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I. Notation

• H is a complex Hilbert space; B(H) is the set of bounded linear
operators on H

• projection P in B(H)

P2 = P and P∗ = P

• P,Q projections

P ≤ Q if PQ = P(= QP)

• The set of projections together with the partial order relation
“ ≤ ” is a complete lattice.



I. Notation

• Nest N
a totally ordered family of projections N ⊆ B(H) containing 0 and
the identity I

• Complete nest N
if N is a complete sublattice of the lattice of projections in B(H)

• P ∈ N
P− =

∨
{Q ∈ N : Q < P}

• Continuous nest N

P− = P for all P ∈ N



I. Notation

Nest algebra T (N )

all operators T ∈ B(H) such that, for all P ∈ N ,

T (P(H)) ⊆ P(H)

equivalently
P⊥TP = 0

where
P⊥ = I − P

Continuous nest algebra T (N ) – nest N is continuous

(From now on all nests considered will be continuous nests)
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I. Notation

Nest algebra T (N ) with product

[T , S ] = TS − ST

is Lie algebra

• Lie ideal L
complex subspace L of the nest algebra T (N ) s. t.

[L, T (N )] ⊆ L



II. Rank 1 operators

rank 1 operator x ⊗ y : H → H

z 7→ 〈z , x〉y x , y , z ∈ H

x ⊗ y ∈ T (N ) iff P−x = 0 and Py = y (P ∈ N )

where
P =

∧
{Q ∈ N : Qy = y}

(cf. [3])

Consequence: x ⊥ y (since the nest N is continuous)
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II. Rank 1 operators

Projections associated to x ⊗ y

P̂x =
∨
{Q ∈ N : Qx = 0}

Py =
∧
{Q ∈ N : Qy = y}

Consequences:

1 Pyy = y and P̂xx = 0

2 x ⊗ y ∈ T (N ) iff Py ≤ P̂x

3 x ⊗ y ∈ T (N ) ⇒ Pyx = 0
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II. Operators of rank 1

Theorem

T (N ) continuous nest algebra, L norm closed Lie ideal,
x ⊗ y ∈ L and w ⊗ z ∈ T (N ) satisfying

P̂x ≤ P̂w and Pz ≤ Py .

Then, w ⊗ z ∈ L.

The “corner” of x ⊗ y


0 PyT (N )P̂⊥x

0 0
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II. Operators of rank 1

Sketch of Proof.
Proving that x ⊗ z ∈ L when Pz < Py

Define y ′ = P⊥z y (⇒ y ′ 6= 0)

Pzy ′ = 0 ⇒ Pz ≤ P̂y ′ ⇒ y ′ ⊗ z ∈ T (N )

Therefore

L 3 [x ⊗ y , y ′ ⊗ z ] =< z , x > (y ′ ⊗ y)− < y , y ′ > (x ⊗ z)

= − < y , y ′ > (x ⊗ z) = −‖y ′‖2(x ⊗ z)

Hence, x ⊗ z ∈ L.
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II. Operators of rank 1

Sketch of Proof (continuation).
x ⊗ z ∈ L when Pz < Py (proved)

Proving that x ⊗ z ∈ L when Pz = Py

Py (H) = Pz(H) =
⋃

P∈N ,P<Pz

P(H)

There exists a sequence (zn)

(zn) lies in
⋃

P∈N ,P<Pz

P(H) with zn −→ z

Therefore

x⊗zn −→ x⊗z and x⊗z ∈ L (note: x⊗zn ∈ L)
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II. Operators of rank 1

Recall that a mapping ϕ : N → N , defined on a nest N , is called a
homomorphism if, for all projections P and Q in N ,

P ≤ Q =⇒ ϕ(P) ≤ ϕ(Q).

A homomorphism ϕ is said to be left order continuous if, for all
subsetsM of the nest N , the projection ϕ(

∨
M) is equal to the

supremum
∨

ϕ(M).



II. Operators of rank 1

Proposition

T (N ) continuous nest algebra; L norm closed Lie ideal
Let, for all P ∈ N ,

P ′ =
∨{

Py ∈ N : x ⊗ y ∈ L ∧ P̂x < P
}

(1)

Then
the mapping P ′ 7→ P is a left order continuous homomorphism

P ≤ P ′ for all P ∈ N



II. Operators of rank 1

Characterisation of the rank 1 operators in L

Lemma

T (N ) continuous nest algebra, L norm closed Lie ideal

Then
x ⊗ y ∈ L if and only if, for all projections P ∈ N ,

P ′⊥(x ⊗ y)P = 0

Here P 7→ P ′ is the left order continuous homomorphism defined above.



III. Finite rank operators

Decomposability of the finite rank operators in L

Theorem

T (N ) continuous nest algebra, L norm closed Lie ideal,
T ∈ L finite rank operator

Then

T can be written as a finite sum of rank one operators lying in L.



III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Sketch of Proof.

Assertion holds if T = 0 or if T is a rank one operator.
T ∈ L operator of rank n ≥ 2

It is possible to write

T =
n∑

i=1

xi ⊗ yi

where, for all i = 1, . . . , n,

xi ⊗ yi ∈ T (N ) (cf. [1, 3])

Suppose that (without loss of generality)

P̂x1 ≤ P̂x2 ≤ · · · ≤ P̂xn



III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Sketch of Proof.

Assertion holds if T = 0 or if T is a rank one operator.
T ∈ L operator of rank n ≥ 2

It is possible to write

T =
n∑

i=1

xi ⊗ yi

where, for all i = 1, . . . , n,

xi ⊗ yi ∈ T (N ) (cf. [1, 3])

Suppose that (without loss of generality)

P̂x1 ≤ P̂x2 ≤ · · · ≤ P̂xn



III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Sketch of Proof.

Assertion holds if T = 0 or if T is a rank one operator.
T ∈ L operator of rank n ≥ 2

It is possible to write

T =
n∑

i=1

xi ⊗ yi

where, for all i = 1, . . . , n,

xi ⊗ yi ∈ T (N ) (cf. [1, 3])

Suppose that (without loss of generality)

P̂x1 ≤ P̂x2 ≤ · · · ≤ P̂xn



III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Sketch of Proof.

Assertion holds if T = 0 or if T is a rank one operator.
T ∈ L operator of rank n ≥ 2

It is possible to write

T =
n∑

i=1

xi ⊗ yi

where, for all i = 1, . . . , n,

xi ⊗ yi ∈ T (N ) (cf. [1, 3])

Suppose that (without loss of generality)

P̂x1 ≤ P̂x2 ≤ · · · ≤ P̂xn
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W
{Q ∈ N : Qx = 0}

Sketch of Proof (continuation).

1 P̂x1 < · · · < P̂xn

2 P̂x1 = P̂x2 = · · · = P̂xn

3 P̂x1 ≤ P̂x2 ≤ · · · ≤ P̂xn

Proof of case
1 P̂x1 < · · · < P̂xn

L 3
[
P̂xn ,T

]
= P̂xn

( n∑
i=1

xi ⊗ yi

)
−
( n∑

i=1

xi ⊗ yi

)
P̂xn

=
n∑

i=1

xi ⊗ (P̂xnyi )−
n∑

i=1

(P̂xnxi )⊗ yi

= T −
n−1∑
i=1

(P̂xnxi )⊗ yi
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Hence

T1 =
n−1∑
i=1

(P̂xnxi )⊗ yi

has rank equal to n − 1 (not difficult to see) and lies in L. If n = 2,
the proof ends.
If n > 2, analogously,

L 3
[
P̂xn−1 ,T1

]
= T1 −

n−2∑
i=1

(P̂xn−1xi )⊗ yi

and

L 3 T2 =
n−2∑
i=1

(P̂xn−1xi )⊗ yi

is rank n − 2 operator.
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III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Repeating the process

L 3 Tn−1 = (P̂x2x1)⊗ y1

Since

P̂P̂xi x1
= P̂x1 for all i ∈ {2, . . . , n},

it follows that x1 ⊗ y1 ∈ L and (P̂xi )x1 ⊗ y1 ∈ L

recall the “corner” theorem26664
0 x1 ⊗ y1

0 0

37775
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III. Finite rank operators P̂x =
W
{Q ∈ N : Qx = 0}

Using now back substitution in the equality

Tn−2 = (P̂x3x1)⊗ y1 + (P̂x3x2)⊗ y2,

similarly yields that,

x2 ⊗ y2 ∈ L (P̂xi x2)⊗ y2 ∈ L

for all i = 3, . . . , n.

Go back again...

Proof complete after repeating this reasoning sufficiently many
times.
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III. Finite rank operators P 7→ P′ =
W n

Py ∈ N : x ⊗ y ∈ L ∧ P̂x < P
o

Characterisation of the finite rank operators in L

Theorem

T (N ) continuous nest algebra, L norm closed Lie ideal,
T finite rank operator

Then
T ∈ L if and only if, for all projections P ∈ N ,

P ′⊥TP = 0



III. Finite rank operators P 7→ P′ =
W n

Py ∈ N : x ⊗ y ∈ L ∧ P̂x < P
o

Proof. Consequence of the decomposability of the finite rank
operators and the characterisation of rank 1 operators in L.

recall the lemma

x ⊗ y ∈ L iff P ′⊥(x ⊗ y)P = 0



III. Finite rank operators P 7→ P′ =
W n

Py ∈ N : x ⊗ y ∈ L ∧ P̂x < P
o

Let

FL - set of finite rank operators in L

B = {S ∈ B(H) : P ′⊥SP = 0} associative ideal of T (N )

FL associative ideal (since FL ⊆ B)
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IV. Example

Continuity of the nest is important

Let
N - nest such that

∃P∈N dim(P − P−)(H) ≥ 2.

L - norm closed subspace generated by the projection P − P−
and

{
S ∈ T (N ) : S = P−SP⊥− + (P − P−)SP⊥

}
(associative ideal)
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IV. Example

1 L is a norm closed Lie ideal and does not contain any (finite
rank) operator T satisfying

T = (P − P−)T (P − P−),

apart from those operators lying in the span of P − P−.

2 Hence none of the results presented for the finite rank
operators apply to the norm closed Lie ideal L.
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V. Compact operators

Define, for all projections P in the nest N ,

ZP = P(H).

Recall for a T (N )-bimodule J

support function ΦJ

ZP 7→ ΦJ (ZP) with ΦJ (ZP) = J (ZP)

T (N )-bimodule

Bim(ΦJ ) = {T ∈ B(H) : TZP ⊆ ΦJ (ZP)}

(cf. [2]).



V. Compact operators

Define, for all projections P in the nest N ,

ZP = P(H).

Recall for a T (N )-bimodule J

support function ΦJ

ZP 7→ ΦJ (ZP) with ΦJ (ZP) = J (ZP)

T (N )-bimodule

Bim(ΦJ ) = {T ∈ B(H) : TZP ⊆ ΦJ (ZP)}

(cf. [2]).



V. Compact operators

Define, for all projections P in the nest N ,

ZP = P(H).

Recall for a T (N )-bimodule J

support function ΦJ

ZP 7→ ΦJ (ZP) with ΦJ (ZP) = J (ZP)

T (N )-bimodule

Bim(ΦJ ) = {T ∈ B(H) : TZP ⊆ ΦJ (ZP)}

(cf. [2]).



V. Compact operators

Define, for all projections P in the nest N ,

ZP = P(H).

Recall for a T (N )-bimodule J

support function ΦJ

ZP 7→ ΦJ (ZP) with ΦJ (ZP) = J (ZP)

T (N )-bimodule

Bim(ΦJ ) = {T ∈ B(H) : TZP ⊆ ΦJ (ZP)}

(cf. [2]).



V. Compact operators

Denote by K(H) the associative ideal of compact operators in
B(H).

Corollary

T (N ) continuous nest algebra, L norm closed Lie ideal,
FL set of finite rank operators in L

Then

FL = Bim(ΦFL) ∩ K(H)

Bim(ΦFL) ∩ K(H) is an associative ideal of T (N )
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