Quasianalytic contractions and function algebras

László Kérchy

\mathcal{H} complex Hilbert space, $\operatorname{dim} \mathcal{H}=\aleph_{0}$
$\mathcal{L}(\mathcal{H})$ bounded linear operators on \mathcal{H}
$\mathcal{S} \subset \mathcal{L}(\mathcal{H}), \quad$ Lat $\mathcal{S}:=\{\mathcal{M}$ subspace $: C \mathcal{M} \subset \mathcal{M} \forall C \in \mathcal{S}\}$
$T \in \mathcal{L}(\mathcal{H})$

$$
\begin{aligned}
& \mathcal{W}(T):=\{p(T): p \text { polynomial }\}_{\text {WOT }}^{-} \\
& \mathcal{R}(T):=\{q(T): q \text { rational function }\}_{\text {WOT }}^{-} \\
&\{T\}^{\prime}:=\{C \in \mathcal{L}(\mathcal{H}): C T=T C\} \\
& \mathcal{W}(T) \subset \mathcal{R}(T) \subset\{T\}^{\prime} \\
& \text { Lat } T \supset \text { Rlat } T \supset \text { Hlat } T
\end{aligned}
$$

(HSP) Is it true that Hlat $T \neq\{\{0\}, \mathcal{H}\}$ whenever $T \neq c I$?

We may assume: $\quad\|T\| \leq 1$

$$
\mathcal{H}_{0}(T):=\left\{x \in \mathcal{H}: \lim _{n \rightarrow \infty}\left\|T^{n} x\right\|=0\right\} \in \text { Hlat } T
$$

Sz.-Nagy-Foias classification:

$$
\begin{aligned}
& T \in C_{0} . \text { if } \mathcal{H}_{0}(T)=\mathcal{H} \\
& T \in C_{1} . \text { if } \mathcal{H}_{0}(T)=\{0\} \\
& T \in C_{.0} \text { if } \mathcal{H}_{0}\left(T^{*}\right)=\mathcal{H} \\
& T \in C_{.1} \text { if } \mathcal{H}_{0}\left(T^{*}\right)=\{0\} \\
& C_{i j}=C_{i .} \cap C_{\cdot j}
\end{aligned}
$$

(HSP) for C_{00} is equivalent to the general (HSP)
(HSP) for the complement of C_{00} can be reduced to C_{10}
(HSP)* Is it true for every $T \in C_{10}$ that Hlat $T \neq\{\{0\}, \mathcal{H}\}$?

Typical example for a C_{10}-contraction:
$S \in \mathcal{L}\left(H^{2}\right), S f=\chi f$ unilateral shift $(\chi(\zeta)=\zeta)$

$$
\begin{aligned}
H_{\mathrm{i}}^{\infty}= & \left\{\vartheta \in H^{\infty}:|\vartheta(\zeta)|=1 \text { for a.e. } \zeta \in \mathbb{T}\right\} \\
& \text { inner functions }
\end{aligned}
$$

Beurling Theorem:

$$
\begin{aligned}
& \text { Lat } S=\left\{\vartheta H^{2}: \vartheta \in H_{\mathrm{i}}^{\infty}\right\} \\
& \vartheta_{1} H^{2}=\vartheta_{2} H^{2} \Longleftrightarrow \exists \kappa \in \mathbb{T}, \vartheta_{2}=\kappa \vartheta_{1}
\end{aligned}
$$

$T \in C_{10}$

$$
\begin{aligned}
& W \in \mathcal{L}(\mathcal{K}) \text { unitary operator } \\
& X \in \mathcal{L}(\mathcal{H}, \mathcal{K}),\|X\| \leq 1 \text { and } X T=W X
\end{aligned}
$$

(X, W) is a unitary asymptote of T, if

$$
\begin{aligned}
\forall\left(X^{\prime}, W^{\prime}\right), \exists!Y & \in \mathcal{L}\left(\mathcal{K}, \mathcal{K}^{\prime}\right),\|Y\| \\
X^{\prime} & =Y X \text { and } Y W
\end{aligned}
$$

Exists uniquely up to isomorphism.
$\gamma:\{T\}^{\prime} \rightarrow\{W\}^{\prime}, C \mapsto D$, where $X C=D X$ contractive algebra-homomorphism
W absolutely continuous unitary operator
$\delta: \mathbb{T} \rightarrow \mathbb{N} \cup\{0, \infty\}$ spectral-multiplicity function

$$
\begin{aligned}
& \forall n \in \mathbb{N}, \quad \omega(T, n):=\{\zeta \in \mathbb{T}: \delta(\zeta) \geq n\} \\
& \omega(T):=\omega(T, 1) \text { is the residual set of } T
\end{aligned}
$$

Theorem 1. If $\omega(T)=\mathbb{T}$, then $\forall \varepsilon>0, \vee \operatorname{Lat}(T, \varepsilon)=\mathcal{H}$, where

$$
\begin{aligned}
& \operatorname{Lat}(T, \varepsilon)=\left\{\mathcal{M} \in \operatorname{Lat} T: \exists Q \in \mathcal{L}\left(\mathcal{M}, H^{2}\right)\right. \text { invertible, } \\
& \\
& \left.\qquad Q(T \mid \mathcal{M})=S Q,\|Q\|\left\|Q^{-1}\right\|<1+\varepsilon\right\}
\end{aligned}
$$

Sz.-Nagy-Foias calculus:
$\Phi_{T}: H^{\infty} \rightarrow \mathcal{L}(\mathcal{H}), \vartheta \mapsto \vartheta(T)$ algebra-hom.
$\vartheta_{2} \prec \vartheta_{1}$ if $\left|\vartheta_{2}(z)\right| \leq\left|\vartheta_{1}(z)\right| \forall z \in \mathbb{D}$
$A_{2} \prec A_{1}$ if $\left\|A_{2} x\right\| \leq\left\|A_{1} x\right\| \forall x \in \mathcal{H}$

$$
\vartheta_{2} \prec \vartheta_{1} \Longrightarrow \vartheta_{2}(T) \prec \vartheta_{1}(T)
$$

$\Theta=\left\{\vartheta_{n}\right\}_{n=1}^{\infty}$ decreasing, $G_{\Theta}(\zeta):=\lim _{n \rightarrow \infty}\left|\vartheta_{n}(\zeta)\right|(\zeta \in \mathbb{T})$
$\Longrightarrow\left\{\vartheta_{n}(T)\right\}_{n=1}^{\infty}$ decreasing,

$$
\mathcal{H}_{0}(T, \Theta):=\left\{x \in \mathcal{H}: \lim _{n \rightarrow \infty}\left\|\vartheta_{n}(T) x\right\|=0\right\}
$$

T is non-vanishing on the set $\alpha \subset \mathbb{T}$, if

$$
\mathcal{H}_{0}(T, \Theta)=\{0\} \text { whenever } \chi_{\alpha} G_{\Theta} \not \equiv 0
$$

$\pi(T)$ is the largest Borel set where T is non-vanishing is called the quasianalytic spectral set of T

Theorem 2. (a) $\pi(T) \subset \omega(T)$
(b) If $\pi(T) \neq \omega(T)$, then Hlat T is non-trivial.

We may assume that T is a quasianalytic contraction:

$$
\pi(T)=\omega(T)
$$

Let us assume: W is cyclic, that is $\omega(T, 2)=\emptyset$.
$\mathcal{L}_{0}(\mathcal{H}):=\left\{T \in C_{10}(\mathcal{H}): \pi(T)=\omega(T)\right.$ and $\left.\omega(T, 2)=\emptyset\right\}$
$\mathcal{L}_{1}(\mathcal{H}):=\left\{T \in \mathcal{L}_{1}(\mathcal{H}): \omega(T)=\mathbb{T}\right\}$

Theorem 3. If $T \in \mathcal{L}_{0}(\mathcal{H})$ and $\omega(T)$ contains an arc,

$$
\text { then } \exists \widetilde{T} \in \mathcal{L}_{1}(\mathcal{H}),\{T\}^{\prime}=\{\widetilde{T}\}^{\prime}
$$

Examples for operators in $\mathcal{L}_{1}(\mathcal{H})$:
(a) $S \in \mathcal{L}\left(H^{2}\right), S f=\chi f$ unilateral shift
(b) $T \in C_{10}$ and $d_{T^{*}}=d_{T}+1<\infty$, where

$$
d_{T}=\operatorname{rank}\left(I-T^{*} T\right)
$$

(c) $T \in C_{10}, d_{T}=\infty, \operatorname{dim} \operatorname{ker} T^{*}<\infty$,
$\exists \Psi: \mathbb{D} \rightarrow \mathcal{L}\left(\mathcal{D}_{T^{*}}, \mathcal{D}_{T}\right)$ bounded, analytic,

$$
\exists \delta \in H^{\infty} \backslash\{0\}, \Psi \Theta_{T}=\delta I
$$

(d) Cyclic subspaces of orthogonal sums of operators in \mathcal{L}_{1}.

We assume: $T \in \mathcal{L}_{1}(\mathcal{H})$

$$
\begin{aligned}
& \phi: L^{\infty}(\mathbb{T}) \rightarrow\{W\}^{\prime}, f \mapsto f(W) \\
& \varphi:=\phi^{-1}:\{W\}^{\prime} \rightarrow L^{\infty} \text { isometric algebra-isomorphism }
\end{aligned}
$$

$\widehat{\gamma}_{T}:=\varphi \circ \gamma:\{T\}^{\prime} \rightarrow L^{\infty}$ contractive alg.-hom., injective independent of the choice of (X, W)

$$
\forall \vartheta \in H^{\infty}, \widehat{\gamma}_{T}(\vartheta(T))=\vartheta
$$

$\mathcal{F}(T):=\operatorname{ran} \widehat{\gamma}_{T}$ is a subalgebra of L^{∞},
$\mathcal{F}(T) \supset H^{\infty}$ functional commutant of T
$\widehat{\Phi}_{T}: \mathcal{F}(T) \rightarrow\{T\}^{\prime}, f \mapsto f(T)$, where $\widehat{\gamma}_{T}(f(T))=f$
algebra-isomorphism, extension of Φ_{T}

Theorem 4. $\mathcal{F}(T)$ is a quasianalytic function algebra:

$$
\forall f \in \mathcal{F}(T) \backslash\{0\}, f(\zeta) \neq 0 \text { for a.e. } \zeta \in \mathbb{T} \text {. }
$$

Proof. $f \in \mathcal{F}(T) \backslash\{0\}$
$\exists C \in\{T\}^{\prime}, \widehat{\gamma}_{T}(C)=f$
$0 \neq v \in \mathcal{H}$
T quasianalytic $\Longrightarrow X v$ is cyclic for $\{W\}^{\prime}$
W cyclic $\Longrightarrow X v$ is separating for $\{W\}^{\prime}$

$$
\begin{aligned}
X C v & =f(W) X v \neq 0 \Longrightarrow C v \neq 0 \\
& \Longrightarrow f(W) X v=X C v \text { is cyclic for }\{W\} \\
& \Longrightarrow f(\zeta) \neq 0 \text { for a.e. } \zeta \in \mathbb{T}
\end{aligned}
$$

F. \& M. Riesz Theorem $\Longrightarrow H^{\infty}$ is quasianalytic
$\mathcal{B} \subset H_{\mathrm{i}}^{\infty},\left[\overline{\mathcal{B}}, H^{\infty}\right]_{0}:=$ is the algebra, generated by $\overline{\mathcal{B}} \cup H^{\infty}$ quasianalytic, pre-Douglas algebra
$\left[\overline{\mathcal{B}}, H^{\infty}\right]:=$ closure of $\left[\overline{\mathcal{B}}, H^{\infty}\right]_{0}$, Douglas algebra

Chang-Marshall Theorem.

Every closed algebra $H^{\infty} \subset \mathcal{A} \subset L^{\infty}$ is a Douglas algebra.
$\mathcal{A} \neq H^{\infty}$ Douglas algebra $\Longrightarrow \mathcal{A} \supset\left[\bar{\chi}, H^{\infty}\right]=C(\mathbb{T})+H^{\infty}$
$\Longrightarrow \mathcal{A}$ is not quasianalytic
$A_{T}:=X^{*} X=\lim _{n \rightarrow \infty} T^{* n} T^{n}$
$L_{T}:\{T\}^{\prime} \rightarrow \mathcal{L}(\mathcal{H}), C \mapsto A_{T} C$

Theorem 5. TFAE:

(a) $\mathcal{F}(T)$ is a Douglas algebra
(b) $\widehat{\Phi}_{T}$ is bounded
(c) $\hat{\Phi}_{T}$ is an isometry
(d) L_{T} is bounded from below
(e) L_{T} is an isometry
(f) $\mathcal{F}(T)=H^{\infty}$
(g) $\{T\}^{\prime}=H^{\infty}(T)$

Then Heat $T=$ Lat T is rich.
$T \in \mathcal{L}_{1}(\mathcal{H}), T \prec S \Longrightarrow \mathcal{F}(T)$ Douglas algebra

Proposition 6. $\quad \sigma(T)=\mathbb{D}^{-} \Longleftrightarrow \mathcal{F}(T) \cap \overline{H_{\mathrm{i}}^{\infty}}=\mathbb{T} \cdot 1$

Theorem 7. $(\mathrm{a}) \Longrightarrow(\mathrm{b}) \Longrightarrow(\mathrm{c})$, where
(a) $\mathcal{F}(T)$ is a pre-Douglas algebra
(b) $\{T\}^{\prime}=\mathcal{R}(T)$
(c) Hlat $T=$ Rlat T

Sketch of the proof.
Suppose $\mathcal{F}(T) \neq H^{\infty}$ is a pre-Douglas algebra
$\mathcal{B}:=\left\{\eta \in H_{\mathrm{i}}^{\infty}: \bar{\eta} \in \mathcal{F}(T)\right\},\left[\overline{\mathcal{B}}, H^{\infty}\right]_{0}=\mathcal{F}(T)$
Question: $\eta \in \mathcal{B} \Longrightarrow \bar{\eta}(T) \in \mathcal{R}(T)$?
Easily verified if $\eta=\prod_{n=1}^{N} b_{a_{n}}$ is a finite Blaschke product.

$$
\left(b_{0}(z)=z, \quad b_{a}(z)=-\frac{\bar{a}}{|a|} \frac{z-a}{1-\bar{a} z} \text { for } a \in \mathbb{D} \backslash\{0\}\right)
$$

Assume $\eta=\prod_{n=1}^{\infty} b_{a_{n}}$ infinite Blaschke product.
For $N \in \mathbb{N}, B_{N}=\prod_{n=1}^{N} b_{a_{n}}$.

$$
\overline{B_{N}}=\bar{\eta} \prod_{n=N+1}^{\infty} b_{a_{n}} \in \mathcal{F}(T) \Longrightarrow \overline{B_{N}}(T) \in \mathcal{R}(T)
$$

$B_{N} \rightarrow \eta$ weak-* $\Longrightarrow B_{N}(T) \rightarrow \eta(T)$ WOT $(N \rightarrow \infty)$

$$
\Longrightarrow\left\|B_{N}(T)^{-1}\right\| \leq\left\|\eta(T)^{-1}\right\|=\|\bar{\eta}(T)\| \forall N \in \mathbb{N}
$$

$\exists\left\{B_{N_{j}}\right\}_{j=1}^{\infty}$ subsequence:

$$
\begin{gathered}
B_{N_{j}}(T)^{-1} \rightarrow C \text { WOT, and } \\
B_{N_{j}}(\zeta) \rightarrow \eta(\zeta) \text { for a.e. } \zeta \in \mathbb{T} . \\
\Longrightarrow B_{N_{j}}(T) \rightarrow \eta(T) \mathrm{SOT} \\
\Longrightarrow I=B_{N_{j}}(T)^{-1} B_{N_{j}}(T) \rightarrow C \eta(T) \text { WOT } \\
\Longrightarrow \bar{\eta}(T)=\eta(T)^{-1}=C \in \mathcal{R}(T) .
\end{gathered}
$$

Suppose $\eta \in \mathcal{B}$ arbitrary non-constant.
Frostman Theorem $\Longrightarrow \exists a \in \mathbb{D}, 0<|a|<4^{-1}\|\bar{\eta}(T)\|^{-1}$, $b_{a} \circ \eta=b$ is a Blaschke product.
$H^{\infty} \subset \mathcal{A} \subset L^{\infty}$ is a generalized Douglas algebra, if

$$
f \in \mathcal{A}, \lambda \in \mathbb{C},|\lambda|>\|f\|_{\infty} \Longrightarrow \frac{1}{f-\lambda} \in \mathcal{A}
$$

Tolokonnikov's Theorem.

If $\mathcal{A} \neq H^{\infty}$ is a generalized Douglas algebra, then $\bar{\chi} \in \mathcal{A}$.

Theorem 8.

(a) $\mathcal{F}(T)$ is a generalized Douglas algebra

$$
\Longleftrightarrow \quad \forall f \in \mathcal{F}(T), r(f(T))=\|f\|_{\infty}
$$

(b) $\mathcal{F}(T) \neq H^{\infty}$ is a generalized Douglas alg. $\Longrightarrow \sigma(T)=\mathbb{T}$.

Questions.

(a) What are the quasianalytic function algebras in L^{∞} ?
(b) Which quasianalytic function algebras can be attained as a functional commutant $\mathcal{F}(T)$ of some $T \in \mathcal{L}_{1}(\mathcal{H})$?
(c) Which pre-Douglas algebras are attainable?
(d) Which generalized Douglas algebras are attainable?
(e) What is the spectral behaviour of the contractions in $\mathcal{L}_{1}(\mathcal{H})$?

$$
\begin{aligned}
& A \subset \mathbb{D}, \quad \mathcal{B}_{A}=\left\{b_{a}: a \in A\right\} \\
& \left.\quad \forall a \in \mathbb{D}, \overline{b_{a}} \in \overline{\mathcal{B}_{A}}, H^{\infty}\right]_{0} \Longleftrightarrow a \in A
\end{aligned}
$$

If $\left[\overline{\mathcal{B}_{A}}, H^{\infty}\right]_{0}=\mathcal{F}(T)$ for some $T \in \mathcal{L}_{1}(\mathcal{H})$, then $\sigma(T) \cap \mathbb{D}=\mathbb{D} \backslash A$, and so A must be open.

Example

$G=\left\{r e^{i t}: \sqrt{\delta}<r<1,0<t<\pi\right\} \quad(0<\delta<1)$
Riemann \& Charathéodory Theorems \Longrightarrow

$$
\begin{aligned}
& \exists \vartheta_{0}: \mathbb{D}^{-} \rightarrow G^{-} \text {homeomoprhism, } \\
& \quad \vartheta_{0} \mid \mathbb{D} \text { analytic, } \vartheta_{0}(\zeta)=\zeta \text { for } \zeta=1, i,-1 .
\end{aligned}
$$

$T=\vartheta(S) \in \mathcal{L}\left(H^{2}\right)$, where $\vartheta=\vartheta_{0}^{2}$
Spectral mapping theorems \Longrightarrow

$$
\begin{aligned}
& T \in \mathcal{L}_{1}\left(H^{2}\right) \\
& \sigma(T)=\vartheta(\mathbb{D})^{-}=\left\{r e^{i t}: \delta \leq r \leq 1,0 \leq t \leq 2 \pi\right\} \\
& \mathcal{F}(T)=\left\{g \in L^{\infty}: g \circ\left(\vartheta \mid \mathbb{T}_{+}\right)=h \mid \mathbb{T}_{+} \text {for some } h \in H^{\infty}\right\} .
\end{aligned}
$$

