Structure of C^{*}-algebras generated by mappings

A. Kuznetsova
jointly with S. Grigorian

Kazan Federal University

$$
3.07 .2010
$$

C^{*}-algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi: X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$.

C^{*}-algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi: X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$.

Consider the Hibert space $I^{2}(X)=\left\{f: X \rightarrow \mathbb{C}: \sum_{x \in X}|f(x)|^{2}<\infty\right\}$ with natural basis $\left\{e_{x}\right\}_{x \in X}, \quad e_{x}(y)=\delta_{x, y}$.

C^{*}-algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi: X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$.

Consider the Hibert space $I^{2}(X)=\left\{f: X \rightarrow \mathbb{C}: \sum_{x \in X}|f(x)|^{2}<\infty\right\}$ with natural basis $\left\{e_{x}\right\}_{x \in X}, \quad e_{x}(y)=\delta_{x, y}$.

Mapping

$$
\varphi: X \longrightarrow X
$$

induces the mapping

$$
T_{\varphi}:\left\{e_{x}\right\} \rightarrow\left\{e_{x}\right\} ; \quad T_{\varphi} e_{x}=e_{\varphi(x)}
$$

Theorem

The mapping

$$
T_{\varphi}:\left\{e_{x}\right\} \rightarrow\left\{e_{x}\right\}
$$

can be extended up to the bounded operator

$$
T_{\varphi}: I^{2}(X) \longrightarrow I^{2}(X)
$$

if and only if

$$
\gamma(\varphi)=\sup _{y \in X} \operatorname{card} \varphi^{-1}(y)=m<\infty .
$$

Theorem

The mapping

$$
T_{\varphi}:\left\{e_{x}\right\} \rightarrow\left\{e_{x}\right\}
$$

can be extended up to the bounded operator

$$
T_{\varphi}: I^{2}(X) \longrightarrow I^{2}(X)
$$

if and only if

$$
\gamma(\varphi)=\sup _{y \in X} \operatorname{card} \varphi^{-1}(y)=m<\infty .
$$

We will consider mappings satisfying this condition. Let's denote via $\mathfrak{2 l}_{\varphi}$ the C^{*}-algebra generated by operator T_{φ}.

Theorem
The mapping

$$
T_{\varphi}:\left\{e_{x}\right\} \rightarrow\left\{e_{x}\right\}
$$

can be extended up to the bounded operator

$$
T_{\varphi}: I^{2}(X) \longrightarrow I^{2}(X)
$$

if and only if

$$
\gamma(\varphi)=\sup _{y \in X} \operatorname{card} \varphi^{-1}(y)=m<\infty .
$$

We will consider mappings satisfying this condition. Let's denote via $\mathfrak{2 l}_{\varphi}$ the C^{*}-algebra generated by operator T_{φ}.

We call \mathfrak{u}_{φ} the C^{*}-algebra generated by mapping φ.

Some examples of C^{*}-algebras generated by mappings

pic. 1

pic. 2

T
pic. 3

$\mathbb{C} \bigoplus M_{2}(\mathbb{C})$
pic. 4
pic. 5
pic. 6

$C\left(S^{1}, M_{2}(\mathbb{C})\right)$

匹

Structure of operator T_{φ}

Positive operators $T_{\varphi} T_{\varphi}^{*}$ and $T_{\varphi}^{*} T_{\varphi}$ have the following decomposition:

$$
\begin{aligned}
& T_{\varphi} T_{\varphi}^{*}=P_{1}+2 P_{2}+\ldots+m P_{m} \\
& T_{\varphi}^{*} T_{\varphi}=Q_{1}+2 Q_{2}+\ldots+m Q_{m}
\end{aligned}
$$

Structure of operator T_{φ}

Positive operators $T_{\varphi} T_{\varphi}^{*}$ and $T_{\varphi}^{*} T_{\varphi}$ have the following decomposition:

$$
\begin{aligned}
& T_{\varphi} T_{\varphi}^{*}=P_{1}+2 P_{2}+\ldots+m P_{m} \\
& T_{\varphi}^{*} T_{\varphi}=Q_{1}+2 Q_{2}+\ldots+m Q_{m}
\end{aligned}
$$

Operators P_{k} and Q_{k} are projections onto the corresponding subspaces:

$$
\begin{gathered}
P_{k}: I^{2}(X) \longrightarrow I^{2}\left(X_{k}\right)=\left\{f \in I^{2}(X): T_{\varphi} T_{\varphi}^{*} f=k f\right\} ; \\
Q_{k}: I^{2}(X) \longrightarrow I_{k}^{2}=\left\{f \in I^{2}(X): T_{\varphi}^{*} T_{\varphi} f=k f\right\} .
\end{gathered}
$$

These operators do not commute.

Lemma

Operator T_{φ} can be represented as a linear combination of partial isometries,

$$
T_{\varphi}=U_{1}+\sqrt{2} U_{2}+\ldots+\sqrt{m} U_{m}
$$

Here U_{k} are the partial isometries from the space I_{k}^{2} to the space $I^{2}\left(X_{k}\right)$.

Lemma

Operator T_{φ} can be represented as a linear combination of partial isometries,

$$
T_{\varphi}=U_{1}+\sqrt{2} U_{2}+\ldots+\sqrt{m} U_{m}
$$

Here U_{k} are the partial isometries from the space I_{k}^{2} to the space $I^{2}\left(X_{k}\right)$.

Theorem

\mathfrak{z}_{φ} is isomorphic to C^{*}-algebra generated by the finite set of partial isometries satisfying the equalities:

$$
\begin{aligned}
& U_{1}^{*} U_{1}+U_{2}^{*} U_{2}+\ldots+U_{m}^{*} U_{m}=Q \\
& U_{1} U_{1}^{*}+U_{2} U_{2}^{*}+\ldots+U_{m} U_{m}^{*}=P
\end{aligned}
$$

where P and Q are projections.

Examples of Toeplitz algebra generated by a pare of partial isometries
pic. 2

pic. 4
pic. 6

Monomials

We call $x \in X$ the cyclic element if there is k such that $\varphi^{k}(x)=x$.

Monomials

We call $x \in X$ the cyclic element if there is k such that $\varphi^{k}(x)=x$.

Until further notice we assume that X has no cyclic elements for mapping φ.
We call V the monomial if it is a product of a finite number of partial isometries,

$$
V=U_{j_{1}}^{\prime} U_{j_{2}}^{\prime} \ldots U_{j_{k}}^{\prime}, \quad U_{j_{l}}^{\prime} \in\left\{U_{j_{l}}, U_{j_{l}}^{*}\right\}
$$

Monomials

We call $x \in X$ the cyclic element if there is k such that $\varphi^{k}(x)=x$.

Until further notice we assume that X has no cyclic elements for mapping φ.
We call V the monomial if it is a product of a finite number of partial isometries,

$$
V=U_{j_{1}}^{\prime} U_{j_{2}}^{\prime} \ldots U_{j_{k}}^{\prime}, \quad U_{j_{l}}^{\prime} \in\left\{U_{j_{l}}, U_{j_{l}}^{*}\right\}
$$

By the term index of monomial V (ind V) we mean the difference between the number of partial isometries from sets $\left\{U_{k}^{*}\right\}_{k=1}^{m}$ and $\left\{U_{k}\right\}_{k=1}^{m}$ in its representation.

Monomials

We call $x \in X$ the cyclic element if there is k such that $\varphi^{k}(x)=x$.

Until further notice we assume that X has no cyclic elements for mapping φ.
We call V the monomial if it is a product of a finite number of partial isometries,

$$
V=U_{j_{1}}^{\prime} U_{j_{2}}^{\prime} \ldots U_{j_{k}}^{\prime}, \quad U_{j_{1}}^{\prime} \in\left\{U_{j_{i}}, U_{j_{i},}^{*}\right\} .
$$

By the term index of monomial V (ind V) we mean the difference between the number of partial isometries from sets $\left\{U_{k}^{*}\right\}_{k=1}^{m}$ and $\left\{U_{k}\right\}_{k=1}^{m}$ in its representation.

Lemma

The index of monomial V does not depend on its representation.

Graduation of \mathfrak{z}_{φ}

Let $\mathfrak{a}_{\varphi, n}$ be closed subspace generated by monomials of index n.

Graduation of $\mathfrak{2 f}_{\varphi}$

Let $\mathfrak{Z}_{\varphi, n}$ be closed subspace generated by monomials of index n.

Theorem
\mathfrak{u}_{φ} is \mathbb{Z}-graduated algebra,

$$
\mathfrak{a}_{\varphi}=\sum_{n=-\infty}^{\infty} \mathfrak{u}_{\varphi, n},
$$

and the subalgebra $\mathfrak{u}_{\varphi, 0}$ is $A F$-algebra.

Covariant systems generated by mappings

Algebra $C\left(S^{1}, \mathfrak{a t}_{\varphi}\right)$ is a
C^{*}-algebra with respect to pointwise multiplication, natural involution and uniform norm $\left((f g)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right) g\left(e^{i \theta}\right),\left(f^{*}\right)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right)^{*}\right.$, $\left.\|f\|_{\infty}=\sup \|f\|\right)$.
S^{1}

Covariant systems generated by mappings

Algebra $C\left(S^{1}, \mathfrak{u}_{\varphi}\right)$ is a
C^{*}-algebra with respect to pointwise multiplication, natural involution and uniform norm $\left((f g)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right) g\left(e^{i \theta}\right),\left(f^{*}\right)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right)^{*}\right.$, $\left.\|f\|_{\infty}=\sup \|f\|\right)$. S^{1}

Let's introduce for every monomial V the generalized monomial -\mathfrak{U}_{φ}-valued function, defined by $\widetilde{V}\left(e^{i \theta}\right)=e^{i n \theta} V$, where $n=$ ind V. It is obvious that $C\left(S^{1}, \mathfrak{u}_{\varphi}\right) \supset \widetilde{\mathfrak{x}}_{\varphi}-C^{*}$-algebra generated by generalized monomials.

Covariant systems generated by mappings

Algebra $C\left(S^{1}, \mathfrak{u}_{\varphi}\right)$ is a
C^{*}-algebra with respect to pointwise multiplication, natural involution and uniform norm $\left((f g)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right) g\left(e^{i \theta}\right),\left(f^{*}\right)\left(e^{i \theta}\right)=f\left(e^{i \theta}\right)^{*}\right.$, $\left.\|f\|_{\infty}=\sup \|f\|\right)$. S^{1}

Let's introduce for every monomial V the generalized monomial -\mathfrak{U}_{φ}-valued function, defined by $\widetilde{V}\left(e^{i \theta}\right)=e^{i n \theta} V$, where $n=$ ind V. It is obvious that $C\left(S^{1}, \mathfrak{u}_{\varphi}\right) \supset \widetilde{\mathfrak{u}}_{\varphi}-C^{*}$-algebra generated by generalized monomials.

Theorem
\mathfrak{U}_{φ} is isomorphic to $\widetilde{\mathfrak{U}}_{\varphi}$

Covariant systems generated by mappings

Theorem
There is a covariant system

$$
\left(\mathfrak{z}_{\varphi}, S^{1}, \gamma\right)
$$

where γ is embedding of S^{1} into $\operatorname{Aut} \mathfrak{t}_{\varphi}$, and also

$$
\mathfrak{U}_{\varphi, n}=\left\{A \in \mathfrak{\mathfrak { A }}_{\varphi}: \gamma\left(e^{i \theta}\right)(A)=e^{i n \theta} A\right\} .
$$

Covariant systems generated by mappings

Theorem
There is a covariant system

$$
\left(\mathfrak{z}_{\varphi}, S^{1}, \gamma\right)
$$

where γ is embedding of S^{1} into $\operatorname{Aut} \mathfrak{t}_{\varphi}$, and also

$$
\mathfrak{U}_{\varphi, n}=\left\{A \in \mathfrak{\mathfrak { A }}_{\varphi}: \gamma\left(e^{i \theta}\right)(A)=e^{i n \theta} A\right\} .
$$

It is obvious that $\gamma\left(e^{i \theta}\right)(A)=A \quad$ if $\quad A \in \mathfrak{Z}_{\varphi, 0}$.

Nuclear algebras

Let \mathfrak{B} be the arbitrary C^{*}-algebra.
Mapping φ generates the covariant system $\left(\mathfrak{Z}_{\varphi}, S^{1}, \gamma\right)$ and hence the covariant systems
$\left(\mathfrak{a}_{\varphi} \bigotimes_{\min } \mathfrak{z}, S^{1}, \gamma \otimes_{\min } I\right) \quad$ and
$\left(\mathfrak{u}_{\varphi} \bigotimes \mathfrak{\mathfrak { z }}, S^{1}, \gamma \otimes_{\max } I\right)$.

Let $\mathfrak{A}_{\varphi} \odot \mathfrak{b}$ be the algebraic tensor product with the identical mapping
$I: \sum_{i=1}^{n} A_{i} \otimes B_{i} \longrightarrow \sum_{i=1}^{n} A_{i} \otimes B_{i}$.

Let's extend I up to the surjective *-homomorphism

$$
\Phi: \mathfrak{u}_{\varphi} \bigotimes_{\max } \mathfrak{B} \longrightarrow \mathfrak{a}_{\varphi} \bigotimes_{\min } \mathfrak{b}
$$

setting

$$
\Phi\left(\sum_{i=1}^{n} A_{i} \otimes B_{i}\right)=\sum_{i=1}^{n} A_{i} \otimes B_{i}
$$

for every $\sum_{i=1}^{n} A_{i} \otimes B_{i} \in \mathfrak{2 l}_{\varphi} \odot \mathfrak{B}$.

Let's extend I up to the surjective *-homomorphism

$$
\Phi: \mathfrak{a}_{\varphi} \bigotimes_{\max } \mathfrak{B} \longrightarrow \mathfrak{a}_{\varphi} \bigotimes_{\min } \mathfrak{z}
$$

setting

$$
\Phi\left(\sum_{i=1}^{n} A_{i} \otimes B_{i}\right)=\sum_{i=1}^{n} A_{i} \otimes B_{i}
$$

for every $\sum_{i=1}^{n} A_{i} \otimes B_{i} \in \mathfrak{A}_{\varphi} \odot \mathfrak{B}$.

Considering the covariant systems mentioned above and using that \mathfrak{A}_{φ} is \mathbb{Z}-graduated algebra we obtain that Φ is isomorphism.

Let's extend I up to the surjective *-homomorphism

$$
\Phi: \mathfrak{a}_{\varphi} \bigotimes_{\max } \mathfrak{B} \longrightarrow \mathfrak{a}_{\varphi} \bigotimes_{\min } \mathfrak{z}
$$

setting

$$
\Phi\left(\sum_{i=1}^{n} A_{i} \otimes B_{i}\right)=\sum_{i=1}^{n} A_{i} \otimes B_{i}
$$

for every $\sum_{i=1}^{n} A_{i} \otimes B_{i} \in \mathfrak{I}_{\varphi} \odot \mathfrak{B}$.

Considering the covariant systems mentioned above and using that \mathfrak{A}_{φ} is \mathbb{Z}-graduated algebra we obtain that Φ is isomorphism.

Theorem
\mathfrak{u}_{φ} is a nuclear algebra.

Mappings allowing the cyclic elements

We now turn to the mappings allowing the cyclic elements. In this case there can be different representations of the same monomial V with different indices:

$$
V=U_{j_{1}}^{\prime} U_{j_{2}}^{\prime} \ldots U_{j_{k}}^{\prime} ; \quad V=U_{i_{1}}^{\prime \prime} U_{i_{2}}^{\prime \prime} \ldots U_{i_{l}}^{\prime \prime}
$$

and

$$
\sum_{s=1}^{\prime} \operatorname{ind} U_{j_{s}}^{\prime} \neq \sum_{s=1}^{k} \operatorname{ind} U_{i_{s}}^{\prime \prime} .
$$

Mappings allowing the cyclic elements

We now turn to the mappings allowing the cyclic elements. In this case there can be different representations of the same monomial V with different indices:

$$
V=U_{j_{1}}^{\prime} U_{j_{2}}^{\prime} \ldots U_{j_{k}}^{\prime} ; \quad V=U_{i_{1}}^{\prime \prime} U_{i_{2}}^{\prime \prime} \ldots U_{i_{l}}^{\prime \prime}
$$

and

$$
\sum_{s=1}^{\prime} \operatorname{ind} U_{j_{s}}^{\prime} \neq \sum_{s=1}^{k} \operatorname{ind} U_{i_{s}}^{\prime \prime} .
$$

Lemma

If there is such monomial with different indices it must be compact.

Let's consider algebra

$$
\mathfrak{\mathfrak { B }}_{\varphi}=\mathfrak{2 l}_{\varphi} / I_{\varphi},
$$

where I_{φ} is the ideal of compact operators.
For this algebra we have similar results.

Let's consider algebra

$$
\mathfrak{\mathfrak { B }}_{\varphi}=\mathfrak{\mathfrak { u }}_{\varphi} / \iota_{\varphi},
$$

where I_{φ} is the ideal of compact operators.
For this algebra we have similar results.

Theorem
\mathfrak{B}_{φ} is \mathbb{Z}-graduated algebra,

$$
\mathfrak{\mathfrak { b }}_{\varphi}=\sum_{n=-\infty}^{\infty} \boldsymbol{\mathfrak { b }}_{\varphi, n},
$$

and the subalgebra $\mathfrak{\mathfrak { B }}_{\varphi, 0}$ is $A F$-algebra.

Let's consider algebra

$$
\mathfrak{z}_{\varphi}=\mathfrak{a}_{\varphi} / I_{\varphi},
$$

where I_{φ} is the ideal of compact operators.
For this algebra we have similar results.

Theorem
\mathfrak{B}_{φ} is \mathbb{Z}-graduated algebra,

$$
\mathfrak{w}_{\varphi}=\sum_{n=-\infty}^{\infty} \boldsymbol{\mathfrak { b }}_{\varphi, n}
$$

and the subalgebra $\mathfrak{\mathfrak { B }}_{\varphi, 0}$ is $A F$-algebra.

Note that \mathfrak{A}_{φ} also can be shown to have the $A F$-subalgebra in case of mappings allowing the cyclic elements.

Theorem
There is a covariant system $\left(\mathfrak{b}_{\varphi}, S^{1}, \gamma\right)$, and

$$
\boldsymbol{\mathfrak { b }}_{\varphi, n}=\left\{B \in \boldsymbol{\mathfrak { b }}_{\varphi}: \gamma\left(e^{i \theta}\right)(B)=e^{i n \theta} B\right\} .
$$

Theorem
There is a covariant system $\left(\mathfrak{b}_{\varphi}, S^{1}, \gamma\right)$, and

$$
\boldsymbol{\mathfrak { b }}_{\varphi, n}=\left\{B \in \boldsymbol{\mathfrak { b }}_{\varphi}: \gamma\left(e^{i \theta}\right)(B)=e^{i n \theta} B\right\} .
$$

Theorem
\mathfrak{a}_{φ} is a nuclear algebra.

Thank you

