THE BING-BORSUK AND THE BUSEMANN CONJECTURES

DUŠAN REPOVŠ
UNIVERSITY OF LJUBLJANA
SLOVENIA

Bucharest, June 10, 2009
Definition: Let Y be a metric space. Y is said to be an *absolute neighborhood retract (ANR)* provided for every closed embedding $e : Y \to Z$ of Y into a metric space Z, there is an open neighborhood U of the image $e(Y)$ which retracts to $e(Y)$. That is, there is a continuous surjection $r : U \to e(Y)$ with $r(x) = x$ for all $x \in e(Y)$.
Definition: Let Y be a metric space. Y is said to be an *absolute neighborhood retract (ANR)* provided for every closed embedding $e : Y \to Z$ of Y into a metric space Z, there is an open neighborhood U of the image $e(Y)$ which retracts to $e(Y)$. That is, there is a continuous surjection $r : U \to e(Y)$ with $r(x) = x$ for all $x \in e(Y)$.

Fact: Let Y be a finite-dimensional, locally contractible separable metric space. Then Y is an ANR.
Definition: Let Y be a metric space. Y is said to be an absolute neighborhood retract (ANR) provided for every closed embedding $e : Y \rightarrow Z$ of Y into a metric space Z, there is an open neighborhood U of the image $e(Y)$ which retracts to $e(Y)$. That is, there is a continuous surjection $r : U \rightarrow e(Y)$ with $r(x) = x$ for all $x \in e(Y)$.

Fact: Let Y be a finite-dimensional, locally contractible separable metric space. Then Y is an ANR.

Definition: A topological space X is said to be homogeneous if, for any two points $x_1, x_2 \in X$, there is a homeomorphism of X onto itself taking x_1 to x_2.
Definition: A (closed) *topological n-manifold* \(n \in \mathbb{N} \) is a connected, compact \(n \)-dimensional metric space which is *locally Euclidean* (i.e. homeomorphic to \(\mathbb{R}^n \)).
Definition: A (closed) *topological n-manifold* \((n \in \mathbb{N})\) is a connected, compact \(n\)-dimensional metric space which is *locally Euclidean* (i.e. homeomorphic to \(\mathbb{R}^n\)).

Fact: Every topological \(n\)-manifold is a homogeneous ANR.
Definition: A (closed) topological n-manifold ($n \in \mathbb{N}$) is a connected, compact n-dimensional metric space which is locally Euclidean (i.e. homeomorphic to \mathbb{R}^n).

Fact: Every topological n-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For $n < 3$, every n-dimensional homogeneous ANR is a topological n-manifold.
Definition: A (closed) topological n-manifold \((n \in \mathbb{N})\) is a connected, compact \(n\)-dimensional metric space which is locally Euclidean (i.e. homeomorphic to \(\mathbb{R}^n\)).

Fact: Every topological \(n\)-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For \(n < 3\), every \(n\)-dimensional homogeneous ANR is a topological \(n\)-manifold.

Bing-Borsuk Conjecture (1965): For every \(n \geq 3\), any \(n\)-dimensional homogeneous ANR is a topological \(n\)-manifold.
Definition: A (closed) topological n-manifold ($n \in \mathbb{N}$) is a connected, compact n-dimensional metric space which is locally Euclidean (i.e. homeomorphic to \mathbb{R}^n).

Fact: Every topological n-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For $n < 3$, every n-dimensional homogeneous ANR is a topological n-manifold.

Bing-Borsuk Conjecture (1965): For every $n \geq 3$, any n-dimensional homogeneous ANR is a topological n-manifold.

Jakobsche Theorem (1978): In dimension $n = 3$, the Bing-Borsuk Conjecture implies the Poincaré Conjecture.
Definition: An n-dimensional compact metric space X is called an n-dimensional Cantor manifold if whenever X can be expressed as the union $X = X_1 \cup X_2$ of its proper closed subsets, then $\dim(X_1 \cap X_2) \geq n - 1$.
Definition: An n-dimensional compact metric space X is called an n-dimensional Cantor manifold if whenever X can be expressed as the union $X = X_1 \cup X_2$ of its proper closed subsets, then $\dim(X_1 \cap X_2) \geq n - 1$.

Aleksandrov Theorem (1930): Every topological n-manifold is a Cantor n-manifold.
Definition: An \(n \)-dimensional compact metric space \(X \) is called an \(n \)-dimensional Cantor manifold if whenever \(X \) can be expressed as the union \(X = X_1 \cup X_2 \) of its proper closed subsets, then \(\dim(X_1 \cap X_2) \geq n - 1 \).

Aleksandrov Theorem (1930): Every topological \(n \)-manifold is a Cantor \(n \)-manifold.

Definition: A topological space \(X \) is said to have the invariance of domain property if for every pair \(U, V \subset X \) of homeomorphic subsets, \(U \) is open if and only if \(V \) is open.
Definition: An n-dimensional compact metric space X is called an n-dimensional Cantor manifold if whenever X can be expressed as the union $X = X_1 \cup X_2$ of its proper closed subsets, then $\dim(X_1 \cap X_2) \geq n - 1$.

Aleksandrov Theorem (1930): Every topological n-manifold is a Cantor n-manifold.

Definition: A topological space X is said to have the invariance of domain property if for every pair $U, V \subset X$ of homeomorphic subsets, U is open if and only if V is open.

Brouwer Theorem (1910): Every topological n-manifold has the invariance of domain property.
Definition: An n-dimensional compact metric space X is called an n-dimensional Cantor manifold if whenever X can be expressed as the union $X = X_1 \cup X_2$ of its proper closed subsets, then $\dim(X_1 \cap X_2) \geq n - 1$.

Aleksandrov Theorem (1930): Every topological n-manifold is a Cantor n-manifold.

Definition: A topological space X is said to have the invariance of domain property if for every pair $U, V \subset X$ of homeomorphic subsets, U is open if and only if V is open.

Brouwer Theorem (1910): Every topological n-manifold has the invariance of domain property.

Łysko Theorem (1976): Every finite-dimensional connected homogeneous ANR space is a Cantor manifold and it has the invariance of domain property.
Definition: A *Euclidean neighborhood retract* (ENR) is a finite-dimensional, locally compact, locally contractible subset X of the Euclidean n-space \mathbb{R}^n.
Definition: A *Euclidean neighborhood retract* (ENR) is a finite-dimensional, locally compact, locally contractible subset X of the Euclidean n-space \mathbb{R}^n.

Definition: An n-dimensional ($n \in \mathbb{N}$) locally compact Hausdorff space X is called a \(\mathbb{Z}\)-homology n-manifold (\(n\)-hm\(\mathbb{Z}\)) if for every point $x \in X$ and all $k \in \mathbb{N}$, $H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z})$.
Definition: A *Euclidean neighborhood retract* (ENR) is a finite-dimensional, locally compact, locally contractible subset X of the Euclidean n-space \mathbb{R}^n.

Definition: An n-dimensional ($n \in \mathbb{N}$) locally compact Hausdorff space X is called a *\mathbb{Z}-homology n-manifold* (n-hm$_{\mathbb{Z}}$) if for every point $x \in X$ and all $k \in \mathbb{N}$,

$H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}).$

Bredon Theorem (1967): If X is an n-dimensional homogeneous ENR ($n \in \mathbb{N}$) and for some (and, hence all) points $x \in X$, the groups $H_k(X, X - \{x\}; \mathbb{Z})$ are finitely generated, then X is a \mathbb{Z}-homology n-manifold.
Definition: A *Euclidean neighborhood retract* (ENR) is a finite-dimensional, locally compact, locally contractible subset \(X \) of the Euclidean \(n \)-space \(\mathbb{R}^n \).

Definition: An \(n \)-dimensional \((n \in \mathbb{N})\) locally compact Hausdorff space \(X \) is called a \(\mathbb{Z} \)-homology \(n \)-manifold \((n\text{-hm}_{\mathbb{Z}})\) if for every point \(x \in X \) and all \(k \in \mathbb{N} \),
\[
H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}).
\]

Bredon Theorem (1967): If \(X \) is an \(n \)-dimensional homogeneous ENR \((n \in \mathbb{N})\) and for some (and, hence all) points \(x \in X \), the groups \(H_k(X, X - \{x\}; \mathbb{Z}) \) are finitely generated, then \(X \) is a \(\mathbb{Z} \)-homology \(n \)-manifold.

Remark: This theorem was reproved by Bryant in 1987 with a more geometric argument.
Definition: An n-dimensional topological space X is called a *generalized n-manifold* ($n \in \mathbb{N}$) if X is an ENR and a \mathbb{Z}-homology n-manifold.
Definition: An n-dimensional topological space X is called a *generalized n-manifold* ($n \in \mathbb{N}$) if X is an ENR and a \mathbb{Z}-homology n-manifold.

Fact: Every generalized $(n \leq 2)$-manifold is a topological n-manifold. However, for every $n \geq 3$ there exist *totally singular* generalized n-manifolds X.
Definition: An n-dimensional topological space X is called a *generalized n-manifold* ($n \in \mathbb{N}$) if X is an ENR and a \mathbb{Z}-homology n-manifold.

Fact: Every generalized $(n \leq 2)$-manifold is a topological n-manifold. However, for every $n \geq 3$ there exist *totally singular* generalized n-manifolds X.

Definition: A proper onto map $f : M \to X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.
Definition: An n-dimensional topological space X is called a *generalized n-manifold* ($n \in \mathbb{N}$) if X is an ENR and a \mathbb{Z}-homology n-manifold.

Fact: Every generalized ($n \leq 2$)-manifold is a topological n-manifold. However, for every $n \geq 3$ there exist *totally singular* generalized n-manifolds X.

Definition: A proper onto map $f : M \to X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.

The following classical result was proved for $n \leq 2$ by Wilder, for $n = 3$ by Armentrout, for $n = 4$ by Quinn and for $n \geq 5$ by Siebenmann.
Definition: An n-dimensional topological space X is called a *generalized n-manifold* ($n \in \mathbb{N}$) if X is an ENR and a \mathbb{Z}-homology n-manifold.

Fact: Every generalized ($n \leq 2$)-manifold is a topological n-manifold. However, for every $n \geq 3$ there exist *totally singular* generalized n-manifolds X.

Definition: A proper onto map $f : M \rightarrow X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.

The following classical result was proved for $n \leq 2$ by Wilder, for $n = 3$ by Armentrout, for $n = 4$ by Quinn and for $n \geq 5$ by Siebenmann.

Cell-like Approximation Theorem: Every cell-like map between topological manifolds is a near-homeomorphism.
Definition: An n-dimensional space X is said to be resolvable if there is a cell-like map $f : M \rightarrow X$ where M is a topological n-manifold.
Definition: An n-dimensional space X is said to be *resolvable* if there is a cell-like map $f : M \to X$ where M is a topological n-manifold.

Resolution Conjecture (1978): Every generalized $(n \geq 3)$-manifold has a resolution.
Definition: An n-dimensional space X is said to be resolvable if there is a cell-like map $f : M \to X$ where M is a topological n-manifold.

Resolution Conjecture (1978): Every generalized $(n \geq 3)$-manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions ≥ 6 it turns out to be false:
Definition: An n-dimensional space X is said to be *resolvable* if there is a cell-like map $f : M \to X$ where M is a topological n-manifold.

Resolution Conjecture (1978): Every generalized $(n \geq 3)$-manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist non-resolvable generalized n-manifolds, for every $n \geq 6$.
Definition: An n-dimensional space X is said to be *resolvable* if there is a cell-like map $f : M \to X$ where M is a topological n-manifold.

Resolution Conjecture (1978): Every generalized $(n \geq 3)$-manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist non-resolvable generalized n-manifolds, for every $n \geq 6$.

Remark: By the work of Quinn, these nonresolvable generalized manifolds must be *totally singular.*
Definition: A metric space X is said to have the *disjoint disks property* (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε-approximations $f', g' : B^2 \to X$ with disjoint images.
Definition: A metric space X is said to have the *disjoint disks property* (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε-approximations $f', g' : B^2 \to X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized $(n \geq 5)$-manifold with the DDP a topological n-manifold?
Definition: A metric space X is said to have the *disjoint disks property* (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \rightarrow X$ there exist ε-approximations $f', g' : B^2 \rightarrow X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized ($n \geq 5$)-manifold with the DDP a topological n-manifold?

Edwards DDP Theorem (1977): For $n \geq 5$, topological n-manifolds are precisely the n-dimensional resolvable spaces (hence generalized n-manifolds) with the DDP.
Definition: A metric space X is said to have the *disjoint disks property* (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε-approximations $f', g' : B^2 \to X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized $(n \geq 5)$-manifold with the DDP a topological n-manifold?

Edwards DDP Theorem (1977): For $n \geq 5$, topological n-manifolds are precisely the n-dimensional resolvable spaces (hence generalized n-manifolds) with the DDP.

Bryant-Ferry-Mio-Weinberger Theorem (2007): For every $n \geq 7$ there exist non-resolvable generalized n-manifolds with the DDP.
Bing-Borsuk Conjecture: Resolvability and the Modified Conjecture

Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized n-manifold ($n \geq 7$) satisfying the disjoint disks property, is homogeneous.
Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized n-manifold ($n \geq 7$) satisfying the disjoint disks property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is true, then the Bing Borsuk conjecture is false for $n \geq 7$.
Bing-Borsuk Conjecture: Resolvability and the Modified Conjecture

Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized n-manifold ($n \geq 7$) satisfying the disjoint disks property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is true, then the Bing Borsuk conjecture is false for $n \geq 7$.

Bryant Modified Bing-Borsuk Conjecture (2002): Every homogeneous ($n \geq 3$)-dimensional ENR is a generalized n-manifold.
Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0, 1] \to X$, the inclusion induced map

$$H_*(X \times 0, X \times 0 - (\alpha(0), 0); \mathbb{Z}) \to H_*(X \times I, X \times I - \Gamma(\alpha); \mathbb{Z})$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α.
Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0, 1] \to X$, the inclusion induced map

$$H_*(X \times 0, X \times 0 - (\alpha(0), 0); \mathbb{Z}) \to H_*(X \times I, X \times I - \Gamma(\alpha); \mathbb{Z})$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α.

The following result answers in affirmative a question asked by Quinn at the 2003 Oberwolfach workshop on exotic homology manifolds.
Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0, 1] \to X$, the inclusion induced map

$$H_*(X \times 0, X \times 0 - (\alpha(0), 0); \mathbb{Z}) \to H_*(X \times I, X \times I - \Gamma(\alpha); \mathbb{Z})$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α.

The following result answers in affirmative a question asked by Quinn at the 2003 Oberwolfach workshop on exotic homology manifolds.

Bryant Theorem (2006): Every n-dimensional homologically arc-homogeneous ENR is a generalized n-manifold.
In 1991 Repovš, Skopenkov and Ščepin proved the smooth version of the Bing-Borsuk Conjecture.
Bing-Borsuk Conjecture: History of Results

In 1991 Repovš, Skopenkov and Ščepin proved the *smooth version* of the Bing-Borsuk Conjecture.

Definition: A subset $K \subset \mathbb{R}^n$ is said to be C^1–*homogeneous* if for every pair of points $x, y \in K$ there exist neighborhoods $O_x, O_y \subset \mathbb{R}^n$ of x and y, respectively, and a C^1–*diffeomorphism*

$$h : (O_x, O_x \cap K, x) \rightarrow (O_y, O_y \cap K, y),$$

i.e. h and h^{-1} have continuous first derivatives.
In 1991 Repovš, Skopenkov and Ščepin proved the *smooth version* of the Bing-Borsuk Conjecture.

Definition: A subset $K \subset \mathbb{R}^n$ is said to be C^1–*homogeneous* if for every pair of points $x, y \in K$ there exist neighborhoods $O_x, O_y \subset \mathbb{R}^n$ of x and y, respectively, and a C^1–*diffeomorphism*

$$h : (O_x, O_x \cap K, x) \to (O_y, O_y \cap K, y),$$

i.e. h and h^{-1} have continuous first derivatives.

Repovš-Skopenkov-Ščepin Theorem (1991): Let K be a locally compact (possibly nonclosed) subset of \mathbb{R}^n. Then K is C^1–*homogeneous* if and only if K is a C^1–*submanifold* of \mathbb{R}^n.
Remark: This theorem clearly does not work for all *homeomorphisms*, a counterexample is the *Antoine Necklace* – a wild Cantor set in \mathbb{R}^3 which is clearly *homogeneously* (but not C^1–*homogeneously*) embedded in \mathbb{R}^3. In fact, it does not even work for *Lipschitz* homeomorphisms, i.e. the maps for which $d(f(x), f(y)) < \lambda d(x, y)$, for all $x, y \in X$.
Remark: This theorem clearly does not work for all homeomorphisms, a counterexample is the Antoine Necklace – a wild Cantor set in \mathbb{R}^3 which is clearly homogeneously (but not C^1–homogeneously) embedded in \mathbb{R}^3. In fact, it does not even work for Lipschitz homeomorphisms, i.e. the maps for which $d(f(x), f(y)) < \lambda \ d(x, y)$, for all $x, y \in X$.

Malešič-Repovš Theorem (1999): There exists a Lipschitz homogeneous wild Cantor set in \mathbb{R}^3.
Remark: This theorem clearly does not work for all homeomorphisms, a counterexample is the Antoine Necklace – a wild Cantor set in \(\mathbb{R}^3 \) which is clearly homogeneously (but not \(C^1 \)-homogeneously) embedded in \(\mathbb{R}^3 \). In fact, it does not even work for Lipschitz homeomorphisms, i.e. the maps for which

\[
d(f(x), f(y)) < \lambda \, d(x, y), \quad \text{for all } x, y \in X.
\]

Malešič-Repovš Theorem (1999): There exists a Lipschitz homogeneous wild Cantor set in \(\mathbb{R}^3 \).

Garity-Repovš-Željko Theorem (2005): There exist uncountably many rigid Lipschitz homogeneous wild Cantor sets in \(\mathbb{R}^3 \).
Beginning in 1942, Herbert Busemann developed the notion of a G-space as a way of putting a Riemannian like geometry on a metric space.
Beginning in 1942, Herbert Busemann developed the notion of a G-space as a way of putting a Riemannian like geometry on a metric space.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.
Beginning in 1942, Herbert Busemann developed the notion of a G-space as a way of putting a Riemannian like geometry on a metric space.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.
Beginning in 1942, Herbert Busemann developed the notion of a G-space as a way of putting a Riemannian like geometry on a metric space.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for small metric balls.
Beginning in 1942, Herbert Busemann developed the notion of a G-space as a way of putting a Riemannian-like geometry on a metric space.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for small metric balls.

Busemann Conjecture (1955): Every n-dimensional G-space $(n \in \mathbb{N})$ is a topological n-manifold.
Definition: Let \((X, d)\) be a metric space. \(X\) is said to be a \textit{Busemann G-space} provided it satisfies the following axioms:
Definition: Let \((X, d)\) be a metric space. \(X\) is said to be a *Busemann G-space* provided it satisfies the following axioms:

Menger Convexity: Given distinct points \(x, y \in X\), there is a point \(z \in X - \{x, y\}\) such that \(d(x, z) + d(z, y) = d(x, y)\).
Definition: Let (X, d) be a metric space. X is said to be a Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that $d(x, z) + d(z, y) = d(x, y)$.

Finite Compactness: Every d-bounded infinite set has an accumulation point.
Definition: Let \((X, d)\) be a metric space. \(X\) is said to be a *Busemann G-space* provided it satisfies the following axioms:

Menger Convexity: Given distinct points \(x, y \in X\), there is a point \(z \in X - \{x, y\}\) such that \(d(x, z) + d(z, y) = d(x, y)\).

Finite Compactness: Every \(d\)-bounded infinite set has an accumulation point.

Local Extendibility: For every point \(w \in X\), there is a radius \(\rho_w > 0\), such that for any pair of distinct points \(x, y \in B(w, \rho_w)\), there is a point \(z \in \text{int } B(w, \rho_w) - \{x, y\}\) such that \(d(x, y) + d(y, z) = d(x, z)\).
Definition: Let (X, d) be a metric space. X is said to be a **Busemann G-space** provided it satisfies the following axioms:

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that $d(x, z) + d(z, y) = d(x, y)$.

Finite Compactness: Every d-bounded infinite set has an accumulation point.

Local Extendibility: For every point $w \in X$, there is a radius $\rho_w > 0$, such that for any pair of distinct points $x, y \in B(w, \rho_w)$, there is a point $z \in \text{int} \ B(w, \rho_w) - \{x, y\}$ such that $d(x, y) + d(y, z) = d(x, z)$.

Uniqueness of the Extension: Given distinct points $x, y \in X$, if there are points $z_1, z_2 \in X$ for which both

$$d(x, y) + d(y, z_i) = d(x, z_i) \quad \text{for } i = 1, 2,$$

and

$$d(y, z_1) = d(y, z_2)$$

hold, then $z_1 = z_2$.
Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:
Busemann Conjecture: History of Results

Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.
Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.
Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.
Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.

Local Cones: There is a radius $\epsilon_x > 0$ for which the closed metric ball $B_{\epsilon_x}(x)$ is homeomorphic to the cone over its boundary.
Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a G-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.

Local Cones: There is a radius $\epsilon_x > 0$ for which the closed metric ball $B_{\epsilon_x}(x)$ is homeomorphic to the cone over its boundary.

Homogeneity: X is homogeneous and the homogeneity homeomorphisms can be chosen so that it is isotopic to the identity.
Busemann Conjecture: History of Results

Busemann Theorem (1955): Busemann G-spaces of dimension $n = 1, 2$ are manifolds.
Busemann Theorem (1955): Busemann G-spaces of dimension $n = 1, 2$ are manifolds.

Busemann Conjecture (1955): Every $n \geq 3$-dimensional Busemann G-space is a topological n-manifold.
Busemann Theorem (1955): Busemann G-spaces of dimension $n = 1, 2$ are manifolds.

Busemann Conjecture (1955): Every $n \geq 3$-dimensional Busemann G-space is a topological n-manifold.

Krakus Theorem (1968): Busemann G-spaces of dimension $n = 3$ are topological 3-manifolds.
Busemann Theorem (1955): Busemann G-spaces of dimension $n = 1, 2$ are manifolds.

Busemann Conjecture (1955): Every $n \geq 3$-dimensional Busemann G-space is a topological n-manifold.

Krakus Theorem (1968): Busemann G-spaces of dimension $n = 3$ are topological 3-manifolds.

Busemann predicted: “Although this conjecture is probably true for any G-space, the proof seems quite inaccessible in the present state of topology.”
Busemann Conjecture: History of Results

Busemann Theorem (1955): Busemann G-spaces of dimension $n = 1, 2$ are manifolds.

Busemann Conjecture (1955): Every $n \geq 3$-dimensional Busemann G-space is a topological n-manifold.

Krakus Theorem (1968): Busemann G-spaces of dimension $n = 3$ are topological 3-manifolds.

Busemann predicted: “Although this conjecture is probably true for any G-space, the proof seems quite inaccessible in the present state of topology.” His prediction was correct – the proof of the case $n = 4$ required the theory of 4-manifolds, developed almost three decades later.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an ANR follows from local contractibility and local compactness.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional G-space is a homology \mathbb{Z}-manifold is proved by sheaf-theoretic methods.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional G-space is a homology \mathbb{Z}-manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann G-space, $\dim X = n < \infty$. Then for all $x \in X$ and sufficiently small $r > 0$:
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional G-space is a homology \mathbb{Z}-manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann G-space, $\dim X = n < \infty$. Then for all $x \in X$ and sufficiently small $r > 0$:

1. $B_r(x)$ is a homology n-manifold with boundary $\partial B_r(x) = S_r(x)$.
Thurston Theorem (1996): Every Busemann G-space of dimension $n = 4$ is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G-space of dimension $n \geq 5$ is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional G-space is a homology \mathbb{Z}-manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann G-space, $\dim X = n < \infty$. Then for all $x \in X$ and sufficiently small $r > 0$:

1. $B_r(x)$ is a homology n-manifold with boundary $\partial B_r(x) = S_r(x)$.
2. $S_r(x)$ is a homology $(n - 1)$-manifold with empty boundary.
Berestovskii Theorem (2002): Busemann G-spaces of dimension $n \geq 5$ having Aleksandrov curvature bounded above are topological n-manifolds.
Berestovskii Theorem (2002): Busemann G-spaces of dimension $n \geq 5$ having Aleksandrov curvature bounded above are topological n-manifolds.

A Busemann G-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in X are at most as ”fat” as corresponding triangles in a surface S_K of constant curvature K, i.e., the length of a bisector of the triangle in X is at most the length of the corresponding bisector of the corresponding triangle in S_K.
Berestovskii Theorem (2002): Busemann G-spaces of dimension $n \geq 5$ having Aleksandrov curvature bounded above are topological n-manifolds.

A Busemann G-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in X are at most as "fat" as corresponding triangles in a surface S_K of constant curvature K, i.e., the length of a bisector of the triangle in X is at most the length of the corresponding bisector of the corresponding triangle in S_K.

Example: The boundary of a convex region in \mathbb{R}^n has nonnegative Alexandrov curvature.
Berestovskii Theorem (2002): Busemann G-spaces of dimension $n \geq 5$ having Aleksandrov curvature bounded above are topological n-manifolds.

A Busemann G-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in X are at most as "fat" as corresponding triangles in a surface S_K of constant curvature K, i.e., the length of a bisector of the triangle in X is at most the length of the corresponding bisector of the corresponding triangle in S_K.

Example: The boundary of a convex region in \mathbb{R}^n has nonnegative Alexandrov curvature.

Remark: The general case of Busemann’s Conjecture of $n \geq 5$ remains unsolved.
Definition: A compact finite-dimensional metric space X is called an *absolute suspension (AS)* if it is a suspension with respect to any pair of distinct points and is called an *absolute cone* if it is a cone with respect to any point.
Definition: A compact finite-dimensional metric space X is called an *absolute suspension* (AS) if it is a suspension with respect to any pair of distinct points and is called an *absolute cone* if it is a cone with respect to any point.

At the 1971 Prague Symposium, de Groot made the following two conjectures:
Definition: A compact finite-dimensional metric space X is called an *absolute suspension* (AS) if it is a suspension with respect to any pair of distinct points and is called an *absolute cone* if it is a cone with respect to any point.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every n-dimensional absolute suspension is homeomorphic to the n-sphere.
Definition: A compact finite-dimensional metric space X is called an *absolute suspension* (AS) if it is a suspension with respect to any pair of distinct points and is called an *absolute cone* if it is a cone with respect to any point.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every n-dimensional absolute suspension is homeomorphic to the n-sphere.

de Groot Absolute Cones Conjecture (1971): Every n-dimensional absolute cone is homeomorphic to the n-cell.
Definition: A compact finite-dimensional metric space X is called an *absolute suspension (AS)* if it is a suspension with respect to any pair of distinct points and is called an *absolute cone* if it is a cone with respect to any point.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every n-dimensional absolute suspension is homeomorphic to the n-sphere.

de Groot Absolute Cones Conjecture (1971): Every n-dimensional absolute cone is homeomorphic to the n-cell.

In 1974 Szymański proved both de Groot conjectures for dimensions $n \leq 3$.
Remark: Small metric balls in Busemann G-spaces are absolute open cones. Absolute open cones have one point compactifications that are absolute suspensions. Therefore de Groot absolute suspension conjecture in dimension n implies the Busemann conjecture in dimension n.
Remark: Small metric balls in Busemann G-spaces are absolute open cones. Absolute open cones have one point compactifications that are absolute suspensions. Therefore de Groot absolute suspension conjecture in dimension n implies the Busemann conjecture in dimension n.

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:
Remark: Small metric balls in Busemann G-spaces are absolute open cones. Absolute open cones have one point compactifications that are absolute suspensions. Therefore de Groot absolute suspension conjecture in dimension n implies the Busemann conjecture in dimension n.

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:

Guilbault Theorem (2007): The de Groot absolute cone conjecture is true for $n \leq 4$ and false for $n \geq 5$.
Remark: Small metric balls in Busemann G-spaces are absolute open cones. Absolute open cones have one point compactifications that are absolute suspensions. Therefore de Groot absolute suspension conjecture in dimension n implies the Busemann conjecture in dimension n.

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:

Guilbault Theorem (2007): The de Groot absolute cone conjecture is true for $n \leq 4$ and false for $n \geq 5$.

Remark: Guilbault provides counterexamples to the absolute cone conjecture. Unfortunately, the double of these non-ball counterexamples are spheres. Hence these counterexamples provide no solution to the de Groot absolute suspension conjecture in high dimensions $n \geq 5$. Unfortunately this also leaves the Busemann conjecture in dimensions $n \geq 5$ unsolved.
Mitchell Theorem (1978):

1. An \(n \)-dimensional absolute suspension \(X \) is a regular generalized \(n \)-manifold homotopy equivalent to \(S^n \); all its links are generalized \((n - 1) \)-manifolds homotopy equivalent to \(S^{n-1} \).
Mitchell Theorem (1978):

1. An n-dimensional absolute suspension X is a regular generalized n-manifold homotopy equivalent to S^n; all its links are generalized $(n-1)$-manifolds homotopy equivalent to S^{n-1}.

2. An n-dimensional absolute cone X is a regular generalized n-manifold proper homotopy equivalent to \mathbb{R}^n; all its links are generalized $(n-1)$-manifolds homotopy equivalent to S^{n-1}.
Mitchell Theorem (1978):

1. An \(n \)-dimensional absolute suspension \(X \) is a regular generalized \(n \)-manifold homotopy equivalent to \(S^n \); all its links are generalized \((n - 1)\)-manifolds homotopy equivalent to \(S^{n-1} \).

2. An \(n \)-dimensional absolute cone \(X \) is a regular generalized \(n \)-manifold proper homotopy equivalent to \(\mathbb{R}^n \); all its links are generalized \((n - 1)\)-manifolds homotopy equivalent to \(S^{n-1} \).

Question: If in Mitchell’s theorem ”homotopy equivalent” could be replaced with ”fine homotopy equivalent”, Mitchell’s theorem would imply resolvability. Is this possible?
Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.
Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a codimension one manifold factor.
Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a codimension one manifold factor.

Remark: Every Busemann G-space is a manifold if and only if small metric spheres are codimension one manifold factors. Equivalently in dimensions $n \geq 5$, every Busemann G-space X is a manifold if and only if X is resolvable and small metric spheres S in X satisfy the property that $S \times \mathbb{R}$ has DDP.
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)

- The disjoint homotopies property (Edwards, Halverson)
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)
- The plentiful 2-manifolds property (Halverson)
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)
- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)
- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)
- The 0-stitched disks property (Halverson)
Theorem: Each of the following general position properties of an ANR X characterizes $X \times \mathbb{R}$ having DDP:

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)
- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)
- The 0-stitched disks property (Halverson)
- The disjoint concordances property (Daverman and Halverson)
Summary and Questions

Facts:

- Bing-Borsuk Conjecture \Rightarrow Busemann Conjecture
Summary and Questions

Facts:

▶ Bing-Borsuk Conjecture \Rightarrow Busemann Conjecture

▶ Bryant-Ferry-Mio-Weinberger Conjecture \Rightarrow The failure of Bing-Borsuk Conjecture
Summary and Questions

Facts:

- Bing-Borsuk Conjecture \Rightarrow Busemann Conjecture

- Bryant-Ferry-Mio-Weinberger Conjecture \Rightarrow The failure of Bing-Borsuk Conjecture

- The failure of Busemann Conjecture \Rightarrow The failure of de Groot Absolute Suspension Conjecture
Summary and Questions

Facts:

- Bing-Borsuk Conjecture \Rightarrow Busemann Conjecture

- Bryant-Ferry-Mio-Weinberger Conjecture \Rightarrow The failure of Bing-Borsuk Conjecture

- The failure of Busemann Conjecture \Rightarrow The failure of de Groot Absolute Suspension Conjecture

- Moore Conjecture and Resolution Conjecture \Rightarrow Busemann Conjecture (recall that the Resolution Conjecture was shown to be wrong for all $n \geq 6$)
Questions:

Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?
Questions:

▶ Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?

▶ Are all Busemann G-spaces resolvable?
Questions:

▶ Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?

▶ Are all Busemann G-spaces resolvable?

▶ Are all absolute suspensions resolvable?
Questions:

- Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?

- Are all Busemann G-spaces resolvable?

- Are all absolute suspensions resolvable?

- Are all absolute suspensions topological manifolds?
Questions:

- Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?

- Are all Busemann G-spaces resolvable?

- Are all absolute suspensions resolvable?

- Are all absolute suspensions topological manifolds?

- Are all resolvable generalized manifolds codimension one manifold factors?
Questions:

▶ Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that $S \times \mathbb{R}$ has DDP)?

▶ Are all Busemann G-spaces resolvable?

▶ Are all absolute suspensions resolvable?

▶ Are all absolute suspensions topological manifolds?

▶ Are all resolvable generalized manifolds codimension one manifold factors?

▶ Are all finite-dimensional homogeneous connected compact metric spaces resolvable?