The asymptotic limit of a bicontraction and related results

Laurian Suciu

"Lucian Blaga" University of Sibiu, Romania

July 3, 2010

joint work with Nicolae Suciu

A (1) > A (2) > A

Let \mathcal{H} be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H} , while *I* is the identity operator on \mathcal{H} .

Let $A \in \mathcal{B}(\mathcal{H})$ be a positive operator, $A \neq 0$. An operator $T \in \mathcal{B}(\mathcal{H})$ satisfying the operator inequality

$$T^*AT \le A \tag{1}$$

is called an *A*-contraction on \mathcal{H} . Also, *T* is called an *A*-isometry if the equality in (1) occurs. It is easy to see from (1) that $\mathcal{N}(A)$ is an invariant subspace for *T*, and it is not invariant for *T**, in general.

An A-contraction T is regular (or T is A-regular) if

$$AT = A^{1/2} T A^{1/2}.$$
 (2)

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

We know that if *A* is an orthogonal projection then any *A*-contraction is regular.

Let $T = (T_0, T_1)$ be a pair of commuting contractions on \mathcal{H} , that is $T_i \in \mathcal{B}(\mathcal{H})$, $||T_i|| \le 1$ (i = 0, 1) and $T_0T_1 = T_1T_0$. Such T is called a **bicontraction** on \mathcal{H} , and when T_0 and T_1 are isometries, T is called a **bi-isometry** on \mathcal{H} . Since T_i is a contraction, the **asymptotic limit** of T_i can be defined as

$$\mathbf{S}_{T_i} h = \lim_{n \to \infty} T_i^{*n} T_i^n h \quad (h \in \mathcal{H}).$$
(3)

Clearly, $0 \le S_{T_i} \le T_i^* T_i$ and T_i is a S_{T_i} -isometry. Moreover, $\mathcal{N}(I - S_{T_i})$ is the maximum invariant subspace for T_i on which T_i is an isometry, while $\mathcal{N}(S_{T_i})$ is the maximum invariant subspace for T_i on which the sequence $\{T_i^n\}_{n\in\mathbb{N}}$ strongly converges to 0, for i = 0, 1. We have that T_1 is a S_{T_0} -contraction. Thus, one can define the operator $S_{T_0,T_1} \in \mathcal{B}(\mathcal{H})$ by

$$S_{T_0,T_1}h = \lim_{m \to \infty} T_1^{*m} S_{T_0} T_1^m h = \lim_{m \to \infty} \lim_{n \to \infty} T_1^{*m} T_0^n T_0^n T_1^m h \quad (4)$$

for $h \in \mathcal{H}$, and obviously $0 \leq S_{\mathcal{T}_0, \mathcal{T}_1} \leq S_{\mathcal{T}_0}$. By symmetry, \mathcal{T}_0 is a $S_{\mathcal{T}_1}$ -contraction, and so can be defined the operator $S_{\mathcal{T}_1, \mathcal{T}_0} \in \mathcal{B}(\mathcal{H})$ by

$$S_{T_1,T_0}h = \lim_{n \to \infty} T_0^{*n} S_{T_1} T_0^n h = \lim_{n \to \infty} \lim_{m \to \infty} T_0^{*n} T_1^{*m} T_1^m T_0^n h.$$
(5)

We get $S_{T_0,T_1} = S_{T_1,T_0}$, and so the operator

$$S_T := S_{T_0, T_1} = S_{T_1, T_0}$$
 (6)

can be defined by any of the iterated limits of the sequence

 $\{T_1^{*m}T_0^{*n}T_0^nT_1^m\}_{m,n\in\mathbb{N}}$

in the strong topology of $\mathcal{B}(\mathcal{H})$. The operator S_T is called the **asymptotic limit** of the bicontraction T, and clearly, T_0 and T_1 are S_T -isometries.

For a bicontraction $T = (T_0, T_1)$ on \mathcal{H} one has

$$\mathcal{N}(I - S_T) = \bigcap_{m,n \in \mathbb{N}} \mathcal{N}(I - T_1^{*m} T_0^{*n} T_0^n T_1^m),$$
(7)

イロト イヨト イヨト イヨト

크

and $\mathcal{N}(I - S_T)$ is the maximum invariant subspace for T_0 and T_1 on which T_0 and T_1 are isometries.

Let $\widehat{T}_{1-i} \in \overline{\mathcal{R}(S_{T_i})}$ is the operator satisfying

$$\widehat{T}_{1-i}S_{T_i}^{1/2} = S_{T_i}^{1/2}T_{1-i}$$

For a bicontraction $T = (T_0, T_1)$ on \mathcal{H} the following statements are equivalent :

(*i*) $S_T T_1 = T_1 S_T$;

(ii) T_1 is S_T -regular and $\mathcal{N}(S_T)$ reduces T_1 ;

(iii) T_1^* is a regular S_T -contraction;

(iv) T_1^* is a S_T -contraction and either T_1 or T_1^* is S_T -regular. Moreover, if T_1 is S_{T_0} -regular then the conditions (*i*) – (*iv*) are also equivalent to

(v) $S_{\tilde{T}_1} = S_{\tilde{T}_1}^2$ and $R_1 S_T = 0$, if T_1 on $\mathcal{H} = \overline{\mathcal{R}(S_{T_0})} \oplus \mathcal{N}(S_{T_0})$ has the operator matrix representation

$$T_1 = \begin{pmatrix} \widehat{T}_1 & 0\\ R_1 & Q_1 \end{pmatrix}.$$
 (8)

In addition, when T_1 is S_{T_0} -regular, we have $S_T = S_T^2$ if and only if $S_{\widehat{T}_1} = S_{\widehat{T}_1}^2$ and $S_{T_0}h = S_{T_0}^2h$ for $h \in \mathcal{R}(S_T)$.

Remark. We derive that the condition $S_T = S_T^2$ implies $S_T T_1 = T_1 S_T$ and, by symmetry $S_T T_0 = T_0 S_T$. Since $S_T = S_{T_0}^{1/2} S_{\hat{T}_1} S_{T_0}^{1/2}$ we have $S_T^2 = S_{T_0}^{1/2} S_{\hat{T}_1} S_{T_0} S_{\hat{T}_1} S_{T_0}^{1/2}$, and so $S_T = S_T^2$ if and only if $S_{\hat{T}_1} = S_{\hat{T}_1} S^0 S_{\hat{T}_1}$, $S^0 = S_{T_0} |_{\mathcal{R}(S_{T_0})}$. The last equality implies that $S_{\hat{T}_1}$ has a generalized inverse, or equivalently, that $\mathcal{R}(S_{\hat{T}_1})$ is closed.

Corollary

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $T_1 S_{T_0} = S_{T_0} T_1$. Then

$$\mathbb{S}_T T_1 = T_1 \mathbb{S}_T \Leftrightarrow \mathbb{S}_T = \mathbb{S}_T^2 \Leftrightarrow \mathbb{S}_{\widehat{T}_1} = \mathbb{S}_{\widehat{T}_2}^2$$

<ロ> <同> <同> <同> < 同> < 同> 、

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $S_{T_0} = S_{T_0}^2$. The following statements are equivalent : (i) $S_T = S_T^2$; (ii) $S_{\tilde{T}_1} = S_{\tilde{T}_1}^2$; (iii) $T_1^* |_{\overline{\mathcal{R}(S_T)}}$ is a coisometry.

イロト イヨト イヨト イヨト

크

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $S_{T_0} = S_{T_0}^2$. If $T_1 S_{T_0} = S_{T_0} T_1$ then the following statements hold : (i) $S_{T_1} = S_{T_1}^2$ if and only if $S_T = S_T^2$ and $S_{Q_1} = S_{Q_1}^2$, where $Q_1 = T_1|_{\mathcal{N}(S_{T_0})}$. (ii) $\mathcal{R}(S_T) = \mathcal{R}(S_{T_0}) \cap \mathcal{R}(S_{T_1}), \overline{\mathcal{R}(S_T)} = \mathcal{N}(I - S_{T_0}) \cap \overline{\mathcal{R}(S_{T_1})}$, hence if $\mathcal{R}(S_{T_1})$ is closed then $\mathcal{R}(S_T)$ is closed, too.

(I)

Remark. The previous theorem shows that, in certain conditions, if S_{T_0} and S_{T_1} are orthogonal projection, then S_T is also an orthogonal projection. But, when S_{T_0} and S_T are orthogonal projections, S_{T_1} is not necessarily an orthogonal projection, in general.

For instance, suppose that T_1 is a S_{T_0} -isometry, that is $T_1^* S_{T_0} T_1 = S_{T_0}$, which yields $S_T = S_{T_0}$. Hence, if $S_T = S_T^2$ then $T_1 S_{T_0} = T_1 S_T = S_T T_1 = S_{T_0} T_1$ and \hat{T}_1 is an isometry, therefore $S_{\hat{\tau}_1} = I$. In this case we have $S_{\mathcal{T}_1} = S_{\mathcal{T}_2}^2$ if and only if $S_{Q_1} = S_{Q_1}^2$, where $Q_1 = T_1|_{\mathcal{N}(S_{T_2})}$. Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} with T_i^* hyponormal, (that is $T_i T_i^* \leq T_i^* T_i$), j = 0, 1, such that either $T_1 S_{T_0} = S_{T_0} T_1$, or $T_0 S_{T_1} = S_{T_1} T_0$. It is known that $S_{T_i} = S_{T_i}^2$ for i = 0, 1, and by previous Theorem one has $S_T = S_T^2$. In particular, if T_i are quasinormal (that is $T_i T_i^* T_i = T_i^* T_i^2$) and $T_i S_{T_{1-i}} = S_{T_{1-i}} T_i$ and $T_i S_{T_i^*} = S_{T_i^*} T_i$ for either i = 0 or i = 1, then $S_T = S_T^2$ and $S_{T^*} = S_{T^*}^2$, because $S_{T_i^*} = S_{T^*}^2$, i = 0, 1. ・ロト ・四ト ・ヨト ・ヨト

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $\{T_0^n\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_0} = S_{T_0}^2$ and $T_1 S_{T_0} = S_{T_0} T_1$. Furthermore, if $(I - T_0)T_1^n h \to 0$ $(n \to \infty)$ for $h \in \mathcal{H}$ then $S_T = S_{T_1}$.

Corollary

If $\{T_i^n\}_{n\in\mathbb{N}}$ strongly converges for i = 0, 1 then S_{T_0} , S_{T_1} and S_T are orthogonal projections, and $S_{T_i}T_{1-i} = T_{1-i}S_{T_i}$ for i = 0, 1.

Corollary

Suppose that $\{T_0^n\}_{n\in\mathbb{N}}$ strongly converges and that $(I - T_1)T_0^n h \to 0 \ (n \to \infty)$ for $h \in \mathcal{H}$. Then $S_T = S_{T_0}$ is an orthogonal projection, and $S_{T_1} = I \oplus S_{Q_1}$.

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $\{T_0^n\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_0} = S_{T_0}^2$ and $T_1 S_{T_0} = S_{T_0} T_1$. Furthermore, if $(I - T_0)T_1^n h \to 0$ $(n \to \infty)$ for $h \in \mathcal{H}$ then $S_T = S_{T_1}$.

Corollary

If $\{T_i^n\}_{n\in\mathbb{N}}$ strongly converges for i = 0, 1 then S_{T_0} , S_{T_1} and S_T are orthogonal projections, and $S_{T_i}T_{1-i} = T_{1-i}S_{T_i}$ for i = 0, 1.

Corollary

Suppose that $\{T_0^n\}_{n\in\mathbb{N}}$ strongly converges and that $(I - T_1)T_0^n h \to 0 \ (n \to \infty)$ for $h \in \mathcal{H}$. Then $S_T = S_{T_0}$ is an orthogonal projection, and $S_{T_1} = I \oplus S_{Q_1}$.

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that $\{T_0^n\}_{n \in \mathbb{N}}$ strongly converges. Then $S_{T_0} = S_{T_0}^2$ and $T_1 S_{T_0} = S_{T_0} T_1$. Furthermore, if $(I - T_0)T_1^n h \to 0$ $(n \to \infty)$ for $h \in \mathcal{H}$ then $S_T = S_{T_1}$.

Corollary

If $\{T_i^n\}_{n\in\mathbb{N}}$ strongly converges for i = 0, 1 then S_{T_0} , S_{T_1} and S_T are orthogonal projections, and $S_{T_i}T_{1-i} = T_{1-i}S_{T_i}$ for i = 0, 1.

Corollary

Suppose that $\{T_0^n\}_{n\in\mathbb{N}}$ strongly converges and that $(I - T_1)T_0^n h \to 0 \ (n \to \infty)$ for $h \in \mathcal{H}$. Then $S_T = S_{T_0}$ is an orthogonal projection, and $S_{T_1} = I \oplus S_{Q_1}$.

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} . Then the sequence $\{T_0^m T_1^n\}_{m,n\in\mathbb{N}}$ strongly converges as $m, n \to \infty$ if and only if $T_i = I \oplus S_i$ (i = 0, 1) relative to an orthogonal decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, such that $S_0^m S_1^n h \to 0$ as $m, n \to \infty$ for any $h \in \mathcal{M}^{\perp}$. In this case we have $S_T = S_T^2$.

Theorem

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} . Then S_T is a compact operator if and only if $T_i = U_i \oplus S_i$ (i = 0, 1) relative to an orthogonal decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ with \mathcal{M} a finite dimensional subspace, such that U_i are unitary operators on \mathcal{M} and $\{S_0^m S_1^n\}_{m,n\in\mathbb{N}}$ strongly converges to 0, (as $m, n \to \infty$) in $\mathcal{B}(\mathcal{M}^{\perp})$. In this case, S_T is a finite dimensional orthogonal projection, which commutes with T_0 and T_1 .

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} . Then the sequence $\{T_0^m T_1^n\}_{m,n\in\mathbb{N}}$ strongly converges as $m, n \to \infty$ if and only if $T_i = I \oplus S_i$ (i = 0, 1) relative to an orthogonal decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$, such that $S_0^m S_1^n h \to 0$ as $m, n \to \infty$ for any $h \in \mathcal{M}^{\perp}$. In this case we have $S_T = S_T^2$.

Theorem

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} . Then S_T is a compact operator if and only if $T_i = U_i \oplus S_i$ (i = 0, 1) relative to an orthogonal decomposition $\mathcal{H} = \mathcal{M} \oplus \mathcal{M}^{\perp}$ with \mathcal{M} a finite dimensional subspace, such that U_i are unitary operators on \mathcal{M} and $\{S_0^m S_1^n\}_{m,n\in\mathbb{N}}$ strongly converges to 0, (as $m, n \to \infty$) in $\mathcal{B}(\mathcal{M}^{\perp})$. In this case, S_T is a finite dimensional orthogonal projection, which commutes with T_0 and T_1 .

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} . Then (*i*) *T* is similar to a bi-isometry if and only if S_T is invertible. In this case S_{T_i} is invertible, too, for i = 0, 1. (*ii*) $\mathcal{R}(S_T)$ is closed if and only if $T^0 = (T_{00}, T_{10})$ is similar to a isometry, where $T_{i0} = P_{\overline{\mathcal{R}(S_T)}}T_i|_{\overline{\mathcal{R}(S_T)}}$, i = 0, 1.

イロン イ部 とくほ とくほ とう

크

Let $T = (T_0, T_1)$ and $T' = (T'_0, T'_1)$ be two bicontractions on \mathcal{H} and \mathcal{H}' , respectively. Then an operator $A \in \mathcal{B}(\mathcal{H}', \mathcal{H})$ satisfies $A = T_i^* A T_i'$ for i = 0, 1 if and only if there exists an operator $B \in \mathcal{B}(\overline{\mathcal{R}(S_{T'})}, \overline{\mathcal{R}(S_T)})$ such that $A = S_T^{1/2} B S_{T'}^{1/2}$ and $B = V_i^* B V_i'$, where V_i and V_i' are the isometries on $\overline{\mathcal{R}(S_T)}$ and $\overline{\mathcal{R}(S_{T'})}$ respectively, which satisfy the relations $V_i S_T^{1/2} = S_T^{1/2} T_i$ and $V_i' S_{T'}^{1/2} = S_{T'}^{1/2} T_i'$, for i = 0, 1. In this case, B is uniquely determined and ||B|| = ||A||.

Corollary

Under the hypotheses of previous Theorem, if either $S_T = 0$, or $S_{T'} = 0$, then the only operator $A \in \mathcal{B}(\mathcal{H}', \mathcal{H})$ satisfying $A = T_i^* A T_i'$ for i = 0, 1 is A = 0.

Let $T = (T_0, T_1)$ and $T' = (T'_0, T'_1)$ be two bicontractions on \mathcal{H} and \mathcal{H}' , respectively. Then an operator $A \in \mathcal{B}(\mathcal{H}', \mathcal{H})$ satisfies $A = T_i^* A T_i'$ for i = 0, 1 if and only if there exists an operator $B \in \mathcal{B}(\overline{\mathcal{R}(S_{T'})}, \overline{\mathcal{R}(S_T)})$ such that $A = S_T^{1/2} B S_{T'}^{1/2}$ and $B = V_i^* B V_i'$, where V_i and V_i' are the isometries on $\overline{\mathcal{R}(S_T)}$ and $\overline{\mathcal{R}(S_{T'})}$ respectively, which satisfy the relations $V_i S_T^{1/2} = S_T^{1/2} T_i$ and $V_i' S_{T'}^{1/2} = S_{T'}^{1/2} T_i'$, for i = 0, 1. In this case, B is uniquely determined and ||B|| = ||A||.

Corollary

Under the hypotheses of previous Theorem, if either $S_T = 0$, or $S_{T'} = 0$, then the only operator $A \in \mathcal{B}(\mathcal{H}', \mathcal{H})$ satisfying $A = T_i^* A T_i'$ for i = 0, 1 is A = 0.

Let $\mathcal{K} \supset \mathcal{H}$ be a Hilbert space. An **isometric dilation** on $\mathcal{K} \supset \mathcal{H}$ of the bicontraction $T = (T_0, T_1)$ on \mathcal{H} is a bi-isometry $V = (V_0, V_1)$ on \mathcal{K} satisfying

$$T_0^m T_1^n = \mathcal{P}_{\mathcal{H}} V_0^m V_1^n |_{\mathcal{H}} \quad (m, n \in \mathbb{N}).$$
(9)

The dilation V of T is **minimal**, and we denote it by $[\mathcal{K}, V]$, if

$$\mathcal{K} = \bigvee_{m,n \ge 0} V_0^m V_1^n \mathcal{H}.$$
 (10)

The existence of such a dilation was firstly proved by Ando, but it also follows from the commutant dilation Nagy-Foiaş's theorem. An isometric dilation $V = (V_0, V_1)$ of $T = (T_0, T_1)$ is **regular** if

$$T_0^{*m}T_1^n = P_{\mathcal{H}}V_0^{*m}V_1^n|_{\mathcal{H}} \quad (m,n\in\mathbb{N}).$$
 (11)

(I)

크

The minimal regular isometric dilation of T is uniquely determined up to a unitary equivalence.

We can use the operators S_{T_0} , S_{T_1} and S_T in order to obtain an isometric dilation of a bicontraction $T = (T_0, T_1)$ satisfying the condition

$$\Delta_T^2 := I - T_0^* T_0 - T_1^* T_1 + T_1^* T_0^* T_0 T_1 \ge 0,$$

which means *T* has a regular dilation. We remark that $\Delta_T^2 = D_{T_0}^2 - T_1^* D_{T_0}^2 T_1$, where $D_{T_i} = (I - T_i^* T_i)^{1/2}$ is the defect operator of T_i , i = 0, 1.

$$||h||^{2} = \sum_{m,n=0}^{\infty} ||\Delta_{T} T_{0}^{m} T_{1}^{n} h||^{2} + ||S_{T_{0}}^{1/2} h||^{2} + ||S_{T_{1}}^{1/2} h||^{2} - ||S_{T}^{1/2} h||^{2}$$
(12)

$$=\sum_{m,n=0}^{\infty}||\Delta_{T}T_{0}^{m}T_{1}^{n}h||^{2}+||(S_{T_{0}}-\frac{1}{2}S_{T})^{1/2}h||^{2}+||(S_{T_{1}}-\frac{1}{2}S_{T})^{1/2}h||^{2}.$$

Denote $\mathcal{D}_T = \overline{\Delta_T \mathcal{H}}$ and let $\mathcal{H}_T = \bigoplus_{m,n \in \mathbb{Z}} \mathcal{D}_T^{(m,n)}$ be the Hilbert space of all sequences $\{h_{m,n}\}_{m,n \in \mathbb{Z}}$ with $h_{m,n} \in \mathcal{D}_T^{(m,n)}$ and

$$\sum_{m,n\in\mathbb{Z}}||h_{m,n}||^2<\infty.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

The space \mathcal{H} can be isometrically embedded in the space

$$\mathcal{G} = \mathcal{H}_{\mathcal{T}} \oplus \overline{\mathcal{R}(\mathcal{S}_{\mathcal{T}_0})} \oplus \overline{\mathcal{R}(\mathcal{S}_{\mathcal{T}_1})}$$

by identifying the element *h* of \mathcal{H} with the element $\tilde{h} \oplus (S_{T_0} - \frac{1}{2}S_T)^{1/2}h \oplus (S_{T_1} - \frac{1}{2}S_T)^{1/2}h$ of \mathcal{G} , where $\tilde{h} = {\tilde{h}_{m,n}}_{m,n \in \mathbb{Z}}$ such that

$$\widetilde{h}_{m,n} = \begin{cases} \Delta_T T_0^m T_1^n h, \text{ if } m, n \ge 0\\ 0, \text{ if } m < 0, \text{ or } n < 0. \end{cases}$$

A (10) + A (10) +

크

Now we can define an isometry W_i on $\overline{\mathcal{R}(S_{T_i})}$ by

$$W_i(S_{T_i} - \frac{1}{2}S_T)^{1/2}h = (S_{T_i} - \frac{1}{2}S_T)^{1/2}T_ih, \quad h \in \mathcal{H},$$

because T_i is a S_{T_i} -isometry and also, a S_T -isometry. Similarly, since T_{1-i} is a S_{T_i} -contraction, we can define a contraction \tilde{T}_{1-i} on $\overline{\mathcal{R}(S_{T_i})}$ by

$$\widetilde{T}_{1-i}(S_{T_i}-\frac{1}{2}S_T)^{1/2}h=(S_{T_i}-\frac{1}{2}S_T)^{1/2}T_{1-i}h, \quad h\in\mathcal{H}.$$

In addition, we have

$$W_i \widetilde{T}_{1-i} = \widetilde{T}_{1-i} W_i$$

because $T_i T_{1-i} = T_{1-i} T_i$, for i = 0, 1.

Let $[\mathcal{K}_i, \widetilde{\mathcal{V}}_i]$ be the minimal isometric dilation of $\widetilde{\mathcal{T}}_i$ and $\widetilde{\mathcal{W}}_{1-i}$ be the isometric extension of \mathcal{W}_{1-i} on \mathcal{K}_i such that

$$\widetilde{W}_{1-i}\widetilde{V}_i=\widetilde{V}_i\widetilde{W}_{1-i},$$

for i = 0, 1. Let $S_i \in \mathcal{B}(\mathcal{H}_T)$ be the bilateral shift defined by

$$S_0\{h_{m,n}\} = \{h_{m+1,n}\}, S_1\{h_{m,n}\} = \{h_{m,n+1}\}$$
 (13)

if $\{h_{m,n}\} \in \mathcal{H}_T$. Clearly, S_i is unitary and $S_0S_1 = S_1S_0$. Consider the isometries V_0 and V_1 on the Hilbert space

$$\mathcal{K}=\mathcal{H}_T\oplus\mathcal{K}_1\oplus\mathcal{K}_0$$

given by

$$V_0 = S_0 \oplus \widetilde{W}_0 \oplus \widetilde{V}_0, \quad V_1 = S_1 \oplus \widetilde{V}_1 \oplus \widetilde{W}_1. \tag{14}$$

If $T = (T_0, T_1)$ is a bicontraction on \mathcal{H} such that $\Delta_T^2 \ge 0$, then the bi-isometry $V = (V_0, V_1)$ on \mathcal{K} given by (14) is an isometric dilation of T.

Theorem

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that T_0 is normal and $S_{T_1} = S_{T_1}^2$. Then the isometric dilation of T given by (14) is regular.

If $T = (T_0, T_1)$ is a bicontraction on \mathcal{H} such that $\Delta_T^2 \ge 0$, then the bi-isometry $V = (V_0, V_1)$ on \mathcal{K} given by (14) is an isometric dilation of T.

Theorem

Let $T = (T_0, T_1)$ be a bicontraction on \mathcal{H} such that T_0 is normal and $S_{T_1} = S_{T_1}^2$. Then the isometric dilation of T given by (14) is regular.

イロト イヨト イヨト イヨト

Let $T = (T_0, T_1)$ be a bidisk isometry on \mathcal{H} . Then (*i*) $[\mathcal{K}, V]$ is a minimal isometric dilation of T, where $\mathcal{K} = \mathcal{K}_1 \oplus \mathcal{K}_0$ and $V = (V_0, V_1)$ is given by (14). (*ii*) If $S_{T_0} = S_{T_0}^2$ then we have $S_T = S_T^2$ if and only if $S_{T_1} = S_{T_1}^2$. (*iii*) If $S_{T_i} = S_{T_i}^2$ for i = 0, 1 then $[\mathcal{K}, V]$ is the minimal regular isometric dilation of T.