Criteria for orbital behavior of operators

Gabriel T. Prăjitură

State University of New York

July 1, 2010

 $Orb_T(x) = \{T^n x : n \ge 0\}$

T is an operator on some space and x is a vector in the space

 $Orb_T(x) = \{T^n x : n \ge 0\}$

T is an operator on some space and x is a vector in the space

Hypercyclic

 $Orb_T(x)$ is dense in the space

 $Orb_T(x) = \{T^n x : n \ge 0\}$

T is an operator on some space and x is a vector in the space

Hypercyclic

 $Orb_T(x)$ is dense in the space

Other names

universal

 $Orb_T(x) = \{T^n x : n \ge 0\}$

T is an operator on some space and x is a vector in the space

Hypercyclic

 $Orb_T(x)$ is dense in the space

Other names

universal topologically transitive i.e.

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

$$T f (z) = f(z + 1)$$

$$T f (z) = f(z + 1)$$

on the space of entire functions (Birkhoff, 1929)

$$T f (z) = f(z + 1)$$

on the space of entire functions (Birkhoff, 1929)

 $\mathsf{T} \mathsf{f} = \mathsf{f}'$

$$T f (z) = f(z + 1)$$

on the space of entire functions (Birkhoff, 1929)

T f = f'

same space (MacLane, 1957)

twice the backward shift

twice the backward shift

$$\begin{pmatrix} 0 & 2 & 0 & 0 & \dots \\ 0 & 0 & 2 & 0 & \dots \\ 0 & 0 & 0 & 2 & \dots \\ \dots & & & & & \end{pmatrix}$$

twice the backward shift

$$\begin{pmatrix} 0 & 2 & 0 & 0 & \dots \\ 0 & 0 & 2 & 0 & \dots \\ 0 & 0 & 0 & 2 & \dots \\ \dots & & & & & \end{pmatrix}$$

Rolewicz, 1969

twice the backward shift

$$\begin{pmatrix} 0 & 2 & 0 & 0 & \dots \\ 0 & 0 & 2 & 0 & \dots \\ 0 & 0 & 0 & 2 & \dots \\ \dots & & & & & \end{pmatrix}$$

Rolewicz, 1969

Sufficient condition:

Sufficient condition:

If there there is and increasing sequence (k_n) of natural numbers, there are two dense sets, X_0 and Y_0 , and there is a sequence of functions $(S_{k_n}): Y_0 \to Y_0$ (neither necessarily linear nor continuous) such that:

(i)
$$T^{k_n} x \to 0$$
 for every $x \in X_0$;
(ii) $S_{k_n} y \to 0$ for every $y \in Y_0$;
(iii) $T^{k_n} S_{k_n} y \to y$ for every $y \in Y_0$

then the operator T is hypercyclic.

Sufficient condition:

If there there is and increasing sequence (k_n) of natural numbers, there are two dense sets, X_0 and Y_0 , and there is a sequence of functions $(S_{k_n}): Y_0 \to Y_0$ (neither necessarily linear nor continuous) such that:

(i)
$$T^{k_n}x \to 0$$
 for every $x \in X_0$;
(ii) $S_{k_n}y \to 0$ for every $y \in Y_0$;
(iii) $T^{k_n}S_{k_n}y \to y$ for every $y \in Y_0$

then the operator T is hypercyclic.

Not equivalent

C. J. Read & M. De La Rosa (2005, on l^1), F. Bayart & E. Matheron (2007 on l^2)

Problem 2: Can we define a similar concept for non separable spaces?

Problem 2: Can we define a similar concept for non separable spaces?

First idea:

Look at the behavior of the sequence

 $||x||, ||Tx||, ||T^{2}x||, ||T^{3}x||, \dots$

Problem 2: Can we define a similar concept for non separable spaces?

First idea:

Look at the behavior of the sequence

 $||x||, ||Tx||, ||T^{2}x||, ||T^{3}x||, \dots$

Six types:

$\lim_n ||T^n x|| = 0$

$\lim_n ||T^n x|| = 0$

2

 $\lim_n ||T^n x|| = \infty$

1

$\lim_n ||T^n x|| = 0$

2

 $\lim_n ||T^n x|| = \infty$

3

 $0 = \liminf_n ||T^n x|| < \limsup_n ||T^n x|| < \infty$

$$\lim_n ||T^n x|| = 0$$

 $\lim_n ||T^n x|| = \infty$

$$0 = \liminf_n ||T^n x|| < \limsup_n ||T^n x|| < \infty$$

 $0 < \liminf_n ||T^n x|| < \limsup_n ||T^n x|| = \infty$

$$\lim_n ||T^n x|| = 0$$

 $\lim_n ||T^n x|| = \infty$

$$0 = \liminf_n ||T^n x|| < \limsup_n ||T^n x|| < \infty$$

4

$$0 < \liminf_n ||T^n x|| < \limsup_n ||T^n x|| = \infty$$

5

 $0 < \liminf_n ||T^n x|| \le \limsup_n ||T^n x|| < \infty$

$$\lim_n ||T^n x|| = 0$$

 $\lim_n ||T^n x|| = \infty$

$$0 = \liminf_n ||T^n x|| < \limsup_n ||T^n x|| < \infty$$

$$0 < \liminf_n ||T^n x|| < \limsup_n ||T^n x|| = \infty$$

$$0 < \liminf_n ||T^n x|| \le \limsup_n ||T^n x|| < \infty$$

$$0 = \liminf_n ||T^n x|| < \limsup_n ||T^n x|| = \infty$$

Irregular

$\liminf_n ||T^n x|| = 0 \qquad \& \qquad \limsup_n ||T^n x|| = \infty$

Irregular

$$\liminf_{n} ||T^{n}x|| = 0$$
 & $\limsup_{n} ||T^{n}x|| = \infty$

Can be studied in non separable spaces

Irregular

$$\liminf_n ||T^n x|| = 0 \qquad \& \qquad \limsup_n ||T^n x|| = \infty$$

Can be studied in non separable spaces

How different from hypercyclicity?

Hypercyclic restriction to an invariant subspace

Hypercyclic restriction to an invariant subspace

r hypercyclic

Hypercyclic restriction to an invariant subspace

r hypercyclic

 $Orb_T(x)$ intersects every ball of radius r, for some r > 0

Hypercyclic restriction to an invariant subspace

r hypercyclic

 $Orb_T(x)$ intersects every ball of radius r, for some r > 0

 ε hypercyclic
Posibilities:

Hypercyclic restriction to an invariant subspace

r hypercyclic

 $Orb_T(x)$ intersects every ball of radius r, for some r > 0

 ε hypercyclic

 $Orb_T(x)$ intersects every cone of aperture ε , for some $\varepsilon > 0$

Posibilities:

Hypercyclic restriction to an invariant subspace

r hypercyclic

 $Orb_T(x)$ intersects every ball of radius r, for some r > 0

 ε hypercyclic

 $Orb_T(x)$ intersects every cone of aperture ε , for some $\varepsilon > 0$

orbits dense in an one-dimensional subspace (can be done with forward weighted shifts)

Weakly hypercyclic vectors

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $Orb_T(x)$ is weakly dense in the space

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $Orb_T(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan & Sanders 2003

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $Orb_T(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan & Sanders 2003

Hypercyclic operators may have weakly hypercyclic vectors which are not hypercyclic

Weakly hypercyclic vectors

A vector x is called weakly hypercyclic for the operator T if $Orb_T(x)$ is weakly dense in the space

There are weakly hypercyclic operators which are not hypercyclic Chan & Sanders 2003

Hypercyclic operators may have weakly hypercyclic vectors which are not hypercyclic

There is a nonhypercyclic weakly hypercyclic operator having all nonzero orbits increasing.

A vector $x \neq 0$ is called J class for the operator T if $J_T(x) =$

 $\{ y : \text{there are } y_n \text{ and } k_n \text{ such that } y_n \to x \text{ and } T^{k_n} y_n \to y \}$

equals the space

A vector $x \neq 0$ is called J class for the operator T if $J_T(x) =$

 $\{ y : \text{there are } y_n \text{ and } k_n \text{ such that } y_n \to x \text{ and } T^{k_n} y_n \to y \}$

equals the space

Costakis & Manoussos 2008

A vector $x \neq 0$ is called J class for the operator T if $J_T(x) =$

 $\{ y : \text{there are } y_n \text{ and } k_n \text{ such that } y_n \to x \text{ and } T^{k_n} y_n \to y \}$

equals the space

Costakis & Manoussos 2008

 $J_T(x)$ is always closed

For 2B on I^{∞} a vector x is J - class $\iff x \in c_o$

For 2B on I^{∞} a vector x is J - class $\iff x \in c_o$ Thus the vector x = (1, 1/2, 1/4, 1/8, ...) is J - class For 2B on l^∞ a vector x is J - class $\iff x \in c_o$ Thus the vector x = (1, 1/2, 1/4, 1/8, ...) is J - class

although not irregular because (2B)x = x.

For 2B on l^{∞} a vector x is J - class $\iff x \in c_o$ Thus the vector x = (1, 1/2, 1/4, 1/8, ...) is J - class although not irregular because (2B)x = x.

The operator has J - class irregular vectors.

If T is hypercyclic then $J_T(x)$ = the space for every x

If T is hypercyclic then $J_T(x) =$ the space for every x

Proposed definition for nonseparable spaces:

If T is hypercyclic then $J_T(x) =$ the space for every x

Proposed definition for nonseparable spaces:

x is hypercyclic vector for T if it is J - class & irregular.

If T is hypercyclic then $J_T(x) =$ the space for every x

Proposed definition for nonseparable spaces:

x is hypercyclic vector for T if it is J - class & irregular.

Other restrictions may be needed.

T has property $\implies \alpha T$ has it for all $|\alpha| = 1$.

T has property $\implies \alpha T$ has it for all $|\alpha| = 1$.

A, B have the property $\implies A \oplus B$ has the property

T has property $\implies \alpha T$ has it for all $|\alpha| = 1$.

A, B have the property $\implies A \oplus B$ has the property

 $Orb_T(x)$ has property $\implies Orb_T(y)$ has the property for other y.

T has property $\implies \alpha T$ has it for all $|\alpha| = 1$.

A, B have the property $\implies A \oplus B$ has the property

 $Orb_T(x)$ has property $\implies Orb_T(y)$ has the property for other y.

T invertible has property $\implies T^{-1}$ has the property

Direct construction.

Direct construction.

Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

Direct construction.

Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

Difficult for composition operators.

Direct construction.

Works fine for forward or backward weighted shifts (or other operators with a known matrix) even to show that there are irregular non hypercyclic vectors.

Difficult for composition operators.

On the Hardy space a composition operator cannot have irregular vectors unless it is hypercyclic. Are there irregular non hyperciclic vectors?

Sufficient condition:

Sufficient condition:

If there there is and increasing sequence (k_n) of natural numbers, there are two sets, X_0 and $Y_0 = \{y_1, y_2, y_3, ...\}$ such that $Y_0 \subset$ closure of $X_0, y_{2n-1} \rightarrow 0$, $||y_{2n}|| \rightarrow \infty$, and there is a sequence of functions $(S_{k_n}) : Y_0 \rightarrow Y_0$ (neither necessarily linear nor continuous) such that:

(i)
$$T^{k_n} x \to 0$$
 for every $x \in X_0$;
(ii) $S_{k_n} y \to 0$ for every $y \in Y_0$;
(iii) $T^{k_n} S_{k_n} y \to y$ for every $y \in Y_0$

then the operator T has irregular vectors.

Another sufficient condition:

Another sufficient condition:

If there is $|\lambda| > 1$ and $x \in \ker T - \lambda$ such that $x \in \text{closure Span}$ $\{\ker(T - \alpha) : |\alpha| < 1\}$ then T has irregular vectors.

Something like topological transitivity

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

Something like topological transitivity

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$
for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$

 $U_m = \text{complement of } B_m(0)$

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$

 $U_m = \text{complement of } B_m(0)$

Condition: for all $m_1, m_2 \ge 1$ there are n_1 and n_2 such that

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$

 $U_m = \text{complement of } B_m(0)$

Condition: for all $m_1, m_2 \ge 1$ there are n_1 and n_2 such that

 $T^{n_1}(V_{m_1}) \cap U_{m_2} \neq \emptyset$ & $T^{n_2}(U_{m_1}) \cap V_{m_2} \neq \emptyset$

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$

 $U_m = \text{complement of } B_m(0)$

Condition: for all $m_1, m_2 \ge 1$ there are n_1 and n_2 such that

 $T^{n_1}(V_{m_1}) \cap U_{m_2} \neq \emptyset$ & $T^{n_2}(U_{m_1}) \cap V_{m_2} \neq \emptyset$

Necessary but not sufficient

for any open sets U and V there is n such that $T^n(U) \cap V \neq \emptyset$

 $V_m = B_{1/m}(0)$

 $U_m = \text{complement of } B_m(0)$

Condition: for all $m_1, m_2 \ge 1$ there are n_1 and n_2 such that

 $T^{n_1}(V_{m_1}) \cap U_{m_2} \neq \emptyset$ & $T^{n_2}(U_{m_1}) \cap V_{m_2} \neq \emptyset$

Necessary but not sufficient Satisfied by

$$\begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$$

which does not have irregular vectors.