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H. Brezis & F. Browder: “Poincaré emphasized that a wide variety of
physically significant problems arising in very different areas (such as
electricity, hydrodynamics, heat, magnetism, optics, elasticity, etc...)
have a family resemblance – un “air de famille” in Poincaré’s words –
and should be treated by common methods. In the same Poincaré’s
paper in 1890, there is also a prophetic insight that quite different
equations of mathematical physics will play a significant role within
mathematics itself. This has indeed characterized the basic role of
PDE, throughout the whole 20th century as the major bridge between
central issues of applied mathematics and physical sciences on the
one hand and the central development of mathematical ideas in active
areas of pure mathematics.".
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Main direction of the talk: perturbed singular, nonsingular or
degenerate stationary problems.
Elementary example: Equation

sin x = c c ∈ (−1, 1), x ∈ R

has infinitely many solutions, but the perturbed equation

sin x = c + εx c ∈ (−1, 1), ε ∈ R \ {0}, x ∈ R

has a finite number of solutions, which tends to +∞ as ε → 0.
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Figure: Equation sin x = 1/2 has infinitely many solutions.
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Figure: Solutions of the equation sin x = 1/2 + 0.2x.
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Figure: Solutions of the equation sin x = 1/2− 0.1x.
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An example in PDEs: Problem




−∆u = u−a in Ω
u > 0 in Ω
u = 0 on ∂Ω

has a unique solution, provided that a > 0 (Crandall, Rabinowitz &
Tartar, 1977).
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Consider the perturbed problem




−∆u = u−a + λ|∇u|p in Ω
u > 0 in Ω
u = 0 on ∂Ω,

where p ∈ (0, 2) and λ > 0.
Then (M. Ghergu, V.R., J. Diff. Equations, 2003):
(i) if p ∈ (0, 1], existence of a solution for any λ > 0;
(ii) if p ∈ (1, 2), there exists λ∗ such that a solution exists if and only
if λ ∈ (0, λ∗).
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Singular solutions of logistic-Malthusian problems

Consider the problem (P):

∆u + λu = b(x)f (u) in Ω,

λ ∈ R, b ∈ C0,µ(Ω), 0 < µ < 1, b ≥ 0, b 6≡ 0 in Ω. Assume that
f ∈ C1[0,∞) satisfies
(A1) f ≥ 0 and f (u)/u is increasing on (0,∞).

(A2)
∫ ∞

1

dt√
F(t)

< ∞ , F(t) =
∫ t

0
f (s) ds.

Examples: (i) f (u) = eu − 1; (ii) f (u) = up, p > 1;
(iii) f (u) = u[ln (u + 1)]p, p > 2.
Problem (H. Brezis). Find a necessary and sufficient condition such
that problem (P) has a blow-up boundary solution.
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Set
Ω0 = int {x ∈ Ω : b(x) = 0}

and assume that Ω0 ⊂ Ω and b > 0 in Ω \ Ω0.
Denote λ1(Ω0) the first eigenvalue of (−∆) in Ω0 and set
λ1(Ω0) = ∞ if Ω0 = ∅.

Theorem
Assume f satisfies (A1) and (A2). Then problem (P) has a blow-up
boundary solution if and only if λ ∈ (−∞, λ1(Ω0)).
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Definition
R : [D,∞) → [0,∞) measurable has regular variation at +∞ of
index q ∈ R (notation: R ∈ RVq) provided that for all ξ > 0,

lim
u→∞R(ξu)/R(u) = ξq.

q = 0: weak variation.

R ∈ RVq =⇒ R(u) = uqL(u), L ∈ RV0.
Examples: (i) R(u) = uq, R ∈ RVq.
(ii) The mappings ln(1 + u), ln ln(e + u), exp {(ln u)α}, α ∈ (0, 1)
are in RV0.
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Lemma
Assume (A1). The following properties are equivalent:
a) f ′ ∈ RVρ

b) limu→∞ uf ′(u)/f (u) := ϑ < ∞
c) limu→∞ (F/f )′ (u) := γ > 0.

Remark
We have:
(i) ρ ≥ 0;
(ii) γ = 1/(ρ + 2) = 1/(ϑ + 1);
(iii) If ρ 6= 0, then (K − O). Converse not true: f (u) = u ln4(u + 1).
It may happen that ρ = 0 and (K − O) is not fulfilled, so Eq. (P) does
not have blow-up boundary solutions. Examples: f (u) = u,
f (u) = u ln(u + 1).
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Karamata’s class.

Let K denote the class of functions k : (0, ν) → (0,∞) of class C1,

increasing and such that limt→0+

(∫ t
0 k(s) ds

k(t)

)(i)

:= `i, i = 0, 1.

Then `0 = 0 and `1 ∈ [0, 1], for all k ∈ K.

Lemma
Assume S ∈ C1[D,∞) such that S′ ∈ RVq, q > −1. Then
a) If k(t) = exp {−S(1/t)} ∀t ≤ 1/D, then k ∈ K and `1 = 0.
b) If k(t) = 1/S(1/t) ∀t ≤ 1/D, then k ∈ K and
`1 = 1/(q + 2) ∈ (0, 1).
c) If k(t) = 1/ ln S(1/t) ∀t ≤ 1/D, then k ∈ K and `1 = 1.
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Remark
If S ∈ C1[D,∞), then S′ ∈ RVq with q > −1 if and only if ∃m > 0,

C > 0 and B > D such that S(u) = Cumexp
{∫ u

B
y(t)

t dt
}

, ∀u ≥ B,
where y ∈ C[B,∞) satisfies limu→∞ y(u) = 0. In such a case,
S′ ∈ RVq with q = m− 1.
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Theorem
Assume (A1) and f ′ ∈ RVρ, with ρ > 0. Suppose b ≡ 0 on ∂Ω such
that
(B) b(x) = c k2(d(x)) + o(k2(d(x))) as d(x) → 0, where c > 0 and
k ∈ K .

Then, for any λ ∈ (−∞, λ∞,1), problem (P) has a unique blow-up
boundary solution uλ. Moreover,

lim
d(x)→0

uλ(x)
h(d(x))

= ξ0,

where ξ0 =
(

2 + `1ρ

c(2 + ρ)

)1/ρ

and h is defined by

∫ ∞

h(t)

ds√
2F(s)

=
∫ t

0
k(s) ds, ∀t ∈ (0, ν).
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Examples of admissible functions k:
k(t) = −1/ ln t,
k(t) = tα, k(t) = exp {−1/tα},
k(t) = exp

{− ln(1 + 1
t )/tα

}
,

k(t) = exp
{− [

arctan
(1

t

)]
/tα

}
,

k(t) = tα/ ln(1 + 1
t ), where α > 0.
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Case of non-monotone nonlinearities

Let f : [0,∞) → [0,∞) be a smooth, increasing, such that f (0) = 0
and f > 0 on (0,∞). According to Keller & Osserman, 1957,
problem 




∆u = f (u) in Ω,
u > 0 in Ω,
u = +∞ on ∂Ω

has a solution if and only if
∫∞

1 [F(t)]−1/2 dt < ∞ , where
F(t) =

∫ t
0 f (s) ds.

Examples: (i) f (u) = eu − 1; (ii) f (u) = up, p > 1; (ii)
f (u) = up ln(u + 1), p > 1; (iv) f (u) = up arctan u, p > 1; (v)
f (u) = u[ln (u + 1)]p, p > 2.
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Let f : [0,+∞) → [0, +∞) be such that f (0) = 0.
{

∆u = f (u) in Ω,

u = +∞ on ∂Ω,
(1)

Φ(α) =
1√
2

∫ ∞

α

ds√
F(s)− F(α)

, F(s) =
∫ s

0
f (t) dt

We say that f satisfies the Keller-Osserman condition if

∃α > 0 such that Φ(α) < ∞. (2)

We say that f satisfies the strong Keller-Osserman condition if

lim inf
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condition and lim supα→∞Φ(α) = +∞.
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Theorem
The function f satisfies the Keller-Osserman condition if and only if
the BVP (1) admits at least one positive large solution on some ball.

Theorem
The function f satisfies the strong Keller-Osserman condition if and
only if the BVP (1) has at least one positive large solution on each
smooth bounded domain Ω.

Theorem
Assume that the strong Keller-Osserman condition is fulfilled and let
u be a positive large solution of (1). Then

lim
x→x0

∫ ∞

u(x)

dt√
2F(t)

δ(x)
= 1,

where δ(x) = dist(x, ∂Ω).
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Bifurcation for singular Lane-Emden-Fowler equations

{
−∆u = λf (u) in Ω ⊂ RN ,

u = 0 on ∂Ω.

Implicit function theorem:

F(u, λ) = ∆u + λf (u), F : X × R→ R,

where either

X := {u ∈ C2,α(Ω) : u = 0 on ∂Ω}, Y = C0,α(Ω), (0 < α < 1)

or

X = {u ∈ W2,p(Ω) : u = 0 on ∂Ω}, Y = Lp(Ω), p > N.

Then F(0, 0) = 0 and Fu(0, 0) = ∆, hence (IFT) there is λ∗ > 0 such
that ∀λ ∈ (0, λ∗), ∃ ! u(λ) ∈ X: F(u(λ), λ) = 0.
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Equations with convection terms and singular nonlinearities and
potentials





−∆u = p(d(x))g(u) + λ|∇u|a + µf (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4)

Notation: d(x) = dist(x, ∂Ω), λ ∈ R, µ > 0, and 0 < a ≤ 2.
Assumptions: g ∈ C1(0,∞) verifies
(g1): g is a positive decreasing function such that limt↘0 g(t) = +∞.
Function f : Ω× [0,∞) → [0,∞) is Hölder continuous which is
nondecreasing with respect to the second variable and such that f is
positive in Ω× (0,∞).
Let

m := lim
t→∞ g(t) ∈ [0,∞).
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Nonlinear bifurcation problems



Outline Main problems Singular solutions Bifurcation for singular L-E-F equations Bifurcation for nonhomogeneous operators

Equations with convection terms and singular nonlinearities and
potentials





−∆u = p(d(x))g(u) + λ|∇u|a + µf (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(4)

Notation: d(x) = dist(x, ∂Ω), λ ∈ R, µ > 0, and 0 < a ≤ 2.
Assumptions: g ∈ C1(0,∞) verifies
(g1): g is a positive decreasing function such that limt↘0 g(t) = +∞.
Function f : Ω× [0,∞) → [0,∞) is Hölder continuous which is
nondecreasing with respect to the second variable and such that f is
positive in Ω× (0,∞).
Let

m := lim
t→∞ g(t) ∈ [0,∞).
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Theorem
Assume that a = 2, λ ≥ 0, µ > 0 and p ≡ 1, f ≡ 1.
(i) The problem (4) has a solution if and only if λ(m + µ) < λ1;
(ii) Assume µ > 0 is fixed and let λ∗ = λ1/(m + µ). Then (4) has a
unique solution uλ for every 0 ≤ λ < λ∗ and the sequence
(uλ)0≤λ<λ∗ is increasing with respect to λ. Moreover, if
lim sups↘0 sαg(s) < ∞, for some α ∈ (0, 1), then the sequence of
solutions (uλ)0≤λ<λ∗ has the following properties:
(ii1) there exist two positive constants c1, c2 depending on λ such that
c1d(x) ≤ uλ ≤ c2d(x) in Ω;
(ii2) uλ ∈ C1,1−α(Ω) ∩ C2(Ω);
(ii3) limλ↗λ∗ uλ = ∞ uniformly on compact subsets of Ω.
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Case (i) for m = 0, resp. m > 0.

Figure: The bifurcation diagrams in Case (i).
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Case (ii), λ > 0 and µ = fixed.

Figure: The bifurcation diagram in Case (ii).
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Competition of terms and signs
Consider the problem





−∆u± p(d(x))g(u) = λf (x, u) + µ|∇u|a in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(P)±

where Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary,
d(x) = dist(x, ∂Ω), λ > 0, µ ∈ R, and 0 < a ≤ 2.

Assumptions:
(i) g ∈ C1(0,∞) is a positive decreasing function and
(g1) lim

t→0+
g(t) = +∞.
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(ii) f : Ω× [0,∞) → [0,∞) is a Hölder continuous function which is
nondecreasing with respect to the second variable and such that f is
positive on Ω× (0,∞). Furthermore, f is either linear or f is
sublinear with respect to the second variable. This last case means
that f fulfills the hypotheses

(f 1) (0,∞) 3 t 7−→ f (x, t)
t

is nonincreasing, for all x ∈ Ω;

(f 2) lim
t→0+

f (x, t)
t

= +∞ and lim
t→+∞

f (x, t)
t

=

0, uniformly for x ∈ Ω.

(p) p : (0,+∞) → (0, +∞) is nonincreasing and Hölder continuous.
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Problem (P)+

Theorem

Assume that
∫ 1

0
p(t)g(t)dt = +∞. Let Φ : Ω× [0,+∞) → R be a

Hölder continuous function. Then the inequality boundary value
problem





−∆u + p(d(x))g(u) ≤ Φ(x, u) + C |∇u|2 in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(5)

has no classical solutions.

Corollary

Assume that
∫ 1

0
p(t)g(t)dt = +∞. Then problem (P)+ has no

classical solutions.
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The next result shows that condition
∫ 1

0 p(t)g(t)dt < +∞ is sufficient
for the existence of a classical solution to (P)+ provided µ ≤ 0 and
λ > 0 is sufficiently large.

Theorem

Assume that
∫ 1

0
p(t)g(t)dt < +∞.

(i) If µ = −1, then there exists λ∗ > 0 such that (P)+ has at least
one classical solution if λ > λ∗ and no solution exists if
0 < λ < λ∗.

(ii) If µ = +1 and 0 < a < 1, then there exists λ∗ > 0 such that
(P)+ has at least one classical solution for all λ > λ∗ and no
solution exists if 0 < λ < λ∗.
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Problem (P)−
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Problem (P)− in the sublinear case

Theorem
Assume λ = 1,

∫ 1
0 tp(t)dt < +∞ and conditions (f 1), (f 2), (g1) and

0 < a ≤ 2 are fulfilled.

(i) If 0 < a < 1, then problem (P)− has at least one solution, for all
µ ∈ R;

(ii) If 1 < a ≤ 2, then there exists µ∗ > 0 such that (P)− has at least
one classical solution for all µ < µ∗ and no solution exists if
µ > µ∗.
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Corollary

Assume µ = ±1,
∫ 1

0 tp(t)dt < +∞ and conditions (f 1), (f 2), (g1)
and 0 < a ≤ 2 are fulfilled.

(i) If 0 < a < 1, then problem (P)− has at least one solution, for all
λ > 0;

(ii) If < 1 < a ≤ 2 and µ = −1, then problem (P)− has at least one
solution, for all λ > 0;

(iii) If 1 < a ≤ 2 and µ = +1, then there exists λ∗ > 0 such that
(P)− has at least one classical solution for all λ > λ∗ and no
solution exists if λ < λ∗.
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Problem (P)− in the linear case
Consider the problem





−∆u = p(d(x))g(u) + λu + µ|∇u|a in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

(6)

where λ > 0 and p, g are as above.

Theorem
Assume that

∫ 1
0 tp(t)dt < +∞ and conditions (g1), 0 < a < 1 are

fulfilled. Then for µ ≥ 0 the problem (6) has solutions if and only if
λ < λ1.
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Example.
Consider the problem





−∆u = d(x)−αu−β + f (x, u) + µ|∇u|a in Ω,
u > 0 in Ω,
u = 0 on ∂Ω.

(7)

Recall that if
∫ 1

0 tp(t)dt < +∞ and µ belongs to a certain range, then
this problem has at least one classical solution uµ.
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Theorem

(i) If α ≥ 2, then the problem (7) has no classical solutions.

(ii) If α < 2, then ∃µ∗ ∈ (0, +∞] (with µ∗ = +∞ if 0 < a < 1) such that
(7) has at least one classical solution uµ, ∀ −∞ < µ < µ∗. Moreover,
∀ 0 < µ < µ∗, ∃ 0 < δ < 1 and ∃C1, C2 > 0 such that

(ii1) If α + β > 1, then

C1d(x)
2−α
1+β ≤ uµ(x) ≤ C2d(x)

2−α
1+β , for all x ∈ Ω;

(ii2) If α + β = 1, then for all x ∈ Ω with d(x) < δ

C1d(x)(− ln d(x))
1

2−α ≤ uµ(x) ≤ C2d(x)(− ln d(x))
1

2−α ;

(ii3) If α + β < 1, then

C1d(x) ≤ uµ(x) ≤ C2d(x), for all x ∈ Ω.
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Bifurcation for nonhomogeneous operators

The problem { −∆u = λu in Ω
u = 0 on ∂Ω .

has an unbounded sequence of eigenvalues

0 < λ1 < λ2 ≤ . . . ≤ λn ≤ . . . .

In 1894, Poincaré established the existence of an infinite sequence of
eigenvalues and corresponding eigenfunctions for the Laplace
operator under the Dirichlet boundary condition. (For the first
eigenvalue this was done by H. A. Schwarz in 1885 and for the
second eigenvalue by E. Picard in 1893.) This key result is the
beginning of spectral theory which has been one the major themes of
functional analysis and its role in theoretical physics and differential
geometry during the 20th century.
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The anisotropic case
{ −∆u = λa(x)u in Ω

u = 0 on ∂Ω

was considered by Bocher (1914), Minakshisundaram and Pleijel
(1949), Hess and Kato (1980). Minakshisundaram and Pleijel proved
that the above eigenvalue problem has an unbounded sequence of
positive eigenvalues if a ∈ L∞(Ω), a ≥ 0 in Ω, and a > 0 in Ω0 ⊂ Ω,
where |Ω0| > 0.
Case of an indefinite weight a( · ): Szulkin & Willem (1999).
Quasilinear eigenvalue problems: Anane (1987), Lindqvist (1990).
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Nonlinear bifurcation problems



Outline Main problems Singular solutions Bifurcation for singular L-E-F equations Bifurcation for nonhomogeneous operators

The anisotropic case
{ −∆u = λa(x)u in Ω

u = 0 on ∂Ω

was considered by Bocher (1914), Minakshisundaram and Pleijel
(1949), Hess and Kato (1980). Minakshisundaram and Pleijel proved
that the above eigenvalue problem has an unbounded sequence of
positive eigenvalues if a ∈ L∞(Ω), a ≥ 0 in Ω, and a > 0 in Ω0 ⊂ Ω,
where |Ω0| > 0.
Case of an indefinite weight a( · ): Szulkin & Willem (1999).
Quasilinear eigenvalue problems: Anane (1987), Lindqvist (1990).
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Hardy–Sobolev operator −∆pu− µw(x)|u|p−2u: Sreenadh (2002),
with µ < (N − p)pp−p and

w(x) =





|x|−p if 1 < p < N(
|x| log

1
|x|

)−N

if p = N.

Edmunds, Evans, Harris (J. London Math. Soc., 2008):
{ −∆pu = λ|u|q−2u in Ω

u = 0 on ∂Ω ,

1 < p < N, 1 < q < Np/(N − p). Then there exists a countable
family of eigenvalues λn.
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First example
{ −div(|∇u|p(x)−2∇u) = λ|u|q(x)−2u, x ∈ Ω

u = 0, x ∈ ∂Ω ,
(8)

where p, q are continuous on Ω and ∆p(x)u := div (|∇u|p(x)−2∇u).

Abstract framework. Assume p ∈ C(Ω) and p > 1, on ∈ Ω. Set

C+(Ω) = {h; h ∈ C(Ω), h(x) > 1 for x ∈ Ω}.

For h ∈ C+(Ω), define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).
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For any p ∈ C+(Ω), define the variable exponent Lebesgue space

Lp(x)(Ω) = {u;
∫

Ω
|u(x)|p(x) dx < ∞}.

Luxemburg norm:

|u|p(x) = inf

{
µ > 0;

∫

Ω

∣∣∣∣
u(x)
µ

∣∣∣∣
p(x)

dx ≤ 1

}
.

Then Lp(x)(Ω) is separable and reflexive Banach space.
Lp
′
(x)(Ω): the dual space of Lp(x)(Ω), where 1/p(x) + 1/p

′
(x) = 1.

For u ∈ Lp(x)(Ω) and v ∈ Lp
′
(x)(Ω) the Hölder type inequality

∣∣∣∣
∫

Ω
uv dx

∣∣∣∣ ≤
(

1
p−

+
1

p′−

)
|u|p(x)|v|p′ (x) (9)

holds true.
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Modular mapping. ρp(x) : Lp(x)(Ω) → R defined by

ρp(x)(u) =
∫

Ω
|u|p(x) dx.

If (un), u ∈ Lp(x)(Ω) then

|u|p(x) > 1 ⇒ |u|p−p(x) ≤ ρp(x)(u) ≤ |u|p+

p(x)

|u|p(x) < 1 ⇒ |u|p+

p(x) ≤ ρp(x)(u) ≤ |u|p−p(x)

|un − u|p(x) → 0 ⇔ ρp(x)(un − u) → 0.

Define W1,p(x)
0 (Ω) as the closure of C∞0 (Ω) under the norm

‖u‖ = |∇u|p(x). The space (W1,p(x)
0 (Ω), ‖ · ‖) is separable and

reflexive. If s ∈ C+(Ω) and s(x) < p?(x) for all x ∈ Ω then the
embedding W1,p(x)

0 (Ω) ↪→ Ls(x)(Ω) is compact and continuous, where
p?(x) = Np(x)

N−p(x) if p(x) < N or p?(x) = +∞ if p(x) ≥ N.
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Theorem
Assume that q(x) < p?(x) for all x ∈ Ω and

1 < min
x∈Ω

q(x) < min
x∈Ω

p(x) < max
x∈Ω

q(x).

Then there exists λ? > 0 such that any λ ∈ (0, λ?) is an eigenvalue
for problem (8).

Remark. If maxx∈Ω p(x) < minx∈Ω q(x) and q(x) < p?(x) then a
mountain pass argument shows that any λ > 0 is an eigenvalue of
problem (8).
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Second example
Consider the problem
{ −div((|∇u|p1(x)−2 + |∇u|p2(x)−2)∇u) = λ|u|q(x)−2u, x ∈ Ω

u = 0, x ∈ ∂Ω ,
(10)

where
1 < p2(x) < min

y∈Ω
q(y) ≤ max

y∈Ω
q(y) < p1(x) ;

max
y∈Ω

q(y) < p?
2(x), ∀ x ∈ Ω ,

with p?
2(x) := Np2(x)

N−p2(x) if p2(x) < N and p?
2(x) = +∞ if p2(x) ≥ N.
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Define

λ1 := inf
u∈W1,p1(x)

0 (Ω)\{0}

∫

Ω

1
p1(x)

|∇u|p1(x) dx +
∫

Ω

1
p2(x)

|∇u|p2(x) dx
∫

Ω

1
q(x)

|u|q(x) dx
.

Theorem
Any λ ∈ [λ1,∞) is an eigenvalue of problem (10). Moreover, there
exists a positive constant λ0 such that λ0 ≤ λ1 and any λ ∈ (0, λ0) is
not an eigenvalue of problem (10).
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Sketch of the proof.

Step 1: λ1 > 0.

Step 2: λ1 is an eigenvalue of problem (10).

STEP 3: any λ ∈ (λ1,∞) is an eigenvalue of problem (10).

Define
J1(u) =

∫

Ω
|∇u|p1(x) dx +

∫

Ω
|∇u|p2(x) dx,

I1(u) =
∫

Ω
|u|q(x) dx

λ0 = inf
v∈W1,p1(x)

0 (Ω)\{0}

J1(v)
I1(v)

> 0.

Step 4: any λ ∈ (0, λ0) is not an eigenvalue of problem (10).
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Third example



−div(|∇u|p(x)−2∇u) + |u|p(x)−2u+
|u|q(x)−2u = λg(x)|u|r(x)−2u for x ∈ Ω
u = 0 for x ∈ ∂Ω ,

(11)

where p, q, r : Ω → [2,∞) are Lipschitz; g : Ω → [0,∞) is a
measurable function for which there exists a nonempty set Ω0 ⊂ Ω
with |Ω0| > 0 such that g(x) > 0 for any x ∈ Ω0.
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Assumptions:
2 ≤ p− ≤ p+ < N ,

p+ < r− ≤ r+ < q− ≤ q+ <
Np−

N − p−
.

g ∈ L∞(Ω) ∩ Lp0(x)(Ω) ,

where p0(x) = p?(x)/(p?(x)− r−) ∀ x ∈ Ω.
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λ1 := inf
u∈W1,p(x)

0 (Ω)\{0}

∫

Ω

1
p(x)

(|∇u|p(x) + |u|p(x)) dx +
∫

Ω

1
q(x)

|u|q(x) dx
∫

Ω

g(x)
r(x)

|u|r(x) dx

λ0 := inf
u∈W1,p(x)

0 (Ω)\{0}

∫

Ω
(|∇u|p(x) + |u|p(x)) dx +

∫

Ω
|u|q(x) dx

∫

Ω
g(x)|u|r(x) dx

.

Theorem
The following properties hold true:
(i) 0 < λ0 ≤ λ1 ;
(ii) any λ ∈ [λ1,∞) is an eigenvalue of problem (11) while any
λ ∈ (0, λ0) is not an eigenvalue of problem (11).
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