THE BING-BORSUK AND THE BUSEMANN CONJECTURES

DUŠAN REPOVŠ UNIVERSITY OF LJUBLJANA SLOVENIA

Bucharest, June 10, 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition: Let Y be a metric space. Y is said to be an *absolute* neighborhood retract (ANR) provided for every closed embedding $e: Y \to Z$ of Y into a metric space Z, there is an open neighborhood U of the image e(Y) which retracts to e(Y). That is, there is a continuous surjection $r: U \to e(Y)$ with r(x) = x for all $x \in e(Y)$.

Definition: Let Y be a metric space. Y is said to be an *absolute neighborhood retract (ANR)* provided for every closed embedding $e: Y \rightarrow Z$ of Y into a metric space Z, there is an open neighborhood U of the image e(Y) which retracts to e(Y). That is, there is a continuous surjection $r: U \rightarrow e(Y)$ with r(x) = x for all $x \in e(Y)$.

Fact: Let Y be a finite-dimensional, locally contractible separable metric space. Then Y is an ANR.

Definition: Let Y be a metric space. Y is said to be an *absolute neighborhood retract (ANR)* provided for every closed embedding $e: Y \rightarrow Z$ of Y into a metric space Z, there is an open neighborhood U of the image e(Y) which retracts to e(Y). That is, there is a continuous surjection $r: U \rightarrow e(Y)$ with r(x) = x for all $x \in e(Y)$.

Fact: Let Y be a finite-dimensional, locally contractible separable metric space. Then Y is an ANR.

Definition: A topological space X is said to be *homogeneous* if, for any two points $x_1, x_2 \in X$, there is a homeomorphism of X onto itself taking x_1 to x_2 .

Fact: Every topological *n*-manifold is a homogeneous ANR.

Fact: Every topological *n*-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For n < 3, every *n*-dimensional homogeneous ANR is a topological *n*-manifold.

Fact: Every topological *n*-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For n < 3, every *n*-dimensional homogeneous ANR is a topological *n*-manifold.

Bing-Borsuk Conjecture (1965): For every $n \ge 3$, any *n*-dimensional homogeneous ANR is a topological *n*-manifold.

Fact: Every topological *n*-manifold is a homogeneous ANR.

Bing and Borsuk Theorem (1965): For n < 3, every *n*-dimensional homogeneous ANR is a topological *n*-manifold.

Bing-Borsuk Conjecture (1965): For every $n \ge 3$, any *n*-dimensional homogeneous ANR is a topological *n*-manifold.

Jakobsche Theorem (1978): In dimension n = 3, the Bing-Borsuk Conjecture implies the Poincaré Conjecture.

Aleksandrov Theorem (1930): Every topological *n*-manifold is a Cantor *n*-manifold.

Aleksandrov Theorem (1930): Every topological *n*-manifold is a Cantor *n*-manifold.

Definition: A topological space X is said to have the *invariance of domain property* if for every pair $U, V \subset X$ of homeomorphic subsets, U is open if and only if V is open.

Aleksandrov Theorem (1930): Every topological *n*-manifold is a Cantor *n*-manifold.

Definition: A topological space X is said to have the *invariance of domain property* if for every pair $U, V \subset X$ of homeomorphic subsets, U is open if and only if V is open.

Brouwer Theorem (1910): Every topological *n*-manifold has the invariance of domain property.

Aleksandrov Theorem (1930): Every topological *n*-manifold is a Cantor *n*-manifold.

Definition: A topological space X is said to have the *invariance of domain property* if for every pair $U, V \subset X$ of homeomorphic subsets, U is open if and only if V is open.

Brouwer Theorem (1910): Every topological *n*-manifold has the invariance of domain property.

Łysko Theorem (1976): Every finite-dimensional connected homogeneous ANR space is a Cantor manifold and it has the invariance of domain property.

(日)

Definition: An *n*-dimensional $(n \in \mathbb{N})$ locally compact Hausdorff space X is called a \mathbb{Z} -homology *n*-manifold $(n-hm_{\mathbb{Z}})$ if for every point $x \in X$ and all $k \in \mathbb{N}$, $H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}).$

Definition: An *n*-dimensional $(n \in \mathbb{N})$ locally compact Hausdorff space X is called a \mathbb{Z} -homology *n*-manifold $(n-hm_{\mathbb{Z}})$ if for every point $x \in X$ and all $k \in \mathbb{N}$, $H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}).$

Bredon Theorem (1967): If X is an *n*-dimensional homogeneous ENR $(n \in \mathbb{N})$ and for some (and, hence all) points $x \in X$, the groups $H_k(X, X - \{x\}; \mathbb{Z})$ are finitely generated, then X is a \mathbb{Z} -homology *n*-manifold.

Definition: An *n*-dimensional $(n \in \mathbb{N})$ locally compact Hausdorff space X is called a \mathbb{Z} -homology *n*-manifold $(n-hm_{\mathbb{Z}})$ if for every point $x \in X$ and all $k \in \mathbb{N}$, $H_k(X, X - \{x\}; \mathbb{Z}) \cong H_k(\mathbb{R}^n, \mathbb{R}^n - \{0\}; \mathbb{Z}).$

Bredon Theorem (1967): If X is an *n*-dimensional homogeneous ENR $(n \in \mathbb{N})$ and for some (and, hence all) points $x \in X$, the groups $H_k(X, X - \{x\}; \mathbb{Z})$ are finitely generated, then X is a \mathbb{Z} -homology *n*-manifold.

Remark: This theorem was reproved by Bryant in 1987 with a more geometric argument.

Bing-Borsuk Conjecture: Resolvability and the Modified Conjecture

Definition: An *n*-dimensional topological space X is called a generalized *n*-manifold $(n \in \mathbb{N})$ if X is an ENR and a \mathbb{Z} -homology *n*-manifold.

Fact: Every generalized $(n \le 2)$ -manifold is a topological *n*-manifold. However, for every $n \ge 3$ there exist *totally singular* generalized *n*-manifolds *X*.

Fact: Every generalized $(n \le 2)$ -manifold is a topological *n*-manifold. However, for every $n \ge 3$ there exist *totally singular* generalized *n*-manifolds *X*.

Definition: A proper onto map $f : M \to X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.

Fact: Every generalized $(n \le 2)$ -manifold is a topological *n*-manifold. However, for every $n \ge 3$ there exist *totally singular* generalized *n*-manifolds *X*.

Definition: A proper onto map $f : M \to X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.

The following classical result was proved for $n \le 2$ by Wilder, for n = 3 by Armentrout, for n = 4 by Quinn and for $n \ge 5$ by Siebenmann.

Fact: Every generalized $(n \le 2)$ -manifold is a topological *n*-manifold. However, for every $n \ge 3$ there exist *totally singular* generalized *n*-manifolds *X*.

Definition: A proper onto map $f : M \to X$ is said to be *cell-like* if for every point $x \in X$, the point-inverse $f^{-1}(x)$ contracts in any neighborhood of itself.

The following classical result was proved for $n \le 2$ by Wilder, for n = 3 by Armentrout, for n = 4 by Quinn and for $n \ge 5$ by Siebenmann.

Cell-like Approximation Theorem: Every cell-like map between topological manifolds is a near-homeomorphism.

▲ロト ▲□ト ▲ヨト ▲ヨト ヨー のくで

Resolution Conjecture (1978): Every generalized $(n \ge 3)$ -manifold has a resolution.

Resolution Conjecture (1978): Every generalized $(n \ge 3)$ -manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions \geq 6 it turns out to be false:

▲日▼▲□▼▲□▼▲□▼ □ のので

Resolution Conjecture (1978): Every generalized $(n \ge 3)$ -manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist non-resolvable generalized *n*-manifolds, for every $n \ge 6$.

Resolution Conjecture (1978): Every generalized $(n \ge 3)$ -manifold has a resolution.

In dimension 3, the Resolution Conjecture implies the Poincaré Conjecture. In dimensions ≥ 6 it turns out to be false:

Bryant-Ferry-Mio-Weinberger Theorem (1996): There exist non-resolvable generalized *n*-manifolds, for every $n \ge 6$.

Remark: By the work of Quinn, these nonresolvable generalized manifolds must be *totally singular*.

Definition: A metric space X is said to have the *disjoint disks* property (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g: B^2 \to X$ there exist ε -approximations $f', g': B^2 \to X$ with disjoint images.

Definition: A metric space X is said to have the *disjoint disks* property (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε -approximations $f', g' : B^2 \to X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized ($n \ge 5$)-manifold with the DDP a topological *n*-manifold?

Definition: A metric space X is said to have the *disjoint disks* property (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε -approximations $f', g' : B^2 \to X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized ($n \ge 5$)-manifold with the DDP a topological *n*-manifold?

Edwards DDP Theorem (1977): For $n \ge 5$, topological *n*-manifolds are precisely the *n*-dimensional resolvable spaces (hence generalized *n*-manifolds) with the DDP.

Definition: A metric space X is said to have the *disjoint disks* property (DDP) if for every $\varepsilon > 0$ and every pair of maps $f, g : B^2 \to X$ there exist ε -approximations $f', g' : B^2 \to X$ with disjoint images.

Cannon Manifold Recognition Problem (1978): Is every resolvable generalized ($n \ge 5$)-manifold with the DDP a topological *n*-manifold?

Edwards DDP Theorem (1977): For $n \ge 5$, topological *n*-manifolds are precisely the *n*-dimensional resolvable spaces (hence generalized *n*-manifolds) with the DDP.

Bryant-Ferry-Mio-Weinberger Theorem (2007): For every $n \ge 7$ there exist non-resolvable generalized *n*-manifolds with the DDP.

Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized *n*-manifold $(n \ge 7)$ satisfying the disjoint disks property, is homogeneous.

Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized *n*-manifold ($n \ge 7$) satisfying the disjoint disks property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is true, then the Bing Borsuk conjecture is false for $n \ge 7$.

▲日▼▲□▼▲□▼▲□▼ □ のので

Bryant-Ferry-Mio-Weinberger Conjecture (2007): Every generalized *n*-manifold ($n \ge 7$) satisfying the disjoint disks property, is homogeneous.

Remark: If the Bryant-Ferry-Mio-Weinberger Conjecture is true, then the Bing Borsuk conjecture is false for $n \ge 7$.

Bryant Modified Bing-Borsuk Conjecture (2002): Every homogeneous $(n \ge 3)$ -dimensional ENR is a generalized *n*-manifold.

Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0, 1] \rightarrow X$, the inclusion induced map

$$H_*(X imes 0, X imes 0 - (lpha(0), 0); \mathbb{Z}) o H_*(X imes I, X imes I - \Gamma(lpha); \mathbb{Z})$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α .

Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0,1] \rightarrow X$, the inclusion induced map

$$H_*(X \times 0, X \times 0 - (\alpha(0), 0); \mathbb{Z}) \to H_*(X \times I, X \times I - \Gamma(\alpha); \mathbb{Z})$$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α .

The following result answers in affirmative a question asked by Quinn at the 2003 Oberwolfach workshop on exotic homology manifolds.

▲日▼▲□▼▲□▼▲□▼ □ のので

Definition: A space X is *homologically arc-homogeneous* provided that for every path $\alpha : [0, 1] \rightarrow X$, the inclusion induced map

 $H_*(X \times 0, X \times 0 - (\alpha(0), 0); \mathbb{Z}) \to H_*(X \times I, X \times I - \Gamma(\alpha); \mathbb{Z})$

is an isomorphism, where $\Gamma(\alpha)$ denotes the graph of α .

The following result answers in affirmative a question asked by Quinn at the 2003 Oberwolfach workshop on exotic homology manifolds.

Bryant Theorem (2006): Every *n*-dimensional homologically arc-homogeneous ENR is a generalized *n*-manifold.

In 1991 Repovš, Skopenkov and Ščepin proved the *smooth version* of the Bing-Borsuk Conjecture.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

In 1991 Repovš, Skopenkov and Ščepin proved the *smooth version* of the Bing-Borsuk Conjecture.

Definition: A subset $K \subset \mathbb{R}^n$ is said to be C^1 -homogeneous if for every pair of points $x, y \in K$ there exist neighborhoods $O_x, O_y \subset \mathbb{R}^n$ of x and y, respectively, and a C^1 -diffeomorphism

$$h: (O_x, O_x \cap K, x) \rightarrow (O_y, O_y \cap K, y),$$

i.e. h and h^{-1} have continuous first derivatives.

In 1991 Repovš, Skopenkov and Ščepin proved the *smooth version* of the Bing-Borsuk Conjecture.

Definition: A subset $K \subset \mathbb{R}^n$ is said to be C^1 -homogeneous if for every pair of points $x, y \in K$ there exist neighborhoods $O_x, O_y \subset \mathbb{R}^n$ of x and y, respectively, and a C^1 -diffeomorphism

$$h: (O_x, O_x \cap K, x) \rightarrow (O_y, O_y \cap K, y),$$

i.e. h and h^{-1} have continuous first derivatives.

Repovš-Skopenkov-Ščepin Theorem (1991): Let K be a locally compact (possibly nonclosed) subset of \mathbb{R}^n . Then K is C^1 -homogeneous if and only if K is a C^1 -submanifold of \mathbb{R}^n .

Remark: This theorem clearly does not work for all homeomorphisms, a counterexample is the Antoine Necklace – a wild Cantor set in \mathbb{R}^3 which is clearly homogeneously (but not C^1 -homogeneously embedded in \mathbb{R}^3 . In fact, it does not even work for Lipschitz homeomorphisms, i.e. the maps for which $d(f(x), f(y)) < \lambda \ d(x, y)$, for all $x, y \in X$.

Remark: This theorem clearly does not work for all homeomorphisms, a counterexample is the Antoine Necklace – a wild Cantor set in \mathbb{R}^3 which is clearly homogeneously (but not C^1 -homogeneously embedded in \mathbb{R}^3 . In fact, it does not even work for Lipschitz homeomorphisms, i.e. the maps for which $d(f(x), f(y)) < \lambda \ d(x, y)$, for all $x, y \in X$.

Malešič-Repovš Theorem (1999): There exists a Lipschitz homogeneous wild Cantor set in \mathbb{R}^3 .

Remark: This theorem clearly does not work for all homeomorphisms, a counterexample is the Antoine Necklace – a wild Cantor set in \mathbb{R}^3 which is clearly homogeneously (but not C^1 -homogeneously embedded in \mathbb{R}^3 . In fact, it does not even work for Lipschitz homeomorphisms, i.e. the maps for which $d(f(x), f(y)) < \lambda \ d(x, y)$, for all $x, y \in X$.

Malešič-Repovš Theorem (1999): There exists a Lipschitz homogeneous wild Cantor set in \mathbb{R}^3 .

Garity-Repovš-Željko Theorem (2005): There exist uncountably many rigid Lipschitz homogeneous wild Cantor sets in \mathbb{R}^3 .

(ロ)、(型)、(E)、(E)、 E、 の(の)

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for small metric balls.

Definition: A *Busemann G-space* is a metric space that satisfies four basic axioms on a metric space.

These axioms imply the existence of geodesics, local uniqueness of geodesics, and local extension properties.

These axioms also infer homogeneity and a cone structure for small metric balls.

Busemann Conjecture (1955): Every *n*-dimensional *G*-space $(n \in \mathbb{N})$ is a topological *n*-manifold.

Busemann Conjecture: Definitions

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition: Let (X, d) be a metric space. X is said to be a *Busemann G-space* provided it satisfies the following axioms:

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that d(x, z) + d(z, y) = d(x, y).

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that d(x, z) + d(z, y) = d(x, y).

Finite Compactness: Every *d*-bounded infinite set has an accumulation point.

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that d(x, z) + d(z, y) = d(x, y).

Finite Compactness: Every *d*-bounded infinite set has an accumulation point.

Local Extendibility: For every point $w \in X$, there is a radius $\rho_w > 0$, such that for any pair of distinct points $x, y \in B(w, \rho_w)$, there is a point $z \in int B(w, \rho_w) - \{x, y\}$ such that d(x, y) + d(y, z) = d(x, z).

Menger Convexity: Given distinct points $x, y \in X$, there is a point $z \in X - \{x, y\}$ such that d(x, z) + d(z, y) = d(x, y).

Finite Compactness: Every *d*-bounded infinite set has an accumulation point.

Local Extendibility: For every point $w \in X$, there is a radius $\rho_w > 0$, such that for any pair of distinct points $x, y \in B(w, \rho_w)$, there is a point $z \in int B(w, \rho_w) - \{x, y\}$ such that d(x, y) + d(y, z) = d(x, z).

Uniqueness of the Extension: Given distinct points $x, y \in X$, if there are points $z_1, z_2 \in X$ for which both

$$d(x,y)+d(y,z_i)=d(x,z_i) \quad \text{for } i=1,2,$$

and

$$d(y,z_1)=d(y,z_2)$$

hold than z = z

Busemann Conjecture: History of Results

Facts: From these basic properties, a rich structure on a *G*-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Busemann Conjecture: History of Results

Facts: From these basic properties, a rich structure on a *G*-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Facts: From these basic properties, a rich structure on a *G*-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

A D M 4 目 M 4 日 M 4 1 H 4

Facts: From these basic properties, a rich structure on a *G*-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.

Facts: From these basic properties, a rich structure on a *G*-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.

Local Cones: There is a radius $\epsilon_x > 0$ for which the closed metric ball $B_{\epsilon_x}(x)$ is homeomorphic to the cone over its boundary.

Facts: From these basic properties, a rich structure on a G-space can be derived. Let (X, d) be a *G*-space and let $x \in X$. Then (X, d) satisfies the following properties:

Complete Inner Metric: (X, d) is a locally compact complete metric space.

Existence of Geodesics: Any two points in X are joined by a geodesic.

Local Uniqueness of Joins: There is a radius $r_x > 0$ such that any two points $y, z \in B_{r_x}(x)$ in the closed ball can be joined by a unique segment in X.

Local Cones: There is a radius $\epsilon_x > 0$ for which the closed metric ball $B_{e_x}(x)$ is homeomorphic to the cone over its boundary.

Homogeneity: X is homogeneous and the homogeneity homeomorphisms can be chosen so that it is isotopic to the identity.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Busemann Conjecture (1955): Every $n \ge 3$ -dimensional Busemann *G*-space is a topological *n*-manifold.

Busemann Conjecture (1955): Every $n \ge 3$ -dimensional Busemann *G*-space is a topological *n*-manifold.

Krakus Theorem (1968): Busemann *G*-spaces of dimension n = 3 are topological 3-manifolds.

▲日▼▲□▼▲□▼▲□▼ □ のので

Busemann Conjecture (1955): Every $n \ge 3$ -dimensional Busemann *G*-space is a topological *n*-manifold.

Krakus Theorem (1968): Busemann *G*-spaces of dimension n = 3 are topological 3-manifolds.

Busemann predicted: "Although this conjecture is probably true for any *G*-space, the proof seems quite inaccessible in the present state of topology."

Busemann Conjecture (1955): Every $n \ge 3$ -dimensional Busemann *G*-space is a topological *n*-manifold.

Krakus Theorem (1968): Busemann *G*-spaces of dimension n = 3 are topological 3-manifolds.

Busemann predicted: "Although this conjecture is probably true for any *G*-space, the proof seems quite inaccessible in the present state of topology." His prediction was correct – the proof of the case n = 4 required the theory of 4-manifolds, developed almost three decades later.

(日)

Thurston Theorem (1996): Every Busemann *G*-space of dimension n = 4 is a topological 4-manifold.

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Remarks: The fact that every finite-dimensional *G*-space is an ANR follows from local contractibility and local compactness.

A D M 4 目 M 4 日 M 4 1 H 4

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Remarks: The fact that every finite-dimensional *G*-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional *G*-space is a homology \mathbb{Z} -manifold is proved by sheaf-theoretic methods.

A D M 4 目 M 4 日 M 4 1 H 4

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Remarks: The fact that every finite-dimensional *G*-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional *G*-space is a homology \mathbb{Z} -manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann *G*-space, dim $X = n < \infty$. Then for all $x \in X$ and sufficiently small r > 0:

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Remarks: The fact that every finite-dimensional *G*-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional *G*-space is a homology \mathbb{Z} -manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann *G*-space, dim $X = n < \infty$. Then for all $x \in X$ and sufficiently small r > 0:

1. $B_r(x)$ is a homology *n*-manifold with boundary $\partial B_r(x) = S_r(x)$.

Thurston Theorem (1996): Every Busemann *G*-space of dimension $n \ge 5$ is a generalized *n*-manifold.

Remarks: The fact that every finite-dimensional *G*-space is an ANR follows from local contractibility and local compactness. The fact that every finite-dimensional *G*-space is a homology \mathbb{Z} -manifold is proved by sheaf-theoretic methods.

Thurston Theorem (1996): Let (X, d) be a Busemann *G*-space, dim $X = n < \infty$. Then for all $x \in X$ and sufficiently small r > 0:

- 1. $B_r(x)$ is a homology *n*-manifold with boundary $\partial B_r(x) = S_r(x)$.
- 2. $S_r(x)$ is a homology (n-1)-manifold with empty boundary.

A Busemann *G*-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in *X* are at most as "fat" as corresponding triangles in a surface S_K of constant curvature *K*, i.e., the length of a bisector of the triangle in *X* is at most the length of the corresponding bisector of the corresponding triangle in S_K .

A Busemann *G*-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in *X* are at most as "fat" as corresponding triangles in a surface S_K of constant curvature *K*, i.e., the length of a bisector of the triangle in *X* is at most the length of the corresponding bisector of the corresponding triangle in S_K .

Example: The boundary of a convex region in \mathbb{R}^n has nonnegative Alexandrov curvature.

A Busemann *G*-space (X, d) has Alexandrov curvature $\leq K$ if geodesic triangles in *X* are at most as "fat" as corresponding triangles in a surface S_K of constant curvature *K*, i.e., the length of a bisector of the triangle in *X* is at most the length of the corresponding bisector of the corresponding triangle in S_K .

Example: The boundary of a convex region in \mathbb{R}^n has nonnegative Alexandrov curvature.

Remark: The general case of Busemann's Conjecture of $n \ge 5$ remains unsolved.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every *n*-dimensional absolute suspension is homeomorphic to the *n*-sphere.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every *n*-dimensional absolute suspension is homeomorphic to the *n*-sphere.

de Groot Absolute Cones Conjecture (1971): Every *n*-dimensional absolute cone is homeomorphic to the *n*-cell.

At the 1971 Prague Symposium, de Groot made the following two conjectures:

de Groot Absolute Suspensions Conjecture (1971): Every *n*-dimensional absolute suspension is homeomorphic to the *n*-sphere.

de Groot Absolute Cones Conjecture (1971): Every *n*-dimensional absolute cone is homeomorphic to the *n*-cell.

In 1974 Szymaňski proved both de Groot conjectures for dimensions $n \leq 3$.

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:

Guilbault Theorem (2007): The de Groot absolute cone conjecture is true for $n \le 4$ and false for $n \ge 5$.

Recently, Guilbault gave a complete solution to the de Groot absolute cone conjecture:

Guilbault Theorem (2007): The de Groot absolute cone conjecture is true for $n \le 4$ and false for $n \ge 5$.

Remark: Guilbaut provides counterexamples to the absolute cone conjecture. Unfortunately, the double of these non-ball counterexamples are spheres. Hence these counterexamples provide no solution to the de Groot absolute suspension conjecture in high dimensions $n \ge 5$. Unfortunately this also leaves the Busemann conjecture in dimensions $n \ge 5$ unsolved.

Mitchell Theorem (1978):

1. An *n*-dimensional absolute suspension X is a regular generalized *n*-manifold homotopy equivalent to S^n ; all its links are generalized (n-1)-manifolds homotopy equivalent to S^{n-1} .

Mitchell Theorem (1978):

- 1. An *n*-dimensional absolute suspension X is a regular generalized *n*-manifold homotopy equivalent to S^n ; all its links are generalized (n-1)-manifolds homotopy equivalent to S^{n-1} .
- 2. An *n*-dimensional absolute cone X is a regular generalized *n*-manifold proper homotopy equivalent to \mathbb{R}^n ; all its links are generalized (n-1)-manifolds homotopy equivalent to S^{n-1} .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Mitchell Theorem (1978):

- 1. An *n*-dimensional absolute suspension X is a regular generalized *n*-manifold homotopy equivalent to S^n ; all its links are generalized (n-1)-manifolds homotopy equivalent to S^{n-1} .
- 2. An *n*-dimensional absolute cone X is a regular generalized *n*-manifold proper homotopy equivalent to \mathbb{R}^n ; all its links are generalized (n-1)-manifolds homotopy equivalent to S^{n-1} .

Question: If in Mitchell's theorem "homotopy equivalent" could be replaced with "fine homotopy equivalent", Mitchell's theorem would imply resolvability. Is this possible?

Busemann Conjecture: Relation to Moore Problem

Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a codimension one manifold factor.

Definition: A space X is said to be a *codimension one manifold factor* if $X \times \mathbb{R}$ is a topological manifold.

Moore Conjecture: Every resolvable generalized manifold is a codimension one manifold factor.

Remark: Every Busemann *G*-space is a manifold if and only if small metric spheres are codimension one manifold factors. Equivalently in dimensions $n \ge 5$, every Busemann *G*-space *X* is a manifold if and only if *X* is resolvable and small metric spheres *S* in *X* satisfy the property that $S \times \mathbb{R}$ has DDP.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The disjoint arc-disk property (Daverman)

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)

▲日▼▲□▼▲□▼▲□▼ □ ののの

The plentiful 2-manifolds property (Halverson)

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)

▲日▼▲□▼▲□▼▲□▼ □ ののの

- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)
- The 0-stitched disks property (Halverson)

- The disjoint arc-disk property (Daverman)
- The disjoint homotopies property (Edwards, Halverson)
- The plentiful 2-manifolds property (Halverson)
- The method of δ-fractured maps (Halverson)
- The 0-stitched disks property (Halverson)
- The disjoint concordances property (Daverman and Halverson)

Summary and Questions

Facts:

▶ Bing-Borsuk Conjecture \Rightarrow Busemann Conjecture

Facts:

- ► Bing-Borsuk Conjecture ⇒ Busemann Conjecture
- ► Bryant-Ferry-Mio-Weinberger Conjecture ⇒ The failure of Bing-Borsuk Conjecture

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Facts:

- ▶ Bing-Borsuk Conjecture ⇒ Busemann Conjecture
- ► Bryant-Ferry-Mio-Weinberger Conjecture ⇒ The failure of Bing-Borsuk Conjecture
- ► The failure of Busemann Conjecture ⇒ The failure of de Groot Absolute Suspension Conjecture

Facts:

- ▶ Bing-Borsuk Conjecture ⇒ Busemann Conjecture
- ► Bryant-Ferry-Mio-Weinberger Conjecture ⇒ The failure of Bing-Borsuk Conjecture
- ► The failure of Busemann Conjecture ⇒ The failure of de Groot Absolute Suspension Conjecture
- Moore Conjecture and Resolution Conjecture ⇒ Busemann Conjecture (recall that the Resolution Conjecture was shown to be wrong for all n ≥ 6)

Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?

Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

► Are all Busemann *G*-spaces resolvable?

Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ► Are all Busemann *G*-spaces resolvable?
- Are all absolute suspensions resolvable?

Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- ► Are all Busemann *G*-spaces resolvable?
- Are all absolute suspensions resolvable?
- Are all absolute suspensions topological manifolds?

- Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?
- ► Are all Busemann *G*-spaces resolvable?
- Are all absolute suspensions resolvable?
- Are all absolute suspensions topological manifolds?
- Are all resolvable generalized manifolds codimension one manifold factors?

- Do all Busemann G-spaces have DDP (or equivalently, do all small metric spheres S in X have the property that S × ℝ has DDP)?
- ► Are all Busemann *G*-spaces resolvable?
- Are all absolute suspensions resolvable?
- Are all absolute suspensions topological manifolds?
- Are all resolvable generalized manifolds codimension one manifold factors?
- Are all finite-dimensional homogeneous connected compact metric spaces resolvable?