Pricing and Hedging Asian Basket Spread Options

Griselda Deelstra∗, Alexandre Petkovic† ‡, Michèle Vanmaele§

Abstract

Asian options, basket options and spread options have been extensively studied in literature. However, few papers deal with the problem of pricing general Asian basket spread options. This paper aims to fill this gap. In order to obtain prices and Greeks in a short computation time, we develop approximations formulae based on comonotonicity theory and moment matching methods. We compare their relative performances and explain how to choose the best approximation technique as a function of the Asian basket spread characteristics. We also give explicitly the Greeks for our proposed methods. In the last section we extend our results to options denominated in foreign currency.

Key words Asian basket spread option, non-comonotonic sum, moment-matching, Shifted log-extended skew normal law.

1 Introduction

We consider a security market consisting of \(m \) risky assets and a risk-less asset with rate of return \(r \). We assume that under the risk-neutral measure the price process dynamics are given by

\[
dS_{jt} = rS_{jt} dt + \sigma_j S_{jt} dB_{jt},
\]

where \(\{B_{jt} : t \geq 0\} \) is a standard Brownian motion associated with asset \(j \). Further we assume that the asset prices are correlated according to

\[
corr(B_{jt_v}, B_{it_s}) = \rho_{ji} \min(t_v, t_s).
\]

Given the above dynamics, the price of the \(j^{th} \) asset at time \(t_s \) equals

\[
S_{jt_s} = S_j(0) e^{(r-\frac{\sigma_j^2}{2})t_s + \sigma_j B_{jt_s}}.
\]

With this in hand we can define an Asian basket spread as

\[
S = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i},
\]

∗Université Libre de Bruxelles, Département de Mathématiques, ECARES and Solvay Business School, email: griselda.deelstra@ulb.ac.be
†Université Libre de Bruxelles, ECARES, email: apetkovi@ulb.ac.be
‡This research was carried out while this author was an aspirant FNRS.
§Universiteit Gent, Department of Applied Mathematics and Computer Science, email: Michele.Vanmaele@UGent.be
where a_j is the weight given to asset j and ε_j its sign in the spread. We assume that $\varepsilon_j = 1$ for $j = 1, \ldots, p$, $\varepsilon_j = -1$ for $j = p + 1, \ldots, m$, where p is an integer such that $1 \leq p \leq m - 1$ and $t_0 < t_1 < t_2 < \cdots < t_n = T$. The price of an Asian basket spread with exercise price K at $t_0 = 0$ can be defined as
\[
e^{-rT}E_Q(S - K)_+,
\]
with $(x)_+ = \max(x, 0)$ and where E_Q represents the expectation taken with respect to the risk-neutral measure Q. In what follows we will simply write E for the expectation under the risk-neutral measure.

Examples of such contracts can be found in the energy markets. The basket spread part may for example be used to cover refinement margin (crack spread) or the cost of converting fuel into energy (spark spread). While the Asian part (the temporal average) avoids the problem common to the European options, namely that speculators can increase gain from the option by manipulating the price of the assets near maturity.

Since the density function of a sum of non-independent log-normal random variables has no closed-form representation, there is no closed-form solution for the price of a security whenever $m > 1$ or $n > 1$ within the Black and Scholes framework. Therefore one has to use an approximation method when valuating such a security. It is always possible to use Monte Carlo techniques to get an approximation of the price. However such techniques are rather time-consuming. Furthermore financial institutions also need approximations of the hedge parameters in order to control the risk, which further increases the computation time. This explains why the research for a closed-form approximation has become an active area.

Some special cases of the above formula have been extensively studied. For example if we set $m = 1$ and $n > 1$ we have an Asian option. Approximation formulae for this kind of derivatives can be found in Rogers and Shi [23], Kaas et al. [18], Thompson [25], Nielsen and Sandmann [22], Vanmaele et al. [27], Vynck et al. [28], Lord [21] and Zhou and Wang [29]. If $m > 1$ and $n = 1$ we have a basket option. See Deelstra et al. [12], Vanmaele et al. [26] and [29] for basket options where all the assets have a positive weight. And Borovkova et al. [6], Castellacci and Siclari [10] for the case of basket spread options. Finally setting $m = 2$, $n = 1$ and $p = 1$ we end up with a spread option. Pretty accurate approximation formulae for spread options can be found in the paper of Alexander and Scourse [2], Bjerkund and Stensland [5], Carmona and Durrleman [7] and [8] and Li et al. [20]. However few papers develop methods that can be used in the case of an Asian basket spread. [6], [10] and Carmona and Durrleman [9] are the only we are aware of.

In this paper we start by deriving approximation formulae for expression (5) using comonotonic bounds. We derive four different approximations: the upper, the improved upper, the lower and the intermediary bound. We also try to approximate the security price with the help of moment matching techniques. We improve the hybrid moment matching method of [10] and propose an extension of the method developed by [6]. We explain which method should be used depending on the basket characteristics. We also provide closed-form formulae for the Greeks of our selected approximation techniques. We explain how our results can be adapted in order to deal with options written in foreign currency (compo and quanto options).

The paper is composed as follows. In section 2, we construct a price approximation using comonotonic sums. In section 3, we develop some moment matching methods. Section 4 studies the relative performance of the methods we developed. In section 5 we derive the Greeks for our best performing approximation. Section 6 deals with options in foreign currency. Finally section 7 concludes.
2 Comonotonic Approximations

We start this section by recalling some results on comonotonicity from the review papers Dhaene et al. [15] and [16].

Definition 1. A random vector \((X_1, \ldots, X_n)\) is comonotonic if each two possible outcomes \((x_1, \ldots, x_n)\) and \((y_1, \ldots, y_n)\) are ordered componentwise.

In actuarial science it is common to encounter sums of the form \(S = \sum_{i=1}^{n} X_i\) where the marginal distribution of each \(X_i\) is known but the dependency structure between the \(X_i\)'s is unknown or too difficult to work with. In such a case comonotonicity theory allows us to find the joint distribution of the \(X_i\)'s, given their marginal one, with the smaller (larger) sum in the convex order sense (we note this order as \(\leq_{cx}\)). Put it differently, we could replace the original random vector by its comonotonic counterparts \(S^\ell\) and \(S^c\) which are such that

\[
E[g(S^\ell)] \leq E[g(S)] \leq E[g(S^c)],
\]

for any convex function \(g(\cdot)\). From this it follows that

\[
E(S^\ell - K)_+ \leq E(S - K)_+ \leq E(S^c - K)_+,
\]

for all \(K \in \mathbb{R}\). Thus we see that comonotonicity allows us to find bounds for expressions like (5). Below we will see that comonotonic sums give us closed-form formulae for such approximations. Traditionally comonotonicity is used in the pricing of Asian, basket or Asian basket options (see e.g. [27], [12] and Deelstra et al. [13]). To our knowledge, this is the first time that this approach has been used in order to approximate basket spread or Asian basket spread options.

In what follows we focus on the ideas of the different approximation methods and on the numerical results, and we therefore skip those proofs on the comonotonic bounds which are straightforward extensions of the ones in [27]. The interested reader is referred to the working paper of Deelstra et al. [14].

2.1 Comonotonic Upper Bound

It can be shown that the convex largest sum of the components of a random vector \(X\) is given by the following comonotonic sum (see [16]):

\[
S^c = \sum_{i=1}^{n} F_{X_i}^{-1}(U),
\]

where the distribution function of each \(X_i\) is non-decreasing and left-continuous, and \(F_{X_i}^{-1}(p)\) is defined as

\[
F_{X_i}^{-1}(p) = \inf \{x \in \mathbb{R} \mid F_{X_i}(x) \geq p\}, \quad p \in (0, 1).
\]

In [18], it is shown that the inverse distribution function of a sum of comonotonic random variables is equal to the sum of the marginal inverse distribution functions. Assuming that the marginal distributions are strictly increasing we can recover the cumulative distribution function (cdf) of the comonotonic sum using:

\[
x = F_{S^c}^{-1}(F_{S^c}(x)) = \sum_{i=1}^{n} F_{X_i}^{-1}(F_{S^c}(x)), \quad F_{S^c}^{-1}(0) < x < F_{S^c}^{-1}(1).
\]

The next theorem, of which the proof can be found in [16] and [18], will be useful in what follows.

Theorem 1. The stop-loss premiums of the comonotonic sum \(S^c\) of the random vector \(X\) are given by

\[
E[(S^c - K)_+] = \sum_{i=1}^{n} E \left[\left(X_i - F_{X_i}^{-1}(F_{S^c}(K)) \right)_+ \right],
\]

for \(F_{S^c}^{-1}(0) < K < F_{S^c}^{-1}(1)\).
In what follows we will denote the cdf of a standard normal by \(\Phi \) and its inverse function by \(\Phi^{-1} \).

Proposition 1. A comonotonic upper bound to the price of a derivative of the type (5) when the underlying dynamics are described by (1) is given by

\[
e^{-rT} E(\mathcal{S}^c - K)_+ = e^{-rT} \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_j(0) e^{rt_i} \Phi(Y_{ji} - \Phi^{-1}(F_{2\mathcal{S}^c}(K))) - K(1 - F_{2\mathcal{S}^c}(K)) \right],
\]

where \(F_{2\mathcal{S}^c}(K) \) can be found by solving the following equation:

\[
K = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_j(0) e^{(r - \frac{\sigma_j^2}{2})t_i + \varepsilon_j \sigma_j \sqrt{t_i} \Phi^{-1}(F_{2\mathcal{S}^c}(K))},
\]

and where \(Y_{ji} = \varepsilon_j \sigma_j \sqrt{t_i} \).

Proof. See proposition 2 in [14]. \(\square \)

Remark We can rewrite the upper bound as

\[
e^{-rT} \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j E(S_j(0) e^{(r - \frac{\sigma_j^2}{2})t_i + \varepsilon_j \sigma_j \sqrt{t_i} \Phi^{-1}(U)) - K_{ij}) \varepsilon_j, \tag{6}
\]

with

\[
K_{ij} = S_j(0) e^{(r - \frac{\sigma_j^2}{2})t_i + \varepsilon_j \sigma_j \sqrt{t_i} \Phi^{-1}(F_{2\mathcal{S}^c}(K))), \tag{7}
\]

where \((X)_{\varepsilon_j} \) is equal to the function \(\max(X, 0) \) if \(\varepsilon_j = 1 \) and \(\min(X, 0) \) if \(\varepsilon_j = -1 \). Formulae (6)-(7) provide a natural interpretation to the comonotonic upper bound. Indeed these formulae show that we could write the upper bound as a linear combination of call and put options on the initial underlying with different maturities and strike prices given by \(K_{ij} \). This result can be linked to the literature on static hedging, see for example Simon et al. [24], Dhaene et al. [15], Hobson et al. [17] and Chen et al. [11].

Note that we only need to know the marginal distribution to compute the comonotonic upper bound. This means that a comonotonic upper bound could also be derived if the Brownian motion in (1) is replaced by a more general Lévy process. See Kallsen and Tankov [19] for a definition of comonotonic Lévy copulas and Albrecher et al. [1] for an application to Asian options.

2.2 Improved Comonotonic Upper Bound

It is possible to sharpen the above upper bound by conditioning the distribution of the vector \(X \) on some random variable \(\Lambda \). Assume that \(\Lambda \) is a random variable whose distribution is known, and such that the distribution of the \(X_i \) conditionally on \(\Lambda \) is known. If we further assume that the cumulated density function is continuous and strictly increasing, then we have the following theorem from [15]:

Theorem 2. Let \(U \) be a uniform \((0,1)\) distributed random variable independent of \(\Lambda \). Then we have

\[
\mathcal{S} = \sum_{i=1}^{n} X_i \leq_{cx} \mathcal{S}^c = \sum_{i=1}^{n} F_{X_i|\Lambda}^{-1}(U) \leq_{cx} \mathcal{S}^c = \sum_{i=1}^{n} F_{X_i|\Lambda}^{-1}(U).
\]
In what follows we will consider the conditioning variable:

$$\Lambda = \sum_{j=1}^{m} \sigma_j a_j S_j(0) B_j T.$$ \hfill (8)

Numerical simulations showed that in the case of positively correlated assets this conditioning variable produces the sharpest bounds. Using all this, we can derive the following proposition:

Proposition 2. The improved comonotonic upper bound (ICUB) of the price of a derivative of the type (5) when the underlying dynamics are given by (1) is

$$e^{-rT} E[E(S^{ic} - K)_+ | \Lambda]$$

$$= e^{-rT} \int_0^1 \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_j(0) e^{(r-\frac{\gamma_{ji} \sigma_j^2}{2}) t_i + A_{ji}(u) \Phi(Y_{ji} - \Phi^{-1}(F_{S^{ic}|U=u}(K)))} du$$

$$- e^{-rT} K(1 - F_{S^{ic}}(K)),$$

where we can recover $F_{S^{ic}|U=u}(K)$ by solving

$$K = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_j(0) e^{(r-\frac{\sigma_j^2}{2}) t_i + A_{ji}(u) + Y_{ji} \Phi^{-1}(F_{S^{ic}|U=u}(K))},$$

with

$$F_{S^{ic}}(K) = \int_0^1 F_{S^{ic}|U=u}(K) du,$$

and where for γ_{ji} being the correlation between B_{jt_i} and the conditioning variable Λ,

$$A_{ji}(u) = \gamma_{ji} \sigma_j \sqrt{t_i} \Phi^{-1}(u), \quad Y_{ji} = \varepsilon_j \sigma_j \sqrt{1 - \gamma_{ji}^2 \sqrt{t_i}}.$$

Proof. See proof of proposition 3 in [14].

2.3 Comonotonic Lower Bound

Assume that there exists a conditioning variable Λ such that the distribution of X_i conditionally on Λ is known for each i. Then from [18] we know that the following random variable provides a lower bound in the convex order sense:

$$S^f = E[S|\Lambda].$$

Furthermore assume the conditioning variable Λ is such that for all i, $E[X_i|\Lambda]$ is a non-decreasing (or non-increasing, which can be dealt with in a similar way) and a continuous function of Λ for each i. And if we further assume that the cdf of $E[X_i|\Lambda]$ is continuous and strictly increasing, then we can recover the distribution function of S^f from:

$$\sum_{i=1}^{n} E[X_i|\Lambda] = F^{-1}_\Lambda(F_{S^f}(x)) = x, \quad x \in (F^{-1}_{S^f}(0), F^{-1}_{S^f}(1)).$$ \hfill (9)

In such a case we can also use Theorem 1 and write the stop-loss premium as

$$E(S^f - K)_+ = \sum_{i=1}^{n} E[(E[X_i|\Lambda] - E[X_i|\Lambda = F^{-1}_\Lambda(F_{S^f}(K)))]_+]$$
for all $K \in (F_{S^f}^{-1}(0), F_{S^f}^{-1}(1))$.

The most difficult part consists in finding a conditioning variable Λ such that all the conditional expectations are non-decreasing\(^1\) (or non-increasing). In the case of a general Asian basket spread with positively correlated Brownian motion there is no obvious choice. Indeed finding such a conditioning variable would require a numerical optimization procedure. We would need to find the conditioning variable Λ which is a linear combination of the Brownian motion such that it maximizes the lower bound under a comonotonicity constraint. Considering the high dimensionality of the problem this would quickly become impossible. This is why we choose another approach. Instead of taking the correlation between the Brownian motion as given and start looking for a conditioning variable such that S^f is comonotone, we take a specific conditioning variable and then determine which set of correlation coefficients satisfy in order to have comonotonicity.

In what follows we will take the following conditioning variable

$$\Lambda = \sum_{j=1}^{m} \varepsilon_j B_j T,$$

which produces comonotonic conditional expectation vectors as long as the correlation coefficients (2) satisfy

$$\text{sign}(\sum_{j=1}^{m} \varepsilon_j \rho_{jl}) = \varepsilon_l.$$ \hfill (11)

One should note that such a condition always holds for simple spreads. The above discussion leads to the following proposition:

Proposition 3. Under the assumption that the correlation coefficients satisfy (11), a comonotonic lower bound to the price of a derivative of type (5) when the underlying dynamics are described by (1) is given by:

$$e^{-rT} E \left[(S^f - K)_+ \right]$$

$$= e^{-rT} \left[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_0 e^{rt_i} \Phi(\sigma_j \sqrt{t_i} \gamma_{ji} - \Phi^{-1}(F_{S^f}(K))) - K (1 - F_{S^f}(K)) \right]$$

where γ_{ji} is the correlation between $B_j t_i$ and the conditioning variable given in (10), and $F_{S^f}(K)$ can be found by solving (9).

Proof. See proof of proposition 4 in [14]. \hfill \square

For the choice in (10) we arbitrary chose to use $B_j T$. But one could also choose any other time t_k in $[0, T]$ and then maximize the lower bound over all those t_k.

2.4 Comonotonic Intermediary Bound

As explained above it is indeed fairly difficult to find a conditioning variable that produces a comonotone conditional expectation vector. In such a case one can always build an approximation using the following procedure. Start by choosing a first conditioning variable\(^2\), denoted by Λ_1. Then construct the conditional expectation vector

$$E[S|\Lambda_1].$$

\(^1\)Note that a non-decreasing conditional expectation vector is equivalent to the requirement $\varepsilon_j = \text{sign}(\gamma_{j1})$, where γ_{j1} is the correlation between the j^{th} Brownian motions at time i and the conditioning variable.

\(^2\)The only restriction set on this variable is that it is normally distributed and that (Λ_1, Λ_2) is bivariate normally distributed.
Once this is done, we choose a second conditioning variable Λ_2 and construct an ICUB cfr. §2.2 of this conditional expectation vector. The advantage of this procedure is that we surely end up with a comonotone vector. The drawback is that we do not know whether our approximation is an upper or a lower bound. In our computations we choose Λ_1 and Λ_2 to be

$$\Lambda_1 = \sum_{j=1}^{m} \sigma_j a_j S_0 B_{jT} \quad \text{and} \quad \Lambda_2 = \sum_{j=1}^{m} B_{jT}. $$

This choice of Λ_1 is justified by the fact that this conditioning variable seemed to be a good first order approximation of $\text{Var}(S|\Lambda)$. And this choice of Λ_2 was yielding one of the best ICUB. Since it can be shown that (see [26])

$$S^{\ell} \leq cx S^{\text{int}} \leq cx S^{ic},$$

where S^{ℓ} is the (non-comonotonic) lower bound based on conditioning variable Λ_1 and S^{ic} is the improved comonotonic upper bound based on Λ_2, we are reducing the possible range of fluctuation of our approximation.

Proposition 4. The intermediary bound to the price of a derivative of the type (5) when the underlying dynamics are described by (1), is given by:

$$e^{-rT}[E(S^{\text{int}} - K)_+]$$

$$= e^{-rT} \int_0^1 \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_j(0) e^{(r - \frac{(\gamma_{ji}\Lambda_1\Lambda_2\sigma_j)^2}{2})t_i + A_{ji}(u)} \Phi(Y_{ji} - \Phi^{-1}(F_{S^{\text{int}}|U=u}(K)))du$$

$$- e^{-rT} K(1 - F_{S^{\text{int}}}(K)),$$

where $\gamma_{\Lambda_1,\Lambda_2}$ is the correlation between the conditioning variables, and γ_{ji} is the correlation between the first conditioning variable Λ_1 and B_{jT}. $F_{S^{\text{int}}|U=u}(K)$ can be recovered by solving

$$K = \frac{1}{n} \sum_{j=1}^{m} \sum_{i=1}^{n} \varepsilon_j a_j S_j(0) e^{(r - \frac{(\gamma_{ji}\sigma_j)^2}{2})t_i + A_{ji}(u)} + Y_{ji} \Phi^{-1}(F_{S^{\text{int}}|U=u}(K)),$$

where

$$F_{S^{\text{int}}}(K) = \int_0^1 F_{S^{\text{int}}|U=u}(K)du,$$

and

$$A_{ji}(u) = \gamma_{\Lambda_1\Lambda_2}\gamma_{ji}\sigma_j \sqrt{t_i} \Phi^{-1}(u), \quad Y_{ji} = \varepsilon_j \sqrt{1 - \gamma_{\Lambda_1\Lambda_2}^2 |\gamma_{ji}| \sigma_j \sqrt{t_i}}.$$

Proof. The proof is completely analogous to the one of Theorem 7 in [26].

3 Moment Matching Methods

Another approximation technique is the so-called moment matching method. The idea is to replace the original distribution of the underlying by a law with the same p first moments as the original law (with p the number of parameters of the approximating law) and whose stop-loss premium can easily be approximated by a closed-form expression. In this section we describe two different moment matching techniques that can be used to price Asian basket spread options. The techniques described in this section could also be applied when the Brownian motion in (1) is replaced by a more general Lévy process (as long as the p first moments exist).
3.1 Hybrid Moment Matching Method

An obvious way of attacking the problem is to use the hybrid moment matching method, see for example [10]. The idea is to reduce the Asian basket spread option pricing problem to a spread option pricing problem. To do so, we start by splitting the underlying \(S \) in two parts (one containing all the assets with a positive sign, denoted as \(S_1 \), another containing those with a negative sign, denoted as \(S_2 \)) and moment match each term, separately, with a log-normal random variable. Once this is done we are left with the problem of approximating a spread option. This is a well studied problem for which pretty accurate approximations are available. In this section we improve the classical hybrid moment matching method by using new spread approximation techniques. We will see later that one of these approximations turns out to be extremely useful when we need to recover the Greeks of such an Asian basket option.

More formally, hybrid moment matching allows us to rewrite (5) as:

\[
E(\tilde{S}_1 - \tilde{S}_2 - K)_+, \tag{12}
\]

where \(\tilde{S}_j \) is a log-normal random variable with mean \(\mu_j \) and variance \(\sigma^2_j \) given by:

\[
\mu_j = 2 \ln(m_{1j}) - \frac{1}{2} \ln(m_{2j}), \quad \sigma^2_j = \ln(m_{2j}) - \ln(m_{1j}), \quad j = 1, 2. \tag{13}
\]

Here \(m_{1j} \) and \(m_{2j} \) are the first and second moments of the sum \(S_j \) described above. We will also need the correlation coefficient \(\rho \) between \(\ln(\tilde{S}_1) \) and \(\ln(\tilde{S}_2) \) to compute the spread approximation. We use the following equation to recover \(\rho \) from the equality of the crossmoments (crm):

\[
E[S_1 S_2] = E[\tilde{S}_1 \tilde{S}_2],
\]

namely:

\[
\text{crm} := \sum_{j=p+1}^{m} \sum_{l=1}^{n} \sum_{a=1}^{n} \frac{1}{n^2} a_j a_l E[S_j t_i S_{lt_s}] = e^{\mu_1 + \mu_2 + \frac{1}{2} \sigma^2_1 + \frac{1}{2} \sigma^2_2 + \sigma_1 \sigma_2 \rho}. \tag{14}
\]

Finally, we have to approximate the resulting spread (12). We will use two different approximations. First, we use the method proposed in [20] (from now on called the Li et al. approximation). We choose this method since it does not require any optimization and performs remarkably well compared to other techniques like the ones of [5] or [7]. As a second approximation of the spread we choose the ICUB of expression (12). The reason for this choice will become clear in the next section where we will see that the improved comonotonic upper bound outperforms the Li et al. approximation. We derive the ICUB in the next proposition.

Proposition 5. Consider the following stop-loss premium

\[
E(e^{\mu_1 + \sigma_1 X_1} - e^{\mu_2 + \sigma_2 X_2} - K)_+,
\]

with \(X_1, X_2 \) two correlated standard normal random variables. The comonotonic improved upper bound of this spread is given by

\[
\sum_{i=1}^{2} \varepsilon_i \int_{0}^{1} e^{\mu_i + A_i(u) + \frac{1}{2} \gamma_i^2} \Phi(Y_i - \Phi^{-1}(F_{S_i|U=U}(K))) du - K(1 - F_{S_i}(K)), \tag{15}
\]

where \(\varepsilon_1 = 1 \) and \(\varepsilon_2 = -1 \), and where \(F_{S_i|U=U} \) can be found by solving

\[
\sum_{i=1}^{2} \varepsilon_i e^{\mu_i + A_i(u) + Y_i \Phi^{-1}(F_{S_i|U=U}(K))} = K,
\]

with, for \(\gamma_i \) denoting the correlation between \(X_i \) and the conditioning variable,

\[
A_i(u) = \gamma_i \sigma_i \Phi^{-1}(u), \quad Y_i = \varepsilon_i \sigma_i \sqrt{1 - \gamma_i^2}, \quad F_{S_i}(K) = \int_{0}^{1} F_{S_i|U=U}(K) du.
\]
Proof. See Proposition 3 in [14].

When performing the simulations, we used the following conditioning variable

\[\Lambda = e^{\mu_1}\sigma_1 X_1 + e^{\mu_2}\sigma_2 X_2, \]

(16)

where \(X_1, X_2 \) are \(N(0, 1) \) with correlation coefficient \(\rho \) determined through (14) and \(\mu_i \) and \(\sigma_i \) are given by (13).

In order to interpret the approximation error we introduce the following decomposition:

\[
E(S - K)_+ = E(\tilde{S}_1 - \tilde{S}_2 - K)_+ + \underbrace{(E(S - K)_+ - E(\tilde{S}_1 - \tilde{S}_2 - K)_+)}_{\Delta_1} + \underbrace{\tilde{\Pi}}_{\Delta_2} + \Delta_1 \\
= \tilde{\Pi} + E(\tilde{S}_1 - \tilde{S}_2 - K)_+ + \Delta_1 \\
= \tilde{\Pi} + \Delta_1 + \Delta_2,
\]

where \(\tilde{\Pi} \) is the chosen spread approximation. Thus \(\Delta_1 \) represents the error made by replacing our original basket with moment matched log-normal random variables, while \(\Delta_2 \) is the error originating from the analytical approximation of the resulting spread. Later we will see that when approximating the price of an Asian basket spread, the first part has the highest contribution to the error.

3.2 Shifted Log-Extended Skew Normal Moment Matching

In this section, we develop an extension of the methodology introduced by [6] and [29]. We consider the possibility of using a shifted log-extended skew normal random variable instead of a shifted log-normal random variable in order to perform moment matching. In doing so, we are combining both the approach of [6] and of [29]. Compared to the traditional shifted log-normal moment matching of [6], this new method introduces two additional parameters giving us more moments to match. Compared to the [29] approach, this new method allows us to consider baskets in which some assets have a negative weight. We start this section by giving a general overview about extended skew normal random variables and introducing the shifted log-extended skew normal law, before explaining its implementation in option pricing problems.

3.2.1 Shifted Log-Extended Skew Normal Law

We say that \(X \) is extended skew normally distributed with skewness parameters \(\alpha \) and \(\tau \) if it has the following probability density function:

\[
\psi(x, \alpha, \tau) = \phi(x) \frac{\Phi(\frac{\tau}{\sqrt{1 + \alpha^2 + \alpha x}})}{\Phi(\tau)}, \quad \alpha, \tau \in \mathbb{R},
\]

(17)

where \(\phi \) is the probability density function of a standard normal. When the parameters \(\alpha \) and \(\tau \) are both equal to zero, we recover the standard normal distribution. Whenever one of them is different from zero, we have an extended skew normal distribution. This distribution family was first introduced by Azzalini [4] and studied in details by Arnold et al. [3]. The presence of these two additional parameters allows us to model the asymmetry in the distribution.
A random variable Z is said to be shifted log-extended skew normal with location parameter μ, scale parameter σ, shift parameter η and skewness parameters α and τ if it is of the type

$$Z = e^{\mu + \sigma X} + \eta,$$

where X is an extended skew normal random variable with skewness parameters α and τ. In order to allow for negative values, we thus modified the specification of \cite{29} by adding the shift parameter η. We denote a shifted log-extended skew normal random variable by $SLESN(\mu, \sigma, \alpha, \tau, \eta)$. After some straightforward computation one can write the density of Z as:

$$\psi(z, \mu, \sigma, \alpha, \tau, \eta) = \frac{1}{(z - \eta)\sigma} \phi\left(\frac{\ln(z - \eta) - \mu}{\sigma}\right) \Phi\left(\frac{\tau \sqrt{1 + \alpha^2} + \alpha (\ln(z - \eta) - \mu)/\sigma}{\Phi(\tau)}\right), \quad z > \eta.$$

We will need the first five moments $(\hat{m}_1, \ldots, \hat{m}_5)$ of $SLESN(\mu, \sigma, \alpha, \tau, \eta)$. After some straightforward computations we can compute and rewrite the moments as

$$\begin{align*}
\hat{m}_1 &= M_1 + \eta \\
\hat{m}_2 &= M_2 + 2\eta \hat{m}_1 - \eta^2 \\
\hat{m}_3 &= M_3 + 3\eta \hat{m}_2 - 3\eta^2 \hat{m}_1 + \eta^3 \\
\hat{m}_4 &= M_4 + 4\eta \hat{m}_3 - 6\eta^2 \hat{m}_2 + 4\eta^3 \hat{m}_1 - \eta^4 \\
\hat{m}_5 &= M_5 + 5\eta \hat{m}_4 - 10\eta^2 \hat{m}_3 + 10\eta^3 \hat{m}_2 - 5\eta^4 \hat{m}_1 + \eta^5,
\end{align*}$$

where M_j is the j^{th} moment of the corresponding log-extended skew normal given by:

$$M_j = e^{j\mu + \frac{1}{2}j(\alpha + \delta)\sigma^2} \Phi(\tau + j\delta\sigma) / \Phi(\tau), \quad \delta = \frac{\alpha}{\sqrt{1 + \alpha^2}}.$$

Below we will need the negative $SLESN(\mu, \sigma, \alpha, \tau, \eta)$ which is defined as

$$Z = -e^{\mu + \sigma X} - \eta.$$

Its density can be derived in exactly the same way as for the SLESN, and its moments can be found from those of the SLESN by replacing M_1, M_3 and M_5 by $-M_1$, $-M_3$ and $-M_5$.

3.2.2 Pricing Asian Basket Spread Options

We followed the methodology introduced by \cite{6} but instead of using a shifted log-normal law variable we used a shifted log-extended skew normal law as our matching distribution. Thus we proceed as follows:

1. Start by computing the first five moments of the Asian basket.
2. Compute the Asian basket skewness which is defined as

$$E[(S - E[S])^3].$$

3. If the skewness is negative, moment match the Asian basket spread with a negative shifted log-extended skew normal. If the skewness is positive use a positive shifted log-extended skew normal law.
4. Adjust the shift parameter of the matching distribution if needed.
5. Compute the stop-loss premium of the matched random variable.

The following theorem gives the stop-loss premium for a SLESN random variable.

Proposition 6. Let X be a positive SLESN($\mu, \sigma, \alpha, \tau, \eta$) then

$$E(X - K)_+ = e^{\mu + \frac{1}{2} \sigma^2} \Phi(\tau + \delta \sigma) \Psi(I_1; -\alpha; \tau + \delta \sigma) - (K - \eta)\Psi(I_2; -\alpha; \tau),$$

where for $K - \eta > 0$

$$I_1 = \frac{\mu + \sigma^2 - \ln(K - \eta)}{\sigma} \quad I_2 = I_1 - \sigma,$$

and Ψ is the cdf of a extended skew normal law with density function (17).

Proof. Let, for $K - \eta > 0$, $A = \{e^{\mu + \frac{1}{2} \sigma^2} \geq K - \eta\}$, then

$$E(X - K)_+ = \int_A (e^{\mu + \sigma x} + \eta - K)\psi(x, \alpha, \tau)dx$$

$$= \int_A (e^{\mu + \sigma x} + \eta - K)\psi(x, \alpha, \tau + \delta \sigma)dx - \int_A K\psi(x, \alpha, \tau)dx$$

$$= e^{\mu + \frac{1}{2} \sigma^2} \Phi(\tau + \delta \sigma) \Psi(-I_1; -\alpha; \tau + \delta \sigma) - (K - \eta)\Psi(-I_2; -\alpha; \tau),$$

where in the last step we used the property that $1 - \Psi(x, \alpha, \tau) = \Psi(-x, -\alpha, \tau)$. □

The following proposition states the corresponding result for a negative SLEN random variable.

Proposition 7. Let X be a negative SLESN($\mu, \sigma, \alpha, \tau, \eta$) random variable then,

$$E(X - K)_+ = -e^{\mu + \frac{1}{2} \sigma^2} \Phi(\tau + \delta \sigma) \Psi(I_1; \alpha; \tau + \delta \sigma) - (K + \eta)\Psi(I_2; \alpha; \tau),$$

where for $-K - \eta > 0$

$$I_1 = \frac{\ln(-K - \eta) - \mu - \sigma^2}{\sigma} \quad I_2 = I_1 + \sigma,$$

and Ψ is the cdf of a extended skew normal law with density function (17).

Proof. Immediate from the proof of Proposition 6. □

Notice that if we set $\tau = 0$ and $\alpha = 0$ we recover the formula from [6]. If we set $\eta = 0$ then we recover the formula from [29].

Remark 1 It may seem strange to look at the skewness of the Asian basket (with possible negative weights) when performing moment matching. After all, we introduced the SLESN in order to model this skewness. Thus normally all the skewness from the original distribution should be embedded in the matched parameters α and τ. Indeed the reason is more computational than theoretical. If we try to match a positive SLESN to an Asian basket whose skewness is negative our algorithm fails. The failure is due to the shift parameter who is converging to $-\infty$ in order to associate a positive density to the negative (positive) value of the axis. Taking a negative SLESN law as matching distribution resolves the problem in this case.

Remark 2 Solving the system in (18) poses some serious problems since it contains five non-linear equations. Fortunately some simple manipulations in the spirit of those introduced in [29] allow us to avoid this.
problem. We proceed as follows: start by taking the logarithm of the first equation in (19) for \(j = 1 \) and \(j = 2 \), which leads to

\[
\mu + \frac{1}{2} \sigma^2 = -\ln \frac{\Phi(\tau + \sigma \delta)}{M_1} + \ln \Phi(\tau),
\]

\[
\mu + \sigma^2 = -\frac{1}{2} \ln \frac{\Phi(\tau + 2\sigma \delta)}{M_2} + \frac{1}{2} \ln \Phi(\tau).
\]

We can rewrite those two equations as

\[
\mu = -2 \ln \frac{\Phi(\tau + \sigma \delta)}{M_1} + \frac{1}{2} \ln \frac{\Phi(\tau + 2\sigma \delta)}{M_2} + \frac{3}{2} \ln \Phi(\tau),
\]

\[
\sigma^2 = 2 \ln \frac{\Phi(\tau + \sigma \delta)}{M_1} - \ln \frac{\Phi(\tau + 2\sigma \delta)}{M_2} - \ln \Phi(\tau).
\]

These equations will provide us the parameters \(\mu \) and \(\sigma^2 \). Note that the right-hand side of those equations depends on the parameters \(\eta, \tau \) and the product \(\sigma \delta \). Let us denote \(\theta = \sigma \delta \). Combining the remaining equations in (19) for \(j = 3, 4, 5 \) and using the above expression for \(\mu \) and \(\sigma^2 \) yields.

\[
\ln \frac{\Phi(\tau + 3\theta)}{M_3} - 3 \ln \frac{\Phi(\tau + 2\theta)}{M_2} + 3 \ln \frac{\Phi(\tau + \theta)}{M_1} = \ln \Phi(\tau),
\]

\[
\ln \frac{\Phi(\tau + 4\theta)}{M_4} - 6 \ln \frac{\Phi(\tau + 2\theta)}{M_2} + 8 \ln \frac{\Phi(\tau + \theta)}{M_1} = 3 \ln \Phi(\tau),
\]

\[
\ln \frac{\Phi(\tau + 5\theta)}{M_5} + 15 \ln \frac{\Phi(\tau + \theta)}{M_1} = 10 \ln \frac{\Phi(\tau + 2\theta)}{M_2} + 6 \ln \Phi(\tau).
\]

When computing the matching distribution, we start by replacing the \(\hat{m}_j \) in (19) by the corresponding moments of \(S \). Next, we solve those equations (19) for \(M_j \) in terms of \(\eta \) and substitute in (21). We solve the last three, non-linear, equations simultaneously in order to find \(\theta, \eta \) and \(\tau \). Then we insert those parameters in the expressions in (20) for \(\mu \) and \(\sigma^2 \). Finally, we recover \(\alpha \) using

\[
\alpha = \frac{\theta}{\sqrt{\sigma^2 - \theta^2}}.
\]

Remark 3 If we set \(\tau = 0 \) then we are left with a skew normal distribution. This distribution will depend on only 4 parameters instead of 5. This means that when matching our Asian basket spread we only need to consider a system of 4 equations. These 4 equations can be resolved by solving simultaneously the first two equations in (21) in \(\theta \) and \(\eta \) and then using the relations (20) in order to recover \(\mu \) and \(\sigma \). The advantage of setting \(\tau = 0 \) is that we need to solve only 2 non-linear equations when determining the skewness and the shift. This reduces the complexity and can have an impact on the accuracy of our numerical procedure. The drawback is that we lose a parameter, meaning that we could lose precision when performing an approximation. One always has to make a tradeoff between the sophistication of the model and the numerical complexity.

4 Numerical Simulations

In this section we give a number of numerical examples of spread, basket spread and Asian basket spread options. We study the relative performances of the approximation formulae developed above and give a general procedure for approximating spread options. When performing simulations we set the risk-less rate of return to 5 percent. The asset volatilities where chosen randomly between \([0.1,0.6]\) and their correlations between \([0.1,0.9]\). The option’s maturity is set equal to one year. Finally, when working with Asian options we took the average over the last 30 days, which is a common practice in energy markets. The tables containing simulations output can be found in the appendix.
4.1 Spread Options

We start by considering spread options. We can draw the following conclusions:

- The comonotone upper bound offers a poor approximation to spread option prices. This failure is due to the combination of sign switching and a positive correlation between the assets which is generating a non-comonotonic spread.

- The lower bound yields poor approximations. Furthermore its accuracy is strongly influenced by the correlation between the assets. This failure should not come as a surprise since, as our conditioning variable choice was constrained by the comonotonicity requirement, we could not choose a conditioning variable maximizing $\text{Var}(S|\Lambda)$.

- The intermediary bound has some stability problems, its performance being competitive only for some parametrization of the spread.

- The ICUB performs remarkably well. Its performance is comparable with that of the Li et al. approximation. In addition, we know that the obtained approximation represents an upper bound. Thus, our preference goes to the former method when pricing spread options. Note that this justifies the introduction of ICUB in hybrid moment matching (see section 3.1).\(^3\)

- The shifted log-normal moment matching performs poorly compared to the ICUB and Li et al. approximation.

- The performances of SLESN moment matching varies considerably. This is due to the complexity of the system we need to solve when matching the parameters. We encountered several problems with the optimization algorithm and in some cases the optimization outcome was strongly influenced by the initial value. Fixing one of the parameters equal to zero (see remark 3) did not solve the problem posed by optimization.

Because the problems we have pointed out concerning the comonotonic upper, lower, intermediary bounds and SLESN moment matching only worsen when working with more general Asian basket spreads, we will not mention these approximations in what follows. From now on we will only focus on four approximation techniques: the ICUB, hybrid moment matching with Li et al.’s and ICUB approximation, and shifted log-normal moment matching.

4.2 Basket Spread Options

A quick look at the simulation output allows us to discard two approximation techniques. First, we see that the ICUB performance is clearly declining as the number of assets increases, and since this problem only worsens when dealing with Asian options we will no longer discuss this approximation. Second, we see that the hybrid moment matching associated with the ICUB slightly outperforms hybrid moment matching associated with Li et al.’s approximation. Thus from now on when discussing, we will only consider the hybrid moment matching method associated to the ICUB.

We are left with two candidates: the shifted log-normal and hybrid moment matching associated with the ICUB. It is indeed impossible to completely exclude one of these approximation techniques. The choice of the method will depend on the underlying characteristics. We can distinguish four possible cases:

\(^3\)We computed the Li et al. approximation and the ICUB for several spread options. We compared their mean squared error and mean absolute deviation. Simulations showed that the ICUB slightly outperforms the Li et al. approximation according to both criteria.
1. The underlying has a positive skewness and \(\sum_{j=1}^{m} a_j \varepsilon_j S_j(0) > 0 \). Then the shifted log-normal approximation tends to outperform hybrid moment matching when the correlation between the assets in the positive (negative) part is low (by low we mean below 0.8) and the volatilities are low (see table 4).

2. The underlying has a positive skewness and \(\sum_{j=1}^{m} a_j \varepsilon_j S_j(0) < 0 \). In this case, numerical simulations tend to favor hybrid moment matching since its results clearly dominate the shifted log-normal approximation (see table 5).

3. The underlying has a negative skewness and \(\sum_{j=1}^{m} a_j \varepsilon_j S_j(0) < 0 \). Then the shifted log-normal approximation tend to outperform hybrid moment matching when the correlation between the assets in the positive (negative) part is low (by low we mean below 0.8) and the volatilities are low (see table 6).

4. The underlying has a negative skewness and \(\sum_{j=1}^{m} a_j \varepsilon_j S_j(0) > 0 \). In this case, numerical simulations tend to favor hybrid moment matching, the results of which clearly dominate the shifted log-normal approximation (see table 7).

As we see, the choice of the approximation will depend on the skewness, correlation, and initial values of the underlying. Simulation results for each of the basket configurations can be found in the appendix.

4.3 Asian Basket Spread Options

Finally we consider Asian basket spread options. First of all, remark that in the case of Asian spread options, hybrid moment matching associated to the ICUB works remarkably well. This may be explained by the strong correlation between the components of the positive (negative) part of such options (due to the temporal dependency). Second, when dealing with more general Asian basket spreads, hybrid moment matching seems to be slightly more efficient than shifted log-normal moment matching especially when the volatilities are low. Our preference clearly goes to hybrid moment matching when dealing with Asian basket spread options.

5 Option Greeks

In the previous section we saw that depending on the underlying characteristics, it may be preferable to use hybrid moment matching or shifted log-normal moment matching. Below we provide the Greeks for the hybrid moment matching approximation. In case of shifted log-normal moment matching, the Greeks can be computed as in [6].

5.1 Simple Spread Approximation

Computing the Greeks of the ICUB is a heavy task. The difficulties originate from the conditioning variable we choose. Since the conditioning variable (8) is a function of \(S_j(0) \) and \(\sigma_j \) we need to differentiate all the covariance and variance present in the approximation when computing the Greeks. In order to simplify the computations we choose to replace this conditioning variable by

\[
\Lambda = \sum_{j=1}^{2} B_j T. \tag{22}
\]

The accuracy of the ICUB based on this conditioning variable seems to be the same as the one obtained with Li et al.’s approximation. For simple spreads we have the following proposition.
Proposition 8. The Greeks of the ICUB (denoted by Γ) of a simple spread when the conditioning variable is (22), are given by

$$\frac{\partial \Gamma}{\partial S_j(0)} = \int_0^1 \varepsilon_j a_j e^{-\frac{\sigma_j^2}{2} + A_j \Phi^{-1}(u)} \Phi(Y_j - F(u, K)) du$$

$$\frac{\partial^2 \Gamma}{\partial S_j(0) \partial S_p(0)} = \int_0^1 \frac{\varepsilon_j \varepsilon_p a_j a_p e^{(r - \frac{\sigma_j^2}{2} - \frac{\sigma_p^2}{2})T + (A_j + A_p)\Phi^{-1}(u) + (Y_j + Y_p)F(u, K) - \frac{F(u, K)^2}{2}}}{2\pi \sum_i \varepsilon_i a_i S_i(0) Y_i e^{(r - \frac{\sigma_i^2}{2})T + A_i \Phi^{-1}(u) + Y_i F(u, K)}} du$$

$$\frac{\partial \Gamma}{\partial \sigma_j} = \sum_{i=1}^2 \varepsilon_i a_i S_i(0) \left(-\gamma_i^2 \gamma_i T + \gamma_i \sqrt{T} \Phi^{-1}(u) \right) \frac{\partial \sigma_i}{\partial \sigma_j} \times$$

$$\times \int_0^1 e^{-\frac{\sigma_i^2}{2} + A_i \Phi^{-1}(u)} \Phi(Y_i - F(u, K)) du$$

$$+ \sum_{i=1}^2 a_i S_i(0) \sqrt{\frac{1 - \gamma_i^2}{2\pi}} \frac{\partial \sigma_i}{\partial \sigma_j} \sqrt{T} \int_0^1 e^{A_i \Phi^{-1}(u) - \frac{\sigma_j^2}{2} - \frac{F(u, K)^2}{2} + Y_i F(u, K)} du$$

$$\frac{\partial \Gamma}{\partial \rho} = \sum_{i=1}^2 \varepsilon_i a_i S_i(0) \int_0^1 \frac{\sigma_i}{2} T \left(-\frac{\sigma_i}{2} + \Phi^{-1}(u) \right) e^{-\frac{\sigma_i^2}{2} + A_i \Phi^{-1}(u)} \Phi(Y_i - F(u, K)) du$$

$$- \sum_{i=1}^2 \frac{\sigma_i \sqrt{T}}{4 \sqrt{2\pi(1 - \gamma_i^2)}} a_i S_i(0) \int_0^1 e^{-\frac{\sigma_i^2}{2} + A_i \Phi^{-1}(u) - \frac{F(u, K)^2}{2} + Y_i F(u, K)} du$$

where $F(u, K) = \Phi^{-1}(F_{\gamma \mu | U = u}(K))$, $A_i = \gamma_i \sigma_i \sqrt{T}$, $Y_i = \varepsilon_i \sigma_i \sqrt{T} \sqrt{1 - \gamma_i^2}$ with $\gamma_i^2 = \frac{1 + \rho}{2}$.

Proof. The proof follows from brute force computation.

5.2 Asian Basket Spread Approximation

In this case a simple trick allows us to compute the Greeks easily. Start by replacing the conditioning variable (16) by

$$\Lambda = X_1 + X_2.$$

The parameters σ_j, μ_j and ρ are determined according to

$$\mu_j = 2 \ln(m_{1j}) - \frac{1}{2} \ln(m_{2j})$$

$$\sigma_j^2 = \ln(m_{2j}) - 2 \ln(m_{1j})$$

$$\rho = \frac{\ln(crm) - \mu_1 - \mu_2}{\sigma_1 \sigma_2} - \frac{1}{2} \left(\frac{\sigma_1}{\sigma_2} + \frac{\sigma_2}{\sigma_1} \right).$$

Assume we want to recover the sensitivity of the price with respect to a parameter (denote this parameter by G). First of all, remark that

$$\frac{\partial \mu_j}{\partial G} = 2 \frac{\partial m_{1j}}{\partial G} \frac{\partial \sigma_j}{\partial m_{1j}} - \frac{1}{2} \frac{\partial m_{2j}}{\partial G} \frac{\partial \sigma_j}{\partial m_{2j}}$$

$$\frac{\partial \sigma_j^2}{\partial G} = \frac{\partial m_{2j}}{\partial G} \frac{\partial \sigma_j}{\partial m_{2j}} - 2 \frac{\partial m_{1j}}{\partial G} \frac{\partial \sigma_j}{\partial m_{1j}}.$$

(23)
From these computations one can easily write $\frac{\partial \rho}{\partial G}$ as

$$\frac{\partial \rho}{\partial G} = \frac{1}{\sigma_1 \sigma_2} \left(\frac{1}{\text{crm}} \frac{\partial \text{crm}}{\partial G} - \frac{\partial \mu_1}{\partial G} - \frac{\partial \mu_2}{\partial G} \right) - \frac{\ln(\text{crm}) - \mu_1 - \mu_2}{(\sigma_1 \sigma_2)^2} (\sigma_2 \frac{\partial \sigma_1}{\partial G} + \sigma_1 \frac{\partial \sigma_2}{\partial G}) - \frac{1}{2} \left(\frac{\partial \sigma_1}{\partial G} \frac{1}{\sigma_2} - \frac{\sigma_1}{\sigma_2} \frac{\partial \sigma_2}{\partial G} + \frac{\partial \sigma_2}{\partial G} \frac{1}{\sigma_1} - \frac{\sigma_2}{\sigma_1} \frac{\partial \sigma_1}{\partial G} \right).$$

(24)

With these elements in hand we can now recover an arbitrary Greek by differentiating (15), which we denote by $\tilde{\Gamma}$, with respect to G by using the relations in (23) and (24):

$$\frac{\partial \tilde{\Gamma}}{\partial G} = e^{-rT} \sum_{i=1}^{2} \int_{0}^{1} h_i e^{\mu_i + A_i \Phi^{-1}(u) - \frac{F(u,K)^2}{2}} + Y_i F(u,K) du$$

$$+ e^{-rT} \sum_{i=1}^{2} \varepsilon_i \int_{0}^{1} f_i(u) e^{\mu_i + A_i \Phi^{-1}(u) + \frac{Y_i^2}{2} \Phi(Y_i - F(u,K))} du$$

with

$$h_i = \frac{1}{\sigma_i \sqrt{8\pi(1 - \gamma_i^2)}} \left((1 - \gamma_i^2) \frac{\partial \sigma_i^2}{\partial G} - \frac{\sigma_i^2}{2} \frac{\partial \rho}{\partial G} \right)$$

$$f_i(u) = \frac{\partial \mu_i}{\partial G} + \left[\frac{\sigma_i}{2\sqrt{2(1 + \rho^2)}} \Phi^{-1}(u) - \frac{\gamma_i^2}{4} \frac{\partial \rho}{\partial G} + \frac{1}{2} \left[1 + \gamma_i \left(\frac{\Phi^{-1}(u)}{\sigma_i} - \gamma_i \right) \right] \frac{\partial \sigma_i^2}{\partial G} \right]$$

and $F(u,K) = \Phi^{-1}(F_{B_{\text{IC}}|U = u}(K))$, $A_i = \gamma_i \sigma_i$, $Y_i = \varepsilon_i \sigma_i \sqrt{1 - \gamma_i^2}$, $\gamma_i^2 = \frac{1 + \rho}{2}$.

Taking G to be σ_j, ρ or $S_j(0)$ yields the Greeks.

6 Quanto and Compo Options

When the underlying is not denominated in the domestic currency, the option contains an additional risk, the exchange rate risk. In order to cover this risk, the buyer/seller may choose to modify the contract in order to include the exchange rate dynamics in it. Below, we consider two ways of studying these quanto and compo options. We describe how previous results can be adapted in order to price quanto and compo Asian basket spread options. To our knowledge, this is the first time that such an extension is considered.

We assume that the exchange rate of the dollar (i.e. number of dollar for one euro) is given by

$$dI_t^e/I_t^e = (r_e - r_s) dt + \sigma_e dB_t^e.$$

The dynamics of the price, in dollar, of an asset in the underlying basket of the option, are given by

$$dS_t^e/S_t^e = (r_s - \gamma_j \sigma_e) dt + \sigma_j dB_t^j.$$

We will denote the correlation between B_t^e and B_t^j by $\hat{\rho}_j \min(t_i, t_s)$.

6.1 Quanto Options

The option price is given by

\[e^{-rT}E \left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i}^{S} I_{E}^{E} - K \right) + \]

This case is easy to deal with. Some straightforward computations allow us to replace the underlying sum by a sum of random variables with the same distributions

\[\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i}^{S} (0) I_{E}^{E} (0) e^{(r - \sigma_j \sigma e - \frac{\sigma^2_j}{2})t_i + \tilde{\sigma}_j B_{jt_i}}, \]

where

\[\tilde{B}_{jt_i} = \frac{\sigma_j B_{jt_i} + \sigma e B_{ti}^{E}}{\tilde{\sigma}_j}, \]

\[\tilde{\sigma}_j = \sqrt{\sigma^2_j + \sigma^2 e + 2 \sigma_j \sigma e \tilde{\rho}_j}, \]

\[\text{corr}(\tilde{B}_{jt_i}, \tilde{B}_{lt_i}) = \frac{\sigma_j \sigma_l \tilde{\rho}_jl + \sigma_j \sigma e \tilde{\rho}_j + \sigma_l \sigma e \tilde{\rho}_l + \sigma^2 e \tilde{\sigma}_j \tilde{\sigma}_l \min(t_i, t_s)}{\sqrt{t_i t_s}}. \]

We can see that in this case the underlying is still log-normally distributed. Thus we can still apply the methods explained before but with the basket given in (25).

6.2 Compo Options

The option price is given by

\[e^{-rT}E \left[\left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i}^{S} - K \right) I_{E}^{E} \right] + \]

This expression can be rewritten as

\[e^{-rsT}I_{E}^{E} (0) E \left[\left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i}^{S} (0) e^{(rs - \sigma_j \sigma e - \frac{\sigma^2_j}{2})t_i + \sigma_j B_{jt_i}} - K \right) e^{\sigma e B_{ti}^{E} - \frac{\sigma^2 e}{2}} \right]. \]

Note that in the above expression there are \(mn + 1 \) log-normal random variables. Since the option pay off is homogeneous of degree one in the exchange rate we can use the Girsanov theorem to rewrite the pay off as

\[e^{-rsT}I_{E}^{E} (0) E_{\tilde{Q}} \left[\left(\frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{m} \varepsilon_j a_j S_{jt_i}^{S} (0) e^{(rs - \sigma_j \sigma e - \frac{\sigma^2_j}{2})t_i + \sigma_j \sigma e \tilde{\rho}_jt_i + \sigma_j \tilde{B}_{jt_i}} - K \right) \right], \]

where \(\tilde{Q} \) is a new measure under which \(\tilde{B}_{jt_i} = B_{jt_i} - \sigma e \tilde{\rho}_jt_i \) is a Brownian motion for all \(i \) and \(j \). So, we manage to reduce the pricing of the compo option to the calculation of a stop-loss premium of a sum of log-normal random variables. Thus once more, we can use our previous methodologies in order to price this option.
7 Conclusion

In this paper, we found that the ICUB offers a good approximation of the price of spread options. We tried several approximation methods for Asian basket spread options and found that a combination of hybrid moment matching combined with the ICUB and shifted log-normal moment matching seems to work best. We developed formulae for the Greeks for the hybrid moment matching method with an ICUB approximation. We also showed how our methodology can easily be applied to the case of options in foreign currency. Extension of the above approximation techniques to Lévy market models is a topic under current investigation.

Acknowledgements The authors would like to thank Stany Schrans and Yves Demasure for some fruitful discussions.

References

Appendix

<table>
<thead>
<tr>
<th>Strike</th>
<th>CUB</th>
<th>ICUB</th>
<th>CLB</th>
<th>CLIntB</th>
<th>SLN</th>
<th>SLESN</th>
<th>Li et al.</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-70</td>
<td>51.4002</td>
<td>29.0854</td>
<td>26.9232</td>
<td>31.0619</td>
<td>29.7272</td>
<td>29.0742</td>
<td>29.0846</td>
<td>0.0005</td>
<td></td>
</tr>
<tr>
<td>-80</td>
<td>55.8467</td>
<td>33.6150</td>
<td>30.8369</td>
<td>33.3442</td>
<td>35.8096</td>
<td>34.5680</td>
<td>33.6083</td>
<td>33.6142</td>
<td>0.0005</td>
</tr>
<tr>
<td>-90</td>
<td>60.5351</td>
<td>38.5281</td>
<td>35.1084</td>
<td>38.3007</td>
<td>40.8772</td>
<td>39.7385</td>
<td>38.5235</td>
<td>38.5273</td>
<td>0.0006</td>
</tr>
<tr>
<td>-100</td>
<td>65.4629</td>
<td>43.8043</td>
<td>39.7382</td>
<td>43.5861</td>
<td>46.2500</td>
<td>45.2212</td>
<td>43.7990</td>
<td>43.8034</td>
<td>0.0006</td>
</tr>
<tr>
<td>-110</td>
<td>70.6261</td>
<td>49.4212</td>
<td>44.7238</td>
<td>49.1844</td>
<td>51.9127</td>
<td>50.9979</td>
<td>49.4130</td>
<td>49.4203</td>
<td>0.0006</td>
</tr>
<tr>
<td>-120</td>
<td>76.0199</td>
<td>55.3561</td>
<td>50.0590</td>
<td>55.0786</td>
<td>57.8497</td>
<td>57.0506</td>
<td>55.3433</td>
<td>55.3552</td>
<td>0.0006</td>
</tr>
<tr>
<td>-130</td>
<td>81.6384</td>
<td>61.5861</td>
<td>55.7345</td>
<td>61.2516</td>
<td>64.0453</td>
<td>63.3615</td>
<td>61.5678</td>
<td>61.5851</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Table 1: $a = [1, -1], S(0) = [100, 200], \sigma = [0.6, 0.6], \rho_{12} = 0.28, 100$ millions of paths (negative skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>CUB</th>
<th>ICUB</th>
<th>CLB</th>
<th>CLIntB</th>
<th>SLN</th>
<th>SLESN</th>
<th>Li et al.</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>27.3131</td>
<td>24.5975</td>
<td>22.1702</td>
<td>24.5788</td>
<td>24.6096</td>
<td>24.6064</td>
<td>24.5982</td>
<td>24.5981</td>
<td>0.0006</td>
</tr>
<tr>
<td>60</td>
<td>19.7844</td>
<td>17.0384</td>
<td>13.7215</td>
<td>17.0275</td>
<td>17.0692</td>
<td>17.0458</td>
<td>17.0391</td>
<td>17.0391</td>
<td>0.0005</td>
</tr>
<tr>
<td>65</td>
<td>17.6840</td>
<td>15.0022</td>
<td>11.5087</td>
<td>14.9914</td>
<td>15.0355</td>
<td>15.0085</td>
<td>15.0029</td>
<td>15.0029</td>
<td>0.0005</td>
</tr>
<tr>
<td>75</td>
<td>14.0436</td>
<td>11.5656</td>
<td>7.9202</td>
<td>11.5525</td>
<td>11.5979</td>
<td>11.5698</td>
<td>11.5664</td>
<td>11.5664</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

Table 2: $a = [1, -1], S(0) = [100, 40], \sigma = [0.4, 0.17], \rho_{12} = 0.12, 60$ millions of paths (positive skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>CUB</th>
<th>ICUB</th>
<th>CLB</th>
<th>CLIntB</th>
<th>SLN</th>
<th>SLESN</th>
<th>Li et al.</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>34.8962</td>
<td>27.4968</td>
<td>17.8043</td>
<td>28.2332</td>
<td>27.5689</td>
<td>27.4974</td>
<td>27.4992</td>
<td>27.4964</td>
<td>0.0008</td>
</tr>
<tr>
<td>40</td>
<td>32.5542</td>
<td>25.1757</td>
<td>13.9743</td>
<td>25.9171</td>
<td>25.2255</td>
<td>25.1761</td>
<td>25.1781</td>
<td>25.1754</td>
<td>0.0008</td>
</tr>
<tr>
<td>45</td>
<td>30.3585</td>
<td>23.0587</td>
<td>10.6097</td>
<td>23.7962</td>
<td>23.0877</td>
<td>23.0591</td>
<td>23.0611</td>
<td>23.0585</td>
<td>0.0008</td>
</tr>
<tr>
<td>60</td>
<td>24.5854</td>
<td>17.7703</td>
<td>3.7499</td>
<td>18.4584</td>
<td>17.7496</td>
<td>17.7711</td>
<td>17.7727</td>
<td>17.7704</td>
<td>0.0007</td>
</tr>
</tbody>
</table>

Table 3: $a = [1, -1], S(0) = [100, 50], \sigma = [0.6, 0.2], \rho_{12} = 0.89, 60$ millions of paths (positive skewness).
Basket Spread Options

<table>
<thead>
<tr>
<th>Strike</th>
<th>ICUB</th>
<th>SLN</th>
<th>HybMMLi</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>19.9819</td>
<td>19.6925</td>
<td>19.5251</td>
<td>19.5231</td>
<td>19.6849</td>
<td>0.00009</td>
</tr>
<tr>
<td>20</td>
<td>17.0143</td>
<td>16.7345</td>
<td>16.5693</td>
<td>16.5673</td>
<td>16.7051</td>
<td>0.00008</td>
</tr>
<tr>
<td>30</td>
<td>12.1523</td>
<td>11.9059</td>
<td>11.7811</td>
<td>11.7790</td>
<td>11.8519</td>
<td>0.00007</td>
</tr>
<tr>
<td>40</td>
<td>8.5588</td>
<td>8.3506</td>
<td>8.2860</td>
<td>8.2837</td>
<td>8.2951</td>
<td>0.00006</td>
</tr>
<tr>
<td>45</td>
<td>7.1581</td>
<td>6.9683</td>
<td>6.9330</td>
<td>6.9305</td>
<td>6.9174</td>
<td>0.00006</td>
</tr>
</tbody>
</table>

Table 4: \(a = [1, -1, -1], S(0) = [100, 24; 46], \sigma = [0.4, 0.22, 0.3], \rho_{12} = 0.17, \rho_{13} = 0.91, \rho_{23} = 0.41, \) 300 millions of paths (positive skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>ICUB</th>
<th>SLN</th>
<th>HybMMLi</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-90</td>
<td>2.8088</td>
<td>2.4884</td>
<td>2.1748</td>
<td>2.4043</td>
<td>2.4089</td>
<td>0.00004</td>
</tr>
<tr>
<td>-100</td>
<td>3.8757</td>
<td>3.4820</td>
<td>3.6191</td>
<td>3.3098</td>
<td>3.3122</td>
<td>0.00005</td>
</tr>
<tr>
<td>-110</td>
<td>5.4669</td>
<td>4.9521</td>
<td>5.3296</td>
<td>4.6565</td>
<td>4.6670</td>
<td>0.00006</td>
</tr>
<tr>
<td>-120</td>
<td>7.9235</td>
<td>7.1616</td>
<td>7.3458</td>
<td>6.7643</td>
<td>6.7757</td>
<td>0.00006</td>
</tr>
<tr>
<td>-130</td>
<td>11.7246</td>
<td>10.616</td>
<td>10.2529</td>
<td>10.2660</td>
<td>10.2660</td>
<td>0.00007</td>
</tr>
<tr>
<td>-140</td>
<td>17.2439</td>
<td>15.6048</td>
<td>16.3404</td>
<td>15.8233</td>
<td>15.8360</td>
<td>0.00008</td>
</tr>
<tr>
<td>-150</td>
<td>24.4315</td>
<td>22.9793</td>
<td>23.3843</td>
<td>23.4623</td>
<td>23.4799</td>
<td>0.00009</td>
</tr>
</tbody>
</table>

Table 5: \(a = [1, -1, -1, -1], S(0) = [100, 100, 50, 70], \sigma = [0.5, 0.15, 0.2, 0.17], \rho_{ij} = 0.9 \) for all \(i \) and \(j \), 300 millions of paths (positive skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>ICUB</th>
<th>SLN</th>
<th>HybMMLi</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5</td>
<td>5.5456</td>
<td>1.3847</td>
<td>1.5248</td>
<td>1.5248</td>
<td>1.4384</td>
<td>0.000009</td>
</tr>
<tr>
<td>-10</td>
<td>7.0286</td>
<td>2.2538</td>
<td>2.3780</td>
<td>2.3780</td>
<td>2.2796</td>
<td>0.00001</td>
</tr>
<tr>
<td>-20</td>
<td>10.7128</td>
<td>4.9936</td>
<td>5.0508</td>
<td>5.0508</td>
<td>4.9511</td>
<td>0.00001</td>
</tr>
<tr>
<td>-60</td>
<td>34.3462</td>
<td>29.5647</td>
<td>29.4747</td>
<td>29.4747</td>
<td>29.5299</td>
<td>0.00004</td>
</tr>
</tbody>
</table>

Table 6: \(a = [1, -1, -1, -1], S(0) = [100, 60, 40, 30], \sigma = [0.16, 0.23, 0.32, 0.43], \rho_{12} = 0.42, \rho_{13} = 0.5, \rho_{14} = 0.3, \rho_{23} = 0.24, \rho_{24} = 0.42, \rho_{34} = 0.35, 500 millions of paths (negative skewness).\)

<table>
<thead>
<tr>
<th>Strike</th>
<th>ICUB</th>
<th>SLN</th>
<th>HybMMLi</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>24.6617</td>
<td>23.1681</td>
<td>23.5137</td>
<td>23.5138</td>
<td>23.5925</td>
<td>0.00009</td>
</tr>
<tr>
<td>10</td>
<td>18.5944</td>
<td>16.8591</td>
<td>17.1363</td>
<td>17.1373</td>
<td>17.2049</td>
<td>0.00008</td>
</tr>
<tr>
<td>17.5</td>
<td>13.0945</td>
<td>11.3394</td>
<td>11.3854</td>
<td>11.3873</td>
<td>11.4099</td>
<td>0.00007</td>
</tr>
<tr>
<td>25</td>
<td>8.4135</td>
<td>6.9203</td>
<td>6.6579</td>
<td>6.6584</td>
<td>6.6009</td>
<td>0.00006</td>
</tr>
<tr>
<td>32.5</td>
<td>4.8064</td>
<td>3.7629</td>
<td>3.3226</td>
<td>3.3147</td>
<td>3.1872</td>
<td>0.00004</td>
</tr>
<tr>
<td>40</td>
<td>2.3929</td>
<td>1.7925</td>
<td>1.3950</td>
<td>1.3853</td>
<td>1.2518</td>
<td>0.00003</td>
</tr>
<tr>
<td>47.5</td>
<td>1.0323</td>
<td>0.7369</td>
<td>0.4861</td>
<td>0.4913</td>
<td>0.4026</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 7: \(a = [1, -1, -1], S(0) = [100, 63, 12], \sigma = [0.21, 0.34, 0.63], \rho_{12} = 0.87, \rho_{13} = 0.3, \rho_{23} = 0.43, 15 millions of paths (negative skewness).\)
Asian Basket Spread Options

<table>
<thead>
<tr>
<th>Strike</th>
<th>SLN</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>20.8073</td>
<td>20.7637</td>
<td>20.7645</td>
<td>0.00009</td>
</tr>
<tr>
<td>30</td>
<td>17.7711</td>
<td>17.6921</td>
<td>17.6931</td>
<td>0.00009</td>
</tr>
<tr>
<td>35</td>
<td>15.0630</td>
<td>14.9580</td>
<td>14.9591</td>
<td>0.00008</td>
</tr>
<tr>
<td>40</td>
<td>12.6769</td>
<td>12.5566</td>
<td>12.5579</td>
<td>0.00008</td>
</tr>
<tr>
<td>45</td>
<td>10.5983</td>
<td>10.4734</td>
<td>10.4747</td>
<td>0.00007</td>
</tr>
<tr>
<td>50</td>
<td>8.8065</td>
<td>8.6859</td>
<td>8.6873</td>
<td>0.00007</td>
</tr>
<tr>
<td>55</td>
<td>7.2767</td>
<td>7.1671</td>
<td>7.1685</td>
<td>0.00006</td>
</tr>
</tbody>
</table>

Table 8: $a = [1, -1]$, $S(0) = [100, 60]$, $\sigma = [0.33, 0.25]$, $\rho_{12} = 0.4$, 400 millions of paths (positive skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>SLN</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-200</td>
<td>61.7315</td>
<td>61.7593</td>
<td>61.7623</td>
<td>0.0002</td>
</tr>
<tr>
<td>-180</td>
<td>47.0642</td>
<td>47.0946</td>
<td>47.0975</td>
<td>0.0002</td>
</tr>
<tr>
<td>-160</td>
<td>33.9175</td>
<td>33.9449</td>
<td>33.9473</td>
<td>0.0001</td>
</tr>
<tr>
<td>-140</td>
<td>22.6666</td>
<td>22.6835</td>
<td>22.6853</td>
<td>0.0001</td>
</tr>
<tr>
<td>-120</td>
<td>13.6581</td>
<td>13.6572</td>
<td>13.6585</td>
<td>0.00008</td>
</tr>
<tr>
<td>-100</td>
<td>7.1111</td>
<td>7.0901</td>
<td>7.0908</td>
<td>0.00005</td>
</tr>
<tr>
<td>-80</td>
<td>2.9895</td>
<td>2.9558</td>
<td>2.9561</td>
<td>0.00003</td>
</tr>
</tbody>
</table>

Table 9: $a = [1, -1]$, $S(0) = [100, 240]$, $\sigma = [0.18, 0.35]$, $\rho_{12} = 0.9$, 400 millions of paths (negative skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>SLN</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20.7157</td>
<td>20.5521</td>
<td>20.6014</td>
<td>0.00008</td>
</tr>
<tr>
<td>15</td>
<td>17.7346</td>
<td>17.5209</td>
<td>17.5549</td>
<td>0.00008</td>
</tr>
<tr>
<td>20</td>
<td>15.0677</td>
<td>14.8236</td>
<td>14.8411</td>
<td>0.00007</td>
</tr>
<tr>
<td>25</td>
<td>12.7097</td>
<td>12.4559</td>
<td>12.4577</td>
<td>0.00007</td>
</tr>
<tr>
<td>30</td>
<td>10.6478</td>
<td>10.4030</td>
<td>10.3907</td>
<td>0.00007</td>
</tr>
<tr>
<td>35</td>
<td>8.8635</td>
<td>8.6425</td>
<td>8.6186</td>
<td>0.00006</td>
</tr>
<tr>
<td>40</td>
<td>7.3342</td>
<td>7.1472</td>
<td>7.1146</td>
<td>0.00006</td>
</tr>
</tbody>
</table>

Table 10: $a = [1, -1, -1]$, $S(0) = [100, 50, 25]$, $\sigma = [0.35, 0.3, 0.25]$, $\rho_{12} = 0.3$, $\rho_{13} = 0.8$, $\rho_{23} = 0.7$, 300 millions of paths (positive skewness).

<table>
<thead>
<tr>
<th>Strike</th>
<th>SLN</th>
<th>HybMMICUB</th>
<th>MC</th>
<th>S.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40</td>
<td>3.6613</td>
<td>3.6643</td>
<td>3.6659</td>
<td>0.00004</td>
</tr>
<tr>
<td>-50</td>
<td>6.2375</td>
<td>6.2174</td>
<td>6.2191</td>
<td>0.00005</td>
</tr>
<tr>
<td>-60</td>
<td>9.7479</td>
<td>9.7098</td>
<td>9.7103</td>
<td>0.00007</td>
</tr>
<tr>
<td>-70</td>
<td>14.2134</td>
<td>14.1659</td>
<td>14.1661</td>
<td>0.00008</td>
</tr>
<tr>
<td>-80</td>
<td>19.5929</td>
<td>19.5450</td>
<td>19.5432</td>
<td>0.00008</td>
</tr>
<tr>
<td>-90</td>
<td>25.8016</td>
<td>25.7600</td>
<td>25.7580</td>
<td>0.00009</td>
</tr>
<tr>
<td>-100</td>
<td>32.7291</td>
<td>32.6977</td>
<td>32.6946</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Table 11: $a = [1, 1, -1, -1]$, $S(0) = [100, 50, 200, 20]$, $\sigma = [0.18, 0.2, 0.25, 0.3]$, $\rho_{12} = 0.6$, $\rho_{13} = 0.7$, $\rho_{14} = 0.8$, $\rho_{23} = 0.5$, $\rho_{24} = 0.75$, $\rho_{34} = 0.9$, 300 millions of paths (negative skewness).