Spectra of C* algebras, \mathbb{R} -actions on \mathcal{O}_2 , and Extension

Eberhard Kirchberg Humboldt-Universität zu Berlin

June 27, 2010

OT23, Timisoara, 29. 6. 2010

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

TOC

- Spectra of amenable C*-algebras.
- Application: Exotic line-action on Cuntz algebras.
- NC-Selection and semi-split Extensions.
- Study of coherent I.q-compact spaces.

Conventions and Notations

- Spaces P, X, Y, · · · are (at least) T₀ and are second countable, algebras A, B, . . . are separable, ...
- ... except corona spaces $\beta(P) \setminus P$, multiplier algebras $\mathcal{M}(B)$, and ideals of corona algebras $Q(B) := \mathcal{M}(B)/B$, ...
- We use the natural isomorphisms

 $\mathcal{I}(A) \cong \mathbb{O}(\operatorname{Prim}(A)) \cong \mathcal{F}(\operatorname{Prim}(A))^{op}.$

- $\mathbb{Q} := [0,1]^{\infty}$ denotes the Hilbert cube (with its coordinate-wise order).
- A T₀ space X is called "sober" (or "point-complete") if each prime closed subset F of X is a the closure {x} = F of a singleton {x}.

Spectra of amenable algebras (1)

Characterization of Prim(A) for amenable A (H.Harnisch, E.K., M.Rørdam):

Theorem 1. A sober space X is homeomorphic to a primitive ideal space of an amenable C^* -algebra A, if and only if,

there is a Polish I.c. space P and a continuous map $\pi \colon P \to X$ such that

 $\pi^{-1}: \mathbb{O}(X) \to \mathbb{O}(P)$ is injective (=: π is pseudoepimorphic),

and

 $(\bigcap_n \pi^{-1}(U_n))^\circ = \pi^{-1}((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$ (=: π is pseudo-open).

The algebra $A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ is uniquely determined by X up to (unitarily homotopic) isomorphisms.

[–] Typeset by FoilT $_{\!E\!X}$ –

Spectra of amenable algebras (2)

Notice: A continuous epimorphism $\pi \colon P \to X$ is not necessarily *pseudo-open*.

We call a map $\Psi \colon \mathbb{O}(X) \to \mathbb{O}(Y)$ "lower semicontinuous" if $(\bigcap_n \Psi(U_n))^\circ = \Psi((\bigcap_n U_n)^\circ)$ for each sequence $U_1, U_2, \ldots \in \mathbb{O}(X)$.

(Thus, π is pseudo-open, if and only if, $\Psi := \pi^{-1}$ is lower semi-continuous.)

If one works with *closed sets*, then one has to replace intersections by unions and interiors by closures.

Exotic *G*-actions (1)

Theorem 2. [N.Ch. Phillips, E.K.] Suppose that a locally compact amenable group G acts topologically free and minimal on Prim(A) of some amenable C^* -algebra A, by $\alpha: G \rightarrow$ Homeo(Prim(A)).

Then there exists a continuous group-action $\beta \colon G \to \operatorname{Aut}(B)$ on the C*-algebra $B := A \otimes \mathcal{O}_2 \otimes \mathbb{K}$ that implements α , and has crossed product $B \rtimes_{\beta} G \cong \mathcal{O}_2 \otimes \mathbb{K}$.

Definition 3. [N.Ch. Phillips compactification] Let $\Xi(P)$ denote the prime T_0 space $P \cup \{\infty\}$ with topology given by the system of open subsets

 $\mathbb{O}(\Xi(P)) = \{ \emptyset, \Xi(P) \setminus C \, ; \ C \subset P, \text{ compact in } P \, \} \, .$

Exotic *G*-actions (2)

Theorem 4. There exists an amenable C^* -algebra A with $Prim(A) \cong \Xi(P)$.

If we apply the above theorems to $\Xi(G)$, we get:

Corollary 5. Every non-compact amenable *l.c.* group G has a co-action $\widehat{\beta}$ on $\mathcal{O}_2 \otimes \mathbb{K}$ such that $B := (\mathcal{O}_2 \otimes \mathbb{K}) \rtimes \widehat{G}$ is prime and the (dual) action β of G on B is minimal and toplogically free.

If $G := \mathbb{R} = \widehat{G}$, there is also an action of $\mathbb{R} = \widehat{\mathbb{R}}$ on \mathcal{O}_2 itself with this property.

NC-Selection and Extensions (1)

Proposition 6. If *B* is stable and $\Psi: \mathcal{I}(B) \to \mathcal{I}(A)$ is a lower semi-continuous action of Prim(B)on *A*, then there exists a lower s.c. action $\mathcal{M}(\Psi): \mathcal{I}(\mathcal{M}(B)) \to \mathcal{I}(A)$ of $Prim(\mathcal{M}(B))$ on *A*, that has the following properties (i)-(iii):

- (i) $\mathcal{M}(\Psi)$ is monotone upper semi-continuous. (:= \sup 's of upward directed families of ideals will be respected).
- (ii) $\mathcal{M}(\Psi)(J_1) = \mathcal{M}(\Psi)(J_1)$ if $J_1 \cap \delta_{\infty}(\mathcal{M}(B)) = J_2 \cap \delta_{\infty}(\mathcal{M}(B)).$

(iii) $\mathcal{M}(\Psi)(\mathcal{M}(B,I)) = \Psi(I)$ for all $I \in \mathcal{I}(B)$.

The "extension" $\mathcal{M}(\Psi)$ of Ψ with (i)–(iii) is unique.

For strongly p.i. (not necessarily separable) B and exact A, there is a nuclear *-morphism $h: A \to B$

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

with $\Psi(J) = h^{-1}(h(A) \cap J)$, if and only if, Ψ is lower s.c. and monotone upper s.c. It yields the following theorem.

NC-Selection and Extensions (2)

Theorem 7. [NC-selection] Suppose that B is stable, $A \otimes \mathcal{O}_2$ contains a regular exact C^* -algebra $C \subset A \otimes \mathcal{O}_2$, and that $\Psi \colon \mathcal{I}(B) \to \mathcal{I}(A)$ is a lower s.c. action of Prim(B) on A.

Then there is a *-morphism $h: A \to \mathcal{M}(B)$ such that $\delta_{\infty} \circ h$ is unitarily equivalent to h, $\Psi(J) = h^{-1}(h(A) \cap \mathcal{M}(B, J))$ and that

 $[h]_J \colon A/\Psi(J) \to \mathcal{M}(B/J) \cong \mathcal{M}(B)/\mathcal{M}(B,J)$

is weakly nuclear for all $J \in \mathcal{I}(B)$.

Here, a subalgebra $C \subset D$ is **regular** if C separates the ideals of D and $C \cap (I+J) = (C \cap I) + (C \cap J)$ for all $I, J \in \mathcal{I}(D)$.

Theorem 7 applies to necessary and sufficient criteria for (ideal-system-) equivariant semi-splitness of extensions.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

NC-Selection and Extensions (3)

Let $\epsilon \colon B \to E$ a *-monomorphism onto a closed ideal of E and $\pi \colon E \to A$ an epimorphism such that $\epsilon(B)$ is the kernel of π . We denote by $\gamma \colon A \to Q(B) = \mathcal{M}(B)/B$ the Busby invariant of the extension

$$0 \to B \xrightarrow{\epsilon} E \xrightarrow{\pi} A \to 0$$
.

Now we consider general "actions" $\psi_B \colon S \to \mathcal{I}(B), \ \psi_E \colon S \to \mathcal{I}(E), \ \text{and} \ \psi_A \colon S \to \mathcal{I}(A), \ \text{of a set}$ S on B, E and A. We require that the extension E is ψ -equivariant:

(a)
$$\epsilon(\psi_B(s)) = \epsilon(B) \cap \psi_E(s) = \epsilon(B)\psi_E(s)$$
, and
(b) $\psi_A(s) = \pi(\psi_E(s))$ for all $s \in S$.

i.e., $0 \to \psi_B(s) \to \psi_E(s) \to \psi_A(s) \to 0$ is exact for each $s \in S$.

– Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

NC-Selection and Extensions (4)

An action $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ of Prim(A) on Bis **upper semi-continuous** if Ψ preserves sup of families in $\mathcal{I}(A)$, i.e., $\Psi(I + J) = \Psi(I) + \Psi(J)$ and Ψ is monotone upper semi-continuous.

Lemma 8. The is a unique maximal upper semicontinuous map $\Phi: \mathcal{I}(A) \to \mathcal{I}(B)$ with the property that $\Phi(\psi_A(s)) \subset \psi_B(s)$ for all $s \in S$.

Every upper semi-continuous action Φ has a lower semi-continuous adjoint map $\Psi: \mathcal{I}(B) \to \mathcal{I}(A)$ such that (Ψ, Φ) build a Galois connection, i.e., $\Psi(J) \supset I$ iff $J \supset \Phi(I)$. The rule is: The upper adjoint is lower semi-continuous (preserves inf).

Applications of Theorem 7 to the adjoint Ψ of Φ in Lemma 8 implies the following necessary and sufficient criterion (ii):

[–] Typeset by FoilT $_{\!E\!} \! \mathrm{X}$ –

NC-Selection and Extensions (5)

Theorem 9. Let B, E, A, ϵ , π , γ , $\psi_Y \colon S \to \mathcal{I}(Y)$ (for $Y \in \{B, E, A\}$) be as above, and let $\Phi \colon \mathcal{I}(A) \to \mathcal{I}(B)$ the map given in Lemma 8.

Suppose, in addition, that A is exact and that B is weakly injective (has the WEP of Lance).

Then the following properties (i) and (ii) of the extension are equivalent:

- (i) The extension has an S-equivariant c.p. splitting map, i.e., there is a c.p. map $V: A \to E$ with $\pi \circ V = \operatorname{id}_A$ and $V(\psi_A(s)) \subset \psi_E(s)$ for all $s \in S$.
- (ii) The Busby invariant $\gamma \colon A \to Q(B)$ is nuclear, and,

 $\pi_B(\mathcal{M}(B, \Phi(J))) \supset \gamma(J) \qquad \forall \ J \in \mathcal{I}(A)$

– Typeset by Foil $\mathrm{T}_{\!E\!}\mathrm{X}$ –

Coherent I.q-compact spaces (1)

A subset C of X is **saturated** if C = Sat(C), where Sat(C) means the intersection of all $U \in \mathbb{O}(X)$ with $U \supset C$.

Definition 10. A sober T_0 space X is called "coherent" if the intersection $C_1 \cap C_2$ of two saturated quasi-compact subsets $C_1, C_2 \subset X$ is again quasi-compact.

Now we give some partial results concerning the open **Question**:

Is every (second-countable) coherent locally quasicompact sober T_0 space X homeomorphic to the primitive ideal spaces Prim(A) of some amenable C^* -algebra A?

Coherent I.q-compact spaces (2)

Let X a locally quasi-compact sober T_0 space, and $\mathcal{F}(X)$ the lattice of closed subsets $F \subset X$.

Definition 11. The topological space $\mathcal{F}(X)_{lsc}$ is the set $\mathcal{F}(X)$ with the T_0 order topology that is generated by the complements

 $\mathcal{F}(X) \setminus [\emptyset, F] = \{ G \in \mathcal{F}(X) ; \ G \cap U \neq \emptyset \} =: \mu_U$

of the intervals $[\emptyset, F]$ for all $F \in \mathcal{F}(X)$ (where $U = X \setminus F$).

The Fell-Vietoris topology on $\mathcal{F}(X)$ is the topology, that is generated by the sets μ_U ($U \in \mathbb{O}(X)$) and the sets $\mu_C := \{G \in \mathcal{F}(X); G \cap C = \emptyset\}$ for all quasi-compact $C \subset X$. (The induced topology on $\mathbb{O}(X) \cong \mathcal{F}(X)^{op}$ is called Larson topology.)

– Typeset by Foil $\mathrm{T}_{E}\mathrm{X}$ –

Coherent I.q-compact spaces (3)

The space $\mathcal{F}(X)_{lsc}$ is a *coherent* second countable locally quasi-compact sober T_0 space, and the space $\mathcal{F}(X)_H$ (with Fell-Vietoris topology of Def. 11) is a *compact Polish* space.

Definition 12. A map $f: X \to [0, \infty)$ is a **Dini function** if it is lower semi-continuous and $\sup f(\bigcap_n F_n) = \inf_n \{\sup f(F_n)\}$ for every decreasing sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets of X.

There are several other definitions — e.g. by the generalized Dini Lemma — that are equivalent for all sober spaces.

For sober spaces X one has also that a function $f: X \to [0, 1]$ is Dini, if and only if, $f: X \to [0, 1]_{lsc}$ is continuous and the restriction $f: X \setminus f^{-1}(0) \to (0, 1]_{lsc}$ is **proper**.

Coherent I.q-compact spaces (4)

The ordered Hilbert cube \mathbb{Q} is nothing else $\mathcal{F}(Y)$ for $Y := X_0 \uplus X_0 \uplus \cdots$ where $X_0 := (0, 1]_{lsc}$. The Fell-Vietoris topology is just the ordinary Hausdorff topology on \mathbb{Q} .

If X is locally quasi-compact sober T_0 space, then a dense sequence g_1, g_2, \ldots in the Dini functions g on X with $\sup g(X) = 1$ defines an order isomorphism $\iota: \mathcal{F} \to \mathbb{Q}$ onto a max-closed subset $\iota(\mathcal{F})$ of \mathbb{Q} with $\iota(\emptyset) = 0, \ \iota(X) = 1$ (Construction of J.M.G. Fell in case of C^* -algebras):

$$\iota(F) := (\sup g_1(F), \sup g_2(F), \ldots) \in \mathbb{Q}.$$

The image $\iota(\mathcal{F}(X))$ is closed in \mathbb{Q} (with Hausdorff topology) and ι defines an isomorphism from $\mathcal{F}(X)$ onto $\iota(\mathcal{F}(X))$ with respect to both topologies on $\mathcal{F}(X)$ and \mathbb{Q} .

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!X$ –

Coherent I.q-compact spaces (5)

In this way, $X \cong \eta(X) \subset \overline{\eta(X)}^H \setminus \{0\} \subset \mathcal{F}(X) \subset \mathbb{Q}$, considered as Polish spaces, with $X \ni x \mapsto \eta(x) := \overline{\{x\}} \in \mathcal{F}(X)$.

Theorem 13. Let X a second countable locally (quasi-)compact sober T_0 space. Following properties (i)-(v) of X are equivalent:

- (i) X is coherent.
- (ii) The image $\eta(X) \cong X$ in $\mathcal{F}(X) \setminus \{\emptyset\}$ is closed in $\mathcal{F}(X) \setminus \{\emptyset\}$ with respect to the Fell-Vietoris topology on $\mathcal{F}(X)$.
- (iii) The set $\mathcal{D}(X)$ of Dini functions on X is convex.

(iv) $\mathcal{D}(X)$ is min-closed.

(v) $\mathcal{D}(X)$ is multiplicatively closed.

[–] Typeset by $\ensuremath{\mathsf{FoilT}}_E\!\mathrm{X}$ –

Coherent I.q-compact spaces (6)

- **Lemma 14.** (I) Each closed subset $F \subset \mathbb{Q}_H$ is a coherent sober subspace F_{lsc} of \mathbb{Q}_{lsc} , and is the intersection of an decreasing sequence F_k of closed subspaces of \mathbb{Q}_H that are continuously orderisomorphic to spaces $G_k \times \mathbb{Q}$ with $G_k \subset [0,1]^{n_k}$ a finite union of n_k -dimensional (small) cubes.
- (II) If $F = \bigcap_k F_k$ for a sequence $F_1 \supset F_2 \supset \cdots$ of closed subsets in $\mathcal{F}(\mathbb{Q}_H)$, and if each $(F_k)_{lsc}$ is the primitive ideal space of an amenable C^* algebra, then F_{lsc} is the primitive ideal space of an amenable C^* -algebra.

Coherent I.q-compact spaces (7)

Corollary 15. If there is a coherent sober l.c. space X that is not homeomorphic to the primitive ideal space of an amenable C^* -algebra, then there is $n \in \mathbb{N}$ and a finite union Y of (Hausdorff-closed) cubes in $[0,1]^n$ such that Y with induced order-topology is not the primitive ideal space of any amenable C^* -algebra.

Theorem 16. [O.B. loffe, E.K.] If $G \subset [0,1]^n$ is a finite union of cubes, then the space G_{lsc} has a finite decomposition series $U_1 \subset U_2 \subset \cdots \subset U_k$, by open subsets $U_{\ell} \subset G_{lsc}$ such that $U_{\ell+1} \setminus U_{\ell}$ is the primitive ideal space of an amenable C^* -algebra.

It leads us to the following conjecture (open question).

Coherent I.q-compact spaces (8)

Conjecture 17. Suppose that X is a locally quasicompact sober space, and $U \subset X$ is open.

X is homeomorphic to the primitive ideal space of an amenable C^* -algebra if U and $X \setminus U$ are homeomorphic to primitive ideal spaces of amenable C^* -algebras.

A proof of this Conjecture would imply that sober l.q-c. spaces are primitive ideal spaces of amenable C^* -algebras — if they have decomposition series by open subsets $\{U_{\alpha}\}$ with coherent spaces $U_{\alpha+1} \setminus U_{\alpha}$.