

(i) If1 < a <2 and p = +1, then there exists \* > 0 such that
(P)™ has at least one classical solution for all X\ > \* and no
solution exists if A < \*.
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Problem (P)~ in the linear case
Consider the problem

—Au = p(d(x))g(u) + Au+ p|Vul* inQ,
u>0 in €2, (6)
u=20 on 02,

where A > 0 and p, g are as above.
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Problem (P)~ in the linear case
Consider the problem

—Au = p(d(x))g(u) + Au+ p|Vul*  inQ,
u>0 in €2, (6)
u=0 on 012,

where A > 0 and p, g are as above.

Theorem

Assume that fol tp(t)dt < 400 and conditions (g1), 0 < a < 1 are
fulfilled. Then for p > 0 the problem (6) has solutions if and only if
A< A
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Example.
Consider the problem

—Au=d(x)"%u P +f(x,u) + p|Vul*  inQ,
u>0 in 2, (7)
u=20 on 0€).
Recall that if '/;)l tp(t)dt < +oo and p belongs to a certain range, then
this problem has at least one classical solution u,,.
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Example.
Consider the problem

—Au=d(x)"uP + f(x,u) + p|Vul* inQ,
u>0 in €2, (N
u=20 on Of).

Recall that if fo] tp(t)dt < +oco and p belongs to a certain range, then
this problem has at least one classical solution u,,.
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(1) If « > 2, then the problem (7) has no classical solutions.

(i) If « <2, then 3 p* € (0, +o00] (with u* = +00 if 0 < a < 1) such that
(7) has at least one classical solution u,,, ¥ — oo < j < pu*. Moreover,
VO < p<p,30<9 < 1and3Cy,Cy > 0 such that

@(il) Ifa+ B > 1, then

2—«a 2—«

Cid(x) 77 < u,(x) < Cod(x)F8,  forall x €

(ii2)
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Theorem

(1) If a > 2, then the problem (7) has no classical solutions.

(i) Ifa <2, then 3 p* € (0,+00] (with p* = 400 if 0 < a < 1) such that
(7) has at least one classical solution u,,,V — oo < p < pu*. Moreover,
VO< pu<wp3d0<d < 1and3Cy,Cy > 0 such that

(iil) Ifa+ B > 1, then
Cld(x)% <uu(x) < ng(x)%, forall x € Q;

(ii2)
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Theorem

(1) If a > 2, then the problem (7) has no classical solutions.

(i) Ifa <2, then 3 p* € (0,+00] (with p* = 400 if 0 < a < 1) such that
(7) has at least one classical solution u,,,V — oo < p < pu*. Moreover,
VO< pu<wp3d0<d < 1and3Cy,Cy > 0 such that

(iil) Ifa+ B > 1, then
Cld(x)% <uu(x) < ng(x)%, forall x € Q;
(ii2) If a+ B =1, then for all x € Q with d(x) < §
C1d(x)(~Ind(x)) ™= < u,(x) < Cod(x)(~ Ind(x)) =

(1i3)
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Theorem

(1) If a > 2, then the problem (7) has no classical solutions.

(i) Ifa <2, then 3 p* € (0,+00] (with p* = 400 if 0 < a < 1) such that
(7) has at least one classical solution u,,,V — oo < p < pu*. Moreover,
VO< pu<wp3d0<d < 1and3Cy,Cy > 0 such that

(iil) Ifa+ B > 1, then
Cld(x)% <uu(x) < ng(x)%, forall x € Q;
(ii2) If a+ B =1, then for all x € Q with d(x) < §
C1d(x)(~Ind(x)) ™= < u,(x) < Cod(x)(~ Ind(x)) =
(ii3) Ifa+ B < 1, then

Cid(x) <uu(x) < Cud(x), forall x € Q.
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The problem

—Au= \u in
u=20 on Of).

has an unbounded sequence of eigenvalues
O< i< ...<N <.

In 1894, established the existence of an infinite sequence of
eigenvalues and corresponding eigenfunctions for the Laplace
operator under the Dirichlet boundary condition. (For the first
eigenvalue this was done by H. A. Schwarz in 1885 and for the
second eigenvalue by E. Picard in 1893.) This key result is the
beginning of spectral theory which has been one the major themes of
functional analysis and its role in theoretical physics and differential

geometry during the 20th century.
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Bifurcation for nonhomogeneous operators

The problem
—Au = Au in
u=20 on ON).

has an unbounded sequence of eigenvalues
O< i< m<...< N <....

In 1894, Poincaré established the existence of an infinite sequence of
eigenvalues and corresponding eigenfunctions for the Laplace
operator under the Dirichlet boundary condition. (For the first
eigenvalue this was done by H. A. Schwarz in 1885 and for the
second eigenvalue by E. Picard in 1893.) This key result is the
beginning of spectral theory which has been one the major themes of
functional analysis and its role in theoretical physics and differential
geometry during the 20th century.
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The anisotropic case

—Au = da(x)u in
u=20 on 0f)

was considered by Bocher (1914), Minakshisundaram and Pleijel
(1949), Hess and Kato (1980). Minakshisundaram and Pleijel proved
that the above eigenvalue problem has an unbounded sequence of
positive eigenvalues if a € L*°(2),a > 0in Q, and a > 0in Qy C £,
where || > 0.
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The anisotropic case

—Au = da(x)u in
u=20 on 0f)

was considered by Bocher (1914), Minakshisundaram and Pleijel
(1949), Hess and Kato (1980). Minakshisundaram and Pleijel proved
that the above eigenvalue problem has an unbounded sequence of
positive eigenvalues if a € L*°(2),a > 0in Q, and a > 0in Qy C £,
where || > 0.

Case of an indefinite weight a( - ): Szulkin & Willem (1999).
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The anisotropic case

—Au = da(x)u in
u=20 on 0f)

was considered by Bocher (1914), Minakshisundaram and Pleijel
(1949), Hess and Kato (1980). Minakshisundaram and Pleijel proved
that the above eigenvalue problem has an unbounded sequence of
positive eigenvalues if a € L*°(2),a > 0in Q, and a > 0in Qy C £,
where || > 0.

Case of an indefinite weight a( - ): Szulkin & Willem (1999).
Quasilinear eigenvalue problems: Anane (1987), Lindqvist (1990).
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Hardy-Sobolev operator —A,u — pw(x)|ul’~2u: Sreenadh (2002),
with u < (N — p)’p~" and

|x| 7P ifl<p<N
—N
w(x) = 1
() (|x| log —) ifp=N.
x|
Edmunds, Evans, Harris (J. London Math. Soc., 2008):

{ —Apu = Aul7%u in

u=>0 on Of),

]l <p<N,1<q<Np/(N—p). Then there exists a countable

family of eigenvalues .
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Hardy-Sobolev operator —A,u — pw(x)|u[P~2u: Sreenadh (2002),
with y < (N — p)Pp~" and

|x| P ifl<p<N

= 1\
W) <|x| log ||> if p=N.
X

Edmunds, Evans, Harris (J. London Math. Soc., 2008):

—Apu = Nul|?™%u in Q
u=20 on 0f),

1 <p<N,1<qg<Np/(N—p). Then there exists a countable
family of eigenvalues A,,.
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First example

{ —div(|Vulp®=2Vu) = Mu[?0"2u,  xeQ )

u=0, x €00,

where p, ¢ are continuous on {2 and Ay ou = div (|VulPO=2vu).

Assume p € C(Q) and p > 1, on € Q. Set

Ci(Q) ={h; he C(Q), h(x) > 1forx € Q}.

For h € C (), define

ht = sup h(x) and h™ = iI}(f) h(x).
xe() xeia
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First example

{ —div(|Vulp®=2Vu) = Mu[?0"2u,  xeQ )

u=020, x € 012,

where p, g are continuous on Q and A,,(yu := div (|VulP@=2Tu).

Abstract framework. Assume p € C(Q) and p > 1, on € Q. Set

C+(Q) = {h; h € C(Q), h(x) > 1 forx € Q}.

For h € C4(12), define

ht =suph(x) and k™ = inf h(x).
xeN x€Q
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For any p € C,(Q), define the variable exponent Lebesgue space

1P = {u: / ()P dx < oo},
Q

Luxemburg norm:

p(x)
dx <1

u(x)
I

|u|p(vy = inf ¢ p > 0; /
Q

Then L) () is separable and reflexive Banach space.
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For any p € C(12), define the variable exponent Lebesgue space

1P = {u: / ()P dx < oo},
Q

Luxemburg norm:

p(x)
|u|p(x):inf{,u>0; / dxﬁl}.
Q

Then L) () is separable and reflexive Banach space.
L7 @)(Q): the dual space of L’™)(Q), where 1/p(x) + 1/p'(x) = 1.

u(x)

I
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For any p € C,(Q), define the variable exponent Lebesgue space

1P = {u: / ()P dx < oo},
Q

Luxemburg norm:

p(x)
|u|p(x):inf{,u>0; / dxﬁl}.
Q

Then L) () is separable and reflexive Banach space.
L7 @)(Q): the dual space of L’™)(Q), where 1/p(x) + 1/p'(x) = 1.
For u € I (Q) and v € I ®)(Q) the Holder type inequality

/uv dx
Q

u(x)

I

1 1
S| —=+ =) lulpwlvly )
<P_ P >|p() o

holds true.
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St e L e e L D
.
Modular mapping. py () : L’¥(Q) — R defined by

pp(x) / |u |p(x) dx.

If (1), u € P (Q) then

ulpy > 1 = Julf ) < pppy () < |u!p(x)

+
|u|p(x) <l = |u|§(x) < pp(x)( ) < |u| p(x)

|u,, - u|p(x) -0 & pp(x)(un — u) — 0.
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Modular mapping. p,(y) : /M (Q) — R defined by

u) = / P .
Q

- +
|u|p(x) >1 = |u|£(x) < pp(x)(u) < ‘MV;(X)

If (u,), u € [P (Q) then

+
|u‘p(x) <l = |u|§(x) < pp(x)( ) < ‘u|p(x)
un — ulpy =0 & )ty —u) — 0.

Define W,” ) (Q) as the closure of C5°(£2) under the norm

|ull = |Vul, (). The space (Wé’p(x)(Q), || - ||) is separable and
reflexive. If s € C4(€2) and s(x) < p*(x) for all x € Q2 then the
embedding Wl’p ) (Q) — L*™ () is compact and continuous, where

pr(x) = _15())() if p(x) < N or p*(x) = +o0 if p(x) > N.
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Assume that q(x) < p*(x) for all x € Q and

1 < ming(x) < minp(x) < maxgq(x).
x€€) x€Q xEQ

Then there exists \* > 0 such that any X € (0, \*) is an eigenvalue
for problem (8).
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Theorem

Assume that q(x) < p*(x) for all x € Q and

1 <ming(x) < minp(x) < maxq(x).
xeQ xeQ x€Q

Then there exists \* > 0 such that any \ € (0, \*) is an eigenvalue
for problem (8).

Remark. If max, g p(x) < min g g(x) and g(x) < p*(x) then a

mountain pass argument shows that any A > 0 is an eigenvalue of
problem (8).
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Second example
Consider the problem

{ —div((| Va2 4 | VuPPD72)Tu) = A|uld® 2y, xeQ
u=20, x €00,
(10)
where

1 < p2(x) < ming(y) < maxgq(y) < pi(x);

yeQ yeQ)

max ¢g(y) < p5(x), Vx€Q,

yeS

with p3(x) := 11L p2(x) < N and p5(x) = +ooif po(x) > N.

\/1
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Second example
Consider the problem

{ —div((|VulP' ™72 4 |Vu[P? ) =2)Vu) = Nu|10) 2y, xeQ
u=>0, x €N,
(10)
where

1 < pa(x) < ming(y) < maxgq(y) < p1(x);
yeQ ye

max g(y) < p3(x), VxeQ,
yeQ

with p3(x) := Nl\z’;%) if p2(x) < N and p5(x) = +o0 if po(x) > N.
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Define
1 (x) 1 (x)
[VulP') dx + | ——|VulP?'™ dx
A= inf o p1(x) o P2(x)
uew, "1 (2)\ {0} / L|u|q(x) dx
o q(x)

Any )\ € [\, ) is an eigenvalue of problem (10). Moreover, there
exists a positive constant Ao such that Ao < \j and any X € (0, \g) is

not an eigenvalue of problem (10).




Define
1 (x) 1 (x)
[VulP') dx + | ——|VulP?'™ dx
A= inf o p1(x) o P2(x)
uew, "1 (2)\ {0} / L|u|q(x) dx
o q(x)

Any X € [A\1, 00) is an eigenvalue of problem (10).
exists a positive constant Ao such that Ao < \j and any X € (0, \o) is
not an eigenvalue of problem (10).




Define
1 (x) 1 (x)
[VulP') dx + | ——|VulP?'™ dx
A= inf o p1(x) o P2(x)
uew, "1 (2)\ {0} / L|u|q(x) dx
o q(x)

Any X € [A\1, 00) is an eigenvalue of problem (10). Moreover, there
exists a positive constant o such that Ao < \j and any X € (0, \g) is
not an eigenvalue of problem (10).




Sketch of the proof.
Step 1: Ay > 0.
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B
Sketch of the proof.
Step 1: A1 > 0.

Step 2: A; is an eigenvalue of problem (10).
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L
Sketch of the proof.
Step 1: A1 > 0.
Step 2: A is an eigenvalue of problem (10).

any A € (A1, 00) is an eigenvalue of problem (10).




Sketch of the proof.

Step 1: A1 > 0.

Step 2: A is an eigenvalue of problem (10).

STEP 3: any A € (A1, 00) is an eigenvalue of problem (10).

Define ‘ )
Ji(u) = / |VulPr'™ dx + / |VulP?™) dx,
Ja Jo

Ii(u) = / \u\‘/m dx
JQ
Ji

(v)

= > 0.

/\(] = inf

vew, "1 (Q)\{0} Ii(v)
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Step 1: Ay > 0.
Step 2: A; is an eigenvalue of problem (10).
STEP 3: any A € (A1, 00) is an eigenvalue of problem (10).

Define
Ji(u) = / Va1 ™) dx + / [Vul?® dx,
Q Q

1) = / W) dx
Q
Ji

Ao = inf )

> 0.
VGW(;’PI (x) (Q)\{O} I] (V)

Vicentiu D. Radulescu

Nonlinear bifurcation problems



Outline  Main problems  Singular solutions  Bifurcation for singular L-E-F equations  Bifurcation for nonhomogeneous operators

Step 1: Ay > 0.
Step 2: A; is an eigenvalue of problem (10).
STEP 3: any A € (A1, 00) is an eigenvalue of problem (10).

Define
Ji(u) = / Va1 ™) dx + / [Vul?® dx,
Q Q

1) = / W) dx
Q
Ji

Ao = inf )

> 0.
VeWévPl (x) (Q)\{O} I] (V)

Step 4: any \ € (0, \g) is not an eigenvalue of problem (10).
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Third example

—div(|Vul[P®=2Vu) 4 |ufP®) 2y

|20 = \g(x)|u| @ 2u  forx € Q (11)

u=~0 for x € 99,
where p, ¢, r :  — [2,00) are Lipschitz; g : Q — [0,00) is a
measurable function for which there exists a nonempty set {29 C 2
with 29| > 0 such that g(x) > 0 for any x € ).
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Third example

—div(| V[P =2Vu) + |ulPC) 2+
96920 = Ag(x)|u"@ =24 forx € Q (11)
u=0  forxe 00,

where p, g, 7 : 0 — [2, 00) are Lipschitz; g : Q — [0,00) is a
measurable function for which there exists a nonempty set 2o C €2
with [Q| > 0 such that g(x) > 0 for any x € Q.
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Assumptions:
2<p <pT <N,

Np
N—p—

pr<r <rf<q <qt<

g € L®(Q) NP0 (Q),

where po(x) = p*(x)/(p*(x) —r~) Vx € Q.




Assumptions:
2<p” <pt <N,

p+<r_§r+<q_§q+<
N—-p~

geL=®(Q)NIV(Q),

where po(x) = p*(x)/(p*(x) — r~) Vx € Q.
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Theorem

The following properties hold true:

(i) 0 < X < Ap;

(ii) any X € [A1, 00) is an eigenvalue of problem (11) while any
A € (0, \o) is not an eigenvalue of problem (11).
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