Turning Washington’s heuristics in favor of Vandiver’s conjecture

Preda Mihăilescu, Univ. Göttingen

October 13, 2010

Abstract

A famous conjecture bearing the name of Vandiver states that $h_p^+ = 1$ in the p-cyclotomic extension of \mathbb{Q}. Heuristics arguments of Washington, which have been briefly exposed in [La], p. 261 and [Wa], p. 158 suggest that the Vandiver conjecture should be false, if certain conditions of statistical independence are fulfilled. In this note we assume that Greenberg’s conjecture is true for the p-th cyclotomic extensions and prove an elementary consequence of the assumption that Vandiver’s conjecture fails for a certain value of p: the result indicates that there are deep correlations between this fact and the defect $\lambda^+ i(p)$, where $i(p)$ is like usual the irregularity index of p, i.e. the number of Bernoulli numbers $B_{2k} \equiv 0 \mod p, 1 < k < (p - 1)/2$. As a consequence, if one combines the various assumptions in Washington’s heuristics, these turn, on base of the present result, into an argument in favor of the Vandiver’s conjecture.