Finite sums of projections

Victor Kaftal
University of Cincinnati

OT23 -Timisoara, July 1, 2010

Joint work with

- Herbert Halpern, Ping Wong Ng, Shuang Zhang Finite sums of projections in von Neumann algebras.
- Ping Wong Ng, Shuang Zhang Positive combinations and sums of projections in purely infinite simple C^{*}-algebras and their multiplier algebras.

The main question

- Which (positive) operators are finite sums of projections?

The main question

- Which (positive) operators are finite sums of projections?

Here we will focus on W^{*}-algebras, but we have also results on purely infinite C^{*}-algebras and their multiplier algebras.

The main question

- Which (positive) operators are finite sums of projections?

Here we will focus on W^{*}-algebras, but we have also results on purely infinite C^{*}-algebras and their multiplier algebras.

We need first to answer the following question:

- Which (positive) operators are positive combinations of projections? (finite linear combinations of projections with positive coefficients)
$a=\sum_{1}^{n} \lambda_{j} p_{j}$ where $\lambda_{j} \geq 0, \quad p_{j}$ projections \in algebra, $n \in \mathbb{N}$.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.
- Fillmore (67) If $a \in K(H)_{+}$but the range projection $R_{a} \notin K(H)$, then a is not a positive combination of projections.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.
- Fillmore (67) If $a \in K(H)_{+}$but the range projection $R_{a} \notin K(H)$, then a is not a positive combination of projections. Indeed, otherwise, $a=\sum_{1}^{n} \lambda_{j} p_{j}$ and $\lambda_{j}>0 \quad \forall j \Rightarrow$ $\lambda_{j} p_{j} \leq a \quad \Rightarrow \quad p_{j} \in K(H) \quad \Rightarrow \quad R_{a}=\bigvee_{1}^{n} p_{j} \in K(H)$.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.
- Fillmore (67) If $a \in K(H)_{+}$but the range projection $R_{a} \notin K(H)$, then a is not a positive combination of projections. Indeed, otherwise, $a=\sum_{1}^{n} \lambda_{j} p_{j}$ and $\lambda_{j}>0 \quad \forall j \Rightarrow$ $\lambda_{j} p_{j} \leq a \Rightarrow p_{j} \in K(H) \quad \Rightarrow \quad R_{a}=\bigvee_{1}^{n} p_{j} \in K(H)$.
- Fong \& Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.
- Fillmore (67) If $a \in K(H)_{+}$but the range projection $R_{a} \notin K(H)$, then a is not a positive combination of projections. Indeed, otherwise, $a=\sum_{1}^{n} \lambda_{j} p_{j}$ and $\lambda_{j}>0 \quad \forall j \Rightarrow$ $\lambda_{j} p_{j} \leq a \Rightarrow p_{j} \in K(H) \quad \Rightarrow \quad R_{a}=\bigvee_{1}^{n} p_{j} \in K(H)$.
- Fong \& Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.
- Bikchentaev (05) Every positive invertible element in a W*-algebra M without finite type I direct summands with infinite dim center is a positive combination of projections.

What is known on positive combinations of projections.

- Fillmore (69) Every positive invertible operator in $B(H)$ is a positive combination of projections.
- Fillmore (67) If $a \in K(H)_{+}$but the range projection $R_{a} \notin K(H)$, then a is not a positive combination of projections. Indeed, otherwise, $a=\sum_{1}^{n} \lambda_{j} p_{j}$ and $\lambda_{j}>0 \quad \forall j \Rightarrow$ $\lambda_{j} p_{j} \leq a \Rightarrow p_{j} \in K(H) \quad \Rightarrow \quad R_{a}=\bigvee_{1}^{n} p_{j} \in K(H)$.
- Fong \& Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.
- Bikchentaev (05) Every positive invertible element in a W*-algebra M without finite type I direct summands with infinite dim center is a positive combination of projections.

We need to follow an alternative approach:

The algebra constant V_{o}

For some C^{*}-algebras \mathcal{A} there is a constant V_{o} s.t. for all $a \in \mathcal{A}$ there are $\lambda_{j} \in \mathbb{C}$ and projections $p_{j} \in \mathcal{A}$ for which
(i) $a=\sum_{1}^{n} \lambda_{j} p_{j} \quad$ and
(ii) $\sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{o}\|a\|$

The algebra constant V_{o}

For some C^{*}-algebras \mathcal{A} there is a constant V_{o} s.t. for all $a \in \mathcal{A}$ there are $\lambda_{j} \in \mathbb{C}$ and projections $p_{j} \in \mathcal{A}$ for which
(i) $a=\sum_{1}^{n} \lambda_{j} p_{j} \quad$ and
(ii) $\sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{o}\|a\|$

Among those algebras:

- $B(H)$ Fong \& Murphy (1985) (they introduced the notion)

The algebra constant V_{o}

For some C^{*}-algebras \mathcal{A} there is a constant V_{o} s.t. for all $a \in \mathcal{A}$ there are $\lambda_{j} \in \mathbb{C}$ and projections $p_{j} \in \mathcal{A}$ for which
(i) $a=\sum_{1}^{n} \lambda_{j} p_{j} \quad$ and
(ii) $\sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{o}\|a\|$

Among those algebras:

- $B(H)$ Fong \& Murphy (1985) (they introduced the notion)
- All W^{*} algebras with no finite type I direct summands with infinite dim center. Implicit in the proofs (see Goldstein \& Paskiewicz (1992))

The algebra constant V_{o}

For some C^{*}-algebras \mathcal{A} there is a constant V_{o} s.t. for all $a \in \mathcal{A}$ there are $\lambda_{j} \in \mathbb{C}$ and projections $p_{j} \in \mathcal{A}$ for which
(i) $a=\sum_{1}^{n} \lambda_{j} p_{j} \quad$ and
(ii) $\sum_{1}^{n}\left|\lambda_{j}\right| \leq V_{o}\|a\|$

Among those algebras:

- $B(H)$ Fong \& Murphy (1985) (they introduced the notion)
- All W* algebras with no finite type I direct summands with infinite dim center. Implicit in the proofs (see Goldstein \& Paskiewicz (1992))
- Infinite simple C*-algebras. AF algebras with finite number of extremal traces. Implicit in the proofs (Fack (1982), Marcoux (2002))

Positive combinations of projections \&invertibility

Proposition
If an algebra \mathcal{A}
(i) has a constant V_{o} as above
(ii) positive combinations of projections are dense in \mathcal{A}_{+}
then every positive invertible operator is a positive combination of projections.

Positive combinations of projections \&invertibility

Proposition
If an algebra \mathcal{A}
(i) has a constant V_{o} as above
(ii) positive combinations of projections are dense in \mathcal{A}_{+}
then every positive invertible operator is a positive combination of projections.

The proof is an adaptation of the Fong \& Murphy (1985) proof in $B(H)$.

Positive combinations of projections \&invertibility

Proposition
If an algebra \mathcal{A}
(i) has a constant V_{o} as above
(ii) positive combinations of projections are dense in \mathcal{A}_{+}
then every positive invertible operator is a positive combination of projections.

The proof is an adaptation of the Fong \& Murphy (1985) proof in $B(H)$.

Notice that the condition that positive combinations of projections are dense in \mathcal{A}_{+}is satisfied by all real rank zero algebras, and in particular by all W^{*}-algebras.

Beyond invertibility: a key lemma.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Beyond invertibility: a key lemma.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma
Assume there are projections $e \perp f$, $e \prec f$ in a C^{*}-algebra \mathcal{A} and every positive invertible in $f \mathcal{A f}$ is a positive combination of projections. Let $a=b \oplus c$ where $b \geq 0$ and $c \geq(\|b\|+\epsilon) f$.

Beyond invertibility: a key lemma.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma
Assume there are projections $e \perp f$, $e \prec f$ in a C^{*}-algebra \mathcal{A} and every positive invertible in $f \mathcal{A f}$ is a positive combination of projections. Let $a=b \oplus c$ where $b \geq 0$ and $c \geq(\|b\|+\epsilon) f$.
Then a is a positive combination of projections.

Beyond invertibility: a key lemma.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma

Assume there are projections $e \perp f, e \prec f$ in a C^{*}-algebra \mathcal{A} and every positive invertible in fAf is a positive combination of projections. Let $a=b \oplus c$ where $b \geq 0$ and $c \geq(\|b\|+\epsilon) f$.
Then a is a positive combination of projections.

$$
\begin{aligned}
& \text { Sketch of proof } \\
& \begin{array}{l}
v^{*} v=e, \quad v v^{*}=f^{\prime} \leq f, \quad q_{ \pm}:=\left(\begin{array}{cc}
b & \pm \sqrt{b-b^{2}} v^{*} \\
\pm v \sqrt{b-b^{2}} & v(e-b) v^{*}
\end{array}\right) \\
a=\frac{1}{2}\left(q_{-}+q_{+}\right)+\underbrace{c-f^{\prime}+v b v^{*}}_{\text {positive, invertible, hence pos comb proj }}
\end{array}
\end{aligned}
$$

Positive combinations of projections in W^{*}-algebras

Theorem (Halpern, K, Ng, Zhang)
Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=1$. TFAE
(i) a is a positive combination of projections

Positive combinations of projections in W^{*}-algebras

Theorem (Halpern, K, Ng, Zhang)
Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=1$. TFAE
(i) a is a positive combination of projections
(ii) $\exists \delta>0$ such that $\chi_{a}(0, \delta) \prec \chi_{a}[\delta, \infty) . \quad \chi_{a}$ denotes the
spectral measure of a.

Positive combinations of projections in W^{*}-algebras

Theorem (Halpern, K, Ng, Zhang)
Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. TFAE
(i) a is a positive combination of projections
(ii) $\exists \delta>0$ such that $\chi_{a}(0, \delta) \prec \chi_{a}[\delta, \infty) . \quad \chi_{a}$ denotes the
spectral measure of a.
Even when M is finite (but without finite type I direct summands with infinite dim center) then (ii) \Rightarrow (i)

Positive combinations of projections in W^{*}-algebras

Theorem (Halpern, K, Ng, Zhang)
Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. TFAE
(i) a is a positive combination of projections
(ii) $\exists \delta>0$ such that $\chi_{a}(0, \delta) \prec \chi_{a}[\delta, \infty) . \quad \chi_{a}$ denotes the
spectral measure of a.
Even when M is finite (but without finite type I direct summands with infinite dim center) then (ii) \Rightarrow (i)

Corollary

If M is a finite sum of finite factors or of σ-finite type III factors, then every $a \in M_{+}$is a positive combination of projections.

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila \& Zsido (1970's)

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila \& Zsido (1970's)

A simple example: If $M=\bigoplus_{1}^{\infty} B\left(H_{n}\right)$ and $J=\bigoplus_{1}^{\infty} K\left(H_{n}\right)$, then central essential norm of $a=\bigoplus_{1}^{\infty} a_{n} \in M_{+}$is

$$
\bigoplus_{1}^{\infty}\left\|a_{n}\right\|_{\text {ess }} I_{n} \in M \cap M^{\prime}
$$

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila \& Zsido (1970's)

A simple example: If $M=\bigoplus_{1}^{\infty} B\left(H_{n}\right)$ and $J=\bigoplus_{1}^{\infty} K\left(H_{n}\right)$, then central essential norm of $a=\bigoplus_{1}^{\infty} a_{n} \in M_{+}$is

$$
\bigoplus_{1}^{\infty}\left\|a_{n}\right\|_{\text {ess }} I_{n} \in M \cap M^{\prime}
$$

Condition (ii) can be reformulated in terms of the central essential norm relative to an ideal "smaller" than R_{a} :
(ii) $\exists \delta>0$ such that $\chi_{a}(0, \delta) \prec \chi_{a}[\delta, \infty)$
(iii) The central essential norm of a is $\geq \nu /$ for some $\nu>0$.

Sums of projections: an elementary test question

Now we have the tools to discuss sums of projections.

Sums of projections: an elementary test question

Now we have the tools to discuss sums of projections.
Let $h:=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$

Sums of projections: an elementary test question

Now we have the tools to discuss sums of projections.
Let $h:=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$

- Is h a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Sums of projections: an elementary test question

Now we have the tools to discuss sums of projections.
Let $h:=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$

- Is h a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Can you guess?

Sums of projections: an elementary test question

Now we have the tools to discuss sums of projections.
Let $h:=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$

- Is h a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Can you guess?

ANSWER

- NO
- YES

Infinite sums of projections in $B(H)$ and W^{*}-factors

The easier question is:
when is $a \in M_{+}$a (possibly) infinite sum of projections?

Infinite sums of projections in $B(H)$ and W^{*}-factors

The easier question is:
when is $a \in M_{+}$a (possibly) infinite sum of projections?
For $a \in M_{+}$, the answer lies in considering

$$
a_{-}:=(I-a) \chi_{a}(0,1)
$$

the defect operator
$a_{+}:=(a-I) \chi_{a}(1, \infty) \quad$ the excess operator.

Infinite sums of projections in $B(H)$ and W^{*}-factors

The easier question is: when is $a \in M_{+}$a (possibly) infinite sum of projections?

For $a \in M_{+}$, the answer lies in considering
$a_{-}:=(I-a) \chi_{a}(0,1) \quad$ the defect operator
$a_{+}:=(a-I) \chi_{a}(1, \infty) \quad$ the excess operator.

Example (B(H))

$$
a:=\operatorname{diag}\left(1-\lambda_{1}, 1-\lambda_{2}, \cdots\right) \oplus \operatorname{diag}\left(1+\mu_{1}, 1+\mu_{2} \cdots\right)
$$

with $0<\lambda_{j}<1, \mu_{j}>0$. Then

$$
a_{-}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \cdots\right) \quad \text { and } \quad a_{+}=\operatorname{diag}\left(\mu_{1}, \mu_{2} \cdots\right)
$$

Nec and (sometimes) suff conditions
Theorem (Ng, K \& Zhang (09, JFA))
Let M be a σ-finite factor and $a \in M_{+}$. Then a is an infinite sum of projections (strong conv) if and only if $(M$ type $I) \operatorname{tr}\left(a_{+}\right) \geq \operatorname{tr}\left(a_{-}\right)$and $\operatorname{tr}\left(a_{+}\right)-\operatorname{tr}\left(a_{-}\right) \in \mathbb{N} \cup\{0\} \cup\{\infty\} ;$

Nec and (sometimes) suff conditions

Theorem (Ng, K \& Zhang (09, JFA))
Let M be a σ-finite factor and $a \in M_{+}$. Then a is an infinite sum of projections (strong conv) if and only if
(M type I) $\operatorname{tr}\left(a_{+}\right) \geq \operatorname{tr}\left(a_{-}\right)$and $\operatorname{tr}\left(a_{+}\right)-\operatorname{tr}\left(a_{-}\right) \in \mathbb{N} \cup\{0\} \cup\{\infty\} ;$
(M type II) $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$(assuming further that a is diagonalizable;, i.e., $\left.a=\oplus_{\gamma} \alpha_{\gamma} p_{\gamma}\right)$

Nec and (sometimes) suff conditions

Theorem (Ng, K \& Zhang (09, JFA))
Let M be a σ-finite factor and $a \in M_{+}$. Then a is an infinite sum of projections (strong conv) if and only if
(M type I) $\operatorname{tr}\left(a_{+}\right) \geq \operatorname{tr}\left(a_{-}\right)$and $\operatorname{tr}\left(a_{+}\right)-\operatorname{tr}\left(a_{-}\right) \in \mathbb{N} \cup\{0\} \cup\{\infty\} ;$
(M type II) $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$(assuming further that a is diagonalizable;, i.e., $a=\oplus_{\gamma} \alpha_{\gamma} p_{\gamma}$)
(M type III) Either $\|a\|>1$ or a is a projection.

Nec and (sometimes) suff conditions

Theorem (Ng, K \& Zhang (09, JFA))
Let M be a σ-finite factor and $a \in M_{+}$. Then a is an infinite sum of projections (strong conv) if and only if
(M type I) $\operatorname{tr}\left(a_{+}\right) \geq \operatorname{tr}\left(a_{-}\right)$and $\operatorname{tr}\left(a_{+}\right)-\operatorname{tr}\left(a_{-}\right) \in \mathbb{N} \cup\{0\} \cup\{\infty\}$;
(M type II) $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$(assuming further that a is
diagonalizable;, i.e., $\left.a=\oplus_{\gamma} \alpha_{\gamma} p_{\gamma}\right)$
(M type III) Either $\|a\|>1$ or a is a projection.
Consequence For $h=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$, $h_{+}=\operatorname{diag}\left(1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right)$ and $h_{-}=0$, hence $\operatorname{tr}(+)-\operatorname{tr}\left(h_{-}\right)=\infty$ and thus h is an infinite sum of projections.

Nec and (sometimes) suff conditions

Theorem (Ng, K \& Zhang (09, JFA))
Let M be a σ-finite factor and $a \in M_{+}$. Then a is an infinite sum of projections (strong conv) if and only if
(M type I) $\operatorname{tr}\left(a_{+}\right) \geq \operatorname{tr}\left(a_{-}\right)$and $\operatorname{tr}\left(a_{+}\right)-\operatorname{tr}\left(a_{-}\right) \in \mathbb{N} \cup\{0\} \cup\{\infty\} ;$
(M type II) $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$(assuming further that a is
diagonalizable;, i.e., $a=\oplus_{\gamma} \alpha_{\gamma} p_{\gamma}$)
(M type III) Either $\|a\|>1$ or a is a projection.
Consequence For $h=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$, $h_{+}=\operatorname{diag}\left(1, \frac{1}{2}, \cdots, \frac{1}{n}, \cdots\right)$ and $h_{-}=0$, hence $\operatorname{tr}(+)-\operatorname{tr}\left(h_{-}\right)=\infty$ and thus h is an infinite sum of projections.

Conjecture

We conjecture that the diagonalizability hypothesis in the type II case can be removed. How?

What is known about finite sums of projections in $B(H)$.

- Fillmore (69) If $a \in M_{n}(\mathbb{C})_{+}$, then a is a (finite) sum of projections if and only if $\operatorname{tr}(a) \in \mathbb{N}$ and $\operatorname{tr}(a) \geq \operatorname{rank}(a)$.

What is known about finite sums of projections in $B(H)$.

- Fillmore (69) If $a \in M_{n}(\mathbb{C})_{+}$, then a is a (finite) sum of projections if and only if $\operatorname{tr}(a) \in \mathbb{N}$ and $\operatorname{tr}(a) \geq \operatorname{rank}(a)$.
- Fillmore (69) Characterization of sums of two projections.

What is known about finite sums of projections in $B(H)$.

- Fillmore (69) If $a \in M_{n}(\mathbb{C})_{+}$, then a is a (finite) sum of projections if and only if $\operatorname{tr}(a) \in \mathbb{N}$ and $\operatorname{tr}(a) \geq \operatorname{rank}(a)$.
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich \& Samoilenko (2000-2) From the characterization of

$$
\Sigma_{n}:=\{\alpha>1|\alpha| \text { is a sum of } n \text { projections }\}
$$

follows that α l is a finite sum of projections for every $\alpha>1$.

What is known about finite sums of projections in $B(H)$.

- Fillmore (69) If $a \in M_{n}(\mathbb{C})_{+}$, then a is a (finite) sum of projections if and only if $\operatorname{tr}(a) \in \mathbb{N}$ and $\operatorname{tr}(a) \geq \operatorname{rank}(a)$.
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich \& Samoilenko (2000-2) From the characterization of

$$
\Sigma_{n}:=\{\alpha>1|\alpha| \text { is a sum of } n \text { projections }\}
$$

follows that α l is a finite sum of projections for every $\alpha>1$.

- Wu (94, announcement), Choi \& Wu (current preprint) $\|a\|_{\text {ess }}>1 \Rightarrow a$ is a finite sum of projections.

What is known about finite sums of projections in $B(H)$.

- Fillmore (69) If $a \in M_{n}(\mathbb{C})_{+}$, then a is a (finite) sum of projections if and only if $\operatorname{tr}(a) \in \mathbb{N}$ and $\operatorname{tr}(a) \geq \operatorname{rank}(a)$.
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich \& Samoilenko (2000-2) From the characterization of

$$
\Sigma_{n}:=\{\alpha>1|\alpha| \text { is a sum of } n \text { projections }\}
$$

follows that α l is a finite sum of projections for every $\alpha>1$.

- Wu (94, announcement), Choi \& Wu (current preprint) $\|a\|_{\text {ess }}>1 \Rightarrow a$ is a finite sum of projections.
Notice: $\|a\|_{\text {ess }}>1 \Leftrightarrow a_{+} \notin K(H)$.

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center.

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center. Let $a=\beta \boldsymbol{e} \oplus \alpha f, \mathbb{R} \ni \beta \geq 0$, and $\mathbb{R} \ni \alpha>1$.

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center. Let $a=\beta e \oplus \alpha f, \mathbb{R} \ni \beta \geq 0$, and $\mathbb{R} \ni \alpha>1$. Then a is a finite sum of projections.

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center. Let $a=\beta e \oplus \alpha f, \mathbb{R} \ni \beta \geq 0$, and $\mathbb{R} \ni \alpha>1$. Then a is a finite sum of projections.
Sketch of proof (to simplify, assume M is a factor

$$
\begin{array}{rlr}
a & =\beta e+\alpha \sum_{1}^{\infty} e_{j} \quad \text { where } \quad e_{j} \sim e \forall j \\
& =\underbrace{\beta e+\sum_{1}^{n_{1}-1} \alpha e_{j}+\left(\alpha-\gamma_{1}\right) e_{n_{1}}}_{\text {finite sum of projections for appropriate } \gamma_{1}}+\gamma_{1} e_{n_{1}}+\sum_{n_{1}+1}^{\infty} \alpha e_{j}
\end{array}
$$

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center. Let $a=\beta e \oplus \alpha f, \mathbb{R} \ni \beta \geq 0$, and $\mathbb{R} \ni \alpha>1$. Then a is a finite sum of projections.
Sketch of proof (to simplify, assume M is a factor

$$
\begin{array}{rlr}
a & =\beta e+\alpha \sum_{1}^{\infty} e_{j} \quad \text { where } e_{j} \sim e \forall j \\
& =\underbrace{\beta e+\sum_{1}^{n_{1}-1} \alpha e_{j}+\left(\alpha-\gamma_{1}\right) e_{n_{1}}}_{\text {finite sum of projections for appropriate } \gamma_{1}}+\gamma_{1} e_{n_{1}}+\sum_{n_{1}+1}^{\infty} \alpha e_{j}
\end{array}
$$

Number of projections in each block uniformly bounded.

Key Lemma

Lemma

Assume that M is a properly infinite W^{*}-algebra and e, $f \in M$ are projections with $e \perp f, e \prec f, f$ properly infinite, and $M_{f}(=f M f)$ has no finite type I summands with infinite dim center. Let $a=\beta e \oplus \alpha f, \mathbb{R} \ni \beta \geq 0$, and $\mathbb{R} \ni \alpha>1$. Then a is a finite sum of projections.
Sketch of proof (to simplify, assume M is a factor

$$
\begin{array}{rlr}
a & =\beta e+\alpha \sum_{1}^{\infty} e_{j} \quad \text { where } e_{j} \sim e \forall j \\
& =\underbrace{\beta e+\sum_{1}^{n_{1}-1} \alpha e_{j}+\left(\alpha-\gamma_{1}\right) e_{n_{1}}}_{\text {finite sum of projections for appropriate } \gamma_{1}}+\gamma_{1} e_{n_{1}}+\sum_{n_{1}+1}^{\infty} \alpha e_{j}
\end{array}
$$

Number of projections in each block uniformly bounded.
Non-consecutive blocks are orthogonal.

A sufficient condition for the properly infinite case

Theorem

Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=I$. Then a is a finite sum of projections if "the central essential norm of a " $\geq \nu /$ for some $\nu>1$.

A sufficient condition for the properly infinite case

Theorem

Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. Then a is a finite sum of projections if "the central essential norm of a " $\geq \nu$ l for some $\nu>1$.
The central essential norm condition cannot be eliminated:
$a:=\bigoplus\left(1+\frac{1}{n}\right) I_{n} \in \bigoplus B\left(H_{n}\right)$ is NOT the sum of finitely many projections because each summand $\left(1+\frac{1}{n}\right) I_{n}$ requires at least $n+1$ projections by Kruglyak, Rabanovich \& Samoilenko.

A sufficient condition for the properly infinite case

Theorem

Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. Then a is a finite sum of projections if "the central essential norm of a " $\geq \nu$ l for some $\nu>1$.
The central essential norm condition cannot be eliminated:
$a:=\bigoplus\left(1+\frac{1}{n}\right) I_{n} \in \bigoplus B\left(H_{n}\right)$ is NOT the sum of finitely many projections because each summand $\left(1+\frac{1}{n}\right) I_{n}$ requires at least $n+1$ projections by Kruglyak, Rabanovich \& Samoilenko.

In particular, if M is a σ-finite factor

- M is type $\mathrm{I}:\|a\|_{\text {ess }}>1$ (usual essential norm: Choi \& Wu result, new proof)

A sufficient condition for the properly infinite case

Theorem

Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. Then a is a finite sum of projections if "the central essential norm of a " $\geq \nu$ l for some $\nu>1$.

The central essential norm condition cannot be eliminated:
$a:=\bigoplus\left(1+\frac{1}{n}\right) I_{n} \in \bigoplus B\left(H_{n}\right)$ is NOT the sum of finitely many projections because each summand $\left(1+\frac{1}{n}\right) I_{n}$ requires at least $n+1$ projections by Kruglyak, Rabanovich \& Samoilenko.

In particular, if M is a σ-finite factor

- M is type $\mathrm{I}:\|a\|_{\text {ess }}>1$ (usual essential norm: Choi \& Wu result, new proof)
- M is type II: $\|a\|_{\text {ess }}>1$ (ess. norm relative to the Breuer ideal of relative compact operators. No need for diagonalizability.)

A sufficient condition for the properly infinite case

Theorem

Let M be a properly infinite W^{*}-algebra M and let $a \in M_{+}$with range projection $R_{a}=l$. Then a is a finite sum of projections if "the central essential norm of a " $\geq \nu$ l for some $\nu>1$.

The central essential norm condition cannot be eliminated:
$a:=\bigoplus\left(1+\frac{1}{n}\right) I_{n} \in \bigoplus B\left(H_{n}\right)$ is NOT the sum of finitely many projections because each summand $\left(1+\frac{1}{n}\right) I_{n}$ requires at least $n+1$ projections by Kruglyak, Rabanovich \& Samoilenko.

In particular, if M is a σ-finite factor

- M is type $\mathrm{I}:\|a\|_{\text {ess }}>1$ (usual essential norm: Choi \& Wu result, new proof)
- M is type II: $\|a\|_{\text {ess }}>1$ (ess. norm relative to the Breuer ideal of relative compact operators. No need for diagonalizability.)
- M is type III: $\|a\|>1$.

A sufficient condition for the type I_{1} case

Recall that we had that if M is a type II factor, $a \in M_{+}$is diagonalizable, and $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$, then a is a possibly infinite sum of projections. We can improve this result:

A sufficient condition for the type II_{1} case

Recall that we had that if M is a type II factor, $a \in M_{+}$is diagonalizable, and $\tau\left(a_{+}\right) \geq \tau\left(a_{-}\right)$, then a is a possibly infinite sum of projections. We can improve this result:

Theorem
Let M be a type I_{1} factor and $a \in M_{+}$be diagonalizable. If $\tau\left(a_{+}\right)>\tau\left(a_{-}\right)$, then a is a finite sum of projections.

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

- if $a_{-}=0$, then a_{+}has finite rank;

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

- if $a_{-}=0$, then a_{+}has finite rank;
- if $a_{-} \neq 0$, then a_{+}and a_{-}generate the same two-sided (non-closed) principal ideal of $B(H)$.

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

- if $a_{-}=0$, then a_{+}has finite rank;
- if $a_{-} \neq 0$, then a_{+}and a_{-}generate the same two-sided (non-closed) principal ideal of $B(H)$.

In particular the "test" $h=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$ is NOT a finite sum of projections because $h_{-}=0$ and h_{+}has infinite rank!

$B(H)$: a necessary condition

Theorem
Let $a \in B(H)_{+}$be a finite sum of projections and assume that $\|a\|_{\text {ess }}=1\left(\Leftrightarrow a_{+} \in K(H)\right.$.) Then also $a_{-} \in K(H)$ and

- if $a_{-}=0$, then a_{+}has finite rank;
- if $a_{-} \neq 0$, then a_{+}and a_{-}generate the same two-sided (non-closed) principal ideal of $B(H)$.

In particular the "test" $h=\operatorname{diag}\left(1+1,1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots\right)$ is NOT a finite sum of projections because $h_{-}=0$ and h_{+}has infinite rank!

The result for W^{*}-algebras is similar.

Tools in the proof

- Frame transform methods permit to construct an isometry w such that

$$
\exists \sum_{1}^{n} q_{j}=l \quad \text { and } \quad q_{j} w a w^{*} q_{j}=q_{j} \forall j
$$

Tools in the proof

- Frame transform methods permit to construct an isometry w such that

$$
\exists \sum_{1}^{n} q_{j}=l \quad \text { and } \quad q_{j} w a w^{*} q_{j}=q_{j} \quad \forall j
$$

- Let Ψ be conditional expectation $\Psi(x)=\sum_{1}^{n} q_{j} x q_{j}$ on the block-diagonal algebra. Then $\Psi\left(w a w^{*}\right)=I$ and

$$
\Psi\left(w a_{+} w^{*}\right)=\Psi\left(w a_{-} w^{*}\right)+\Psi\left(I-w w^{*}\right)
$$

Tools in the proof

- Frame transform methods permit to construct an isometry w such that

$$
\exists \sum_{1}^{n} q_{j}=l \quad \text { and } \quad q_{j} w a w^{*} q_{j}=q_{j} \quad \forall j
$$

- Let ψ be conditional expectation $\Psi(x)=\sum_{1}^{n} q_{j} x q_{j}$ on the block-diagonal algebra. Then $\Psi\left(w^{*} w^{*}\right)=I$ and

$$
\Psi\left(w a_{+} w^{*}\right)=\Psi\left(w a_{-} w^{*}\right)+\Psi\left(I-w w^{*}\right)
$$

Question
Find a necessary and sufficient condition for $a \in B(H)_{+}$to be a finite sum of projections.

Some C*-algebra results - a preview

Theorem
Every positive element of \mathcal{A} is a positive combination of projections when:

Some C*-algebra results - a preview

Theorem
Every positive element of \mathcal{A} is a positive combination of projections when:

- \mathcal{A} is be a purely infinite simple σ-unital C^{*}-algebra.

Some C*-algebra results - a preview

Theorem
Every positive element of \mathcal{A} is a positive combination of projections when:

- \mathcal{A} is be a purely infinite simple σ-unital C^{*}-algebra.
- $\mathcal{A}=\mathcal{N}(\mathcal{B})$ is the multiplier algebra of a purely infinite simple σ-unital C^{*}-algebra \mathcal{B}.

Some C*-algebra results - a preview

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

- \mathcal{A} is be a purely infinite simple σ-unital C^{*}-algebra.
- $\mathcal{A}=\mathcal{N}(\mathcal{B})$ is the multiplier algebra of a purely infinite simple σ-unital C^{*}-algebra \mathcal{B}.

Theorem

Let \mathcal{B} is a purely infinite simple σ-unital but not unital C^{*}-algebra and $a \in \mathcal{M}(\mathcal{B})_{+} \backslash \mathcal{B}$.
If $\|a\|_{\text {ess }}>1$, then a is a finite sum of projections in $\mathcal{M}(\mathcal{B})$.
If $\|a\|_{\text {ess }}=1$ and $\|a\|>1$, then a is an infinite sum of projections in \mathcal{B} (strict convergence).

Some C*-algebra results - a preview

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

- \mathcal{A} is be a purely infinite simple σ-unital C^{*}-algebra.
- $\mathcal{A}=\mathcal{M}(\mathcal{B})$ is the multiplier algebra of a purely infinite simple σ-unital C^{*}-algebra \mathcal{B}.

Theorem

Let \mathcal{B} is a purely infinite simple σ-unital but not unital C^{*}-algebra and $a \in \mathcal{M}(\mathcal{B})_{+} \backslash \mathcal{B}$.
If $\|a\|_{\text {ess }}>1$, then a is a finite sum of projections in $\mathcal{N}(\mathcal{B})$.
If $\|a\|_{\text {ess }}=1$ and $\|a\|>1$, then a is an infinite sum of projections in \mathcal{B} (strict convergence).

Theorem
If $a \in\left(\mathcal{O}_{n}\right)_{+}$(the Cuntz algebra) with $2 \leq n<\infty$ and $\|a\|>1$, then a is a finite sum of projections.

THANK YOU!

