Finite rank operators in Lie ideals of nest algebras

Lina Oliveira

Instituto Superior Técnico
Lisboa, Portugal
23rd International Conference on Operator Theory
Timisoara, June 29th-July 4th, 2010

- I. Notation
- II. Rank 1 operators
- III. Finite rank operators
- IV. Example
- V. Compact operators
- VI. References

I. Notation

- \mathcal{H} is a complex Hilbert space; $B(\mathcal{H})$ is the set of bounded linear operators on \mathcal{H}
- projection P in $B(H)$

$$
P^{2}=P \quad \text { and } \quad P^{*}=P
$$

- P, Q projections

$$
P \leq Q \quad \text { if } \quad P Q=P(=Q P)
$$

- The set of projections together with the partial order relation " \leq " is a complete lattice.

I. Notation

- Nest \mathcal{N}
a totally ordered family of projections $\mathcal{N} \subseteq B(\mathcal{H})$ containing 0 and the identity I
- Complete nest \mathcal{N}
if \mathcal{N} is a complete sublattice of the lattice of projections in $B(\mathcal{H})$
- $P \in \mathcal{N}$

$$
P_{-}=\bigvee\{Q \in \mathcal{N}: Q<P\}
$$

- Continuous nest \mathcal{N}

$$
P_{-}=P \quad \text { for all } \quad P \in \mathcal{N}
$$

I. Notation

- Nest algebra $\mathcal{T}(\mathcal{N})$ all operators $T \in B(\mathcal{H})$ such that, for all $P \in \mathcal{N}$,

$$
T(P(\mathcal{H})) \subseteq P(\mathcal{H})
$$

equivalently

I. Notation

- Nest algebra $\mathcal{T}(\mathcal{N})$ all operators $T \in B(\mathcal{H})$ such that, for all $P \in \mathcal{N}$,

$$
T(P(\mathcal{H})) \subseteq P(\mathcal{H})
$$

equivalently

I. Notation

- Nest algebra $\mathcal{T}(\mathcal{N})$
all operators $T \in B(\mathcal{H})$ such that, for all $P \in \mathcal{N}$,

$$
T(P(\mathcal{H})) \subseteq P(\mathcal{H})
$$

equivalently

$$
P^{\perp} T P=0
$$

where

$$
P^{\perp}=I-P
$$

I. Notation

- Nest algebra $\mathcal{T}(\mathcal{N})$
all operators $T \in B(\mathcal{H})$ such that, for all $P \in \mathcal{N}$,

$$
T(P(\mathcal{H})) \subseteq P(\mathcal{H})
$$

equivalently

$$
P^{\perp} T P=0
$$

where

$$
P^{\perp}=I-P
$$

- Continuous nest algebra $\mathcal{T}(\mathcal{N})$ - nest \mathcal{N} is continuous
(From now on all nests considered will be continuous nests)

I. Notation

Nest algebra $\mathcal{T}(\mathcal{N})$ with product

$$
[T, S]=T S-S T
$$

is Lie algebra

- Lie ideal \mathcal{L} complex subspace \mathcal{L} of the nest algebra $\mathcal{T}(\mathcal{N}) \mathrm{s}$. t.

$$
[\mathcal{L}, \mathcal{T}(\mathcal{N})] \subseteq \mathcal{L}
$$

II. Rank 1 operators

- rank 1 operator $\quad x \otimes y: \mathcal{H} \rightarrow \mathcal{H}$

$$
z \mapsto\langle z, x\rangle y \quad x, y, z \in \mathcal{H}
$$

II. Rank 1 operators

- rank 1 operator $x \otimes y: \mathcal{H} \rightarrow \mathcal{H}$

$$
z \mapsto\langle z, x\rangle y \quad x, y, z \in \mathcal{H}
$$

- $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad$ iff $\quad P_{-} x=0 \quad$ and $\quad P y=y \quad(P \in \mathcal{N})$

where

$$
P=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

II. Rank 1 operators

- rank 1 operator $x \otimes y: \mathcal{H} \rightarrow \mathcal{H}$

$$
z \mapsto\langle z, x\rangle y \quad x, y, z \in \mathcal{H}
$$

- $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad$ iff $\quad P_{-} x=0 \quad$ and $\quad P y=y \quad(P \in \mathcal{N})$

where

$$
P=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

II. Rank 1 operators

- rank 1 operator $x \otimes y: \mathcal{H} \rightarrow \mathcal{H}$

$$
z \mapsto\langle z, x\rangle y \quad x, y, z \in \mathcal{H}
$$

- $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad$ iff $\quad P_{-} x=0 \quad$ and $\quad P y=y \quad(P \in \mathcal{N})$
where

$$
P=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

(cf. [3])

II. Rank 1 operators

- rank 1 operator $x \otimes y: \mathcal{H} \rightarrow \mathcal{H}$

$$
z \mapsto\langle z, x\rangle y \quad x, y, z \in \mathcal{H}
$$

- $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad$ iff $\quad P_{-x}=0 \quad$ and $\quad P y=y \quad(P \in \mathcal{N})$
where

$$
P=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

(cf. [3])

- Consequence:
$x \perp y$
(since the nest \mathcal{N} is continuous)

II. Rank 1 operators

$\underline{\text { Projections associated to } x \otimes y}$

Consequences:

II. Rank 1 operators

$\underline{\text { Projections associated to } x \otimes y}$

-

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Consequences:

II. Rank 1 operators

$\underline{\text { Projections associated to } x \otimes y}$

-

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

-

$$
P_{y}=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

Consequences

II. Rank 1 operators

$\underline{\text { Projections associated to } x \otimes y}$

-

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

-

$$
P_{y}=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

Consequences

II. Rank 1 operators

Projections associated to $x \otimes y$

-

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

-

$$
P_{y}=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

Consequences:

$$
\text { (1) } \quad P_{y} y=y \quad \text { and } \quad \hat{P}_{x} x=0
$$

II. Rank 1 operators

Projections associated to $x \otimes y$

-

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

$-$

$$
P_{y}=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
$$

Consequences:
(1) $\quad P_{y} y=y$ and $\hat{P}_{x} x=0$
(2) $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad$ iff $\quad P_{y} \leq \hat{P}_{x}$

II. Rank 1 operators

Projections associated to $x \otimes y$

-

$$
\begin{aligned}
& \hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\} \\
& P_{y}=\bigwedge\{Q \in \mathcal{N}: Q y=y\}
\end{aligned}
$$

Consequences:
(1) $P_{y} y=y$ and $\hat{P}_{x} x=0$
(2) $x \otimes y \in \mathcal{T}(\mathcal{N})$ iff $\quad P_{y} \leq \hat{P}_{x}$
(3) $x \otimes y \in \mathcal{T}(\mathcal{N}) \quad \Rightarrow \quad P_{y} x=0$

II. Operators of rank 1

Theorem

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal, $x \otimes y \in \mathcal{L} \quad$ and $\quad w \otimes z \in \mathcal{T}(\mathcal{N}) \quad$ satisfying

$$
\hat{P}_{x} \leq \hat{P}_{w} \quad \text { and } \quad P_{z} \leq P_{y} .
$$

Then, $\quad w \otimes z \in \mathcal{L}$.

II. Operators of rank 1

Theorem

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal, $x \otimes y \in \mathcal{L} \quad$ and $\quad w \otimes z \in \mathcal{T}(\mathcal{N}) \quad$ satisfying

$$
\hat{P}_{x} \leq \hat{P}_{w} \quad \text { and } \quad P_{z} \leq P_{y} .
$$

Then, $\quad w \otimes z \in \mathcal{L}$.
The "corner" of $x \otimes y$
$\left[\begin{array}{l|c}0 & P_{y} \mathcal{T}(\mathcal{N}) \hat{P}_{x}^{\perp} \\ \hline 0 & 0\end{array}\right]$

II. Operators of rank 1

Sketch of Proof.

- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y}$

Define $\quad y^{\prime}=P_{z}^{\perp} y \quad\left(\Rightarrow y^{\prime} \neq 0\right)$

Therefore

Hence,

II. Operators of rank 1

Sketch of Proof.

- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y}$

Define $\quad y^{\prime}=P_{z}^{\perp} y \quad\left(\Rightarrow y^{\prime} \neq 0\right)$

$$
P_{z} y^{\prime}=0 \quad \Rightarrow \quad P_{z} \leq \hat{P}_{y^{\prime}} \quad \Rightarrow y^{\prime} \otimes z \in \mathcal{T}(\mathcal{N})
$$

Therefore

II. Operators of rank 1

Sketch of Proof.

- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y}$

Define $\quad y^{\prime}=P_{z}^{\perp} y \quad\left(\Rightarrow y^{\prime} \neq 0\right)$

$$
P_{z} y^{\prime}=0 \quad \Rightarrow \quad P_{z} \leq \hat{P}_{y^{\prime}} \quad \Rightarrow y^{\prime} \otimes z \in \mathcal{T}(\mathcal{N})
$$

Therefore

$$
\begin{aligned}
\mathcal{L} \ni\left[x \otimes y, y^{\prime} \otimes z\right] & =<z, x>\left(y^{\prime} \otimes y\right)-<y, y^{\prime}>(x \otimes z) \\
& =-<y, y^{\prime}>(x \otimes z)=-\left\|y^{\prime}\right\|^{2}(x \otimes z)
\end{aligned}
$$

Hence, $\quad x \otimes z \in \mathcal{L}$.

II. Operators of rank 1

Sketch of Proof (continuation).

- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$

Therefore

II. Operators of rank 1

Sketch of Proof (continuation).

- $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y} \quad$ (proved)
- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$

Therefore

II. Operators of rank 1

Sketch of Proof (continuation).

- $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y} \quad$ (proved)
- Proving that $x \otimes z \in \mathcal{L}$ when $P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup \quad P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$

Therefore

II. Operators of rank 1

Sketch of Proof (continuation).

- $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y} \quad$ (proved)
- Proving that $x \otimes z \in \mathcal{L} \quad$ when $\quad P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup_{P \in \mathcal{N}, P<P_{z}} P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$

Therefore

II. Operators of rank 1

Sketch of Proof (continuation).

- $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y} \quad$ (proved)
- Proving that $x \otimes z \in \mathcal{L} \quad$ when $\quad P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup_{P \in \mathcal{N}, P<P_{z}} P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$
$\left(z_{n}\right)$ lies in

$$
\bigcup_{\mathcal{N}, P<P_{z}}
$$

Therefore

II. Operators of rank 1

Sketch of Proof (continuation).

- $x \otimes z \in \mathcal{L}$ when $P_{z}<P_{y} \quad$ (proved)
- Proving that $x \otimes z \in \mathcal{L} \quad$ when $\quad P_{z}=P_{y}$

$$
P_{y}(\mathcal{H})=P_{z}(\mathcal{H})=\bigcup_{P \in \mathcal{N}, P<P_{z}} P(\mathcal{H})
$$

There exists a sequence $\left(z_{n}\right)$

$$
\left(z_{n}\right) \quad \text { lies in } \bigcup_{P \in \mathcal{N}, P<P_{z}} P(\mathcal{H}) \quad \text { with } \quad z_{n} \longrightarrow z
$$

Therefore

$$
x \otimes z_{n} \longrightarrow x \otimes z \quad \text { and } \quad x \otimes z \in \mathcal{L} \quad\left(\text { note: } \quad x \otimes z_{n} \in \mathcal{L}\right)
$$

II. Operators of rank 1

Sketch of Proof (continuation).
(1) $x \otimes z \in \mathcal{L}$ (proved)
(2) $w \otimes y \in \mathcal{L} \quad$ (similar)

By 1. above,

Applying 2. to $x \otimes z$

II. Operators of rank 1

Sketch of Proof (continuation).
(1) $x \otimes z \in \mathcal{L} \quad$ (proved)
(2) $w \otimes y \in \mathcal{L} \quad$ (similar)
(3) $w \otimes z$

II. Operators of rank 1

Sketch of Proof (continuation).
(1) $x \otimes z \in \mathcal{L} \quad$ (proved)
(2) $w \otimes y \in \mathcal{L} \quad$ (similar)
(3) $w \otimes z$

By 1. above,

$$
x \otimes z \in \mathcal{L}
$$

Applying 2. to $x \otimes z$

$$
w \otimes z \in \mathcal{L}
$$

II. Operators of rank 1

Recall that a mapping $\varphi: \mathcal{N} \rightarrow \mathcal{N}$, defined on a nest \mathcal{N}, is called a homomorphism if, for all projections P and Q in \mathcal{N},

$$
P \leq Q \quad \Longrightarrow \quad \varphi(P) \leq \varphi(Q)
$$

A homomorphism φ is said to be left order continuous if, for all subsets \mathcal{M} of the nest \mathcal{N}, the projection $\varphi(\bigvee \mathcal{M})$ is equal to the supremum $\bigvee \varphi(\mathcal{M})$.

II. Operators of rank 1

Proposition

$\mathcal{T}(\mathcal{N})$ continuous nest algebra; \mathcal{L} norm closed Lie ideal Let, for all $P \in \mathcal{N}$,

$$
\begin{equation*}
P^{\prime}=\bigvee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\} \tag{1}
\end{equation*}
$$

Then

- the mapping $P^{\prime} \mapsto P$ is a left order continuous homomorphism -

$$
P \leq P^{\prime} \quad \text { for all } \quad P \in \mathcal{N}
$$

II. Operators of rank 1

Characterisation of the rank 1 operators in \mathcal{L}

Lemma

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal
Then

$$
\begin{gathered}
x \otimes y \in \mathcal{L} \quad \text { if and only if, for all projections } P \in \mathcal{N}, \\
\qquad P^{\prime \perp}(x \otimes y) P=0
\end{gathered}
$$

Here $P \mapsto P^{\prime}$ is the left order continuous homomorphism defined above.

III. Finite rank operators

Decomposability of the finite rank operators in \mathcal{L}

Theorem

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal, $T \in \mathcal{L}$ finite rank operator

Then
T can be written as a finite sum of rank one operators lying in \mathcal{L}.

III. Finite rank operators

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof.

- Assertion holds if $T=0$ or if T is a rank one operator.
$T \in \mathcal{L}$ operator of rank $n \geq 2$
It is possible to write

where, for all $i=1, \ldots, n$,

$$
x_{i} \otimes y_{i} \in \mathcal{T}(\mathcal{N})
$$

Suppose that (without loss of generality)

III. Finite rank operators

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof.

- Assertion holds if $T=0$ or if T is a rank one operator.
- $T \in \mathcal{L}$ operator of rank $n \geq 2$

It is possible to write

where, for all $i=1, \ldots, n$,

$$
x_{i} \otimes y_{i} \in \mathcal{T}(\mathcal{N})
$$

Suppose that (without loss of generality)

III. Finite rank operators

Sketch of Proof.

- Assertion holds if $T=0$ or if T is a rank one operator.
- $T \in \mathcal{L}$ operator of rank $n \geq 2$

It is possible to write

$$
T=\sum_{i=1}^{n} x_{i} \otimes y_{i}
$$

where, for all $i=1, \ldots, n$,

$$
\begin{equation*}
x_{i} \otimes y_{i} \in \mathcal{T}(\mathcal{N}) \tag{1,3}
\end{equation*}
$$

Suppose that (without loss of generality)

III. Finite rank operators

Sketch of Proof.

- Assertion holds if $T=0$ or if T is a rank one operator.
- $T \in \mathcal{L}$ operator of rank $n \geq 2$

It is possible to write

$$
T=\sum_{i=1}^{n} x_{i} \otimes y_{i}
$$

where, for all $i=1, \ldots, n$,

$$
\begin{equation*}
x_{i} \otimes y_{i} \in \mathcal{T}(\mathcal{N}) \tag{1,3}
\end{equation*}
$$

Suppose that (without loss of generality)

$$
\hat{P}_{x_{1}} \leq \hat{P}_{x_{2}} \leq \cdots \leq \hat{P}_{x_{n}}
$$

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof (continuation).

(1) $\hat{P}_{x_{1}}$

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof (continuation).
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$

Proof of case

(1) \hat{P}_{x+}

III. Finite rank operators

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof (continuation).
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$
(2) $\hat{P}_{x_{1}}=\hat{P}_{x_{2}}=\cdots=\hat{P}_{x_{n}}$

(8)

Proof of case

(1) \hat{P}_{x}

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof (continuation).
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$
(2) $\hat{P}_{x_{1}}=\hat{P}_{x_{2}}=\cdots=\hat{P}_{x_{n}}$
(3) $\hat{P}_{x_{1}} \leq \hat{P}_{x_{2}} \leq \cdots \leq \hat{P}_{x_{n}}$

Proof of case

(1) $\hat{P}_{x_{1}}$

III. Finite rank operators

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Sketch of Proof (continuation).
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$
(2) $\hat{P}_{x_{1}}=\hat{P}_{x_{2}}=\cdots=\hat{P}_{x_{n}}$
(3) $\hat{P}_{x_{1}} \leq \hat{P}_{x_{2}} \leq \cdots \leq \hat{P}_{x_{n}}$

Proof of case
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$

III. Finite rank operators

Sketch of Proof (continuation).
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$
(2) $\hat{P}_{x_{1}}=\hat{P}_{x_{2}}=\cdots=\hat{P}_{x_{n}}$
(3) $\hat{P}_{x_{1}} \leq \hat{P}_{x_{2}} \leq \cdots \leq \hat{P}_{x_{n}}$

Proof of case
(1) $\hat{P}_{x_{1}}<\cdots<\hat{P}_{x_{n}}$

$$
\begin{aligned}
\mathcal{L} \ni\left[\hat{P}_{x_{n}}, T\right] & =\hat{P}_{x_{n}}\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right)-\left(\sum_{i=1}^{n} x_{i} \otimes y_{i}\right) \hat{P}_{x_{n}} \\
& =\sum_{i=1}^{n} x_{i} \otimes\left(\hat{P}_{x_{n}} y_{i}\right)-\sum_{i=1}^{n}\left(\hat{P}_{x_{n}} x_{i}\right) \otimes y_{i} \\
& =T-\sum_{i=1}^{n-1}\left(\hat{P}_{x_{n}} x_{i}\right) \otimes y_{i}
\end{aligned}
$$

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Hence

$$
T_{1}=\sum_{i=1}^{n-1}\left(\hat{P}_{x_{n}} x_{i}\right) \otimes y_{i}
$$

has rank equal to $n-1$ (not difficult to see) and lies in \mathcal{L}. If $n=2$, the proof ends.
If $n>2$, analogously,

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Hence

$$
T_{1}=\sum_{i=1}^{n-1}\left(\hat{P}_{x_{n}} x_{i}\right) \otimes y_{i}
$$

has rank equal to $n-1$ (not difficult to see) and lies in \mathcal{L}. If $n=2$, the proof ends.
If $n>2$, analogously,

$$
\mathcal{L} \ni\left[\hat{P}_{x_{n-1}}, T_{1}\right]=T_{1}-\sum_{i=1}^{n-2}\left(\hat{P}_{x_{n-1}} x_{i}\right) \otimes y_{i}
$$

and

$$
\mathcal{L} \ni T_{2}=\sum_{i=1}^{n-2}\left(\hat{P}_{x_{n-1}} x_{i}\right) \otimes y_{i}
$$

is rank $n-2$ operator.

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Repeating the process

$$
\mathcal{L} \ni T_{n-1}=\left(\hat{P}_{x_{2}} x_{1}\right) \otimes y_{1}
$$

it follows that $\quad x_{1} \otimes y_{1} \in \mathcal{L} \quad$ and $\quad\left(\hat{P}_{x_{i}}\right) x_{1} \otimes y_{1} \in \mathcal{L}$
recall the "corner" theorem

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Repeating the process

$$
\mathcal{L} \ni T_{n-1}=\left(\hat{P}_{x_{2}} x_{1}\right) \otimes y_{1}
$$

Since

$$
\hat{P}_{\hat{P}_{x_{i} x_{1}}}=\hat{P}_{x_{1}} \quad \text { for all } \quad i \in\{2, \ldots, n\},
$$

it follows that

and

recall the "corner" theorem

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Repeating the process

$$
\mathcal{L} \ni T_{n-1}=\left(\hat{P}_{x_{2}} x_{1}\right) \otimes y_{1}
$$

Since

$$
\hat{P}_{\hat{P}_{x_{i}} x_{1}}=\hat{P}_{x_{1}} \quad \text { for all } \quad i \in\{2, \ldots, n\},
$$

it follows that $\quad x_{1} \otimes y_{1} \in \mathcal{L} \quad$ and $\quad\left(\hat{P}_{x_{i}}\right) x_{1} \otimes y_{1} \in \mathcal{L}$
recall the "corner" theorem

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Repeating the process

$$
\mathcal{L} \ni T_{n-1}=\left(\hat{P}_{x_{2}} x_{1}\right) \otimes y_{1}
$$

Since

$$
\hat{P}_{\hat{P}_{x_{i} x_{1}}}=\hat{P}_{x_{1}} \quad \text { for all } \quad i \in\{2, \ldots, n\},
$$

it follows that $\quad x_{1} \otimes y_{1} \in \mathcal{L} \quad$ and $\quad\left(\hat{P}_{x_{i}}\right) x_{1} \otimes y_{1} \in \mathcal{L}$
recall the "corner" theorem
$\left[\begin{array}{l|c}0 & x_{\mathbf{1}} \otimes y_{\mathbf{1}} \\ \hline 0 & 0\end{array}\right]$

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Using now back substitution in the equality

$$
T_{n-2}=\left(\hat{P}_{x_{3}} x_{1}\right) \otimes y_{1}+\left(\hat{P}_{x_{3}} x_{2}\right) \otimes y_{2}
$$

similarly yields that,

$$
x_{2} \otimes y_{2} \in \mathcal{L} \quad\left(\hat{P}_{x_{i}} x_{2}\right) \otimes y_{2} \in \mathcal{L}
$$

for all $i=3, \ldots, n$.
Go back again.
Proof complete after repeating this reasoning sufficiently many times.

III. Finite rank operators

$$
\hat{P}_{x}=V\{Q \in \mathcal{N}: Q x=0\}
$$

Using now back substitution in the equality

$$
T_{n-2}=\left(\hat{P}_{x_{3}} x_{1}\right) \otimes y_{1}+\left(\hat{P}_{x_{3}} x_{2}\right) \otimes y_{2}
$$

similarly yields that,

$$
x_{2} \otimes y_{2} \in \mathcal{L} \quad\left(\hat{P}_{x_{i}} x_{2}\right) \otimes y_{2} \in \mathcal{L}
$$

for all $i=3, \ldots, n$.
Go back again...

Proof complete after repeating this reasoning sufficiently many times.

III. Finite rank operators

$$
\hat{P}_{x}=\bigvee\{Q \in \mathcal{N}: Q x=0\}
$$

Using now back substitution in the equality

$$
T_{n-2}=\left(\hat{P}_{x_{3}} x_{1}\right) \otimes y_{1}+\left(\hat{P}_{x_{3}} x_{2}\right) \otimes y_{2}
$$

similarly yields that,

$$
x_{2} \otimes y_{2} \in \mathcal{L} \quad\left(\hat{P}_{x_{i}} x_{2}\right) \otimes y_{2} \in \mathcal{L}
$$

for all $i=3, \ldots, n$.
Go back again...
Proof complete after repeating this reasoning sufficiently many times.

III. Finite rank operators

 $P \mapsto P^{\prime}=\vee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\}$Characterisation of the finite rank operators in \mathcal{L}

Theorem

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal, T finite rank operator

Then

$$
T \in \mathcal{L} \quad \text { if and only if, for all projections } P \in \mathcal{N},
$$

$$
P^{\prime \perp} T P=0
$$

III. Finite rank operators

$$
P \mapsto P^{\prime}=\vee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\}
$$

Proof. Consequence of the decomposability of the finite rank operators and the characterisation of rank 1 operators in \mathcal{L}.
recall the lemma

$$
x \otimes y \in \mathcal{L} \quad \text { iff } \quad P^{\prime \perp}(x \otimes y) P=0
$$

III. Finite rank operators

$$
P \mapsto P^{\prime}=\vee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\}
$$

Let

- $\mathcal{F}_{\mathcal{L}}$ - set of finite rank operators in \mathcal{L}
- $\mathcal{B}=\left\{S \in B(\mathcal{H}): P^{\prime \perp} S P=0\right\} \quad$ associative ideal of $\mathcal{T}(\mathcal{N})$
- $\mathcal{F}_{\mathcal{L}}$ associative ideal
(since $\left.\mathcal{F}_{\mathcal{L}} \subseteq \mathcal{B}\right)$

III. Finite rank operators

$$
P \mapsto P^{\prime}=\vee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\}
$$

Let

- $\mathcal{F}_{\mathcal{L}}$ - set of finite rank operators in \mathcal{L}
- $\mathcal{B}=\left\{S \in B(\mathcal{H}): P^{\prime \perp} S P=0\right\} \quad$ associative ideal of $\mathcal{T}(\mathcal{N})$
- $\mathcal{F}_{\mathcal{L}}$ associative ideal

III. Finite rank operators

$$
P \mapsto P^{\prime}=\vee\left\{P_{y} \in \mathcal{N}: x \otimes y \in \mathcal{L} \wedge \hat{P}_{x}<P\right\}
$$

Let

- $\mathcal{F}_{\mathcal{L}}$ - set of finite rank operators in \mathcal{L}
- $\mathcal{B}=\left\{S \in B(\mathcal{H}): P^{\prime \perp} S P=0\right\} \quad$ associative ideal of $\mathcal{T}(\mathcal{N})$
- $\mathcal{F}_{\mathcal{L}}$ associative ideal $\left(\right.$ since $\left.\mathcal{F}_{\mathcal{L}} \subseteq \mathcal{B}\right)$

IV. Example

Continuity of the nest is important

- \mathcal{N} - nest such that

$\operatorname{dim}\left(P-P_{-}\right)(\mathcal{H}) \geq 2$.

- \mathcal{L} - norm closed subspace generated by the projection P - P

$$
\left\{S \in \mathcal{T}(\mathcal{N}): S=P_{-} S P_{-}^{\perp}+\left(P-P_{-}\right) S P^{\perp}\right\}
$$

IV. Example

Continuity of the nest is important

Let

- \mathcal{N} - nest such that

$$
\exists P_{\in \mathcal{N}} \quad \operatorname{dim}\left(P-P_{-}\right)(\mathcal{H}) \geq 2
$$

- \mathcal{L} - norm closed subspace generated by the projection $P-P$

IV. Example

Continuity of the nest is important

Let

- \mathcal{N} - nest such that

$$
\exists_{P \in \mathcal{N}} \quad \operatorname{dim}\left(P-P_{-}\right)(\mathcal{H}) \geq 2
$$

- \mathcal{L} - norm closed subspace generated by the projection $P-P_{-}$ and

$$
\left\{S \in \mathcal{T}(\mathcal{N}): S=P_{-} S P_{-}^{\perp}+\left(P-P_{-}\right) S P^{\perp}\right\} \quad \text { (associative ideal) }
$$

IV. Example

(1) \mathcal{L} is a norm closed Lie ideal and does not contain any (finite rank) operator T satisfying

$$
T=\left(P-P_{-}\right) T\left(P-P_{-}\right),
$$

apart from those operators lying in the span of $P-P_{-}$.
(2) Hence none of the results presented for the finite rank operators apply to the norm closed Lie ideal \mathcal{L}.

IV. Example

(1) \mathcal{L} is a norm closed Lie ideal and does not contain any (finite rank) operator T satisfying

$$
T=\left(P-P_{-}\right) T\left(P-P_{-}\right),
$$

apart from those operators lying in the span of $P-P_{-}$.
(2) Hence none of the results presented for the finite rank operators apply to the norm closed Lie ideal \mathcal{L}.

V. Compact operators

Define, for all projections P in the nest \mathcal{N},

$$
\mathcal{Z}_{P}=P(\mathcal{H})
$$

Recall for a $\mathcal{T}(\mathcal{N})$-bimodule \mathcal{J}

- support function $\Phi_{\mathcal{J}}$

$$
\mathbb{Z}_{P} \mapsto \Phi_{\mathcal{J}}\left(\mathbb{Z}_{P}\right) \quad \text { with } \quad \phi_{\mathcal{J}}\left(\mathbb{Z}_{P}\right)=\overline{\mathcal{J}\left(\mathbb{Z}_{P}\right)}
$$

- $\mathcal{T}(\mathcal{N})$-bimodule

$$
\operatorname{Bim}\left(\Phi_{\mathcal{J}}\right)=\left\{T \in B(\mathcal{H}): T \mathbb{Z}_{P} \subseteq \Phi_{\mathcal{J}}\left(\mathbb{Z}_{P}\right)\right\}
$$

V. Compact operators

Define, for all projections P in the nest \mathcal{N},

$$
\mathcal{Z}_{P}=P(\mathcal{H})
$$

Recall for a $\mathcal{T}(\mathcal{N})$-bimodule \mathcal{J}

- support function $\Phi_{\mathcal{J}}$

- $\mathcal{T}(\mathcal{N})$-bimodule

$$
\operatorname{Bim}\left(\Phi_{\mathcal{J}}\right)=\left\{T \in B(\mathcal{H}): T \mathbb{Z}_{P} \subseteq \Phi_{\mathcal{J}}\left(\mathbb{Z}_{P}\right)\right\}
$$

V. Compact operators

Define, for all projections P in the nest \mathcal{N},

$$
\mathcal{Z}_{P}=P(\mathcal{H})
$$

Recall for a $\mathcal{T}(\mathcal{N})$-bimodule \mathcal{J}

- support function $\Phi_{\mathcal{J}}$

$$
\mathcal{Z}_{P} \mapsto \Phi_{\mathcal{J}}\left(\mathcal{Z}_{P}\right) \quad \text { with } \quad \Phi_{\mathcal{J}}\left(\mathcal{Z}_{P}\right)=\overline{\mathcal{J}\left(\mathcal{Z}_{P}\right)}
$$

- $\mathcal{T}(\mathcal{N})$-bimodule

V. Compact operators

Define, for all projections P in the nest \mathcal{N},

$$
\mathcal{Z}_{P}=P(\mathcal{H})
$$

Recall for a $\mathcal{T}(\mathcal{N})$-bimodule \mathcal{J}

- support function $\Phi_{\mathcal{J}}$

$$
\mathcal{Z}_{P} \mapsto \Phi_{\mathcal{J}}\left(\mathcal{Z}_{P}\right) \quad \text { with } \quad \Phi_{\mathcal{J}}\left(\mathcal{Z}_{P}\right)=\overline{\mathcal{J}\left(\mathcal{Z}_{P}\right)}
$$

- $\mathcal{T}(\mathcal{N})$-bimodule

$$
\operatorname{Bim}\left(\Phi_{\mathcal{J}}\right)=\left\{T \in B(\mathcal{H}): T \mathcal{Z}_{P} \subseteq \Phi_{\mathcal{J}}\left(\mathcal{Z}_{P}\right)\right\}
$$

(cf. [2]).

V. Compact operators

Denote by $\mathcal{K}(\mathcal{H})$ the associative ideal of compact operators in $B(\mathcal{H})$.

Corollary

$\mathcal{T}(\mathcal{N})$ continuous nest algebra, \mathcal{L} norm closed Lie ideal, $\mathcal{F}_{\mathcal{L}}$ set of finite rank operators in \mathcal{L}

Then
-

$$
\overline{\mathcal{F}_{\mathcal{L}}}=\operatorname{Bim}\left(\Phi_{\mathcal{F}_{\mathcal{L}}}\right) \cap \mathcal{K}(\mathcal{H})
$$

- $\operatorname{Bim}\left(\Phi_{\mathcal{F}_{\mathcal{L}}}\right) \cap \mathcal{K}(\mathcal{H})$ is an associative ideal of $\mathcal{T}(\mathcal{N})$

VI．Selected references

图 K．R．Davidson，Nest Algebras，Longman， 1988.
R K．R．Davidson，A．P．Donsig and T．D．Hudson，Norm－closed bimodules of nest algebras，J．Operator Theory 39 （1998）， 59－87．
图 J．A．Erdos，Operators of finite rank in nest algebras，J． London Math．Soc． 43 （1968），391－397．
目 J．A．Erdos and S．C．Power，Weakly closed ideals of nest algebras，J．Operator Theory（2） 7 （1982），219－235．
围 T．D．Hudson，L．W．Marcoux and A．R．Sourour，Lie ideals in triangular operator algebras，Trans．Amer．Math．Soc．（12） 126 （1998），3321－3339．

VI. Selected references

(1) Oliveira, Weak*-closed Jordan ideals of nest algebras, Math. Nachr. 248-249 (2003), 129-143.
围 L. Oliveira, Finite rank operators in Lie ideals of nest algebras, arXiv:1001.3269 (submitted).
囯 J. R. Ringrose, On some algebras of operators, Proc. London Math. Soc. 15 (1965), 61-83.

