
THE BING-BORSUK AND THE

BUSEMANN CONJECTURES

DUŠAN REPOVŠ
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That is, there is a continuous surjection r : U → e(Y ) with
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Definition: A topological space X is said to be homogeneous if,
for any two points x1, x2 ∈ X , there is a homeomorphism of X
onto itself taking x1 to x2.
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Definition: A (closed) topological n-manifold (n ∈ N) is a
connected, compact n-dimensional metric space which is locally
Euclidean (i.e. homeomorphic to R

n).

Fact: Every topological n-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For n < 3, every
n-dimensional homogeneous ANR is a topological n-manifold.

Bing-Borsuk Conjecture (1965): For every n ≥ 3, any
n-dimensional homogeneous ANR is a topological n-manifold.

Jakobsche Theorem (1978): In dimension n = 3, the
Bing-Borsuk Conjecture implies the Poincaré Conjecture.
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Definition: An n-dimensional compact metric space X is called an
n-dimensional Cantor manifold if whenever X can be expressed as
the union X = X1 ∪ X2 of its proper closed subsets, then
dim(X1 ∩ X2) ≥ n − 1.

Aleksandrov Theorem (1930): Every topological n-manifold is a
Cantor n-manifold.

Definition: A topological space X is said to have the invariance of
domain property if for every pair U,V ⊂ X of homeomorphic
subsets, U is open if and only if V is open.

Brouwer Theorem (1910): Every topological n-manifold has the
invariance of domain property.

 Lysko Theorem (1976): Every finite-dimensional connected
homogeneous ANR space is a Cantor manifold and it has the
invariance of domain property.
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finite-dimensional, locally compact, locally contractible subset X of
the Euclidean n-space R

n.

Definition: An n-dimensional (n ∈ N) locally compact Hausdorff
space X is called a Z-homology n-manifold (n-hmZ) if for every
point x ∈ X and all k ∈ N,
Hk(X ,X − {x}; Z) ∼= Hk(Rn, Rn − {0}; Z).

Bredon Theorem (1967): If X is an n-dimensional homogeneous
ENR (n ∈ N) and for some (and, hence all) points x ∈ X , the
groups Hk(X ,X − {x}; Z) are finitely generated, then X is a
Z-homology n-manifold.

Remark: This theorem was reproved by Bryant in 1987 with a
more geometric argument.
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Definition: An n-dimensional topological space X is called a
generalized n-manifold (n ∈ N) if X is an ENR and a Z-homology
n-manifold.

Fact: Every generalized (n ≤ 2)-manifold is a topological
n-manifold. However, for every n ≥ 3 there exist totally singular
generalized n-manifolds X .

Definition: A proper onto map f : M → X is said to be cell-like if
for every point x ∈ X , the point-inverse f −1(x) contracts in any
neighborhood of itself.

The following classical result was proved for n ≤ 2 by Wilder, for
n = 3 by Armentrout, for n = 4 by Quinn and for n ≥ 5 by
Siebenmann.

Cell-like Approximation Theorem: Every cell-like map between
topological manifolds is a near-homeomorphism.
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Definition: An n-dimensional space X is said to be resolvable if
there is a cell-like map f : M → X where M is a topological
n-manifold.

Resolution Conjecture (1978): Every generalized
(n ≥ 3)-manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré
Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist
non-resolvable generalized n-manifolds, for every n ≥ 6.

Remark: By the work of Quinn, these nonresolvable generalized
manifolds must be totally singular.
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Edwards DDP Theorem (1977): For n ≥ 5, topological
n-manifolds are precisely the n-dimensional resolvable spaces
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Bryant-Ferry-Mio-Weinberger Theorem (2007): For every
n ≥ 7 there exist non-resolvable generalized n-manifolds with the
DDP.
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Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every
generalized n-manifold (n ≥ 7) satisfying the disjoint disks
property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is true,
then the Bing Borsuk conjecture is false for n ≥ 7.

Bryant Modified Bing-Borsuk Conjecture (2002): Every
homogeneous (n ≥ 3)-dimensional ENR is a generalized
n-manifold.
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Definition: A space X is homologically arc-homogeneous provided
that for every path α : [0, 1] → X , the inclusion induced map

H∗(X × 0,X × 0 − (α(0), 0); Z) → H∗(X × I ,X × I − Γ(α); Z)

is an isomorphism, where Γ(α) denotes the graph of α.

The following result answers in affirmative a question asked by
Quinn at the 2003 Oberwolfach workshop on exotic homology
manifolds.

Bryant Theorem (2006): Every n-dimensional homologically
arc-homogeneous ENR is a generalized n-manifold.
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In 1991 Repovš, Skopenkov and Ščepin proved the smooth version
of the Bing-Borsuk Conjecture.

Definition: A subset K ⊂ R
n is said to be C 1–homogeneous if for

every pair of points x , y ∈ K there exist neighborhoods
Ox ,Oy ⊂ R

n of x and y , respectively, and a C 1–diffeomorphism

h : (Ox ,Ox ∩ K , x) → (Oy ,Oy ∩ K , y),

i.e. h and h−1 have continuous first derivatives.

Repovš-Skopenkov-Ščepin Theorem (1991): Let K be a locally
compact (possibly nonclosed) subset of R

n. Then K is
C 1–homogeneous if and only if K is a C 1–submanifold of R

n.
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homeomorphisms, a counterexample is the Antoine Necklace – a
wild Cantor set in R
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Remark: This theorem clearly does not work for all
homeomorphisms, a counterexample is the Antoine Necklace – a
wild Cantor set in R

3 which is clearly homogeneously (but not
C 1–homogeneously embedded in R

3. In fact, it does not even work
for Lipschitz homeomorphisms, i.e. the maps for which
d(f (x), f (y)) < λ d(x , y), for all x , y ∈ X .

Malešič-Repovš Theorem (1999): There exists a Lipschitz
homogeneous wild Cantor set in R

3.

Garity-Repovš-Željko Theorem (2005): There exist uncountably
many rigid Lipschitz homogeneous wild Cantor sets in R

3.
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Busemann Conjecture (A special case of the Bing-Borsuk Conjecture)

Beginning in 1942, Herbert Busemann developed the notion of a
G -space as a way of putting a Riemannian like geometry on a
metric space.

Definition: A Busemann G-space is a metric space that satisfies
four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of
geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for small
metric balls.

Busemann Conjecture (1955): Every n-dimensional G -space
(n ∈ N) is a topological n-manifold.
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Definition: Let (X , d) be a metric space. X is said to be a
Busemann G-space provided it satisfies the following axioms:

Menger Convexity: Given distinct points x , y ∈ X , there is a point
z ∈ X − {x , y} such that d(x , z) + d(z , y) = d(x , y).

Finite Compactness: Every d-bounded infinite set has an
accumulation point.

Local Extendibility: For every point w ∈ X , there is a radius
ρw > 0, such that for any pair of distinct points x , y ∈ B(w , ρw ),
there is a point z ∈ int B(w , ρw ) − {x , y} such that
d(x , y) + d(y , z) = d(x , z).

Uniqueness of the Extension: Given distinct points x , y ∈ X , if
there are points z1, z2 ∈ X for which both

d(x , y) + d(y , zi) = d(x , zi ) for i = 1, 2,

and
d(y , z1) = d(y , z2)

hold, then z1 = z2.
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Busemann Conjecture: History of Results

Facts: From these basic properties, a rich structure on a G -space
can be derived. Let (X , d) be a G -space and let x ∈ X . Then
(X , d) satisfies the following properties:

Complete Inner Metric: (X , d) is a locally compact complete
metric space.

Existence of Geodesics: Any two points in X are joined by a
geodesic.

Local Uniqueness of Joins: There is a radius rx > 0 such that any
two points y , z ∈ Brx (x) in the closed ball can be joined by a
unique segment in X .

Local Cones: There is a radius εx > 0 for which the closed metric
ball Bεx (x) is homeomorphic to the cone over its boundary.

Homogeneity: X is homogeneous and the homogeneity
homeomorphisms can be chosen so that it is isotopic to the
identity.
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Busemann Theorem (1955): Busemann G -spaces of dimension
n = 1, 2 are manifolds.

Busemann Conjecture (1955): Every n ≥ 3-dimensional
Busemann G -space is a topological n-manifold.

Krakus Theorem (1968): Busemann G -spaces of dimension
n = 3 are topological 3-manifolds.

Busemann predicted: “Although this conjecture is probably true
for any G -space, the proof seems quite inaccessible in the present
state of topology.” His prediction was correct – the proof of the
case n = 4 required the theory of 4-manifolds, developed almost
three decades later.
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Thurston Theorem (1996): Every Busemann G -space of
dimension n = 4 is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann G -space of
dimension n ≥ 5 is a generalized n-manifold.

Remarks: The fact that every finite-dimensional G -space is an
ANR follows from local contractibility and local compactness.
The fact that every finite-dimensional G -space is a homology
Z-manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X , d) be a Busemann G -space,
dimX = n < ∞. Then for all x ∈ X and sufficiently small r > 0:

1. Br (x) is a homology n-manifold with boundary
∂Br (x) = Sr (x).

2. Sr (x) is a homology (n − 1)-manifold with empty boundary.
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Busemann Conjecture: History of Results

Berestovskii Theorem (2002): Busemann G -spaces of dimension
n ≥ 5 having Aleksandrov curvature bounded above are topological
n-manifolds.

A Busemann G -space (X , d) has Alexandrov curvature ≤ K if
geodesic triangles in X are at most as ”fat” as corresponding
triangles in a surface SK of constant curvature K , i.e., the length
of a bisector of the triangle in X is at most the length of the
corresponding bisector of the corresponding triangle in SK .

Example: The boundary of a convex region in R
n has nonnegative

Alexandrov curvature.

Remark: The general case of Busemann’s Conjecture of n ≥ 5
remains unsolved.
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Definition: A compact finite-dimensional metric space X is called
an absolute suspension (AS) if it is a suspension with respect to
any pair of distinct points and is called an absolute cone if it is a
cone with respect to any point.

At the 1971 Prague Symposium, de Groot made the following two
conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every
n-dimensional absolute suspension is homeomorphic to the
n-sphere.
de Groot Absolute Cones Conjecture (1971): Every
n-dimensional absolute cone is homeomorphic to the n-cell.

In 1974 Szymaňski proved both de Groot conjectures for
dimensions n ≤ 3.
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Busemann Conjecture: Relation to the de Groot Conjectures

Remark: Small metric balls in Busemann G -spaces are absolute
open cones. Absolute open cones have one point compactifications
that are absolute suspensions. Therefore de Groot absolute
suspension conjecture in dimension n implies the Busemann
conjecture in dimension n.

Recently, Guilbault gave a complete solution to the de Groot
absolute cone conjecture:

Guilbault Theorem (2007): The de Groot absolute cone
conjecture is true for n ≤ 4 and false for n ≥ 5.

Remark: Guilbaut provides counterexamples to the absolute cone
conjecture. Unfortunately, the double of these non-ball
counterexamples are spheres. Hence these counterexamples provide
no solution to the de Groot absolute suspension conjecture in high
dimensions n ≥ 5. Unfortunately this also leaves the Busemann
conjecture in dimensions n ≥ 5 unsolved.



Busemann Conjecture: Resolvability Revisited

Mitchell Theorem (1978):

1. An n-dimensional absolute suspension X is a regular
generalized n-manifold homotopy equivalent to Sn; all its links
are generalized (n − 1)-manifolds homotopy equivalent to
Sn−1.



Busemann Conjecture: Resolvability Revisited

Mitchell Theorem (1978):

1. An n-dimensional absolute suspension X is a regular
generalized n-manifold homotopy equivalent to Sn; all its links
are generalized (n − 1)-manifolds homotopy equivalent to
Sn−1.

2. An n-dimensional absolute cone X is a regular generalized
n-manifold proper homotopy equivalent to R

n; all its links are
generalized (n − 1)-manifolds homotopy equivalent to Sn−1.



Busemann Conjecture: Resolvability Revisited

Mitchell Theorem (1978):

1. An n-dimensional absolute suspension X is a regular
generalized n-manifold homotopy equivalent to Sn; all its links
are generalized (n − 1)-manifolds homotopy equivalent to
Sn−1.

2. An n-dimensional absolute cone X is a regular generalized
n-manifold proper homotopy equivalent to R

n; all its links are
generalized (n − 1)-manifolds homotopy equivalent to Sn−1.

Question: If in Mitchell’s theorem ”homotopy equivalent” could
be replaced with ”fine homotopy equivalent”, Mitchell’s theorem
would imply resolvability. Is this possible?
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Busemann Conjecture: Relation to Moore Problem

Definition: A space X is said to be a codimension one manifold
factor if X × R is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a
codimension one manifold factor.

Remark: Every Busemann G -space is a manifold if and only if
small metric spheres are codimension one manifold factors.
Equivalently in dimensions n ≥ 5, every Busemann G -space X is a
manifold if and only if X is resolvable and small metric spheres S
in X satisfy the property that S × R has DDP.
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Theorem: Each of the following general position properties of an
ANR X characterizes X × R having DDP:

I The disjoint arc-disk property (Daverman)

I The disjoint homotopies property (Edwards, Halverson)

I The plentiful 2-manifolds property (Halverson)

I The method of δ-fractured maps (Halverson)

I The 0-stitched disks property (Halverson)

I The disjoint concordances property (Daverman and Halverson)
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Facts:

I Bing-Borsuk Conjecture ⇒ Busemann Conjecture

I Bryant-Ferry-Mio-Weinberger Conjecture ⇒ The failure of
Bing-Borsuk Conjecture

I The failure of Busemann Conjecture ⇒ The failure of de
Groot Absolute Suspension Conjecture

I Moore Conjecture and Resolution Conjecture ⇒ Busemann
Conjecture (recall that the Resolution Conjecture was shown
to be wrong for all n ≥ 6)
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Summary and Questions

Questions:

I Do all Busemann G -spaces have DDP (or equivalently, do all
small metric spheres S in X have the property that S × R has
DDP)?

I Are all Busemann G -spaces resolvable?

I Are all absolute suspensions resolvable?

I Are all absolute suspensions topological manifolds?

I Are all resolvable generalized manifolds codimension one
manifold factors?

I Are all finite-dimensional homogeneous connected compact
metric spaces resolvable?


