Weakly wandering vectors

Vladimir Müller

Timisoara, 2010
joint work with Yu. Tomilov, Torun

Definition

Let $T \in B(H)$. A vector $x \in H$ is called wandering for T if $T^{n} x \perp T^{m} x$ for all $n \neq m$.

Definition

Let $T \in B(H)$. A vector $x \in H$ is called wandering for T if $T^{n} x \perp T^{m} x$ for all $n \neq m$.

Definition

Let $T \in B(H)$. A vector $x \in H$ is weakly wandering for T if the orbit $\left\{T^{n} x: n=0,1, \ldots\right\}$ contains infinitely many mutually orthogonal vectors.

Theorem

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

Theorem

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:
(i) there exists a dense subset of weakly wandering vectors;

Theorem

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:
(i) there exists a dense subset of weakly wandering vectors;
(ii) the spectral measure of U is continuous,

Theorem

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:
(i) there exists a dense subset of weakly wandering vectors;
(ii) the spectral measure of U is continuous, i.e., $\sigma_{p}(U)=\emptyset$.

Example
 Let $T=\operatorname{diag}\left\{\frac{n}{n+1}: n=1,2, \ldots\right\}$.

Example
 Let $T=\operatorname{diag}\left\{\frac{n}{n+1}: n=1,2, \ldots\right\}$.

Then no orbit of T for $x \neq 0$ contains two orthogonal vectors.

Example

Let $k \in \mathbb{N}, \mu=e^{2 \pi i / k}$,

Example

Let $k \in \mathbb{N}, \mu=e^{2 \pi i / k}, S=\bigoplus_{j=1}^{k} \mu^{j} T$.

Example

Let $k \in \mathbb{N}, \mu=e^{2 \pi i / k}, S=\bigoplus_{j=1}^{k} \mu^{j} T$.

Then $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ and no orbit of T for $x \neq 0$ contains $k+1$ mutually orthogonal vectors.

Conjecture: if $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ then there are orbits containing k mutually orthogonal vectors.

Conjecture: if $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ then there are orbits containing k mutually orthogonal vectors.

NO

Conjecture: if $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ then there are orbits containing k mutually orthogonal vectors.

NO

Example

Let $\mu=e^{2 \pi i / 7}$,

Conjecture: if $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ then there are orbits containing k mutually orthogonal vectors.

NO

Example

Let $\mu=e^{2 \pi i / 7}, V=T \oplus \mu T \oplus \mu^{3} T$.

Conjecture: if $\operatorname{card} \sigma(T) \cap \mathbb{T}=k$ then there are orbits containing k mutually orthogonal vectors.

NO

Example
Let $\mu=e^{2 \pi i / 7}, V=T \oplus \mu T \oplus \mu^{3} T$.

Then $\operatorname{card} \sigma(T) \cap \mathbb{T}=3$ but no orbit of T for a nonzero vector x contains two orthogonal vectors.

Theorem

Let $T \in B(H)$ be a power bounded operator, $\operatorname{card} \sigma(T) \cap \mathbb{T}$ infinite and $\sigma_{p}(T) \cap \mathbb{T}=\emptyset$.

Theorem

Let $T \in B(H)$ be a power bounded operator, $\operatorname{card} \sigma(T) \cap \mathbb{T}$ infinite and $\sigma_{p}(T) \cap \mathbb{T}=\emptyset$. Then there exists a dense subset consisting of weakly wandering vectors.

Theorem

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset$. Then

$$
D-\lim \left\langle T^{n} x, y\right\rangle=0
$$

for all $x, y \in H$.

Theorem

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset$. Then

$$
D-\lim \left\langle T^{n} x, y\right\rangle=0
$$

for all $x, y \in H$.

The density of a set $A \subset \mathbb{N}$ is

$$
\operatorname{Dens}(A)=\lim _{n \rightarrow \infty} n^{-1} \operatorname{card}(A \cap\{1, \ldots, n\})
$$

Theorem

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset$. Then

$$
D-\lim \left\langle T^{n} x, y\right\rangle=0
$$

for all $x, y \in H$.

The density of a set $A \subset \mathbb{N}$ is

$$
\operatorname{Dens}(A)=\lim _{n \rightarrow \infty} n^{-1} \operatorname{card}(A \cap\{1, \ldots, n\})
$$

$D-\lim a_{n}=a \Longleftrightarrow$ there exists $A \subset \mathbb{N}$ of density 0 such that $\lim _{n \rightarrow \infty, n \notin A} \quad a_{n}=a$.

Lemma

Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset, \lambda \in \sigma(T) \cap \mathbb{T}$,

Lemma

Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset, \lambda \in \sigma(T) \cap \mathbb{T}$, $\varepsilon>0, M \subset H$, codim $M<\infty, n \in \mathbb{N}$.

Lemma

Let $T \in B(H)$ be power bounded, $\sigma_{p}(T) \cap \mathbb{T}=\emptyset, \lambda \in \sigma(T) \cap \mathbb{T}$, $\varepsilon>0, M \subset H$, $\operatorname{codim} M<\infty, n \in \mathbb{N}$. Then there exists $x \in M$, $\|x\|=1$ such that

$$
\left\|T^{j} x-\lambda^{j} x\right\|<\varepsilon \quad(j=1, \ldots, n) .
$$

Lemma

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}, \varepsilon>0$.

Lemma

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}, \varepsilon>0$. Then there exists $n \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{k} \in A$ such that

$$
\left|\lambda_{j}^{n}-\alpha_{j}\right|<\varepsilon \quad(j=1, \ldots, k) .
$$

Lemma

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{T}, \varepsilon>0$. Then there exists $n \in \mathbb{N}$ and $\lambda_{1}, \ldots, \lambda_{k} \in A$ such that

$$
\left|\lambda_{j}^{n}-\alpha_{j}\right|<\varepsilon \quad(j=1, \ldots, k) .
$$

Moreover, the set of such n is of positive density.

