Criteria for orbital behavior of operators

Gabriel T. Prǎjiturǎ

State University of New York

July 1, 2010

Orbit

$\operatorname{Orb}_{T}(x)=\left\{T^{n} x: n \geq 0\right\}$
T is an operator on some space and x is a vector in the space

Orbit

$\operatorname{Orb}_{T}(x)=\left\{T^{n} x: n \geq 0\right\}$
T is an operator on some space and x is a vector in the space

Hypercyclic

$\operatorname{Orb}_{T}(x)$ is dense in the space

Orbit

$\operatorname{Orb}_{T}(x)=\left\{T^{n} x: n \geq 0\right\}$
T is an operator on some space and x is a vector in the space

Hypercyclic

$\operatorname{Orb}_{T}(x)$ is dense in the space

Other names

universal

Orbit

$\operatorname{Orb}_{T}(x)=\left\{T^{n} x: n \geq 0\right\}$
T is an operator on some space and x is a vector in the space

Hypercyclic

$\operatorname{Orb}_{T}(x)$ is dense in the space

Other names

universal
topologically transitive i.e.
for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$

Examples:

Examples:

$T f(z)=f(z+1)$

Examples:

$T f(z)=f(z+1)$
on the space of entire functions (Birkhoff, 1929)

Examples:

$T f(z)=f(z+1)$
on the space of entire functions (Birkhoff, 1929)
$\mathrm{T} f=\mathrm{f}^{\prime}$

Examples:

$T f(z)=f(z+1)$
on the space of entire functions (Birkhoff, 1929)
$\mathrm{T} f=\mathrm{f}^{\prime}$
same space (MacLane, 1957)

In a Hilbert space:

In a Hilbert space:

twice the backward shift

In a Hilbert space:
twice the backward shift

$$
\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & \ldots \\
0 & 0 & 2 & 0 & \ldots \\
0 & 0 & 0 & 2 & \ldots \\
\cdots & & & &
\end{array}\right)
$$

In a Hilbert space:
twice the backward shift

$$
\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & \ldots \\
0 & 0 & 2 & 0 & \ldots \\
0 & 0 & 0 & 2 & \ldots \\
\cdots & & & &
\end{array}\right)
$$

Rolewicz, 1969

In a Hilbert space:
twice the backward shift

$$
\left(\begin{array}{ccccc}
0 & 2 & 0 & 0 & \ldots \\
0 & 0 & 2 & 0 & \ldots \\
0 & 0 & 0 & 2 & \ldots \\
\cdots & & & &
\end{array}\right)
$$

Rolewicz, 1969

Sufficient condition:

Sufficient condition:

If there there is and increasing sequence (k_{n}) of natural numbers, there are two dense sets, X_{0} and Y_{0}, and there is a sequence of functions $\left(S_{k_{n}}\right): Y_{0} \rightarrow Y_{0}$ (neither necessarily linear nor continuous) such that:
(i) $T^{k_{n}} x \rightarrow 0$ for every $x \in X_{0}$;
(ii) $S_{k_{n}} y \rightarrow 0$ for every $y \in Y_{0}$;
(iii) $T^{k_{n}} S_{k_{n}} y \rightarrow y$ for every $y \in Y_{0}$
then the operator T is hypercyclic.

Sufficient condition:

If there there is and increasing sequence (k_{n}) of natural numbers, there are two dense sets, X_{0} and Y_{0}, and there is a sequence of functions $\left(S_{k_{n}}\right): Y_{0} \rightarrow Y_{0}$ (neither necessarily linear nor continuous) such that:
(i) $T^{k_{n}} x \rightarrow 0$ for every $x \in X_{0}$;
(ii) $S_{k_{n}} y \rightarrow 0$ for every $y \in Y_{0}$;
(iii) $T^{k_{n}} S_{k_{n}} y \rightarrow y$ for every $y \in Y_{0}$
then the operator T is hypercyclic.

Not equivalent
C. J. Read \& M. De La Rosa (2005, on I^{1}), F. Bayart \& E. Matheron (2007 on I^{2})

Problem 1: What to replace the criterion with?

Problem 1: What to replace the criterion with?
Problem 2: Can we define a similar concept for non separable spaces?

Problem 1: What to replace the criterion with?
Problem 2: Can we define a similar concept for non separable spaces?

First idea:
Look at the behavior of the sequence
$\|x\|,\|T x\|,\left\|T^{2} x\right\|,\left\|T^{3} x\right\|, \ldots$

Problem 1: What to replace the criterion with?
Problem 2: Can we define a similar concept for non separable spaces?

First idea:
Look at the behavior of the sequence
$\|x\|,\|T x\|,\left\|T^{2} x\right\|,\left\|T^{3} x\right\|, \ldots$

Six types:
$\lim _{n}\left\|T^{n} x\right\|=0$
$\lim _{n}\left\|T^{n} x\right\|=0$
$\lim _{n}\left\|T^{n} x\right\|=\infty$
$\lim _{n}\left\|T^{n} x\right\|=0$
$\lim _{n}\left\|T^{n} x\right\|=\infty$

3
$0=\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|<\infty$
$\lim _{n}\left\|T^{n} x\right\|=0$

2
$\lim _{n}\left\|T^{n} x\right\|=\infty$
$0=\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|<\infty$
$0<\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|=\infty$

```
1
\(\lim _{n}\left\|T^{n} x\right\|=0\)
```

2
$\lim _{n}\left\|T^{n} x\right\|=\infty$
$0=\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|<\infty$
$0<\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|=\infty$
$0<\lim \inf _{n}\left\|T^{n} x\right\| \leq \lim \sup _{n}\left\|T^{n} x\right\|<\infty$
$\lim _{n}\left\|T^{n} x\right\|=0$

2

$\lim _{n}\left\|T^{n} x\right\|=\infty$
$0=\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|<\infty$
$0<\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|=\infty$
$0<\lim \inf _{n}\left\|T^{n} x\right\| \leq \lim \sup _{n}\left\|T^{n} x\right\|<\infty$
6
$0=\lim \inf _{n}\left\|T^{n} x\right\|<\lim \sup _{n}\left\|T^{n} x\right\|=\infty$

Irregular
$\liminf _{n}\left\|T^{n} x\right\|=0 \quad \& \quad \lim \sup _{n}\left\|T^{n} x\right\|=\infty$

Irregular
$\liminf _{n}\left\|T^{n} x\right\|=0 \quad \& \quad \lim \sup _{n}\left\|T^{n} x\right\|=\infty$

Can be studied in non separable spaces

Irregular
$\liminf _{n}\left\|T^{n} x\right\|=0 \quad \& \quad \lim \sup _{n}\left\|T^{n} x\right\|=\infty$

Can be studied in non separable spaces
How different from hypercyclicity?

Posibilities:

Posibilities:

Hypercyclic restriction to an invariant subspace

Posibilities:

Hypercyclic restriction to an invariant subspace
r hypercyclic

Posibilities:
Hypercyclic restriction to an invariant subspace
r hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every ball of radius r, for some $r>0$

Posibilities:
Hypercyclic restriction to an invariant subspace
r hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every ball of radius r, for some $r>0$
ε hypercyclic

Posibilities:
Hypercyclic restriction to an invariant subspace
r hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every ball of radius r, for some $r>0$
ε hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every cone of aperture ε, for some $\varepsilon>0$

Posibilities:
Hypercyclic restriction to an invariant subspace
r hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every ball of radius r, for some $r>0$
ε hypercyclic
$\operatorname{Orb}_{T}(x)$ intersects every cone of aperture ε, for some $\varepsilon>0$
orbits dense in an one-dimensional subspace (can be done with forward weighted shifts)

Not necessarily irregular

Weakly hypercyclic vectors

Not necessarily irregular

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $\operatorname{Orb}_{T}(x)$ is weakly dense in the space

Not necessarily irregular

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $\operatorname{Orb}_{T}(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan \& Sanders 2003

Not necessarily irregular

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $\operatorname{Orb}_{T}(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan \& Sanders 2003

Hypercyclic operators may have weakly hypercyclic vectors which are not hypercyclic

Not necessarily irregular

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $\operatorname{Orb}_{T}(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan \& Sanders 2003

Hypercyclic operators may have weakly hypercyclic vectors which are not hypercyclic

There is a nonhypercyclic weakly hypercyclic operator having all nonzero orbits increasing.

J - class vectors

J - class vectors

A vector $x \neq 0$ is called J class for the operator T if $J_{T}(x)=$
$\left\{\mathrm{y}:\right.$ there are y_{n} and k_{n} such that $y_{n} \rightarrow x$ and $\left.T^{k_{n}} y_{n} \rightarrow y\right\}$
equals the space

J - class vectors

A vector $x \neq 0$ is called J class for the operator T if $\mathrm{J}_{T}(x)=$
$\left\{\mathrm{y}:\right.$ there are y_{n} and k_{n} such that $y_{n} \rightarrow x$ and $\left.T^{k_{n}} y_{n} \rightarrow y\right\}$
equals the space
Costakis \& Manoussos 2008

J - class vectors

A vector $x \neq 0$ is called J class for the operator T if $J_{T}(x)=$
$\left\{\mathrm{y}:\right.$ there are y_{n} and k_{n} such that $y_{n} \rightarrow x$ and $\left.T^{k_{n}} y_{n} \rightarrow y\right\}$
equals the space
Costakis \& Manoussos 2008
$J_{T}(x)$ is always closed

For $2 B$ on I^{∞} a vector x is J - class $\Longleftrightarrow x \in c_{o}$

For $2 B$ on I^{∞} a vector x is J - class $\Longleftrightarrow x \in c_{o}$
Thus the vector $x=(1,1 / 2,1 / 4,1 / 8, \ldots)$ is J - class

For $2 B$ on I^{∞} a vector x is J - class $\Longleftrightarrow x \in c_{o}$
Thus the vector $x=(1,1 / 2,1 / 4,1 / 8, \ldots)$ is J - class although not irregular because $(2 B) x=x$.

For $2 B$ on I^{∞} a vector x is J - class $\Longleftrightarrow x \in c_{o}$
Thus the vector $x=(1,1 / 2,1 / 4,1 / 8, \ldots)$ is J - class although not irregular because $(2 B) x=x$.

The operator has J-class irregular vectors.

Compare with separable spaces

Compare with separable spaces

If T is hypercyclic then $J_{T}(x)=$ the space for every x

Compare with separable spaces

If T is hypercyclic then $J_{T}(x)=$ the space for every x
Proposed definition for nonseparable spaces:

Compare with separable spaces

If T is hypercyclic then $J_{T}(x)=$ the space for every x
Proposed definition for nonseparable spaces:
x is hypercyclic vector for T if it is J - class \& irregular.

Compare with separable spaces

If T is hypercyclic then $J_{T}(x)=$ the space for every x
Proposed definition for nonseparable spaces:
x is hypercyclic vector for T if it is J - class \& irregular.
Other restrictions may be needed.

Hypercyclic vs. irregular

Hypercyclic vs. irregular

T has property $\Longrightarrow \alpha T$ has it for all $|\alpha|=1$.

Hypercyclic vs. irregular

T has property $\Longrightarrow \alpha T$ has it for all $|\alpha|=1$.
A, B have the property $\Longrightarrow A \oplus B$ has the property

Hypercyclic vs. irregular

T has property $\Longrightarrow \alpha T$ has it for all $|\alpha|=1$.
A, B have the property $\Longrightarrow A \oplus B$ has the property
$\operatorname{Orb}_{T}(x)$ has property $\Longrightarrow \operatorname{Orb}_{T}(y)$ has the property for other y.

Hypercyclic vs. irregular

T has property $\Longrightarrow \alpha T$ has it for all $|\alpha|=1$.
A, B have the property $\Longrightarrow A \oplus B$ has the property
$\operatorname{Orb}_{T}(x)$ has property $\Longrightarrow \operatorname{Orb}_{T}(y)$ has the property for other y.
T invertible has property $\Longrightarrow T^{-1}$ has the property

How to show that a vector is irregular

How to show that a vector is irregular

Direct construction.

How to show that a vector is irregular

Direct construction.
Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

How to show that a vector is irregular

Direct construction.
Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

Difficult for composition operators.

How to show that a vector is irregular

Direct construction.
Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

Difficult for composition operators.
On the Hardy space a composition operator cannot have irregular vectors unless it is hypercyclic. Are there irregular non hyperciclic vectors?

Sufficient condition:

Sufficient condition:

If there there is and increasing sequence $\left(k_{n}\right)$ of natural numbers, there are two sets, X_{0} and $Y_{0}=\left\{y_{1}, y_{2}, y_{3}, \ldots\right\}$ such that $Y_{0} \subset$ closure of $X_{0}, y_{2 n-1} \rightarrow 0,\left\|y_{2 n}\right\| \rightarrow \infty$, and there is a sequence of functions $\left(S_{k_{n}}\right): Y_{0} \rightarrow Y_{0}$ (neither necessarily linear nor continuous) such that:
(i) $T^{k_{n}} x \rightarrow 0$ for every $x \in X_{0}$;
(ii) $S_{k_{n}} y \rightarrow 0$ for every $y \in Y_{0}$;
(iii) $T^{k_{n}} S_{k_{n}} y \rightarrow y$ for every $y \in Y_{0}$
then the operator T has irregular vectors.

Another sufficient condition:

Another sufficient condition:

If there is $|\lambda|>1$ and $x \in \operatorname{ker} T-\lambda$ such that $x \in$ closure Span $\{\operatorname{ker}(T-\alpha):|\alpha|<1\}$ then T has irregular vectors.

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$

$$
V_{m}=B_{1 / m}(0)
$$

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$
$V_{m}=B_{1 / m}(0)$
$U_{m}=$ complement of $B_{m}(0)$

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$
$V_{m}=B_{1 / m}(0)$
$U_{m}=$ complement of $B_{m}(0)$
Condition: for all $m_{1}, m_{2} \geq 1$ there are n_{1} and n_{2} such that

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$
$V_{m}=B_{1 / m}(0)$
$U_{m}=$ complement of $B_{m}(0)$
Condition: for all $m_{1}, m_{2} \geq 1$ there are n_{1} and n_{2} such that
$T^{n_{1}}\left(V_{m_{1}}\right) \cap U_{m_{2}} \neq \emptyset \quad \& \quad T^{n_{2}}\left(U_{m_{1}}\right) \cap V_{m_{2}} \neq \emptyset$

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$
$V_{m}=B_{1 / m}(0)$
$U_{m}=$ complement of $B_{m}(0)$
Condition: for all $m_{1}, m_{2} \geq 1$ there are n_{1} and n_{2} such that
$T^{n_{1}}\left(V_{m_{1}}\right) \cap U_{m_{2}} \neq \emptyset \quad \& \quad T^{n_{2}}\left(U_{m_{1}}\right) \cap V_{m_{2}} \neq \emptyset$
Necessary but not sufficient

Something like topological transitivity

for any open sets U and V there is n such that $T^{n}(U) \cap V \neq \emptyset$
$V_{m}=B_{1 / m}(0)$
$U_{m}=$ complement of $B_{m}(0)$
Condition: for all $m_{1}, m_{2} \geq 1$ there are n_{1} and n_{2} such that
$T^{n_{1}}\left(V_{m_{1}}\right) \cap U_{m_{2}} \neq \emptyset \quad \& \quad T^{n_{2}}\left(U_{m_{1}}\right) \cap V_{m_{2}} \neq \emptyset$
Necessary but not sufficient Satisfied by

$$
\left(\begin{array}{cc}
2 & 0 \\
0 & 1 / 2
\end{array}\right)
$$

which does not have irregular vectors.

