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Abstract

Consider a stabilizable linear system with periodic solutions. For a given periodic orbit, the
minimum energy problem is to find the infimum of L2 norms of controls which steer the state from
the orbit to the origin asymptotically. It is shown that the infimum is obtained in terms of the
maximal solution of the singular Riccati equation associated with the system. Using this result, a
design method of stabilizing feedback controllers which steer the state from the orbit to the origin
asymptotically with energy arbitrarily close to the infimum is proposed. As applications, the Halo
orbit control problem near the L2 Lagrangian point of the Earth-Moon-Spacecraft system and the
relative orbit transfer problem associated with the Hill-Clohessy-Whiltshire equations are discussed.

Keywords: minimum energy problem, periodic solutions, optimal regulator, singular Riccati equa-
tion, null controllability with vanishing energy

1 Introduction

In this lecture, the minimum energy control problem for a stabilizable linear system with periodic solutions
given in [4] is introduced. It is a minimization problem in which the infimum of L2 norms of controls
which steer the state from the orbit to the origin asymptotically is sought. As an application, the Halo
orbit control problem near the L2 Lagrangian point of the Earth-Moon-Spacecraft system is discussed.
If the system is controllable and the minimum energy is zero, it is referred to as null controllable with
vanishing energy (NCVE) [5]. The system which describes the realtive motion of a spacecraft with respect
another in a circular orbit is NCVE [6]. The relative orbit transfer problem based on NCVE in [6] is also
introduced. It covers rendezvous and docking problems.

To motivate the minimum energy problem, consider the Earth-moon-spacecraft system [4], shown
in Fig.1, regarded as the circular restricted three-body problem, where the Earth-moon system, by
assumption, rotates with a constant angular velocity (ω = 2.661699× 10−6 rad/s) about their composite
center of mass, and their orbital motion is not affected by the spacecraft. Then the equations of motion

Figure 1: Circular restricted three-body problem.
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Figure 2: Lagrangian points.

of the spacecraft in nondimensional form are given as follows [7]:

Ẍ − 2Ẏ − X = −(1 − ρ)(X − ρ)/r3
1 − ρ(X + 1 − ρ)/r3

2 + ux,

Ÿ + 2Ẋ − Y = −(1 − ρ)Y/r3
1 − ρY/r3

2 + uy,

Z̈ = −(1 − ρ)Z/r3
1 − ρZr3

2 + uz,

where (X, Y, Z) is the rotating coordinate system with origin at the barycenter, Z is the rotating axis,
X in the direction of the Earth, Y is defined to form a right-handed system, ρ = 0.01215 is the ratio
of the mass of the moon and the total mass of the Earth and moon, r1 and r2 denote the distances of
the spacecraft from the Earth and moon respectively, and (ux, uy, uz) are thrust accelerations. A unit
of time is 1/ω and 27.3 days, a unit of distance is D = 384, 748 km, and a unit of thrust is Dω2. For
the free system, there are five equilibrium points L1(−0.83692, 0, 0), L2(−1.15568, 0, 0), L3(1.00506, 0, 0),
L4(−0.48785,

√
3/2, 0), and L5(−0.48785,−√

3/2, 0) known as Lagrangian points see Fig.2. The L2 point
is called translunar point and the linearized equations of motion about this point are given by

ẍ − 2ẏ − (2σ + 1)x = ux,

ÿ + 2ẋ + (σ − 1)y = uy, (1)
z̈ + σz = uz,

where X = X0 + x, Y = y, Z = z with X0 = −1.15568, and

σ = (1 − ρ)/|X0 − ρ|3 + ρ/|X0 + 1 − ρ|3 = 3.19043.

The equations for x and y are independent of z and determine the in-plane motion, and its charac-
teristic equation has two real and two imaginary roots: ±2.15868 and ±1.86265j . Thus the L2 point is
unstable, but the system (1) has periodic solutions. The L1 and L2 points are of practical importance
for future space missions involving the stationing of a communication platform or a lunar space station.
For lunar far-side communications, it is desirable to maintain a 3500-km halo orbit (periodic trajectory)
about the L2 point. Motivated by this, the orbit transfer of the in-plane motion will be discussed.

Our control problem is described as follows. Suppose a spacecraft is initially in a periodic orbit, and
it is required to bring it to the origin (L2 point) asymptotically by a feedback control with energy close
to the infimum in the L2 sense. To solve this problem, the quadratic regulator theory and the singular
Riccati equation are recalled. It is known [5] that its maximal solution gives the infimum over T of the
mimimum L2-norm of the controls which steer a given state to the origin in time T . Using this the
optimal initial position of the spacecraft in the orbit is obtained. The transfer problem from a given orbit
to another, which is more practical, is reduced to the problem above.

This lecture is organized as follows. In section 2 the linear quadratic regulator theory is briefly
reviewed, and the main result of the minimum energy problem studied in [5] is recalled. Then its
generalization to stabilizable systems is given, and the solution to our minimum energy problem is shown.
If any initial state can be steered to the origin with arbitrarily small amount of energy, the system is
referred to as null controllable with vanishing energy (NCVE) [5]. Necessary and sufficient conditions for
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this are recalled, and a slightly weaker notion and its necessary and sufficient conditions are given. In
Section 3 the minimum energy problem for the Earth-moon-spacecraft system is discussed. In Section 4
the Hill-Clohessy-Wiltshire equation (rendezvous equation), which is NCVE [6], is introduced. For this
system, feedback controls are designed in the same way.

2 Minimum energy problem

Consider the linear system

ẋ = Ax + Bu, (2)

where x ∈ Rn and u ∈ Rm. Let x(t;x0, u) be the solution of (2) with initial condition x(0) = x0. The
Euclidean norm of vectors is denoted by | · | and the set of all eigenvalues of A by σ(A).

Let A have pure imaginary eigenvalues ±jω. Then (2) with u = 0 has periodic solutions. Each
periodic solution determines an orbit. For each x0, let u ∈ L2(0,∞; Rm) be such that x(t;x0, u) → 0 as
t → ∞. Such a control is said to be admissible, and the set of all admissible controls for x0 is denoted
by U(x0). If (A,B) is stabilizable, this set is nonempty. Define

E(x0) = inf{‖ u ‖2
2: u ∈ U(x0)},

where ‖ · ‖2 denotes the norm in L2 space. For a given orbit O, our minimum energy problem is to
find an x∗

0 ∈ O which gives the minimum of E(x0), and to design stabilizing feedback controls whose
L2-norms are close to E(x0) for any x0 ∈ O.

To solve this problem, the linear quadratic regulator theory is now reviewed. Consider the quadratic
functional

J(u; x0) =
∫ ∞

0

[x(t;x0, u)′Qx(t;x0, u) + |u(t)|2]dt, (3)

where Q = C′C for some matirix C. The optimal regulator problem is to minimize J(u; x0) over u ∈
L2(0,∞; Rm) such that x(t;x0, u) ∈ L2(0,∞; Rn) and x(t;x0, u) → 0 as t → ∞. If (C,A,B) is a
stabilizable and detectable triple, there exists a unique stabilizing solution X ≥ 0 to the algbraic Riccati
equation

A′X + XA + Q − XBB′X = 0. (4)

The feedback control

u∗ = −B′Xx (5)

is optimal and J(u∗; x0) = x′
0Xx0. If the functional is replaced by

JT (u; x0) =
∫ T

0

[x(t;x0, u)′Qx(t;x0, u) + |u(t)|2]dt + x(T ; x0, u)′Qfx(T ; x0, u), Qf ≥ 0, (6)

then (4) is replaced by the Riccati differential equation

−Ẋ = A′X + XA + Q − XBB′X, X(T ) = Qf . (7)

In this case the feedback control

u∗ = −B′X(t)x (8)

is optimal, and JT (u∗; x0) = x′
0X(0)x0.

Let U(T ; x0) be the set of u ∈ L2(0, T ; Rm) such that x(T ; x0, u) = 0. For a controllable system the
following theorem is known [5].

Theorem 2.1 Suppose (A,B) is controllable. Then for each Q ≥ 0 there exists a maximal solution
X ≥ 0 of (5) such that

x′
0Xx0 = inf

T>0
inf

U(T ;x0)

∫ T

0

[x(t;x0, u)′Qx(t;x0, u) + |u(t)|2]dt. (9)
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Recall that X is maximal if it is symmetric and Y ≤ X for all solutions of (4).
The controllability assumption is relaxed to stabilizability, and the following results are obtained in

[4]. Let Xε be the stabilizing solution of (4) with Q replaced by Q + εI, ε > 0.

Lemma 2.1 Suppose (A,B) is stabilizable. Then Xε ≥ X for any solution X of (4).

Proof. The difference Xε − X satisfies the following equation:

(A − BB′Xε)′(Xε − X) + (Xε − X)(A− BB′Xε) + εI + (Xε − X)BB′(Xε − X) = 0.

Because A − BB′Xε is stable, Xε − X ≥ 0.

Lemma 2.2 Xε is monotone decreasing as ε → 0, and its limit X0 is the maximal solution of (4).

For our energy problem Q = 0, and the Riccati equation becomes singular:

A′X + XA − XBB′X = 0. (10)

Theorem 2.2 Suppose that (A,B) is stabilizable. Then

E(x0) = inf
U(x0)

‖ u ‖2
2= x′

0Xx0, (11)

where X is the maximal solution of (10).

Lemma 2.3 Suppose that (A,B) is controllable. Then

E(x0) = x′
0Xx0,

Proof. Since U(T ; x0) ⊂ U(x0), E(x0) ≤ x′
0Xx0. To prove the converse inequality, consider the Riccati

equation

−Ẋ = A′X + XA − XBB′X, X(T ) = X.

Then the solution is X(t) = X , and the equality below holds:
∫ T

0

|u(t)|2dt + x′(T )Xx(T ) = x′
0Xx0 +

∫ T

0

|u + B′Xx|2dt

for any u ∈ L2(0, T ; Rm). Choose, in particular, u ∈ U(x0) to obtain
∫ ∞

0

|u(t)|2dt ≥ x′
0Xx0.

Hence E(x0) ≥ x′
0Xx0.

Proof of Theorem 2.2. Let Xε be the stabilizing solution of (5) with Q = εI. Then

x′
0Xεx0 =

∫ ∞

0

[ε|xε(t)|2 + |uε(t)|2]dt,

≥
∫ ∞

0

|uε(t)|2dt,

where uε = −B′Xεx and xε is its response. Note that uε ∈ U(x0). Hence

x′
0Xx0 = inf

ε
x′

0Xεx0,

≥ inf
ε

∫ ∞

0

|uε(t)|2dt,

≥ inf
U(x0)

‖ u ‖2
2,

= E(x0).

The converse inequality is proved in Lemma 2.3.
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Since E(x0) = x′
0Xx0, E(x0) is a continuous function of x0, the minimum of E(x0) over any periodic

orbit O (a compact set) exists, and its search is a constrained minimization. Now let x∗
0 be the minimizing

point on the orbit. Then apply the feedback law

u = −B′Xεx

with sufficiently small ε > 0, when the state reaches x∗
0. Then it steers x∗

0 asymptotically to the origin,
and E(x0) ≤‖ u ‖2

2≤ x′
0Xεx0. Hence our problem has been solved. In the next section the minimization

of E(x0) for the Earth-moon-spacecraft system will be shown in detail.
When the maximal solution of (10) is X = 0, then a new definition is introduced in [5].

Definition 2.1 The system (2) is said to be null controllable with vanishing energy (NCVE for short) if
for each initial x(0) = x0 there exists a sequence of pairs (TN , uN), 0 < TN ↑ ∞, uN ∈ L2(0, TN ; Rm)
such that x(TN ; x0, uN ) = 0 and

lim
N→∞

∫ TN

0

|uN(t)|2dt = 0. (12)

(A,B) is said to be NCVE if the system (2) is NCVE. Necessary and sufficient conditions for NCVE
are given as follows [5].

Theorem 2.3 (A,B) is NCVE if and only if
(a) it is controllable, and
(b) X = 0 is the maximal solution of the algebraic Riccati equation (10).

Theorem 2.4 (A,B) is NCVE if and only if
(a) (A,B) is controllable, and
(b) Re(λ) ≤ 0 for any λ ∈ σ(A).

In view of Theorem 2.2, the notion of NCVE can be relaxed [4]:

Definition 2.2 The system (2) is said to be stabilizable with vanishing energy (SVE) if E(x0) = 0 for
all x0.

Theorem 2.5 (A,B) is SVE if and only if
(a) (A,B) is stabilizable, and
(b) Re(λ) ≤ 0 for any λ ∈ σ(A).

Proof. To show necessity, note that the controllable part of the system is NCVE. Hence Re(λ) ≤ 0 for
any controllable λ, and (b) holds. To show sufficiency, let X �= 0. Then there exists an eigenvector p of
A corresponding to a λ such that p∗Xp �= 0. Then the Riccati equation (10) yields

2Re(λ)p∗Xp− p∗XBB′Xp = 0.

If Re(λ) < 0, it is a contradiction. Thus Re(λ) = 0. Then B′Xp = 0. Again by the Riccati equation

A′Xp + XAp − XBB′Xp = 0,

which yields A′Xp = −jωXp, where λ = jω. By stabilizability of (A,B), Xp = 0, which is a contradic-
tion.

The notion of NCVE is defined for discrete-time systems in [1], [3], and is extended to periodic systems
[2], where the relative orbit transfer along an elliptical orbit is considered.

3 Halo orbit transfer near L2 point

Consider the in-plane motion of (1)

ẍ − 2ẏ − (2σ + 1)x = ux, (13)
ÿ + 2ẋ + (σ − 1)y = uy. (14)
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The state space form of these equations is given by

ẋ =

⎡
⎢⎣

0 1 0 0
2σ + 1 0 0 2

0 0 0 1
0 −2 1 − σ 0

⎤
⎥⎦x +

⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦u, (15)

where x = [ x ẋ y ẏ ]′ and u = [ ux uy ]′. The periodic solution of this equation is given by

x(t) = x0 cos ωt + ẋ0/ω sin ωt,

y(t) = y0 cos ωt + ẏ0/ω sinωt,

where ω = 1.86265. By (13), y0 and ẏ0 are given by

y0 = (ω2 + 2σ + 1)/2ω2 ẋ0, (16)
ẏ0 = −(ω2 + 2σ + 1)/2 x0. (17)

These are the conditions which should be satisfied by the periodic solution. Now it is parametrized as
follows:

x(t) = a sin(ωt + α0), (18)
y(t) = γa cos(ωt + α0), (19)

where a = (x2
0 + ẋ2

0/ω2)1/2, γ = (ω2 + 2σ + 1)/2ω = 2.91260, and α0 is determined by cos α0 = ẋ0/aω
and sin α0 = x0/a. In view of (18), (19), the periodic orbit O is an ellipse

(x/a)2 + (y/γa)2 = 1.

The period of this solution is τ = 2π/ω = 3.37154, which corresponds to the actual period 14.6607 (days).
In view of (16) and (17), the initial condition for (15) is given by

x0 = [ x0 ẋ0 γ/ω ẋ0 −γω x0 ]′ .

The maximal solution of the singular Riccati equation approximated by Xε with ε = 10−14 is given by
⎡
⎢⎣

36.12404 10.56518 −6.75656 6.65862
10.56518 3.08999 −1.97609 1.94744
−6.75656 −1.97609 1.26373 −1.24541
6.6586 1.94744 −1.24541 1.22736

⎤
⎥⎦ ,

[4] and its eigenvalues are (λ1, λ2, λ3, λ4) = (41.70513, 0.00000, 0.00000, 0.00000) with corresponding
eigenvectors

(p1, p2, p3, p4) =

⎛
⎜⎝

0.930687 −0.355604 −0.000000 0.085840
0.272197 , 0.767633 , 0.533184 , 0.228829
−0.174074 −0.224116 0.000000 0.958890
0.171550 0.483794 −0.845999 0.144217

⎞
⎟⎠ .

Now

E(x0) = x′
0Xx0 = q2p′1Xp1 = λ1q

2,

where q = x′
0p1. Hence the minimization of q2 subject to x2

0 + ẋ2
0/ω2 = a2 yields the optimal initial

position. To minimize q2 consider the function

h = q2 − μ(x2
0 + ẋ2

0/ω2 − a2),
= [(q1 − γωq4)x0 + (q2 + γ/ω q3)ẋ0)]2 − μ(x2

0 + ẋ2
0/ω2 − a2),

where p1 = [ q1 q2 q3 q4 ]′. Setting

∂h/∂x0 = 2(q1 − γωq4)q − 2μx0 = 0,

∂h/∂ẋ0 = 2(q2 + γ/ω q3)q − 2μẋ0/ω2 = 0,
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Figure 3: Asymptotic orbit transfer.

the following relation is obtained:

ẋ0 = βω2/α x0,

where α = q1 − γωq4 and β = q2 + γ/ω q3. Thus the optimal initial condition is given by

x∗
0 = ±α/(α2 + β2ω2)1/2 a,

ẋ∗
0 = ±βω2/(α2 + β2ω2)1/2 a.

The minimum of q2 is given by q∗2 = (α2 + β2ω2)a2 and the minimum of E(x0) by

E(x∗
0) = x∗

0
′Xx0

∗ = λ1q
∗2.

Since α = 1.12251 × 10−6 and β = 1.09315 × 10−6, the optimal initial values are (x∗
0, ẋ

∗
0) =

(0.482784a, 1.60120a). Moreover, q∗2 = 5.40594 × 10−12a2, and E(x∗
0) = 2.25453 × 10−10a2. In Fig.

3 simulation results of asymptotic transfer of orbit are given, where the initial orbit is the larger ellipse
and the final orbit is the smaller one. If the unit is taken as 1/100, the size of the larger ellipse is 3847
km. The feedback gain −B′Xε with three different values of ε are considered.

The Lagrangian points L4 and L5 are stable in that linearized equations of motion around them have
only pure imaginary characteristic roots. Hence these systems with control accelerations become NCVE.

4 Relative orbit transfer of Hill’s equations

The relative motion of a spacecraft (chaser) with respect to another (target) in a circular orbit around the
Earth is described by autonomous nonlinear differential equations. The linearized equations are known as
Hill-Clohessy-Wiltshire equations [7]. The motion in the orbit plane (the in-plane motion) is independent
of the out-of-plane motion, and a controlled version has the form

ẋ =

⎡
⎢⎣

0 1 0 0
3ω2 0 0 2ω
0 0 0 1
0 −2ω 0 0

⎤
⎥⎦x +

⎡
⎢⎣

0 0
1 0
0 0
0 1

⎤
⎥⎦u, (20)

where x = [ x ẋ y ẏ ]′, x axis is along the radial direction, y axis along the flight direction of the
target, and ω is the orbit rate (angular velocity) of the target. The system (20) is controllable, and the
eigenvalues of the state matrix are (0, 0,±jω). Thus it is NCVE, and E(x0) = 0 for all x0. It has periodic
solutions,

x(t) = 2c + a cos[ω(t − t0) + α],
y(t) = d − 3ωc(t − t0) − 2a sin[ω(t − t0) + α],
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where

a = [(3x0 + 2ẏ0/ω)2 + (ẋ0/ω)2]1/2, d = y0 − 2ẋ0/ω, c = 2x0 + ẏ0/ω,

cos α = −(1/a) (3x0 + 2ẏ0/ω) , sin α = −ẋ0/(ωa),

which constitute relative orbits of the chaser, and are useful for rendezvous and flyaround operations.
They form ellipses

[x(t) − 2c]2

a2
+

[y(t) − d + 3ωc(t − t0)]2

(2a)2
= 1. (21)

A small relative orbit which encircles the origin is useful for inspection of the target spacecraft. Using
the feedback law

u = −B′Xεx

the relative orbit transfer can be fulfilled with arbitrarily little energy in L2 sense. Actual energy is
evaluated by the L1 norm, but it decreases in general as L2 norm. This problem is studied in detail in
[6]. If the final orbit collapses to the origin, it corresponds to the rendezvous and docking.
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