The asymptotic limit of a bicontraction and related results

Laurian Suciu
"Lucian Blaga" University of Sibiu, Romania

July 3, 2010
joint work with Nicolae Suciu

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H}, while I is the identity operator on \mathcal{H}.
Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator, $A \neq 0$. An operator $T \in \mathcal{B}(\mathcal{H})$ satisfying the operator inequality

$$
\begin{equation*}
T^{*} A T \leq A \tag{1}
\end{equation*}
$$

is called an A-contraction on \mathcal{H}. Also, T is called an
A-isometry if the equality in (1) occurs. It is easy to see from (1) that $\mathcal{N}(A)$ is an invariant subspace for T, and it is not invariant for T^{*}, in general.
An A-contraction T is regular (or T is A-regular) if

$$
\begin{equation*}
A T=A^{1 / 2} T A^{1 / 2} \tag{2}
\end{equation*}
$$

We know that if A is an orthogonal projection then any A-contraction is regular.

Let $T=\left(T_{0}, T_{1}\right)$ be a pair of commuting contractions on \mathcal{H}, that is $T_{i} \in \mathcal{B}(\mathcal{H}),\left\|T_{i}\right\| \leq 1(i=0,1)$ and $T_{0} T_{1}=T_{1} T_{0}$. Such T is called a bicontraction on \mathcal{H}, and when T_{0} and T_{1} are isometries, T is called a bi-isometry on \mathcal{H}.
Since T_{i} is a contraction, the asymptotic limit of T_{i} can be defined as

$$
\begin{equation*}
S_{T_{i}} h=\lim _{n \rightarrow \infty} T_{i}^{* n} T_{i}^{n} h \quad(h \in \mathcal{H}) \tag{3}
\end{equation*}
$$

Clearly, $0 \leq S_{T_{i}} \leq T_{i}^{*} T_{i}$ and T_{i} is a $S_{T_{i} \text {-isometry. Moreover, }}$ $\mathcal{N}\left(I-S_{T_{i}}\right)$ is the maximum invariant subspace for T_{i} on which T_{i} is an isometry, while $\mathcal{N}\left(S_{T_{i}}\right)$ is the maximum invariant subspace for T_{i} on which the sequence $\left\{T_{i}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges to 0 , for $i=0,1$.

We have that T_{1} is a $S_{T_{0}}$-contraction. Thus, one can define the operator $S_{T_{0}, T_{1}} \in \mathcal{B}(\mathcal{H})$ by

$$
\begin{equation*}
S_{T_{0}, T_{1}} h=\lim _{m \rightarrow \infty} T_{1}^{* m} S_{T_{0}} T_{1}^{m} h=\lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} T_{1}^{* m} T_{0}^{* n} T_{0}^{n} T_{1}^{m} h \tag{4}
\end{equation*}
$$

for $h \in \mathcal{H}$, and obviously $0 \leq S_{T_{0}, T_{1}} \leq S_{T_{0}}$.
By symmetry, T_{0} is a $S_{T_{1}}$-contraction, and so can be defined the operator $S_{T_{1}, T_{0}} \in \mathcal{B}(\mathcal{H})$ by

$$
\begin{equation*}
S_{T_{1}, T_{0}} h=\lim _{n \rightarrow \infty} T_{0}^{* n} S_{T_{1}} T_{0}^{n} h=\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} T_{0}^{* n} T_{1}^{* m} T_{1}^{m} T_{0}^{n} h . \tag{5}
\end{equation*}
$$

We get $S_{T_{0}, T_{1}}=S_{T_{1}, T_{0}}$, and so the operator

$$
\begin{equation*}
S_{T}:=S_{T_{0}, T_{1}}=S_{T_{1}, T_{0}} \tag{6}
\end{equation*}
$$

can be defined by any of the iterated limits of the sequence

$$
\left\{T_{1}^{* m} T_{0}^{* n} T_{0}^{n} T_{1}^{m}\right\}_{m, n \in \mathbb{N}}
$$

in the strong topology of $\mathcal{B}(\mathcal{H})$. The operator S_{T} is called the asymptotic limit of the bicontraction T, and clearly, T_{0} and T_{1} are S_{T}-isometries.

Theorem

For a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} one has

$$
\begin{equation*}
\mathcal{N}\left(I-S_{T}\right)=\bigcap_{m, n \in \mathbb{N}} \mathcal{N}\left(I-T_{1}^{* m} T_{0}^{* n} T_{0}^{n} T_{1}^{m}\right) \tag{7}
\end{equation*}
$$

and $\mathcal{N}\left(I-S_{T}\right)$ is the maximum invariant subspace for T_{0} and T_{1} on which T_{0} and T_{1} are isometries.
Let $\widehat{T}_{1-i} \in \overline{\mathcal{R}\left(S_{T_{i}}\right)}$ is the operator satisfying

$$
\widehat{T}_{1-i} S_{T_{i}}^{1 / 2}=S_{T_{i}}^{1 / 2} T_{1-i}
$$

Theorem

For a bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} the following statements are equivalent:
(i) $S_{T} T_{1}=T_{1} S_{T}$;
(ii) T_{1} is S_{T}-regular and $\mathcal{N}\left(S_{T}\right)$ reduces T_{1};
(iii) T_{1}^{*} is a regular S_{T}-contraction;
(iv) T_{1}^{*} is a S_{T}-contraction and either T_{1} or T_{1}^{*} is S_{T}-regular. Moreover, if T_{1} is $S_{T_{0}}$-regular then the conditions (i) - (iv) are also equivalent to
(v) $S_{\widehat{T}_{1}}=S_{\widehat{T}_{1}}^{2}$ and $R_{1} S_{T}=0$, if T_{1} on $\mathcal{H}=\overline{\mathcal{R}\left(S_{T_{0}}\right)} \oplus \mathcal{N}\left(S_{T_{0}}\right)$
has the operator matrix representation

$$
T_{1}=\left(\begin{array}{cc}
\widehat{T}_{1} & 0 \tag{8}\\
R_{1} & Q_{1}
\end{array}\right) .
$$

In addition, when T_{1} is $S_{T_{0}}$-regular, we have $S_{T}=S_{T}^{2}$ if and only if $S_{\widehat{T}_{1}}=S_{\widehat{T}_{1}}^{2}$ and $S_{T_{0}} h=S_{T_{0}}^{2} h$ for $h \in \mathcal{R}\left(S_{T}\right)$.

Remark. We derive that the condition $S_{T}=S_{T}^{2}$ implies $S_{T} T_{1}=T_{1} S_{T}$ and, by symmetry $S_{T} T_{0}=T_{0} S_{T}$. Since $S_{T}=S_{T_{0}}^{1 / 2} S_{\widehat{T}_{1}} S_{T_{0}}^{1 / 2}$ we have $S_{T}^{2}=S_{T_{0}}^{1 / 2} S_{\widehat{T}_{1}} S_{T_{0}} S_{\widehat{T}_{1}} S_{T_{0}}^{1 / 2}$, and so $S_{T}=S_{T}^{2}$ if and only if $S_{\widehat{T}_{1}}=S_{\widehat{T}_{1}} S^{0} S_{\widehat{T}_{1}}, S^{0}=S_{T_{0}} \mid \overline{\mathcal{R}\left(S_{T_{0}}\right)}$. The last equality implies that $S_{T_{1}}$ has a generalized inverse, or equivalently, that $\mathcal{R}\left(S_{\widehat{T}_{1}}\right)$ is closed.

Corollary

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$. Then

$$
S_{T} T_{1}=T_{1} S_{T} \Leftrightarrow S_{T}=S_{T}^{2} \Leftrightarrow S_{\widehat{T}_{1}}=S_{\widehat{T}_{1}}^{2}
$$

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $S_{T_{0}}=S_{T_{0}}^{2}$. The following statements are equivalent :
(i) $S_{T}=S_{T}^{2}$;
(ii) $S_{\widehat{T}_{1}}=S_{\widehat{T}_{1}}^{2}$;
(iii) $\left.T_{1}^{*}\right|_{\overline{\mathcal{R}}\left(S_{T}\right)}$ is a coisometry.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $S_{T_{0}}=S_{T_{0}}^{2}$. If $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$ then the following statements hold:
(i) $S_{T_{1}}=S_{T_{1}}^{2}$ if and only if $S_{T}=S_{T}^{2}$ and $S_{Q_{1}}=S_{Q_{1}}^{2}$, where
$Q_{1}=\left.T_{1}\right|_{\mathcal{N}\left(S_{T_{0}}\right)}$.
(ii) $\mathcal{R}\left(S_{T}\right)=\mathcal{R}\left(S_{T_{0}}\right) \cap \mathcal{R}\left(S_{T_{1}}\right), \overline{\mathcal{R}\left(S_{T}\right)}=\mathcal{N}\left(I-S_{T_{0}}\right) \cap \overline{\mathcal{R}\left(S_{T_{1}}\right)}$, hence if $\mathcal{R}\left(S_{T_{1}}\right)$ is closed then $\mathcal{R}\left(S_{T}\right)$ is closed, too.

Remark. The previous theorem shows that, in certain conditions, if $S_{T_{0}}$ and $S_{T_{1}}$ are orthogonal projection, then S_{T} is also an orthogonal projection. But, when $S_{T_{0}}$ and S_{T} are orthogonal projections, $S_{T_{1}}$ is not necessarily an orthogonal projection, in general.
For instance, suppose that T_{1} is a $S_{T_{0}}$-isometry, that is
$T_{1}^{*} S_{T_{0}} T_{1}=S_{T_{0}}$, which yields $S_{T}=S_{T_{0}}$. Hence, if $S_{T}=S_{T}^{2}$ then
$T_{1} S_{T_{0}}=T_{1} S_{T}=S_{T} T_{1}=S_{T_{0}} T_{1}$ and \hat{T}_{1} is an isometry, therefore $S_{\widehat{T}_{1}}=I$. In this case we have $S_{T_{1}}=S_{T_{1}}^{2}$ if and only if $S_{Q_{1}}=S_{Q_{1}}^{2}$, where $Q_{1}=\left.T_{1}\right|_{\mathcal{N}\left(S_{T_{0}}\right)}$.
Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} with T_{i}^{*} hyponormal, (that is $T_{i} T_{i}^{*} \leq T_{i}^{*} T_{i}$), $j=0,1$, such that either $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$, or $T_{0} S_{T_{1}}=S_{T_{1}} T_{0}$. It is known that $S_{T_{i}}=S_{T_{i}}^{2}$ for $i=0,1$, and by previous Theorem one has $S_{T}=S_{T}^{2}$. In particular, if T_{i} are quasinormal (that is $T_{i} T_{i}^{*} T_{i}=T_{i}^{*} T_{i}^{2}$) and $T_{i} S_{T_{1-i}}=S_{T_{1-i}} T_{i}$ and $T_{i} S_{T_{1-i}^{*}}=S_{T_{1-i}^{*}} T_{i}$ for either $i=0$ or $i=1$, then $S_{T}=S_{T}^{2}$ and $S_{T^{*}}=S_{T^{*}}^{2}$, because $S_{T_{i}^{*}}=S_{T_{i}^{*}}^{2}, i=0,1$.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $\left\{T_{0}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_{0}}=S_{T_{0}}^{2}$ and $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$. Furthermore, if $\left(I-T_{0}\right) T_{1}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$ then $S_{T}=S_{T_{1}}$.

Corollary

If $\left\{T_{i}^{n}\right\}_{n \in \mathbb{N}} \boldsymbol{S}$ trongly converges for $i=0,1$ then $S_{T_{0}}, S_{T_{1}}$ and S_{T} are orthogonal projections, and $S_{T_{i}} T_{1-i}=T_{1-i} S_{T_{i}}$ for $i=0,1$

Corollary
Suppose thet $\left\{T_{0}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges and that $\left(I-T_{1}\right) T_{0}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$. Then $S_{T}=S_{T_{0}}$ is an
orthogonal projection, and $S_{T_{1}}=I \oplus S_{Q_{1}}$

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $\left\{T_{0}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_{0}}=S_{T_{0}}^{2}$ and $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$. Furthermore, if $\left(I-T_{0}\right) T_{1}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$ then $S_{T}=S_{T_{1}}$.

Corollary

If $\left\{T_{i}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges for $i=0,1$ then $S_{T_{0}}, S_{T_{1}}$ and S_{T} are orthogonal projections, and $S_{T_{i}} T_{1-i}=T_{1-i} S_{T_{i}}$ for $i=0,1$.

Corollary
Suppose that $\left\{T_{0}^{n}\right\} n \in \mathbb{v}$ strongly converges and that
$\left(I-T_{1}\right) T_{0}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$. Then $S_{T}=S_{T_{0}}$ is an
orthogonal projection, and $S_{T_{1}}=I \oplus S_{Q_{1}}$

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that $\left\{T_{0}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_{0}}=S_{T_{0}}^{2}$ and $T_{1} S_{T_{0}}=S_{T_{0}} T_{1}$. Furthermore, if $\left(I-T_{0}\right) T_{1}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$ then $S_{T}=S_{T_{1}}$.

Corollary

If $\left\{T_{i}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges for $i=0,1$ then $S_{T_{0}}, S_{T_{1}}$ and S_{T} are orthogonal projections, and $S_{T_{i}} T_{1-i}=T_{1-i} S_{T_{i}}$ for $i=0,1$.

Corollary

Suppose that $\left\{T_{0}^{n}\right\}_{n \in \mathbb{N}}$ strongly converges and that $\left(I-T_{1}\right) T_{0}^{n} h \rightarrow 0(n \rightarrow \infty)$ for $h \in \mathcal{H}$. Then $S_{T}=S_{T_{0}}$ is an orthogonal projection, and $S_{T_{1}}=I \oplus S_{Q_{1}}$.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H}. Then the sequence $\left\{T_{0}^{m} T_{1}^{n}\right\}_{m, n \in \mathbb{N}}$ strongly converges as $m, n \rightarrow \infty$ if and only if $T_{i}=I \oplus S_{i}(i=0,1)$ relative to an orthogonal decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, such that $S_{0}^{m} S_{1}^{n} h \rightarrow 0$ as $m, n \rightarrow \infty$ for any $h \in \mathcal{M}^{\perp}$. In this case we have $S_{T}=S_{T}^{2}$.

```
Theorem
Let T=( }\mp@subsup{T}{0}{}.\mp@subsup{T}{1}{})\mathrm{ be a bicontraction on H. Then ST}\mathrm{ is a compact
operator if and only if T}\mp@subsup{T}{i}{}=\mp@subsup{U}{i}{}\oplus\mp@subsup{S}{i}{}(i=0,1) relative to an
orthogonal decomposition \mathcal{H}=\mathcal{M}\oplus\mp@subsup{\mathcal{M}}{}{\perp}\mathrm{ with }\mathcal{M}\mathrm{ a finite}
dimensional subspace, such that }\mp@subsup{U}{i}{}\mathrm{ are unitary operators on }\mathcal{M
and {\mp@subsup{S}{0}{m}\mp@subsup{S}{1}{n}}m,n\in\mathbb{N}}\mathrm{ strongly converges to 0, (as m,n mos) in
B}(\mp@subsup{\mathcal{M}}{}{\perp})\mathrm{ . In this case, }\mp@subsup{S}{T}{}\mathrm{ is a finite dimensional orthogonal
projection, which commutes with }\mp@subsup{T}{0}{}\mathrm{ and }\mp@subsup{T}{1}{
```


Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H}. Then the sequence $\left\{T_{0}^{m} T_{1}^{n}\right\}_{m, n \in \mathbb{N}}$ strongly converges as $m, n \rightarrow \infty$ if and only if $T_{i}=I \oplus S_{i}(i=0,1)$ relative to an orthogonal decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$, such that $S_{0}^{m} S_{1}^{n} h \rightarrow 0$ as $m, n \rightarrow \infty$ for any $h \in \mathcal{M}^{\perp}$. In this case we have $S_{T}=S_{T}^{2}$.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H}. Then S_{T} is a compact operator if and only if $T_{i}=U_{i} \oplus S_{i}(i=0,1)$ relative to an orthogonal decomposition $\mathcal{H}=\mathcal{M} \oplus \mathcal{M}^{\perp}$ with \mathcal{M} a finite dimensional subspace, such that U_{i} are unitary operators on \mathcal{M} and $\left\{S_{0}^{m} S_{1}^{n}\right\}_{m, n \in \mathbb{N}}$ strongly converges to 0 , (as $m, n \rightarrow \infty$) in $\mathcal{B}\left(\mathcal{M}^{\perp}\right)$. In this case, S_{T} is a finite dimensional orthogonal projection, which commutes with T_{0} and T_{1}.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H}. Then
(i) T is similar to a bi-isometry if and only if S_{T} is invertible. In this case $S_{T_{i}}$ is invertible, too, for $i=0,1$.
(ii) $\mathcal{R}\left(S_{T}\right)$ is closed if and only if $T^{0}=\left(T_{00}, T_{10}\right)$ is similar to a isometry, where $T_{i 0}=\left.P_{\overline{\mathcal{R}\left(S_{T}\right)}} T_{i}\right|_{\overline{\mathcal{R}}\left(S_{T}\right)}, i=0,1$.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ and $T^{\prime}=\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ be two bicontractions on \mathcal{H} and \mathcal{H}^{\prime}, respectively. Then an operator $A \in \mathcal{B}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ satisfies $A=T_{i}^{*} A T_{i}^{\prime}$ for $i=0,1$ if and only if there exists an operator $B \in \mathcal{B}\left(\overline{\mathcal{R}\left(S_{T^{\prime}}\right)}, \overline{\mathcal{R}\left(S_{T}\right)}\right)$ such that $A=S_{T}^{1 / 2} B S_{T^{\prime}}^{1 / 2}$ and $B=V_{i}^{*} B V_{i}^{\prime}$, where V_{i} and V_{i}^{\prime} are the isometries on $\overline{\mathcal{R}\left(S_{T}\right)}$ and $\overline{\mathcal{R}\left(S_{T^{\prime}}\right)}$ respectively, which satisfy the relations $V_{i} S_{T}^{1 / 2}=S_{T}^{1 / 2} T_{i}$ and $V_{i}^{\prime} S_{T^{\prime}}^{1 / 2}=S_{T^{\prime}}^{1 / 2} T_{i}^{\prime}$, for $i=0,1$. In this case, B is uniquely determined and $\|B\|=\|A\|$.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ and $T^{\prime}=\left(T_{0}^{\prime}, T_{1}^{\prime}\right)$ be two bicontractions on \mathcal{H} and \mathcal{H}^{\prime}, respectively. Then an operator $A \in \mathcal{B}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ satisfies $A=T_{i}^{*} A T_{i}^{\prime}$ for $i=0,1$ if and only if there exists an operator $B \in \mathcal{B}\left(\overline{\mathcal{R}\left(S_{T^{\prime}}\right)}, \overline{\mathcal{R}\left(S_{T}\right)}\right)$ such that $A=S_{T}^{1 / 2} B S_{T^{\prime}}^{1 / 2}$ and $B=V_{i}^{*} B V_{i}^{\prime}$, where V_{i} and V_{i}^{\prime} are the isometries on $\overline{\mathcal{R}\left(S_{T}\right)}$ and $\overline{\mathcal{R}\left(S_{T^{\prime}}\right)}$ respectively, which satisfy the relations $V_{i} S_{T}^{1 / 2}=S_{T}^{1 / 2} T_{i}$ and $V_{i}^{\prime} S_{T^{\prime}}^{1 / 2}=S_{T^{\prime}}^{1 / 2} T_{i}^{\prime}$, for $i=0,1$. In this case, B is uniquely determined and $\|B\|=\|A\|$.

Corollary

Under the hypotheses of previous Theorem, if either $S_{T}=0$, or $S_{T^{\prime}}=0$, then the only operator $A \in \mathcal{B}\left(\mathcal{H}^{\prime}, \mathcal{H}\right)$ satisfying $A=T_{i}^{*} A T_{i}^{\prime}$ for $i=0,1$ is $A=0$.

Let $\mathcal{K} \supset \mathcal{H}$ be a Hilbert space. An isometric dilation on $\mathcal{K} \supset \mathcal{H}$ of the bicontraction $T=\left(T_{0}, T_{1}\right)$ on \mathcal{H} is a bi-isometry $V=\left(V_{0}, V_{1}\right)$ on \mathcal{K} satisfying

$$
\begin{equation*}
T_{0}^{m} T_{1}^{n}=\left.P_{\mathcal{H}} V_{0}^{m} V_{1}^{n}\right|_{\mathcal{H}} \quad(m, n \in \mathbb{N}) \tag{9}
\end{equation*}
$$

The dilation V of T is minimal, and we denote it by $[\mathcal{K}, V]$, if

$$
\begin{equation*}
\mathcal{K}=\bigvee_{m, n \geq 0} V_{0}^{m} V_{1}^{n} \mathcal{H} \tag{10}
\end{equation*}
$$

The existence of such a dilation was firstly proved by Ando, but it also follows from the commutant dilation Nagy-Foiaş's theorem.

An isometric dilation $V=\left(V_{0}, V_{1}\right)$ of $T=\left(T_{0}, T_{1}\right)$ is regular if

$$
\begin{equation*}
T_{0}^{* m} T_{1}^{n}=\left.P_{\mathcal{H}} V_{0}^{* m} V_{1}^{n}\right|_{\mathcal{H}} \quad(m, n \in \mathbb{N}) \tag{11}
\end{equation*}
$$

The minimal regular isometric dilation of T is uniquely determined up to a unitary equivalence.

We can use the operators $S_{T_{0}}, S_{T_{1}}$ and S_{T} in order to obtain an isometric dilation of a bicontraction $T=\left(T_{0}, T_{1}\right)$ satisfying the condition

$$
\Delta_{T}^{2}:=I-T_{0}^{*} T_{0}-T_{1}^{*} T_{1}+T_{1}^{*} T_{0}^{*} T_{0} T_{1} \geq 0,
$$

which means T has a regular dilation.
We remark that $\Delta_{T}^{2}=D_{T_{0}}^{2}-T_{1}^{*} D_{T_{0}}^{2} T_{1}$, where
$D_{T_{i}}=\left(I-T_{i}^{*} T_{i}\right)^{1 / 2}$ is the defect operator of $T_{i}, i=0,1$.

$$
\begin{equation*}
\|h\|^{2}=\sum_{m, n=0}^{\infty}\left\|\Delta_{T} T_{0}^{m} T_{1}^{n} h\right\|^{2}+\left\|S_{T_{0}}^{1 / 2} h\right\|^{2}+\left\|S_{T_{1}}^{1 / 2} h\right\|^{2}-\left\|S_{T}^{1 / 2} h\right\|^{2} \tag{12}
\end{equation*}
$$

$=\sum_{m, n=0}^{\infty}\left\|\Delta_{T} T_{0}^{m} T_{1}^{n} h\right\|^{2}+\left\|\left(S_{T_{0}}-\frac{1}{2} S_{T}\right)^{1 / 2} h\right\|^{2}+\left\|\left(S_{T_{1}}-\frac{1}{2} S_{T}\right)^{1 / 2} h\right\|^{2}$.
Denote $\mathcal{D}_{T}=\overline{\Delta_{T} \mathcal{H}}$ and let $\mathcal{H}_{T}=\bigoplus_{m, n \in \mathbb{Z}} \mathcal{D}_{T}^{(m, n)}$ be the Hilbert space of all sequences $\left\{h_{m, n}\right\}_{m, n \in \mathbb{Z}}$ with $h_{m, n} \in \mathcal{D}_{T}^{(m, n)}$ and

$$
\sum_{m, n \in \mathbb{Z}}\left\|h_{m, n}\right\|^{2}<\infty
$$

The space \mathcal{H} can be isometrically embedded in the space

$$
\mathcal{G}=\mathcal{H}_{T} \oplus \overline{\mathcal{R}\left(S_{T_{0}}\right)} \oplus \overline{\mathcal{R}\left(S_{T_{1}}\right)}
$$

by identifying the element h of \mathcal{H} with the element $\underset{\sim}{h} \oplus\left(S_{T_{0}}-\frac{1}{2} S_{T}\right)^{1 / 2} h \oplus\left(S_{T_{1}}-\frac{1}{2} S_{T}\right)^{1 / 2} h$ of \mathcal{G}, where $\widetilde{h}=\left\{\widetilde{h}_{m, n}\right\}_{m, n \in \mathbb{Z}}$ such that

$$
\tilde{h}_{m, n}=\left\{\begin{array}{l}
\Delta_{T} T_{0}^{m} T_{1}^{n} h, \text { if } m, n \geq 0 \\
0, \text { if } m<0, \text { or } n<0
\end{array}\right.
$$

Now we can define an isometry W_{i} on $\overline{\mathcal{R}\left(S_{T_{i}}\right)}$ by

$$
W_{i}\left(S_{T_{i}}-\frac{1}{2} S_{T}\right)^{1 / 2} h=\left(S_{T_{i}}-\frac{1}{2} S_{T}\right)^{1 / 2} T_{i} h, \quad h \in \mathcal{H}
$$

because T_{i} is a $S_{T_{i}}$-isometry and also, a S_{T}-isometry. Similarly, since T_{1-i} is a $S_{T_{i}}$-contraction, we can define a contraction \widetilde{T}_{1-i} on $\overline{\mathcal{R}\left(S_{T_{i}}\right)}$ by

$$
\widetilde{T}_{1-i}\left(S_{T_{i}}-\frac{1}{2} S_{T}\right)^{1 / 2} h=\left(S_{T_{i}}-\frac{1}{2} S_{T}\right)^{1 / 2} T_{1-i} h, \quad h \in \mathcal{H} .
$$

In addition, we have

$$
W_{i} \widetilde{T}_{1-i}=\widetilde{T}_{1-i} W_{i}
$$

because $T_{i} T_{1-i}=T_{1-i} T_{i}$, for $i=0,1$.

Let $\left[\mathcal{K}_{i}, \widetilde{V}_{i}\right]$ be the minimal isometric dilation of \widetilde{T}_{i} and \widetilde{W}_{1-i} be the isometric extension of W_{1-i} on \mathcal{K}_{i} such that

$$
\widetilde{W}_{1-i} \widetilde{V}_{i}=\widetilde{V}_{i} \widetilde{W}_{1-i},
$$

for $i=0,1$.
Let $S_{i} \in \mathcal{B}\left(\mathcal{H}_{T}\right)$ be the bilateral shift defined by

$$
\begin{equation*}
S_{0}\left\{h_{m, n}\right\}=\left\{h_{m+1, n}\right\}, \quad S_{1}\left\{h_{m, n}\right\}=\left\{h_{m, n+1}\right\} \tag{13}
\end{equation*}
$$

if $\left\{h_{m, n}\right\} \in \mathcal{H}_{T}$. Clearly, S_{i} is unitary and $S_{0} S_{1}=S_{1} S_{0}$.
Consider the isometries V_{0} and V_{1} on the Hilbert space

$$
\mathcal{K}=\mathcal{H}_{T} \oplus \mathcal{K}_{1} \oplus \mathcal{K}_{0}
$$

given by

$$
\begin{equation*}
V_{0}=S_{0} \oplus \widetilde{W}_{0} \oplus \widetilde{V}_{0}, \quad V_{1}=S_{1} \oplus \widetilde{V}_{1} \oplus \widetilde{W}_{1} . \tag{14}
\end{equation*}
$$

Theorem

If $T=\left(T_{0}, T_{1}\right)$ is a bicontraction on \mathcal{H} such that $\Delta_{T}^{2} \geq 0$, then the bi-isometry $V=\left(V_{0}, V_{1}\right)$ on \mathcal{K} given by (14) is an isometric dilation of T.

Theorem
Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that T_{0} is normal
and $S_{T_{1}}=S_{T_{1}}^{2}$. Then the isometric dilation of T given by (14) is
regular.

Theorem

If $T=\left(T_{0}, T_{1}\right)$ is a bicontraction on \mathcal{H} such that $\Delta_{T}^{2} \geq 0$, then the bi-isometry $V=\left(V_{0}, V_{1}\right)$ on \mathcal{K} given by (14) is an isometric dilation of T.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bicontraction on \mathcal{H} such that T_{0} is normal and $S_{T_{1}}=S_{T_{1}}^{2}$. Then the isometric dilation of T given by (14) is regular.

Theorem

Let $T=\left(T_{0}, T_{1}\right)$ be a bidisk isometry on \mathcal{H}. Then
(i) $[\mathcal{K}, V]$ is a minimal isometric dilation of T, where
$\mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{0}$ and $V=\left(V_{0}, V_{1}\right)$ is given by (14).
(ii) If $S_{T_{0}}=S_{T_{0}}^{2}$ then we have $S_{T}=S_{T}^{2}$ if and only if $S_{T_{1}}=S_{T_{1}}^{2}$.
(iii) If $S_{T_{i}}=S_{T_{i}}^{2}$ for $i=0,1$ then $[\mathcal{K}, V]$ is the minimal regular isometric dilation of T.

