
A NEW APPROACH TO ELASTICITY THEORY:
INTRINSIC METHODS

Liliana Gratie
Liu Bie Ju Centre for Mathematical Sciences

City University of Hong Kong

References:
[1] P.G. Ciarlet, P. Ciarlet Jr., Another approach to linearized elasticity and a 
      new proof of Korn’s inequality, Math. Models Methods Appl. Sci. 15, 2005.

[2] P.G. Ciarlet, L. Gratie, A new approach to linear shell theory, 
     Math. Models Methods Appl. Sci., 15, 2005.

[3] S. Opoka, W. Pietraszkiewicz, Intrinsic equations for nonlinear deformation 
      and stability of thin elastic shells, Internat .J. Solids Structures 41, 2004.

IMAR Bucharest, October 23, 2007

1



Ciarlet  , Philippe G.  ;  Gratie, Liliana; Mardare, Cristinel;  Shen, Ming 
Recovery of a displacement field on a surface from its linearized 
change of metric  and change of curvature tensors. C. R. Math. 
Acad. Sci. Paris 344   (2007),   no. 9,   597--602. 

Amrouche,  Cherif;  Ciarlet,  Philippe G.;  Gratie,  Liliana;  Kesavan, 
Srinivasan On the characterizations of matrix fields as linearized 
strain tensor fields. J.  Math.  Pures Appl.  (9) 86    (2006),    no. 2,   
116--132. 

Gratie, Liliana New unknowns on the midsurface of a Naghdi's shell 
model. An. \c Stiin\c t. Univ. Ovidius Constan\c ta Ser. Mat. 12 
(2004),   no. 2,   115--126 

OUTLINE

2

http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=239683
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=239683
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=239683
http://www.ams.org/mathscinet/search/journaldoc.html?cn=An_Stiint_Univ_Ovidius_Constanta_Ser_Mat
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=627671
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=244114
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=244114
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=244114
http://www.ams.org/mathscinet/search/journaldoc.html?cn=J_Math_Pures_Appl_9
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=100645
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=100645
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=627671
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=49340
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=253642
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=253308
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=253308
http://www.ams.org/mathscinet/search/publications.html?pg1=ISSI&s1=253308
http://www.ams.org/mathscinet/search/journaldoc.html?cn=C_R_Math_Acad_Sci_Paris
http://www.ams.org/mathscinet/search/journaldoc.html?cn=C_R_Math_Acad_Sci_Paris
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=814291
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=606552
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=627671
http://www.ams.org/mathscinet/search/publications.html?pg1=IID&s1=49340


1. BACKGROUND: THE CLASSICAL APPROACH TO LINEAR SHELL 
THEORY. THE UNCONSTRAINED MINIMIZATION PROBLEM

2. NEW  UNKNOWNS  AND  NEW  CONSTRAINED  MINIMIZATION 
PROBLEM. WEAK  VERSIONS  OF  A  CLASSICAL  THEOREM  OF 
POINCARÉ AND OF ST VENANT’S COMPATIBILITY CONDITIONS.

3. MAIN RESULT: A NECESSARY AND SUFFICIENT CONDITION FOR 
MATRIX  FIELDS  TO  BE  LINEARIZED  CHANGE  OF  METRIC  AND 
CHANGE OF CURVATURE TENSORS.

4.  MAIN GOAL: A NEW APPROACH TO EXISTENCE THEORY FOR 
KOITER’S LINEAR SHELL EQUATIONS.
1. THE CLASSICAL APPROACH TO LINEAR SHELL THEORY.
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Conventions:   { }3,2,1,...,, ∈kji     { }2,1,..., ∈βα     

                        ∑
=

=
2,1,,, τσβα

αβστ
αβστ

αβστ
αβστ γγγγ aa   ;    ∑

=
=

3,2,1i
i

i
i

i pp ηη .

Notations: 
• 3E  =  a  three-dimensional  Euclidean  space  with  vectors  iê  forming  an 

orthonormal basis;  a  = the Euclidean norm of  3E∈a ;  ba ⋅  = the Euclidean 

product, ba ∧  = the exterior product of 3, E∈ba . A generic point in 3E  will 

be denoted ( )ixx ˆˆ =  , where ix̂  are the Cartesian coordinates, and 

i
i x̂

ˆ
∂
∂=∂  , 

ji
ij xx ˆˆ

ˆ
2

∂∂
∂=∂ .

• A generic point in 2R  will be denoted )( αyy =  ; 
α

α y∂
∂=∂  , 

βα
αβ yy ∂∂

∂=∂
2

.

• A generic point in 3R  will be denoted )( ixx =  and 
i

i x∂
∂=∂  , 

ji
ij xx ∂∂

∂=∂
2

.
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• If V is a vector space and R a subspace of V, the quotient space of V modulo R 
is denoted RV /  and the equivalence class of ∈η  V modulo R is denoted η  .

Definitions:

• A  domain 2R⊂ω  (or  3R⊂Ω ,  or   3ˆ E⊂Ω )   is  an  open,  bounded 
connected  subset  with  a  Lipschitz  continuous  boundary,  the  set  ω  (or 
respectively Ω , Ωˆ ) being locally on the same side of its boundary.

• Given a domain  2R⊂ω , a mapping  );( 31 EC ω∈θ  is an  immersion if the 

vectors )(yθa αα ∂=  are linearly independent at all points ω∈y .
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• Given a domain  3R⊂Ω , a mapping );( 31 EC Ω∈Θ  is an immersion if the 

vectors )(xii Θg ∂=  are linearly independent at all points Ω∈x  (equivalently, 

the matrix 3,2,1,)()( =Θ∂=∇ jiijxΘ  is invertible at all points Ω∈x ).

• Spaces of vector-valued,  or  matrix-valued functions over a domain  D are 
denoted by boldface letters and the norms of the spaces )(2 DL  or )(2 DL , and 

)(DH m  or )(DmH  are denoted D,0.  and Dm,. .

• Given a domain 2R⊂ω and an immersion );( 33 EC ω∈θ , define  the

 SURFACE   )(: ωθ=S .

The vector fields θa αα ∂=  and 
21

21
3 aa

aa
a

∧
∧=  form the covariant bases along 

surface S.
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)(2 ωβααβ Caa ∈=   covariant components of the first fundamental  

                                     form of  the surface S,

)(1 ωβααβ Cbb ∈=    covariant components of the second fundamental 

                                     form of the surface S
dya  = area element along S, where )()det(: 2 ωαβ Caa ∈= .

Two other fundamental tensors play a key role in the two-dimensional theory of 
linearly elastic shells, each one being associated with a displacement vector field

i
iaη η=:~

of  the  surface  S,  where  )()()(:)()( 211 ωωωωη HHHi ××=∈= Vη  and  the 

vector fields ia , which form the contravariant bases along S, are defined by the 

relations 




=
≠

==⋅
ji

jii
jj

i

,1

,0
δaa  . 

The covariant components of the linearized change of metric tensor are given by
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[ ] ( )βααβαβαβαβγ aηaηηη ⋅∂+⋅∂=−= ~~
2
1

)(
2
1

:)( linaa

The covariant components of the linearized change of curvature tensor are:

[ ] ( ) 3
~~)(:)( aηηηη ⋅∂Γ−∂=−= α

σ
αβαβαβαβαβρ linbb

where

)(ηαβa  = covariant components of the first fundamental form of the  

                 deformed surface  ))(~( ωηθ + ,

)(ηαβb  = covariant components of the second fundamental form of 

                 the deformed surface  ))(~( ωηθ + ,
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the notation [ ] lin...  represents the linear part with respect to )( iη=η  in the 

expression [ ]... , and

βα
σσ

αβ aa ∂⋅=Γ  = Christoffel symbols of surface S.

Note that )()( 2 ωγαβ L∈η  and )()( 2 ωραβ L∈η , since )(ωVη∈ .

A  general  shell  structure  is  fully  represented  by  a  middle  surface 
geometry  and the  thickness  at  each point  of  its  middle  surface. Consider a 
linearly elastic thin shell with  middle surface )(: ωθ=S  and constant thickness 

ε2 , where 0>ε . The reference configuration of the shell is the three-dimensional 
set )(ΩΘ , where ] [ 3, R⊂−×=Ω εεω , and the mapping 3: E→ΩΘ  is defined 
by 

)()(:),( 333 yxyxy aθΘ += , for all  [ ]εεω ,),( 3 −×=Ω∈xy .
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We assume for simplicity that the shell is made of a  homogeneous isotropic 

material and that the reference configuration )(ΩΘ  is a natural state, i.e., stress-

free. Hence, the material is characterized by its two Lamé constants 0>λ  and 

0>µ ,  and  the  contravariant  components  αβστa  of  the  two-dimensional  shell 

elasticity tensor are given by

)()(2
2

4
: 2 ωµ

µλ
µλ βσατβτασσταβαβστ Caaaaaaa ∈++

+
= .
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This tensor is uniformly positive definite: there exists a constant 

0),,( >= µω θCC       such that    αβστ
αβστ

βα
αβ ttatC ≤∑ 2

,
, 

for all ω∈y  and all symmetric matrices )( αβt  of order two.

Assume that the shell is subjected to applied forces acting only in its interior and 

on its upper and lower faces, whose resultant after integration across the thickness of 

the shell has contravariant components )(2 ωLpi ∈ . Assume that the lateral face of 

the shell is free, i.e., the displacement is not subjected to any boundary condition 

there. We are thus considering a pure traction problem for a linearly elastic shell.

Classical unknown: )( **
iη=η , R→ωη :*

i , 
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*
iη  = covariant components of the unknown displacement field 

         i
i a*η  of the points of the middle surface S.

∈= )( **
iηη )()()(:)( 211 ωωωω HHH ××=V : space of “admissible    

                                                                                                     displacements”

Energy functional  RV →)(: ωj   is defined by

.d

d)}()(
3

)()({
2
1

:)(
3

∫

∫

−

+=

ω

ω
αβστ

αβστ
αβστ

αβστ

η

ρρεγγε

yap

yaaaj

i
i

ηηηηη
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The  two-dimensional  Koiter  equations [1970]  in  the  form  of  a  quadratic 

minimization problem: 

Find ∈= )( **
iηη )(ωV  such that

)(inf)(
)(

* ηη
Vη

jj
ω∈

= .

Define the Hilbert space of infinitesimal rigid displacements of surface S:

{:)( =ωRig ∈η )(ωV 0ηρηγ == )()(;  in )}(2 ωsymL

{:)( =ωRig ∈= )( iηη },,);( 33 RbRaθbaaV ∈∈∧+=i
iηω .
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We will  assume  that  the  linear  form  ∫=
ω

η yapl i
i d)(η  associated  with  the 

applied forces satisfies the compatibility conditions:

0)( =ηl  for all )(ωRigη∈ ,

since these are clearly necessary for the existence of a  minimizer of the energy 
functional j over the space )(ωV . Then, the above minimization problem becomes:

Find *η )(/)(:)( ωωω RigVV =∈   such that )(inf)(
)(

* ηη
Vη




jj
ω∈

= .

In order to establish the  existence and uniqueness  of  a  minimizer of  the 
energy  functional j over  the  space  )(ωV ,  it  suffices,  thanks to  the  positive 

definiteness of tensor αβστa  , to show that the mapping

ωω
,0

)(),()( ηρηγVη  →∈
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is a norm over quotient space )(ωV  equivalent to the quotient norm )(
. ωV .

DEFINE THE NORMS:

2/1

,

2

,0
,

2

,0,0
}{:),( ∑∑ +=

βα ωαβ
βα ωαβω rcrc ,  ∈),( rc )(2 ωsymL )(2 ωsymL× ,

2/12
,23

2
,1)(

}{: ∑ +=
α

ωωαω ηη
V

η  for all η )(ωV∈ ,

ξηη
RigξV

+=
∈ )()(
inf:

ωω  for all η )(ωV∈ )(/)( ωω RigV= .

The first stage, due to:

M. Bernadou, P.G. Ciarlet and B. Miara [1994]:  Existence theorems for two-

dimensional linear shell theories, J. Elasticity 34, 111-138.

is to establish a basic Korn inequality on a surface, “over the space )(ωV ”:
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THEOREM.  Let  there  be  given  a  domain  2R⊂ω  and  an  immersion 

);( 33 EC ω∈θ . Then there exists a constant ),( θωcc =  such that 

2/12
,0

2
,13

2
,0)(

})(),({∑ ++≤
α

ωωωαω ηρηγη
V

ηηc  

 for all η =∈ )(ωV )()()( 211 ωωω HHH ×× .

PROOF. The essence of this inequality is that the two Hilbert spaces )(ωV  and

)}()(),()(

);()()()({:)(
22

122

ωω

ωωωηω

symsym

i HLL

LηρLηγ

ηW

∈∈

××∈==

coincide. The keystone of the proof is a fundamental Lemma of J.L.Lions:
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Let Ω  be a domain in nR  and let v be a distribution on Ω . Then

{ } )(1),(and)( 211 Ω∈⇒≤≤Ω∈∂Ω∈ −− LvniHvHv i .

The second stage consists in establishing another basic Korn inequality on a surface, 

this time “over the quotient space )(ωV ”:

THEOREM.  Let  there  be  given  a  domain  2R⊂ω  and  an  immersion 

);( 33 EC ω∈θ . Then there exists a constant ),( θωcc  =  such that 

ωω ,0)(
)(),( ηρηγη

V
  c≤  

for all η )(ωV∈ )(/)( ωω RigV= .
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USING THIS KORN INEQUALITY AND THE POSITIVE DEFINITENESS 

OF THE ELASTICITY TENSOR,  WE OBTAIN THE EXISTENCE AND 

THE UNIQUENESS OF A SOLUTION FOR THE KOITER EQUATIONS.

2. OBJECTIVE: CONSIDER THE NEW PRIMARY UNKNOWNS 
(INSTEAD OF THE DISPLACEMENT)

NEW UNKNOWNS:

)()( 2 ωγαβ L∈η : covariant comps. of the linearized change of metric tensor

)()( 2 ωραβ L∈η : covariant comps. of the linearized change of curvature tensor 

NEW ENERGY FUNCTIONAL
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),(d}
3

{
2
1

:),(
3

ργργ lyaaa −+= ∫
ω

αβστ
αβστ

αβστ
αβστ ρρεγγεκ

NEW SPACE FOR “ADMISSIBLE UNKNOWNS”

)()(),{(:)( 22 ωωω symsym LLργT ×∈= ; 0ργR =),(  in )}ˆ(2 Ω−H .

NEW MINIMIZATION PROBLEM

Find )(),( ** ωTργ ∈   such that  ),(inf),(
)(),(

** ργργ
Tργ

κκ
ω∈

=

WHY?  

• MATHEMATICAL NOVELTY
• PRACTICAL ADVANTAGE : As the constitutive equations of linear shell 

theory  are  invertible,  the  new  minimization  problem  can  be  recast  as  a 
minimization problem with the stress resultants and bending moments as the 
only  unknowns,  which  are  of  great  interest  from  the  mechanical  and 
computational viewpoints:
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     )(ηαβ
αβσταβ γε an =      contrav. comps. of the stress resultant tensor field

     )(
3

3

ηαβ
αβσταβ ρε

am =  contrav. comps. of the bending moment tensor field

• EXTENSION TO FULLY NONLINEAR INTRINSIC SHELL THEORY 
(where the “full” change of metric, and change of curvature, tensors appear in 
the energy, instead of their linearized versions considered here). This approach 
should  provide  existence  theorems that  are  so  far  essentially  lacking  for 
nonlinear Koiter shell equations.

WEAK VERSIONS OF A CLASSICAL THEOREM OF POINCARÉ AND 
OF ST VENANT’S COMPATIBILITY CONDITIONS.

P.G. Ciarlet and P. Ciarlet Jr. [2005] : Consider the  linearized strain tensor 

)(2 Ω∈ symLe  as the primary unknown instead of the displacement, for the pure 

traction problem of linearized three-dimensional elasticity.
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Their objective was to characterize those symmetric  33×  matrix fields with 

components )(Ω∈ symij Le  that can be written as 

)(
2
1

jiijij vve ∂+∂= ,

for some )()( 1 Ω∈= Hv iv , where Ω  is a domain in 3R .

Classical Theorem of Poincaré. If functions )(1 Ω∈Chk  satisfy lkkl hh ∂=∂  

in  a  simply-connected  open  subset  Ω  of  3R ,  then  there  exists  a  function 

)(2 Ω∈Cp  such that ph kk ∂=  in )(2 ΩL .

Theorem of Poincaré (weak form). Let Ω  be a simply-connected domain in 3R . 

Let )(1 Ω∈ −Hhk  be distributions that satisfy lkkl hh ∂=∂  in )(2 Ω−H . Then there 

exists a function )(2 Ω∈Lp , unique up to an additive constant, such that ph kk ∂=  

in )(1 Ω−H .

1864: the classical compatibility relations of St Venant
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Theorem (weak form of  St  Venant’s  compatibility  conditions). Let  Ω  be a 

simply-connected domain in 3R . If )()( 2 Ω∈= symije Le  satisfy the 

weak St Venant compatibility conditions:
0:)( =∂+∂−∂+∂= ilkjjklijlkiikljijkl eeeeR e  in )(2 Ω−H ,

then there exists )()( 1 Ω∈= Hv iv  such that )(
2

1
vve ∇+∇= T  or

)(
2

1
jiijij vve ∂+∂= ,

and any other solution differs by an infinitesimal rigid displacement.
3. MAIN RESULT: A NECESSARY AND SUFFICIENT CONDITION FOR 
MATRIX  FIELDS  TO  BE  LINEARIZED  CHANGE  OF  METRIC  AND 
CHANGE OF CURVATURE TENSORS.

(P.G.  Ciarlet,  L.  Gratie,  A  new approach to  linear  shell  theory,  Math.  Models 
Methods Appl. Sci., Vol.15, 2005, pp. 1181-1202).
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THEOREM. Let 2R⊂ω  be a simply-connected domain. There exists 00 >ε  and 

a  continuous  linear  mapping  )ˆ()()(: 222 Ω→× −HLLR ωω symsym where 

] [00 ,ˆ εεω −×=Ω   is an ad hoc tubular neighborhood of the surface )(ωθ , and 
622 ))ˆ((:)ˆ( Ω=Ω −− HH , s.t. a pair )()())(),((),( 22 ωωαβαβ symsymrc LLrc ×∈=  of 

symmetric matrix fields satisfies 0rcR =),( in )ˆ(2 Ω−H , if and only if there exists 

a vector field )()()()( 211 ωωωω HHH ××=∈Vη  s.t.

)(ηαβαβ γ=c   and  )(ηαβαβ ρ=r  in )(2 ωsymL

and any other solution differs by an infinitesimal rigid displacement.
MAIN  SURPRISE: A  NEW  PROOF  OF  KORN’S  INEQUALITY  ON  A 
SURFACE.  Our new approach provides “as by-products” different proofs of the 
classical Korn’s inequalities on a surface.

4. MAIN GOAL: A NEW “INTRINSIC” APPROACH TO 
                              KOITER’S LINEAR SHELL EQUATIONS.
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We are now in a position to answer the main question addressed here, at least for 
the so-called PURE TRACTION PROBLEM for a linearly elastic shell modeled by 
Koiter’s equations. Recall that, in this case, the quadratic functional j of the classical 
approach is to be minimized over the space 

)()()()( 211 ωωωω HHH ××=V .

In the “intrinsic approach”, we now minimize a quadratic functional defined 

over )(2 ωsymL -spaces:

THEOREM.  Given  a  simply-connected  domain  2R⊂ω  and  an  immersion 

);( 33 EC ω∈θ , define the quadratic functional RLL →× )()(: 22 ωωκ symsym  by

Hrc lyacracca −+= ∫ d}
3

{:),(
3

αβστ
αβστ

αβστ
αβστ

ω

εεκ
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Then the minimization problem (with the linearized change of metric, and 

change of curvature, tensors as the new unknowns):

Find )(),( ** ωTrc ∈   such that  ),(inf),(
)()(

** rcrc
Trc,

κκ
ω∈

=

has one and only one solution. Furthermore, 

))(),((),( **** ηρηγrc = ,

where *η is the unique solution of the “classical” minimization problem:

Find )(/)(* ωω RigVη ∈   such that  )(inf)(
)(

* ηη
Vη




jj
ω∈

= .

CONCLUDING REMARKS
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(a)  We  obtained  a  new  constrained  minimization  problem  over  the  space 

)()( 22 ωω symsym LL ×  with  6  unknowns.  The  constraints (in  the  sense  of 

optimization theory) are the compatibility relations 0rcR =),(  in )ˆ(2 Ω−H .

(b) There remains the task of devising efficient numerical schemes for approaching 

such a constrained minimization problem.

(c) A  highly  challenging  task  consists  in  extending  the  present  approach  to 

nonlinear elastic shells, where the full differences   

[ ]αβαβ aa −)(η  and [ ]αβαβ bb −)(η

are considered as the NEW UNKNOWNS, instead of their linearizations  )(ηαβγ  

and )(ηαβρ as here.
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