Weakly wandering vectors

Vladimir Müller

Timisoara, 2010

Vladimir Müller Weakly wandering vectors

ヘロン 人間 とくほ とくほ とう

æ

joint work with Yu. Tomilov, Torun

ヘロト 人間 とくほとくほとう

₹ 990

Definition

Let $T \in B(H)$. A vector $x \in H$ is called wandering for T if $T^n x \perp T^m x$ for all $n \neq m$.

Definition

Let $T \in B(H)$. A vector $x \in H$ is called wandering for T if $T^n x \perp T^m x$ for all $n \neq m$.

Definition

Let $T \in B(H)$. A vector $x \in H$ is weakly wandering for T if the orbit $\{T^n x : n = 0, 1, ...\}$ contains infinitely many mutually orthogonal vectors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

(i) there exists a dense subset of weakly wandering vectors;

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

(i) there exists a dense subset of weakly wandering vectors;

(ii) the spectral measure of U is continuous,

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(Krengel 1972) Let $U \in B(H)$ be a unitary operator. The following statements are equivalent:

(i) there exists a dense subset of weakly wandering vectors;

(ii) the spectral measure of U is continuous,

i.e., $\sigma_{\rho}(U) = \emptyset$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let
$$T = \text{diag} \{ \frac{n}{n+1} : n = 1, 2, \dots \}.$$

Vladimir Müller Weakly wandering vectors

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Let
$$T = \text{diag} \{ \frac{n}{n+1} : n = 1, 2, \dots \}.$$

Then no orbit of T for $x \neq 0$ contains two orthogonal vectors.

Vladimir Müller Weakly wandering vectors

Let
$$k \in \mathbb{N}$$
, $\mu = e^{2\pi i/k}$,

Vladimir Müller Weakly wandering vectors

Let
$$k \in \mathbb{N}$$
, $\mu = e^{2\pi i/k}$, $S = \bigoplus_{j=1}^{k} \mu^{j} T$.

Vladimir Müller Weakly wandering vectors

Let
$$k \in \mathbb{N}$$
, $\mu = e^{2\pi i/k}$, $S = \bigoplus_{j=1}^{k} \mu^{j} T$.

Then card $\sigma(T) \cap \mathbb{T} = k$ and no orbit of *T* for $x \neq 0$ contains k + 1 mutually orthogonal vectors.

Vladimir Müller Weakly wandering vectors

ヘロン 人間 とくほ とくほ とう

NO

Vladimir Müller Weakly wandering vectors

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

NO

Example Let $\mu = e^{2\pi i/7}$,

NO

Example

Let
$$\mu = e^{2\pi i/7}$$
, $V = T \oplus \mu T \oplus \mu^3 T$.

NO

Example Let $\mu = e^{2\pi i/7}$, $V = T \oplus \mu T \oplus \mu^3 T$.

Then card $\sigma(T) \cap \mathbb{T} = 3$ but no orbit of *T* for a nonzero vector *x* contains two orthogonal vectors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let $T \in B(H)$ be a power bounded operator, card $\sigma(T) \cap \mathbb{T}$ infinite and $\sigma_p(T) \cap \mathbb{T} = \emptyset$.

Let $T \in B(H)$ be a power bounded operator, card $\sigma(T) \cap \mathbb{T}$ infinite and $\sigma_p(T) \cap \mathbb{T} = \emptyset$. Then there exists a dense subset consisting of weakly wandering vectors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$. Then

 $D - \lim \langle T^n x, y \rangle = 0$

for all $x, y \in H$.

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$. Then

 $D - \lim \langle T^n x, y \rangle = 0$

for all $x, y \in H$.

The density of a set $A \subset \mathbb{N}$ is

Dens (A) =
$$\lim_{n\to\infty} n^{-1}$$
 card (A \cap {1,..., n})

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

(Jacobs, de Leeuw, Glicksberg) Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$. Then

 $D - \lim \langle T^n x, y \rangle = 0$

for all $x, y \in H$.

The density of a set $A \subset \mathbb{N}$ is

Dens (A) =
$$\lim_{n\to\infty} n^{-1}$$
 card (A \cap {1,..., n})

 $D - \lim a_n = a \iff$ there exists $A \subset \mathbb{N}$ of density 0 such that $\lim_{n \to \infty, n \notin A} a_n = a$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$, $\lambda \in \sigma(T) \cap \mathbb{T}$,

Vladimir Müller Weakly wandering vectors

Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$, $\lambda \in \sigma(T) \cap \mathbb{T}$, $\varepsilon > 0$, $M \subset H$, codim $M < \infty$, $n \in \mathbb{N}$.

Let $T \in B(H)$ be power bounded, $\sigma_p(T) \cap \mathbb{T} = \emptyset$, $\lambda \in \sigma(T) \cap \mathbb{T}$, $\varepsilon > 0$, $M \subset H$, $\operatorname{codim} M < \infty$, $n \in \mathbb{N}$. Then there exists $x \in M$, ||x|| = 1 such that

$$\|T^{j}\mathbf{x}-\lambda^{j}\mathbf{x}\|<\varepsilon$$
 $(j=1,\ldots,n).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_1, \ldots, \alpha_k \in \mathbb{T}$, $\varepsilon > 0$.

Vladimir Müller Weakly wandering vectors

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_1, \ldots, \alpha_k \in \mathbb{T}$, $\varepsilon > 0$. Then there exists $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_k \in A$ such that

$$|\lambda_j^n - \alpha_j| < \varepsilon$$
 $(j = 1, \dots, k).$

Let $A \subset \mathbb{T}$ be an infinite subset, $\alpha_1, \ldots, \alpha_k \in \mathbb{T}$, $\varepsilon > 0$. Then there exists $n \in \mathbb{N}$ and $\lambda_1, \ldots, \lambda_k \in A$ such that

$$|\lambda_j^n - \alpha_j| < \varepsilon$$
 $(j = 1, \dots, k).$

Moreover, the set of such n is of positive density.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで