Almost Invariant Half-Spaces

Adi Tcaciuc

Timisoara, July 1, 2010

This is joint work with

- George Androulakis (University of South Carolina)
- Alexey Popov (University of Alberta)
- Vladimir Troitsky (University of Alberta)

Motivation

Invariant subspace problem
Does every bounded linear operator have a closed non-trivial invariant subspace?

Motivation

Invariant subspace problem
Does every bounded linear operator have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators

Motivation

Invariant subspace problem
Does every bounded linear operator have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator

Motivation

Invariant subspace problem

Does every bounded linear operator have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces

Motivation

Invariant subspace problem

Does every bounded linear operator have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_{1} without invariant subspaces

Motivation

Invariant subspace problem

Does every bounded linear operator have a closed non-trivial invariant subspace?

- Aronszajn and Smith - for compact operators
- Lomonosov - for operators commuting with a compact operator
- Enflo - first example of a bounded operator without invariant subspaces
- Read - bounded operator on ℓ_{1} without invariant subspaces
- Argyros and Haydon - example of a Banach space such that every bounded operator is a compact perturbation of a multiple of identity

Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of both infinite dimension and infinite codimension in X.

Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of both infinite dimension and infinite codimension in X.

Definition

If X is a Banach space, $T \in \mathcal{L}(X)$ and Y is a subspace of X, then Y is called almost invariant for T, or T-almost invariant if there exists a finite dimensional subspace F of X such that $T(Y) \subseteq Y+F$.

Almost invariant half-space problem

Definition

A subspace Y of a Banach space X is called a half-space if it is of both infinite dimension and infinite codimension in X.

Definition

If X is a Banach space, $T \in \mathcal{L}(X)$ and Y is a subspace of X, then Y is called almost invariant for T, or T-almost invariant if there exists a finite dimensional subspace F of X such that $T(Y) \subseteq Y+F$.

Almost invariant half-space problem

Does every bounded linear operator on a Banach space have almost invariant half-spaces?

Almost invariant half-space problem

Proposition

Let $T \in \mathcal{L}(X)$ and $H \subseteq X$ be a half-space. Then H is almost invariant under T if and only if H is invariant under $T+K$ for some finite rank operator K.

Almost invariant half-space problem

Proposition

Let $T \in \mathcal{L}(X)$ and $H \subseteq X$ be a half-space. Then H is almost invariant under T if and only if H is invariant under $T+K$ for some finite rank operator K.

Proposition

Let T be an operator on a Banach space X. If T has an almost invariant half-space then so does its adjoint T^{*}.

Almost invariant half-space problem

Proposition

Let $T \in \mathcal{L}(X)$ and $H \subseteq X$ be a half-space. Then H is almost invariant under T if and only if H is invariant under $T+K$ for some finite rank operator K.

Proposition

Let T be an operator on a Banach space X. If T has an almost invariant half-space then so does its adjoint T^{*}.

Almost invariant half-space problem

The unilateral shift on l_{2} has invariant half-spaces.

Almost invariant half-space problem

The unilateral shift on I_{2} has invariant half-spaces.

Donoghue operators

A Donoghue operator is a weighted shift $D: l_{2} \rightarrow l_{2}, D e_{1}=0$, $D e_{i}=w_{i} e_{i-1}$ for $i>1$ where $\left(w_{i}\right)_{i}$ is a sequence of non-zero complex numbers such that $\left(\left|w_{i}\right|\right)_{i}$ is monotone decreasing and in I_{2}.

Almost invariant half-space problem

The unilateral shift on l_{2} has invariant half-spaces.

Donoghue operators

A Donoghue operator is a weighted shift $D: l_{2} \rightarrow l_{2}, D e_{1}=0$, $D e_{i}=w_{i} e_{i-1}$ for $i>1$ where $\left(w_{i}\right)_{i}$ is a sequence of non-zero complex numbers such that $\left(\left|w_{i}\right|\right)_{i}$ is monotone decreasing and in I_{2}.
D has only invariant subspaces of finite dimension and D^{*} has only invariant subspaces of finite codimension.

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \rho(T)^{-1}$ define a vector $h(\lambda, e)$ in X by

$$
h(\lambda, e):=\left(\lambda^{-1} I-T\right)^{-1}(e) .
$$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \rho(T)^{-1}$ define a vector $h(\lambda, e)$ in X by

$$
h(\lambda, e):=\left(\lambda^{-1} I-T\right)^{-1}(e) .
$$

Observe that $\left(\lambda^{-1} I-T\right) h(\lambda, e)=e$ for every $\lambda \in \rho(T)^{-1}$

The Method (sketch)

For a nonzero vector $e \in X$ and for $\lambda \in \rho(T)^{-1}$ define a vector $h(\lambda, e)$ in X by

$$
h(\lambda, e):=\left(\lambda^{-1} /-T\right)^{-1}(e) .
$$

Observe that $\left(\lambda^{-1} I-T\right) h(\lambda, e)=e$ for every $\lambda \in \rho(T)^{-1}$ hence

$$
T h(\lambda, e)=\lambda^{-1} h(\lambda, e)-e
$$

The Method (sketch)

Lemma

Let X be a Banach space, $T \in \mathcal{L}(X)$ and $e \in X$ be an arbitrary non-zero vector. Let $A \subseteq \rho(T)^{-1}$. Then the closed subspace Y of X defined by

$$
Y=\overline{\operatorname{span}}\{h(\lambda, e): \lambda \in A\}
$$

is a T-almost invariant subspace (which is not not necessarily a half-space).

The Method (sketch)

Lemma

Let X be a Banach space, $T \in \mathcal{L}(X)$ and $e \in X$ be an arbitrary non-zero vector. Let $A \subseteq \rho(T)^{-1}$. Then the closed subspace Y of X defined by

$$
Y=\overline{\operatorname{span}}\{h(\lambda, e): \lambda \in A\}
$$

is a T-almost invariant subspace (which is not not necessarily a half-space).

The Method (sketch)

Lemma

Let $T \in \mathcal{L}(X)$ is such that T has no eigenvalues. Then, for any nonzero vector $e \in X$ the set $\left\{h(\lambda, e): \lambda \in \rho(T)^{-1}\right\}$ is linearly independent.

The Method (sketch)

Lemma

Let $T \in \mathcal{L}(X)$ is such that T has no eigenvalues. Then, for any nonzero vector $e \in X$ the set $\left\{h(\lambda, e): \lambda \in \rho(T)^{-1}\right\}$ is linearly independent.

Thus, for any $A \subseteq \rho(T)^{-1}$ with infinite cardinality we have that

$$
Y=\overline{\operatorname{span}}\{h(\lambda, e): \lambda \in A\}
$$

is infinite dimensional and T-almost invariant with 1 -dimensional "error".

The Method (sketch)

Lemma

Let $T \in \mathcal{L}(X)$ is such that T has no eigenvalues. Then, for any nonzero vector $e \in X$ the set $\left\{h(\lambda, e): \lambda \in \rho(T)^{-1}\right\}$ is linearly independent.

Thus, for any $A \subseteq \rho(T)^{-1}$ with infinite cardinality we have that

$$
Y=\overline{\operatorname{span}}\{h(\lambda, e): \lambda \in A\}
$$

is infinite dimensional and T-almost invariant with 1-dimensional "error".

How can we choose $A \subseteq \rho(T)^{-1}$ in such a way that Y is also infinite codimensional?

Main Result

Theorem

Let X be a Banach space and $T \in \mathcal{L}(X)$ satisfy the following:
(1) T has no eigenvalues.

Main Result

Theorem

Let X be a Banach space and $T \in \mathcal{L}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of $\rho(T)$ contains a punctured neighbourhood of 0 .

Main Result

Theorem

Let X be a Banach space and $T \in \mathcal{L}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of $\rho(T)$ contains a punctured neighbourhood of 0 .
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional "error".

Main Result

Theorem

Let X be a Banach space and $T \in \mathcal{L}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) The unbounded component of $\rho(T)$ contains a punctured neighbourhood of 0 .
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space with 1-dimensional "error".

Condition (2) is satisfied by many important classes of operators. For example:

- if 0 is an isolated point of $\sigma(T)$ (in particular, if T is quasinilpotent)
- if 0 belongs in the unbounded component of $\rho(T)$

Main Result

Theorem

Let X be a Banach space and $T \in \mathcal{L}(X)$ satisfy the following:
(1) T has no eigenvalues.
(2) $\rho(T)^{-1}$ has a connected component \mathcal{C} such that $0 \in \overline{\mathcal{C}}$ and \mathcal{C} contains a neighbourhood of ∞.
(3) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space.

Corollary

If $X=\ell_{p}(1 \leq p<\infty)$ or c_{0} and $T \in \mathcal{L}(X)$, is a weighted right shift operator with weights converging to zero then both T and T^{*} have almost invariant half-spaces.

Donoghue operators

$D \in \mathcal{L}\left(\ell_{2}\right)$ is defined by:

$$
D e_{1}=0, \quad D e_{i}=w_{i} e_{i-1}, \quad i>1
$$

where $\left(w_{i}\right)$ is a sequence of non-zero complex numbers such that $\left(\left|w_{i}\right|\right)$ is monotone decreasing and in ℓ_{2}.

Donoghue operators

$D \in \mathcal{L}\left(\ell_{2}\right)$ is defined by:

$$
D e_{1}=0, \quad D e_{i}=w_{i} e_{i-1}, \quad i>1
$$

where $\left(w_{i}\right)$ is a sequence of non-zero complex numbers such that $\left(\left|w_{i}\right|\right)$ is monotone decreasing and in ℓ_{2}.
D has only finite dimensional invariant subspaces

Donoghue operators

$D \in \mathcal{L}\left(\ell_{2}\right)$ is defined by:

$$
D e_{1}=0, \quad D e_{i}=w_{i} e_{i-1}, \quad i>1
$$

where $\left(w_{i}\right)$ is a sequence of non-zero complex numbers such that $\left(\left|w_{i}\right|\right)$ is monotone decreasing and in ℓ_{2}.
D has only finite dimensional invariant subspaces
D^{*} has only finite codimensional invariant subspaces

Donoghue operators

$D \in \mathcal{L}\left(\ell_{2}\right)$ is defined by:

$$
D e_{1}=0, \quad D e_{i}=w_{i} e_{i-1}, \quad i>1
$$

where $\left(w_{i}\right)$ is a sequence of non-zero complex numbers such that ($\left|w_{i}\right|$) is monotone decreasing and in ℓ_{2}.
D has only finite dimensional invariant subspaces
D^{*} has only finite codimensional invariant subspaces

Corollary

If D is a Donoghue operator then both D and D^{*} have almost invariant half-spaces with one dimensional "error".

Donoghue operators

$D \in \mathcal{L}\left(\ell_{2}\right)$ is defined by:

$$
D e_{1}=0, \quad D e_{i}=w_{i} e_{i-1}, \quad i>1
$$

where $\left(w_{i}\right)$ is a sequence of non-zero complex numbers such that ($\left|w_{i}\right|$) is monotone decreasing and in ℓ_{2}.
D has only finite dimensional invariant subspaces
D* has only finite codimensional invariant subspaces

Corollary

If D is a Donoghue operator then both D and D^{*} have almost invariant half-spaces with one dimensional "error".

Donoghue operators do not have invariant half-spaces, yet they have almost-invariant half-spaces with one dimensional "error".

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Fix a sequence of distinct complex numbers $\left(\lambda_{n}\right)$ such that $F\left(\lambda_{n}\right)=0$ for every n.

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Fix a sequence of distinct complex numbers $\left(\lambda_{n}\right)$ such that $F\left(\lambda_{n}\right)=0$ for every n.

Note $\left|\lambda_{n}\right| \rightarrow+\infty$ for all n so we can assume $\lambda_{n} \in \rho(T)^{-1}$

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Fix a sequence of distinct complex numbers $\left(\lambda_{n}\right)$ such that $F\left(\lambda_{n}\right)=0$ for every n.
Note $\left|\lambda_{n}\right| \rightarrow+\infty$ for all n so we can assume $\lambda_{n} \in \rho(T)^{-1}$
Let $Y=\overline{\operatorname{span}}\left\{h\left(\lambda_{n}, e\right): n \in \mathbb{N}\right\}$

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Fix a sequence of distinct complex numbers $\left(\lambda_{n}\right)$ such that $F\left(\lambda_{n}\right)=0$ for every n.
Note $\left|\lambda_{n}\right| \rightarrow+\infty$ for all n so we can assume $\lambda_{n} \in \rho(T)^{-1}$
Let $Y=\overline{\operatorname{span}}\left\{h\left(\lambda_{n}, e\right): n \in \mathbb{N}\right\}$
Y is almost invariant under T and $\operatorname{dim} Y=\infty$.

Proof (sketch) - construction of the subspace

Let $e \in X$ be such that $\left(T^{i} e\right)_{i=0}^{\infty}$ is minimal.
Let $\left(c_{i}\right)$ be a sequence of positive real numbers so that c_{i} converges to 0 "fast" and in particular $\sqrt[i]{c_{i}} \rightarrow 0$.

Consider $F: \mathbb{C} \rightarrow \mathbb{C}$ defined by $F(z)=\sum_{i=0}^{\infty} c_{i} z^{i}$. Clearly F is entire.

WLOG (Picard's Theorem) we may assume $\{z \in \mathbb{C} \mid F(z)=0\}$ is infinite.

Fix a sequence of distinct complex numbers $\left(\lambda_{n}\right)$ such that $F\left(\lambda_{n}\right)=0$ for every n.
Note $\left|\lambda_{n}\right| \rightarrow+\infty$ for all n so we can assume $\lambda_{n} \in \rho(T)^{-1}$
Let $Y=\overline{\operatorname{span}}\left\{h\left(\lambda_{n}, e\right): n \in \mathbb{N}\right\}$
Y is almost invariant under T and $\operatorname{dim} Y=\infty$.

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$. Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.
Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Extend f to X by Hahn-Banach.

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.
Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Extend f to X by Hahn-Banach.
The annihilation of Y :

$$
f\left(h\left(\lambda_{n}, e\right)\right)=
$$

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.
Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Extend f to X by Hahn-Banach.
The annihilation of Y :

$$
f\left(h\left(\lambda_{n}, e\right)\right)=f\left(\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} T^{i} e\right)=
$$

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.
Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Extend f to X by Hahn-Banach.
The annihilation of Y :

$$
f\left(h\left(\lambda_{n}, e\right)\right)=f\left(\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} T^{i} e\right)=\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} c_{i}=
$$

Proof (sketch) - construction of bounded linear functionals

Define a functional f on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f\left(T^{i} e\right)=c_{i}$.
Since $\left(T^{i} e\right)_{i}$ is minimal and $\left(c_{i}\right)_{i}$ converges to 0 "fast" we have that f is bounded.

Extend f to X by Hahn-Banach.
The annihilation of Y :

$$
f\left(h\left(\lambda_{n}, e\right)\right)=f\left(\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} T^{i} e\right)=\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} c_{i}=\lambda_{n} F\left(\lambda_{n}\right)=0 .
$$

Proof (sketch) - construction of bounded linear functionals

For every $k=0,1, \ldots$, put $F_{k}(z)=z^{k} F(z)$. Then

$$
F_{k}(z)=\sum_{i=0}^{\infty} c_{i}^{(k)} z^{i}=\sum_{i=k}^{\infty} c_{i-k} z^{i}
$$

Proof (sketch) - construction of bounded linear functionals

For every $k=0,1, \ldots$, put $F_{k}(z)=z^{k} F(z)$. Then

$$
F_{k}(z)=\sum_{i=0}^{\infty} c_{i}^{(k)} z^{i}=\sum_{i=k}^{\infty} c_{i-k} z^{i}
$$

Define a functional f_{k} on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f_{k}\left(T^{i} e\right)=c_{i}^{(k)}$.

Proof (sketch) - construction of bounded linear functionals

For every $k=0,1, \ldots$, put $F_{k}(z)=z^{k} F(z)$. Then

$$
F_{k}(z)=\sum_{i=0}^{\infty} c_{i}^{(k)} z^{i}=\sum_{i=k}^{\infty} c_{i-k} z^{i}
$$

Define a functional f_{k} on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f_{k}\left(T^{i} e\right)=c_{i}^{(k)}$.
As before, f_{k} is bounded, so it can be extended to $\overline{\operatorname{span}}\left\{T^{i} e: i \in \mathbb{N}\right\}$, and then by Hahn-Banach to a bounded functional on all of X.

Proof (sketch) - construction of bounded linear functionals

For every $k=0,1, \ldots$, put $F_{k}(z)=z^{k} F(z)$. Then

$$
F_{k}(z)=\sum_{i=0}^{\infty} c_{i}^{(k)} z^{i}=\sum_{i=k}^{\infty} c_{i-k} z^{i}
$$

Define a functional f_{k} on $\operatorname{span}\left\{T^{i} e\right\}_{i=0}^{\infty}$ via $f_{k}\left(T^{i} e\right)=c_{i}^{(k)}$.
As before, f_{k} is bounded, so it can be extended to $\overline{\operatorname{span}}\left\{T^{i} e: i \in \mathbb{N}\right\}$, and then by Hahn-Banach to a bounded functional on all of X.

The annihilation of Y :

$$
\begin{aligned}
f_{k}\left(h\left(\lambda_{n}, e\right)\right)=f_{k}\left(\lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} T^{i} e\right)= & \lambda_{n} \sum_{i=0}^{\infty} \lambda_{n}^{i} c_{i}^{(k)}= \\
& \lambda_{n} F_{k}\left(\lambda_{n}\right)=\lambda_{n}^{k+1} F\left(\lambda_{n}\right)=0 .
\end{aligned}
$$

Proof (sketch) - linear independence

Linear independence:

Proof (sketch) - linear independence

Linear independence:
Assume $f_{N}=\sum_{k=M}^{N-1} a_{k} f_{k}$ with $a_{M} \neq 0$

Proof (sketch) - linear independence

Linear independence:
Assume $f_{N}=\sum_{k=M}^{N-1} a_{k} f_{k}$ with $a_{M} \neq 0$
However $f_{N}\left(T^{M} e\right)=0$ by definition of f_{N} while $\sum_{k=M}^{N-1} a_{k} f_{k}\left(T^{M} e\right)=a_{M} c_{0} \neq 0$, contradiction.

Open Problems

Open Problems

- Enflo's operator?

Open Problems

- Enflo's operator?
- Read's operator? (quasinilpotent version on ℓ_{1})

Open Problems

- Enflo's operator?
- Read's operator? (quasinilpotent version on ℓ_{1})
- Operators on HI-spaces?

Open Problems

- Enflo's operator?
- Read's operator? (quasinilpotent version on ℓ_{1})
- Operators on HI-spaces?
-?

