Structure of C^* -algebras generated by mappings

A. Kuznetsova jointly with S. Grigorian

Kazan Federal University

3.07.2010

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 1 / 18

C^* -algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi : X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$.

C^* -algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi : X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x, \varphi(x))$.

Consider the Hibert space $l^2(X) = \{f : X \to \mathbb{C} : \sum_{x \in X} |f(x)|^2 < \infty\}$ with natural basis $\{e_x\}_{x \in X}$, $e_x(y) = \delta_{x,y}$.

C^* -algebras generated by mappings

Let X be an arbitrary countable set. Mapping $\varphi: X \longrightarrow X$ generates oriented graph (X, φ) with vertices in the elements of X and edges $(x,\varphi(x)).$

Consider the Hibert space
$$l^2(X) = \{f : X \to \mathbb{C} : \sum_{x \in X} |f(x)|^2 < \infty\}$$
 with natural basis $\{e_x\}_{x \in X}$, $e_x(y) = \delta_{x,y}$.

Mapping

$$\varphi: X \longrightarrow X$$

induces the mapping

$$T_{\varphi}: \{e_x\} \to \{e_x\}; \quad T_{\varphi}e_x = e_{\varphi(x)}.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

э 3.07.2010 2 / 18

3

ヘロト ヘアト ヘリト ヘ

The mapping

 $T_{\varphi}: \{e_x\} \to \{e_x\}$

can be extended up to the bounded operator

$$T_{\varphi}: l^2(X) \longrightarrow l^2(X)$$

if and only if

$$\gamma(\varphi) = \sup_{y \in X} \operatorname{card} \varphi^{-1}(y) = m < \infty.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

▲ 注 ▶ 注 ∽ Q ⊂ 3.07.2010 3 / 18

The mapping

 $T_{\varphi}: \{e_x\} \to \{e_x\}$

can be extended up to the bounded operator

$$T_{\varphi}: l^2(X) \longrightarrow l^2(X)$$

if and only if

$$\gamma(\varphi) = \sup_{y \in X} \operatorname{card} \varphi^{-1}(y) = m < \infty.$$

We will consider mappings satisfying this condition. Let's denote via \mathfrak{A}_{φ} the C*-algebra generated by operator T_{φ} .

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 3 / 18

The mapping

 $T_{\varphi}: \{e_x\} \to \{e_x\}$

can be extended up to the bounded operator

$$T_{\varphi}: l^2(X) \longrightarrow l^2(X)$$

if and only if

$$\gamma(\varphi) = \sup_{y \in X} \operatorname{card} \varphi^{-1}(y) = m < \infty.$$

We will consider mappings satisfying this condition. Let's denote via \mathfrak{A}_{φ} the C*-algebra generated by operator T_{φ} .

We call \mathfrak{A}_{φ} the C*-algebra generated by mapping φ .

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 3 / 18

Some examples of C^* -algebras generated by mappings

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 5 / 18

Structure of operator T_{φ}

Positive operators $T_{\varphi}T_{\varphi}^*$ and $T_{\varphi}^*T_{\varphi}$ have the following decomposition:

$$T_{\varphi}T_{\varphi}^* = P_1 + 2P_2 + \ldots + mP_m;$$

$$T_{\varphi}^*T_{\varphi} = Q_1 + 2Q_2 + \ldots + mQ_m.$$

3.07.2010 6 / 18

Structure of operator T_{arphi}

Positive operators $T_{\varphi}T_{\varphi}^*$ and $T_{\varphi}^*T_{\varphi}$ have the following decomposition:

$$T_{\varphi}T_{\varphi}^* = P_1 + 2P_2 + \ldots + mP_m;$$

$$T_{\varphi}^*T_{\varphi} = Q_1 + 2Q_2 + \ldots + mQ_m.$$

Operators P_k and Q_k are projections onto the corresponding subspaces:

$$P_k: l^2(X) \longrightarrow l^2(X_k) = \{ f \in l^2(X) : T_{\varphi}T_{\varphi}^*f = kf \};$$
$$Q_k: l^2(X) \longrightarrow l_k^2 = \{ f \in l^2(X) : T_{\varphi}^*T_{\varphi}f = kf \}.$$

These operators do not commute.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 6 / 18

Lemma

Operator T_{φ} can be represented as a linear combination of partial isometries.

$$T_{\varphi} = U_1 + \sqrt{2}U_2 + \ldots + \sqrt{m}U_m$$

Here U_k are the partial isometries from the space I_k^2 to the space $I^2(X_k)$.

Lemma

Operator T_{φ} can be represented as a linear combination of partial isometries.

$$T_{\varphi} = U_1 + \sqrt{2}U_2 + \ldots + \sqrt{m}U_m.$$

Here U_k are the partial isometries from the space I_k^2 to the space $I^2(X_k)$.

Theorem

 \mathfrak{A}_{φ} is isomorphic to C*-algebra generated by the finite set of partial isometries satisfying the equalities:

$$U_1^*U_1 + U_2^*U_2 + \ldots + U_m^*U_m = Q;$$

$$U_1U_1^* + U_2U_2^* + \ldots + U_mU_m^* = P;$$

where P and Q are projections.

Examples of Toeplitz algebra generated by a pare of partial isometries

We call $x \in X$ the cyclic element if there is k such that $\varphi^k(x) = x$.

< □ > < 同 >

Э 3.07.2010 9 / 18

∃ >

We call $x \in X$ the *cyclic* element if there is k such that $\varphi^k(x) = x$.

Until further notice we assume that X has no cyclic elements for mapping φ . We call V the *monomial* if it is a product of a finite number of partial isometries,

$$V = U'_{j_1}U'_{j_2}\ldots U'_{j_k}, \quad U'_{j_l} \in \{U_{j_l}, U^*_{j_l}\}.$$

We call $x \in X$ the *cyclic* element if there is k such that $\varphi^k(x) = x$.

Until further notice we assume that X has no cyclic elements for mapping φ . We call V the *monomial* if it is a product of a finite number of partial

isometries,

$$V = U'_{j_1}U'_{j_2}\ldots U'_{j_k}, \quad U'_{j_l} \in \{U_{j_l}, U^*_{j_l}\}.$$

By the term *index* of monomial $V \pmod{V}$ we mean the difference between the number of partial isometries from sets $\{U_k^*\}_{k=1}^m$ and $\{U_k\}_{k=1}^m$ in its representation.

We call $x \in X$ the *cyclic* element if there is k such that $\varphi^k(x) = x$.

Until further notice we assume that X has no cyclic elements for mapping φ . We call V the *monomial* if it is a product of a finite number of partial

isometries,

$$V = U'_{j_1}U'_{j_2}\ldots U'_{j_k}, \quad U'_{j_l} \in \{U_{j_l}, U^*_{j_l}\}.$$

By the term *index* of monomial $V \pmod{V}$ we mean the difference between the number of partial isometries from sets $\{U_k^*\}_{k=1}^m$ and $\{U_k\}_{k=1}^m$ in its representation.

Lemma

The index of monomial V does not depend on its representation.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

Let $\mathfrak{A}_{\varphi,n}$ be closed subspace generated by monomials of index n.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 10

э

10 / 18

Let $\mathfrak{A}_{arphi,n}$ be closed subspace generated by monomials of index n.

Theorem

 \mathfrak{A}_{arphi} is \mathbb{Z} -graduated algebra,

$$\mathfrak{A}_{\varphi} = \sum_{n=-\infty}^{\infty} \mathfrak{A}_{\varphi,n},$$

and the subalgebra $\mathfrak{A}_{\varphi,0}$ is AF-algebra.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 10 / 18

Algebra $C(S^1, \mathfrak{A}_{\varphi})$ is a *C**-algebra with respect to pointwise multiplication, natural involution and uniform norm $((fg)(e^{i\theta}) = f(e^{i\theta})g(e^{i\theta}), (f^*)(e^{i\theta}) = f(e^{i\theta})^*,$ $\|f\|_{\infty} = \sup_{S^1} \|f\|).$

3.07.2010 11 / 18

Algebra $C(S^1, \mathfrak{A}_{\varphi})$ is a *C**-algebra with respect to pointwise multiplication, natural involution and uniform norm $((fg)(e^{i\theta}) = f(e^{i\theta})g(e^{i\theta}), (f^*)(e^{i\theta}) = f(e^{i\theta})^*,$ $\|f\|_{\infty} = \sup_{S^1} \|f\|).$

Let's introduce for every monomial V the generalized monomial — \mathfrak{A}_{φ} -valued function, defined by $\widetilde{V}(e^{i\theta}) = e^{in\theta}V$, where $n = \operatorname{ind} V$. It is obvious that $C(S^1, \mathfrak{A}_{\varphi}) \supset \widetilde{\mathfrak{A}}_{\varphi} - C^*$ -algebra generated by generalized monomials.

3.07.2010 11 / 18

Algebra
$$C(S^1, \mathfrak{A}_{\varphi})$$
 is a
 C^* -algebra with respect to pointwise multiplication, natural involution and
uniform norm $((fg)(e^{i\theta}) = f(e^{i\theta})g(e^{i\theta}), (f^*)(e^{i\theta}) = f(e^{i\theta})^*,$
 $\|f\|_{\infty} = \sup_{S^1} \|f\|).$

Let's introduce for every monomial V the generalized monomial — \mathfrak{A}_{φ} -valued function, defined by $\widetilde{V}(e^{i\theta}) = e^{in\theta}V$, where $n = \operatorname{ind} V$. It is obvious that $C(S^1, \mathfrak{A}_{\varphi}) \supset \widetilde{\mathfrak{A}}_{\varphi} - C^*$ -algebra generated by generalized monomials.

Theorem

$$\mathfrak{A}_{arphi}$$
 is isomorphic to $\widetilde{\mathfrak{A}}_{arphi}$

A. Kuznetsova jointly with S. Grigorian (K

Theorem

There is a covariant system

 $(\mathfrak{U}_{\varphi}, S^1, \gamma),$

where γ is embedding of S^1 into $\operatorname{Aut}\mathfrak{A}_{\varphi}$, and also

$$\mathfrak{U}_{\varphi,n} = \{A \in \mathfrak{U}_{\varphi} : \gamma(e^{i\theta})(A) = e^{in\theta}A\}.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 12 / 18

Theorem

There is a covariant system

 $(\mathfrak{U}_{\varphi}, S^1, \gamma),$

where γ is embedding of S^1 into $\operatorname{Aut}\mathfrak{A}_{\varphi}$, and also

$$\mathfrak{A}_{\varphi,n} = \{A \in \mathfrak{A}_{\varphi} : \gamma(e^{i\theta})(A) = e^{in\theta}A\}.$$

It is obvious that
$$\gamma(e^{i heta})(A)=A$$
 if $A\in\mathfrak{A}_{arphi,0}$.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 12 / 18

Let \mathfrak{B} be the arbitrary C^* -algebra.

Mapping φ generates the covariant system $(\mathfrak{A}_{\varphi}, S^1, \gamma)$ and hence the covariant systems

$$(\mathfrak{U}_{\varphi}\bigotimes_{\min}\mathfrak{B}, S^{1}, \gamma \otimes_{\min} I)$$
 and $(\mathfrak{U}_{\varphi}\bigotimes_{\max}\mathfrak{B}, S^{1}, \gamma \otimes_{\max} I).$

Let $\mathfrak{A}_{\varphi} \odot \mathfrak{B}$ be the algebraic tensor product with the identical mapping $I : \sum_{i=1}^{n} A_i \otimes B_i \longrightarrow \sum_{i=1}^{n} A_i \otimes B_i.$

A. Kuznetsova jointly with S. Grigorian (K

Let's extend I up to the surjective *-homomorphism

setting

$$\Phi(\sum_{i=1}^n A_i \otimes B_i) = \sum_{i=1}^n A_i \otimes B_i$$

for every
$$\sum_{i=1}^n A_i \otimes B_i \in \mathfrak{A}_{\varphi} \odot \mathfrak{B}.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

× ≧ ▶ ≧ ∽ ९.C 3.07.2010 14 / 18 Let's extend I up to the surjective *-homomorphism

setting

$$\Phi(\sum_{i=1}^n A_i \otimes B_i) = \sum_{i=1}^n A_i \otimes B_i$$

for every
$$\sum_{i=1}^n A_i \otimes B_i \in \mathfrak{A}_{\varphi} \odot \mathfrak{B}.$$

Considering the covariant systems mentioned above and using that \mathfrak{A}_{φ} is \mathbb{Z} -graduated algebra we obtain that Φ is isomorphism.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 14 / 18

Let's extend I up to the surjective *-homomorphism

setting

$$\Phi(\sum_{i=1}^n A_i \otimes B_i) = \sum_{i=1}^n A_i \otimes B_i$$

for every
$$\sum_{i=1}^n A_i \otimes B_i \in \mathfrak{A}_{\varphi} \odot \mathfrak{B}.$$

Considering the covariant systems mentioned above and using that \mathfrak{A}_{φ} is \mathbb{Z} -graduated algebra we obtain that Φ is isomorphism.

Theorem

$$\mathfrak{U}_{arphi}$$
 is a nuclear algebra.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

Mappings allowing the cyclic elements

We now turn to the mappings allowing the cyclic elements. In this case there can be different representations of the same monomial V with different indices:

$$V = U'_{j_1}U'_{j_2}\ldots U'_{j_k}; \quad V = U''_{i_1}U''_{i_2}\ldots U''_{i_l},$$

and

$$\sum_{s=1}^{l} \operatorname{ind} U'_{j_s} \neq \sum_{s=1}^{k} \operatorname{ind} U''_{i_s}.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 15 / 18

Mappings allowing the cyclic elements

We now turn to the mappings allowing the cyclic elements. In this case there can be different representations of the same monomial V with different indices:

$$V = U'_{j_1}U'_{j_2}\ldots U'_{j_k}; \quad V = U''_{i_1}U''_{i_2}\ldots U''_{i_l},$$

and

$$\sum_{s=1}^{l} \operatorname{ind} U'_{j_s} \neq \sum_{s=1}^{k} \operatorname{ind} U''_{i_s}.$$

Lemma

If there is such monomial with different indices it must be compact.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 15 / 18

Let's consider algebra

$$\mathfrak{B}_{arphi}=\mathfrak{A}_{arphi}/I_{arphi},$$

where I_{φ} is the ideal of compact operators. For this algebra we have similar results.

3.07.2010 16 / 18

Let's consider algebra

$$\mathfrak{B}_{arphi} = \mathfrak{A}_{arphi} / I_{arphi},$$

where I_{φ} is the ideal of compact operators. For this algebra we have similar results.

Theorem

$$\mathfrak{B}_{arphi}$$
 is \mathbb{Z} -graduated algebra,

$$\mathfrak{B}_{\varphi}=\sum_{n=-\infty}^{\infty}\mathfrak{B}_{\varphi,n},$$

and the subalgebra $\mathfrak{B}_{\varphi,0}$ is AF-algebra.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 16 / 18

Let's consider algebra

$$\mathfrak{B}_{arphi} = \mathfrak{U}_{arphi} / I_{arphi},$$

where I_{φ} is the ideal of compact operators. For this algebra we have similar results.

Theorem

$$\mathfrak{B}_{arphi}$$
 is \mathbb{Z} -graduated algebra,

$$\mathfrak{B}_{\varphi}=\sum_{n=-\infty}^{\infty}\mathfrak{B}_{\varphi,n},$$

and the subalgebra $\mathfrak{B}_{\varphi,0}$ is AF-algebra.

Note that \mathfrak{A}_{φ} also can be shown to have the AF-subalgebra in case of mappings allowing the cyclic elements.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06–04.07 2010.

3.07.2010 16 / 18

< □ > < 同 > < 回 > < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < < □ > < □ > < □ > < □ > < □ > < < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

There is a covariant system $(\mathfrak{B}_{\varphi}, S^1, \gamma)$, and

$$\mathfrak{B}_{\varphi,n} = \{B \in \mathfrak{B}_{\varphi} : \gamma(e^{i\theta})(B) = e^{in\theta}B\}.$$

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

э 3.07.2010 17 / 18

∃ >

< □ > < 同 >

- ₹ 🖬 🕨

There is a covariant system $(\mathfrak{B}_{\varphi}, S^1, \gamma)$, and

$$\mathfrak{B}_{\varphi,n} = \{B \in \mathfrak{B}_{\varphi} : \gamma(e^{i\theta})(B) = e^{in\theta}B\}.$$

Theorem

 \mathfrak{A}_{arphi} is a nuclear algebra.

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

3.07.2010 17 / 18

э

Thank you

A. Kuznetsova jointly with S. Grigorian (K

Timisoara, 29.06-04.07 2010.

< 口 > < 同

э 3.07.2010 18 / 18

э