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1. BACKGROUND: THE CLASSICAL APPROACH TO LINEAR SHELL
THEORY. THE UNCONSTRAINED MINIMIZATION PROBLEM

2. NEW_UNKNOWNS AND NEW CONSTRAINED MINIMIZATION

PROBLEM. WEAK VERSIONS OF A CLASSICAL THEOREM OF
POINCARE AND OF ST VENANT’S COMPATIBILITY CONDITIONS.

3. MAIN RESULT: A NECESSARY AND SUFFICIENT CONDITION FOR
MATRIX FIELDS TO BE LINEARIZED CHANGE OF METRIC AND
CHANGE OF CURVATURE TENSORS.

4. MAIN GOAL: A NEW APPROACH TO EXISTENCE THEORY FOR
KOITER’S LINEAR SHELL EQUATIONS.
1. THE CLASSICAL APPROACH TO LINEAR SHELL THEORY.




Conventions: | i.Jj.k,...[{1,2,3} o 3... 1,2}
e YV = Sa VouVep | . | P'= 3PN
a,B,0,1=1,2 ’ i=1,2,3
Notations:
| = a three-dimensional Euclidean space with vectors || forming an
orthonormal basis; | | | = the Euclidean norm of | an£3 |; | a®b | = the Euclidean
product, | aOb | = the exterior product of | a,b JE> || A generic point in | # | will
be denoted| £ =(%;) |, where| | | are the Cartesian coordinates, and
2
51:0?2. ’ A"f':a;a;e. ‘
l i)
. A generic point in | g* | will be denoted| ¥ =(va) |;| 94 -2 0 Sk .
’ 0y |’ ayan’ﬁ
. A generic point in | ' | will be denoted| x =(x;) |and ai:a 0; = o :
ox;, |”| 7 0x;0x ;




. If V' 1s a vector space and R a subspace of V, the quotient space of V" modulo R
is denoted [ 7/& ] and the equivalence class of [ 72| ¥ modulo R is denoted| |

Definitions:

. A domain | wOR? | (or | QOR?*|, or | OOE?|) 1s an open, bounded
connected subset with a Lipschitz continuous boundary, the set [ ] (or
respectively | ! |, | | |) being locally on the same side of its boundary.

. Given a domain | wOR? |, a mapping | 6 CIC' (e, £°) | is an immersion if the

vectors | ag =940(») |are linearly independent at all points | ¥ U |,




. Given a domain

vectors | g; =9,0(x)

QOR? |, a mapping | ® (IC' (X £?) | is an immersion if the

is invertible at all points| xOQ |).

are linearly independent at all points | xOQ | (equivalently,
the matrix | LI®(x) :(ajG)i)i,j=1,2,3

Spaces of vector-valued, or matrix-valued functions over a domain D are
denoted by boldface letters and the norms of the spaces | L*(D) | or | L*(D) |, and

H™(D) |or| H"(D)

. Given a domain

are denoted| |- lop |and

| |

wR?

and an immersion

0 1C>(eo E?) |, define the

SURFACE | §:=0( |

The vector fields

_a; a,

and | a3

surface S.

_31 Daz\

form the covariant bases along




Agp =a gy LIC (o) | covariant components of the first fundamental

form of the surface .S,

bap =bpay COC'(co) | covariant components of the second fundamental

form of the surface S

Jady | = area element along S, where | a :=det(ayz) OC (e |.

Two other fundamental tensors play a key mle in the two-dimensional theory of
linearly elastic shells, each one being associated with a displacement vector field

n 3:’71'3.

of the surface S, where | n =(72) V(e =H' (e« <H'(c)<H?*(cy | and the
vector fields | { |, which form the contravariant bases along S, are defined by the
[(0,i % j
i=j |
The covariant components of the linearized change of metric tensor are given by

relations| a’ [4; =90 =




| = (0,51 g +0, 1 )

Va,e(ﬂ) ::;[aaﬁ m) —Agp

The covariant components of the linearized change of curvature tensor are:

Pep) =|bosM) —bog] ™ =041 —T5 0.0) @5

where

agz(M) | = covariant components of the first fundamental form of the
deformed surface | (0 +7M)(cO |

bag(M) | = covariant components of the second fundamental form of
the deformed surface | (0 +7M)(cO |




the notation | [ ...]™ |represents the linear part with respect to| n=(7) |in the

expression | | -] |, and

o3 =2 [@,a 5 | = Christoffel symbols of surface S.

Note that| y,z(M) OL* () |and| pae(m) OL%(c) |, since| nNOIV() |,

A general shell structure is fully represented by a middle surface
geometry and the thickness at each point of its middle surface. Consider a

linearly elastic thin shell with middle surface | $:=6(<0 | and constant thickness
x |, where | £>0 |. The reference configuration of the shell is the three-dimensional

set| ©(Q) |, where| Q=cux]—&,& OR? |, and the mapping| ® : © —. £3 |is defined
by

O(1,x;):=0(») +x;a5(y) |, forall | (v,x;)OQ=ecox|—¢, & |.




We assume for simplicity that the shell 1s made of a homogeneous isotropic

material and that the reference configuration | ©(Q) |is a natural state, 1.¢., stress-

free. Hence, the material is characterized by its two Lamé constants | A>0 | and

#>0 | and the contravariant components | %7 | of the two-dimensional shell

elasticity tensor are given by

a%r = 4 u a®®a°" +2 (aaaa'& +amaw)DC2(a)) :
A +2Uu
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This tensor 1s uniformly positive definite: there exists a constant

2
C =C(c0,£d =0 | suchthat | C Zﬁfaﬁ <a® 1, Log |,
a,

for all| ¥ U@ |and all symmetric matrices| (¢,3) |of order two.

Assume that the shell is subjected to applied forces acting only in its interior and

on its upper and lower faces, whose resultant after integration across the thickness of

the shell has contravariant components | p’ (1% (cy |. Assume that the lateral face of

the shell is free, 1.e., the displacement 1s not subjected to any boundary condition

there. We are thus considering a pure traction problem for a linearly elastic shell.

Classical unknown: | n" =(7,) ,| 7/ : o - R |,
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. |= covariant components of the unknown displacement field

n;a |of the points of the middle surface S.

N =)C

V(e =H"'"(c)<H'(c) <H?(cy | space of “admissible

displacements”

Energy functional | /: V(c9 —R | is defined by

3

J) = 8™ Yoy (Mg (W) + 4™ 0,7 (1) 05 (W)}

—[p'niNady.
w

12



The two-dimensional Koiter equations [1970] in the form of a quadratic

minimization problem:

Find| 0" =(7,)C | V(@ |[such that

‘M) = inf j
Jm) nDV(@J('l) .

Define the Hilbert space of infinitesimal rigid displacements of surface S:

Rig(cy:={ | Y

V(w) | s y() =p(m) =0 |in| L, ()}

Rig(cy =1

n=u7)L

V(cy;na' =a+b [P, a OR®, b DR’} |
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We will assume that the linear form | {(M) = [P ‘ni~ady associated with the
w

applied forces satisfies the compatibility conditions:

I(m) =0 |for all| n LIRig(cy |

since these are clearly necessary for the existence of a minimizer of the energy
functional j over the space| V(@) | Then, the above minimization problem becomes:

Find| i | V(€9 ==V (c9/Rig(&y |such that| /(M) = 1t "j(n) |

In order to establish the existence and uniqueness of a minimizer of the
energy functional ; over the space | V(w) |, it suffices, thanks to the positive

definiteness of tensor | 49" |, to show that the mapping

N0V -y, p() |, .
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1S a norm over quotient space

DEFINE THE NORMS:

V(w)

equivalent to the quotient norm

Jo |

@Dy ={3cas |2+ 5 ras |0}
a. a,B

1/2 ©OC| 2 ()

\»

x>

sym

()

My = #1500
o

1/2

forall| ! | OV(@ |,

N, = Inf +
Ny = Jof In+E|

The first stage, due to:

forall| || OV(@) | =V(e9/Rig(<d |

M. Bernadou, P.G. Ciarlet and B. Miara [1994]: Existence theorems for two-

dimensional linear shell theories, J. Elasticity 34, 111-138.

1s to establish a basic Korn inequality on a surface, “over the space

V(w)
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THEOREM. Let there be given a domain

01C3 (e E>)

. Then there exists a constant

wOR?

c =c(0)

such that

2
H n V() =c { Z Ha 0,w+ "3 ‘
a

I ETCYRIC ) I

forall[ || OV(e) =

H' () ><H'(cd><H?(c) |

PROOF. The essence of this inequality is that the two Hilbert spaces| V(@)

and an 1mmersion

and

W(w):={n=@7,) 0L () *L* () x H ' (eV);
y(w) OL?,, (0), p(n) OL?,, ()}

coincide. The keystone of the proof is a fundamental Lemma of J.L.Lions:
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Let|! |be adomain in| R" | and let v be a distribution on | !

. Then

v OF (€Y and 8,y OH 7 (€Y, 1 i =nf [ v L2 (Y |.

The second stage consists in establishing another basic Korn inequality on a surface,

this time “over the quotient space| V(w) :

THEOREM. Let there be given a domain | wOR?| and an immersion

0 C3(co E?) |. Then there exists a constant| ¢ =¢(eQ0)

H n V(e SéH Y (M), p(M) 0,cc

forall| || OV(w) | =V(/Rig(ey |,

such that
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USING THIS KORN INEQUALITY AND THE POSITIVE DEFINITENESS
OF THE ELASTICITY TENSOR, WE OBTAIN THE EXISTENCE AND
THE UNIQUENESS OF A SOLUTION FOR THE KOITER EQUATIONS.

2. OBJECTIVE: CONSIDER THE NEW PRIMARY UNKNOWNS

(INSTEAD OF THE DISPLACEMENT)

NEW UNKNOWNS:

Ve(M) 0L ()

: covariant comps. of the linearized change of metric tensor

Pep(M) 0L ()

: covariant comps. of the linearized change of curvature tensor

NEW ENERGY FUNCTIONAL

18



1 g
K(Y,p) :zz_r{gaaﬁarymyaﬁ +3aampmpaﬁ}\@dy —I(y,p)

aw

NEW SPACE FOR “ADMISSIBLE UNKNOWNS”
T() :={(y,p) L3, (0 <L3,, (9 |;| R(v.p) =0 |in| H?(CY)} |

NEW MINIMIZATION PROBLEM

i T K y*,p* = inf K(y,
Find| (y ,p ) OT(e | such that ( ) (y.p)LIT( (v.P)
WHY?

e« MATHEMATICAL NOVELTY

. PRACTICAL ADVANTAGE : As the constitutive equations of linear shell
theory are invertible, the new minimization problem can be recast as a
minimization problem with the stress resultants and bending moments as the
only unknowns, which are of great interest from the mechanical and
computational viewpoints:

19



n® =gaq¥°" Yop(M) contrav. comps. of the stress resultant tensor field

3
mP = 2 i had Py (M) | contrav. comps. of the bending moment tensor field

. EXTENSION TO FULLY NONLINEAR INTRINSIC SHELL THEORY
(where the “full” change of metric, and change of curvature, tensors appear in
the energy, instead of their linearized versions considered here). This approach
should provide existence theorems that are so far essentially lacking for
nonlinear Koiter shell equations.

WEAK VERSIONS OF A CLASSICAL THEOREM OF POINCARE AND
OF ST VENANT’S COMPATIBILITY CONDITIONS.

P.G. Ciarlet and P. Ciarlet Jr. [2005] : Consider the linearized strain tensor

¢ DLzsym (€) | as the primary unknown instead of the displacement, for the pure

traction problem of linearized three-dimensional elasticity.
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Their objective was to characterize those symmetric | 3x3 | matrix fields with

components| e; 1L, (€2) |that can be written as

1
e; :2(ajv,. +a,.v].

9

for some| v =(v,) OH' () |, where | ! |is a domain in| r® |.

Classical Theorem of Poincaré. If functions | 4, OC'(Q) | satisfy | 8,/ =04

in a simply-connected open subset [! | of |Rr'|, then there exists a function
pOC?(Q) |such that| # =0,p |in| L*(Q) |

Theorem of Poincaré (weak form). Let | ! | be a simply-connected domain in | §° |.
Let| 4, OH 7 (Q) | be distributions that satisfy | 8, =04, |in| H*(Q) |. Then there

exists a function | p OL*(Q) |, unique up to an additive constant, such that | . =0, p

n| H1(Q) |

1864: the classical compatibility relations of St Venant

21



Theorem (weak form of St Venant’s compatibility conditions). Let || | be a

simply-connected domain in| ' |. If| e =(e;;) L7, () | satisfy the

weak St Venant compatibility conditions:
R (€) ::aljeik +0y;e jl —O);e jk +akjeil =0 |in| H? (Q)

. 1
then there exists| v =(v,) CJH'() |such that| e = 2(IZIVT +[1v) |or

1
e 22(6]-\/1- +6ivj) ,

and any other solution differs by an infinitesimal rigid displacement.

3. MAIN RESULT: A NECESSARY AND SUFFICIENT CONDITION FOR
MATRIX FIELDS TO BE LINEARIZED CHANGE OF METRIC AND
CHANGE OF CURVATURE TENSORS.

(P.G. Ciarlet, L. Gratie, A new approach to linear shell theory, Math. Models
Methods Appl. Sci., Vol.15, 2005, pp. 1181-1202).
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THEOREM. Let| wOR? | be a simply-connected domain. There exists

a continuous linear mapping | R:L3,,, (e =L3,, () —H (<)

Sym

Q=co<| &, & |

is an ad hoc tubular neighborhood of the surface

and

where

, and

H2($) :=(H 2(€Y)° |, s.t. apair| (c,r) =((cgp). (rgp)) 0L, (9 <L2,,, (¢

of

symmetric matrix fields satisfies | R(e,r) =0

a vector field

and any other solution differs by an infinitesimal rigid displacement.

n

H(Q)

NOV(ew =H' () ><H'(cd><H? ()

cap = YoM | and | Yo =Pa(M) |in

S.t.

, 1f and only if there exists

MAIN SURPRISE: A NEW PROOF OF KORN’S INEQUALITY ON A

SURFACE. Our new approach provides “as by-products” different proofs of the
classical Korn’s inequalities on a surface.

4. MAIN GOAL: A NEW “INTRINSIC” APPROACH TO

KOITER’S LINEAR SHELL EQUATIONS.
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We are now 1in a position to answer the main question addressed here, at least for
the so-called PURE TRACTION PROBLEM for a linearly elastic shell modeled by
Koiter’s equations. Recall that, in this case, the quadratic functional j of the classical
approach is to be minimized over the space

V(e =H' (@ ><H' () ><H>(c)) |

In the “intrinsic approach”, we now minimize a quadratic functional defined

over| L;,, () -spaces:

THEOREM. Given a simply-connected domain | wOR? | and an immersion

0 [1C°(co E°) |, define the quadratic functional | K: Liym (W XLiym (cv — R |by

83

K(c, 1) :=J'{£aaﬁmcmcaﬁ +3aamrmcaﬁ}«/a dy—/-H
w
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Then the minimization problem (with the linearized change of metric, and

change of curvature, tensors as the new unknowns):

' * Kc*,r* = 1inf K(c,r
Find| (¢ ,r ) OT(c) | such that ( ) (.0 (o (c,r)

has one and only one solution. Furthermore,
(c.r) =(y(@).p("))

where | 1 {is the unique solution of the “classical” minimization problem:

\»

Find| n OOV (e /Rig(c) | such that Jjm) 1.]E,V(w)](ﬂ) :

CONCLUDING REMARKS
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(a) We obtammed a new constrained minimization problem over the space
L2, (coxL:, (¢ | with 6 unknowns. The constraints (in the sense of

optimization theory) are the compatibility relations | R(c.r) =0 |in| H*(Q) |

(b) There remains the task of devising efficient numerical schemes for approaching
such a constrained minimization problem.
(¢c) A highly challenging task consists in extending the present approach to

nonlinear elastic shells, where the full differences

[aaﬁ(n)—aaﬁj and [bag(ﬂ)_baﬁj

are considered as the NEW UNKNOWNS, instead of their linearizations | Yag(M)

and| Pzp(M) as here.
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