Finite sums of projections

Victor Kaftal

University of Cincinnati

OT23 - Timisoara, July 1, 2010

Joint work with

- Herbert Halpern, Ping Wong Ng, Shuang Zhang Finite sums of projections in von Neumann algebras.
- Ping Wong Ng, Shuang Zhang Positive combinations and sums of projections in purely infinite simple C*-algebras and their multiplier algebras.

The main question

Which (positive) operators are finite sums of projections?

The main question

Which (positive) operators are finite sums of projections?

Here we will focus on W*-algebras, but we have also results on purely infinite C*-algebras and their multiplier algebras.

・ロト・日本・モート モー うへぐ

The main question

Which (positive) operators are finite sums of projections?

Here we will focus on W*-algebras, but we have also results on purely infinite C*-algebras and their multiplier algebras.

We need first to answer the following question:

 Which (positive) operators are positive combinations of projections? (finite linear combinations of projections with positive coefficients)

$$a=\sum_1^n\lambda_j p_j$$
 where $\lambda_j\geq 0,~~p_j$ projections \in algebra, $n\in\mathbb{N}.$

► Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.

► Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.

Fillmore (67) If a ∈ K(H)₊ but the range projection R_a ∉ K(H), then a is not a positive combination of projections.

- Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.
- Fillmore (67) If a ∈ K(H)₊ but the range projection R_a ∉ K(H), then a is not a positive combination of projections. Indeed, otherwise, a = ∑₁ⁿ λ_jp_j and λ_j > 0 ∀j ⇒ λ_jp_j ≤ a ⇒ p_j ∈ K(H) ⇒ R_a = √₁ⁿ p_j ∈ K(H).

- Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.
- Fillmore (67) If a ∈ K(H)₊ but the range projection R_a ∉ K(H), then a is not a positive combination of projections. Indeed, otherwise, a = ∑₁ⁿ λ_jp_j and λ_j > 0 ∀j ⇒ λ_jp_j ≤ a ⇒ p_j ∈ K(H) ⇒ R_a = ∨₁ⁿ p_j ∈ K(H).
- Fong & Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.

- Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.
- Fillmore (67) If a ∈ K(H)₊ but the range projection R_a ∉ K(H), then a is not a positive combination of projections. Indeed, otherwise, a = ∑₁ⁿ λ_jp_j and λ_j > 0 ∀j ⇒ λ_jp_j ≤ a ⇒ p_j ∈ K(H) ⇒ R_a = ∨₁ⁿ p_j ∈ K(H).
- Fong & Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.

 Bikchentaev (05) Every positive invertible element in a W*-algebra *M* without finite type I direct summands with infinite dim center is a positive combination of projections.

- ► Fillmore (69) Every positive invertible operator in B(H) is a positive combination of projections.
- Fillmore (67) If a ∈ K(H)₊ but the range projection R_a ∉ K(H), then a is not a positive combination of projections. Indeed, otherwise, a = ∑₁ⁿ λ_jp_j and λ_j > 0 ∀j ⇒ λ_jp_j ≤ a ⇒ p_j ∈ K(H) ⇒ R_a = ∨₁ⁿ p_j ∈ K(H).
- Fong & Murphy (85) This is the ONLY exception. Notice: the obstruction is due to ideals.
- Bikchentaev (05) Every positive invertible element in a W*-algebra M without finite type I direct summands with infinite dim center is a positive combination of projections.

We need to follow an alternative approach:

For some C*-algebras \mathcal{A} there is a constant V_o s.t. for all $a \in \mathcal{A}$ there are $\lambda_j \in \mathbb{C}$ and projections $p_j \in \mathcal{A}$ for which

(i) $a = \sum_{1}^{n} \lambda_{j} p_{j}$ and (ii) $\sum_{1}^{n} |\lambda_{j}| \le V_{o} ||a||$

For some C*-algebras \mathcal{A} there is a constant V_o s.t. for all $a \in \mathcal{A}$ there are $\lambda_j \in \mathbb{C}$ and projections $p_j \in \mathcal{A}$ for which

(i) $a = \sum_{1}^{n} \lambda_{j} p_{j}$ and (ii) $\sum_{1}^{n} |\lambda_{j}| \le V_{o} ||a||$

Among those algebras:

▶ B(H) Fong & Murphy (1985) (they introduced the notion)

For some C*-algebras \mathcal{A} there is a constant V_o s.t. for all $a \in \mathcal{A}$ there are $\lambda_j \in \mathbb{C}$ and projections $p_j \in \mathcal{A}$ for which

(i) $a = \sum_{1}^{n} \lambda_{j} p_{j}$ and (ii) $\sum_{1}^{n} |\lambda_{j}| \le V_{o} ||a||$

Among those algebras:

▶ B(H) Fong & Murphy (1985) (they introduced the notion)

 All W* algebras with no finite type I direct summands with infinite dim center. Implicit in the proofs (see Goldstein & Paskiewicz (1992))

For some C*-algebras \mathcal{A} there is a constant V_o s.t. for all $a \in \mathcal{A}$ there are $\lambda_j \in \mathbb{C}$ and projections $p_j \in \mathcal{A}$ for which

(i) $a = \sum_{1}^{n} \lambda_{j} p_{j}$ and (ii) $\sum_{1}^{n} |\lambda_{j}| \le V_{o} ||a||$

Among those algebras:

- ► B(H) Fong & Murphy (1985) (they introduced the notion)
- All W* algebras with no finite type I direct summands with infinite dim center. Implicit in the proofs (see Goldstein & Paskiewicz (1992))
- Infinite simple C*-algebras. AF algebras with finite number of extremal traces. Implicit in the proofs (Fack (1982), Marcoux (2002))

Positive combinations of projections & invertibility

Proposition

If an algebra ${\mathcal A}$

- (i) has a constant V_o as above
- (ii) positive combinations of projections are dense in \mathcal{A}_+

then every positive invertible operator is a positive combination of projections.

Positive combinations of projections & invertibility

Proposition

If an algebra ${\mathcal A}$

- (i) has a constant V_o as above
- (ii) positive combinations of projections are dense in \mathcal{A}_+

then every positive invertible operator is a positive combination of projections.

The proof is an adaptation of the Fong & Murphy (1985) proof in B(H).

Positive combinations of projections & invertibility

Proposition

If an algebra ${\mathcal A}$

- (i) has a constant V_o as above
- (ii) positive combinations of projections are dense in \mathcal{A}_+

then every positive invertible operator is a positive combination of projections.

The proof is an adaptation of the Fong & Murphy (1985) proof in B(H).

Notice that the condition that positive combinations of projections are dense in \mathcal{A}_+ is satisfied by all real rank zero algebras, and in particular by all W*-algebras.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma

Assume there are projections $e \perp f$, $e \prec f$ in a C*-algebra \mathcal{A} and every positive invertible in $f\mathcal{A}f$ is a positive combination of projections. Let $a = b \oplus c$ where $b \ge 0$ and $c \ge (||b|| + \epsilon)f$.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma

Assume there are projections $e \perp f$, $e \prec f$ in a C*-algebra A and every positive invertible in fAf is a positive combination of projections. Let $a = b \oplus c$ where $b \ge 0$ and $c \ge (||b|| + \epsilon)f$. Then a is a positive combination of projections.

Invertibility on a "large" direct summand permits to "absorb" noninvertible smaller summands:

Lemma

Assume there are projections $e \perp f$, $e \prec f$ in a C*-algebra \mathcal{A} and every positive invertible in $f\mathcal{A}f$ is a positive combination of projections. Let $a = b \oplus c$ where $b \ge 0$ and $c \ge (||b|| + \epsilon)f$. Then a is a positive combination of projections.

Sketch of proof

$$v^*v = e, \quad vv^* = f' \leq f, \qquad q_\pm := egin{pmatrix} b & \pm\sqrt{b-b^2}v^* \ \pm v\sqrt{b-b^2} & v(e-b)v^* \end{pmatrix}$$

$$a=rac{1}{2}(q_-+q_+)+ extstyle extstyle$$

positive, invertible, hence pos comb proj

Theorem (Halpern, K, Ng, Zhang)

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. TFAE (i) a is a positive combination of projections

Theorem (Halpern, K, Ng, Zhang)

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. TFAE (i) a is a positive combination of projections (ii) $\exists \delta > 0$ such that $\chi_a(0, \delta) \prec \chi_a[\delta, \infty)$. χ_a denotes the spectral measure of a.

Theorem (Halpern, K, Ng, Zhang)

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. TFAE (i) a is a positive combination of projections (ii) $\exists \delta > 0$ such that $\chi_a(0, \delta) \prec \chi_a[\delta, \infty)$. χ_a denotes the spectral measure of a.

Even when *M* is finite (but without finite type I direct summands with infinite dim center) then (ii) \Rightarrow (i)

Theorem (Halpern, K, Ng, Zhang)

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. TFAE (i) a is a positive combination of projections (ii) $\exists \delta > 0$ such that $\chi_a(0, \delta) \prec \chi_a[\delta, \infty)$. χ_a denotes the spectral measure of a.

Even when *M* is finite (but without finite type I direct summands with infinite dim center) then (ii) \Rightarrow (i)

Corollary

If M is a finite sum of finite factors or of σ -finite type III factors, then every $a \in M_+$ is a positive combination of projections.

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila & Zsido (1970's)

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila & Zsido (1970's)

A simple example: If $M = \bigoplus_{1}^{\infty} B(H_n)$ and $J = \bigoplus_{1}^{\infty} K(H_n)$, then central essential norm of $a = \bigoplus_{1}^{\infty} a_n \in M_+$ is

$$igoplus_1^\infty \|a_n\|_{ess} I_n \in M \cap M'$$

(日) (同) (三) (三) (三) (○) (○)

The obstruction in terms of ideals

When M is a global (i.e., nonfactor) algebra there is a nice theory of "central ideals", "central essential spectra", and "central essential norms" due to Halpern and to Stratila & Zsido (1970's)

A simple example: If $M = \bigoplus_{1}^{\infty} B(H_n)$ and $J = \bigoplus_{1}^{\infty} K(H_n)$, then central essential norm of $a = \bigoplus_{1}^{\infty} a_n \in M_+$ is

$$igoplus_1^\infty \|a_n\|_{ess} I_n \in M \cap M'$$

Condition (ii) can be reformulated in terms of the central essential norm relative to an ideal "smaller" than R_a : (ii) $\exists \delta > 0$ such that $\chi_a(0, \delta) \prec \chi_a[\delta, \infty) \iff$ (iii) The central essential norm of a is $\geq \nu I$ for some $\nu > 0$.

Now we have the tools to discuss sums of projections.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Now we have the tools to discuss sums of projections.

Let $h := diag(1+1, 1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots)$

Now we have the tools to discuss sums of projections.

Let $h := diag(1+1, 1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots)$

- Is h a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Now we have the tools to discuss sums of projections.

Let $h := diag(1+1, 1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots)$

- ▶ Is *h* a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Can you guess?

Now we have the tools to discuss sums of projections.

Let $h := diag(1+1, 1+\frac{1}{2}, \cdots, 1+\frac{1}{n}, \cdots)$

- ▶ Is *h* a finite sum of projections?
- Is h an infinite sum of projections (converging in the strong topology)?

Can you guess?

ANSWER

NO

YES

Infinite sums of projections in B(H) and W*-factors

The easier question is:

when is $a \in M_+$ a (possibly) infinite sum of projections?

Infinite sums of projections in B(H) and W*-factors

The easier question is:

when is $a \in M_+$ a (possibly) infinite sum of projections?

 $\begin{array}{ll} \mbox{For } a \in M_+, \mbox{ the answer lies in considering} \\ a_- := (I-a)\chi_a(0,1) & \mbox{ the defect operator} \\ a_+ := (a-I)\chi_a(1,\infty) & \mbox{ the excess operator}. \end{array}$

Infinite sums of projections in B(H) and W*-factors

The easier question is:

when is $a \in M_+$ a (possibly) infinite sum of projections?

 $\begin{array}{ll} \mbox{For } a \in M_+, \mbox{ the answer lies in considering} \\ a_- := (I-a)\chi_a(0,1) & \mbox{ the defect operator} \\ a_+ := (a-I)\chi_a(1,\infty) & \mbox{ the excess operator}. \end{array}$

Example (B(H))

$$\mathsf{a} := \mathsf{diag}ig(1-\lambda_1,1-\lambda_2,\cdotsig) \oplus \mathsf{diag}ig(1+\mu_1,1+\mu_2\cdotsig)$$

with $0 < \lambda_j < 1, \mu_j > 0$. Then

$$a_-={\sf diag}ig(\lambda_1,\lambda_2,\cdotsig)$$
 and $a_+={\sf diag}ig(\mu_1,\mu_2\cdotsig)ig)$
Theorem (Ng, K & Zhang (09, JFA)) Let M be a σ -finite factor and $a \in M_+$. Then a is an infinite sum of projections (strong conv) if and only if (M type I) tr(a_+) \geq tr(a_-) and tr(a_+) - tr(a_-) $\in \mathbb{N} \cup \{0\} \cup \{\infty\}$;

Theorem (Ng, K & Zhang (09, JFA)) Let M be a σ -finite factor and $a \in M_+$. Then a is an infinite sum of projections (strong conv) if and only if (M type I) tr(a_+) \geq tr(a_-) and tr(a_+) - tr(a_-) $\in \mathbb{N} \cup \{0\} \cup \{\infty\}$; (M type II) $\tau(a_+) \geq \tau(a_-)$ (assuming further that a is diagonalizable;, i.e., $a = \bigoplus_{\gamma} \alpha_{\gamma} p_{\gamma}$)

Theorem (Ng, K & Zhang (09, JFA)) Let M be a σ -finite factor and $a \in M_+$. Then a is an infinite sum of projections (strong conv) if and only if (M type I) tr(a_+) \geq tr(a_-) and tr(a_+) - tr(a_-) $\in \mathbb{N} \cup \{0\} \cup \{\infty\}$; (M type II) $\tau(a_+) \geq \tau(a_-)$ (assuming further that a is diagonalizable;, i.e., $a = \bigoplus_{\gamma} \alpha_{\gamma} p_{\gamma}$) (M type III) Either ||a|| > 1 or a is a projection.

Theorem (Ng, K & Zhang (09, JFA)) Let M be a σ -finite factor and $a \in M_+$. Then a is an infinite sum of projections (strong conv) if and only if (M type I) tr(a_+) \geq tr(a_-) and tr(a_+) - tr(a_-) $\in \mathbb{N} \cup \{0\} \cup \{\infty\}$; (M type II) $\tau(a_+) \geq \tau(a_-)$ (assuming further that a is diagonalizable;, i.e., $a = \bigoplus_{\gamma} \alpha_{\gamma} p_{\gamma}$) (M type III) Either ||a|| > 1 or a is a projection.

Consequence For $h = \text{diag}(1+1, 1+\frac{1}{2}, \dots, 1+\frac{1}{n}, \dots)$, $h_+ = \text{diag}(1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$ and $h_- = 0$, hence $\text{tr}(+) - \text{tr}(h_-) = \infty$ and thus h is an infinite sum of projections.

Theorem (Ng, K & Zhang (09, JFA)) Let M be a σ -finite factor and $a \in M_+$. Then a is an infinite sum of projections (strong conv) if and only if (M type I) tr(a_+) \geq tr(a_-) and tr(a_+) - tr(a_-) $\in \mathbb{N} \cup \{0\} \cup \{\infty\}$; (M type II) $\tau(a_+) \geq \tau(a_-)$ (assuming further that a is diagonalizable;, i.e., $a = \bigoplus_{\gamma} \alpha_{\gamma} p_{\gamma}$) (M type III) Either ||a|| > 1 or a is a projection.

Consequence For $h = \text{diag}(1+1, 1+\frac{1}{2}, \dots, 1+\frac{1}{n}, \dots)$, $h_+ = \text{diag}(1, \frac{1}{2}, \dots, \frac{1}{n}, \dots)$ and $h_- = 0$, hence $\text{tr}(+) - \text{tr}(h_-) = \infty$ and thus h is an infinite sum of projections.

Conjecture

We conjecture that the diagonalizability hypothesis in the type II case can be removed. How?

Fillmore (69) If a ∈ M_n(C)₊, then a is a (finite) sum of projections if and only if tr(a) ∈ N and tr(a) ≥ rank(a).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Fillmore (69) If a ∈ M_n(C)₊, then a is a (finite) sum of projections if and only if tr(a) ∈ N and tr(a) ≥ rank(a).
- Fillmore (69) Characterization of sums of two projections.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Fillmore (69) If a ∈ M_n(C)₊, then a is a (finite) sum of projections if and only if tr(a) ∈ N and tr(a) ≥ rank(a).
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich & Samoilenko (2000-2) From the characterization of

 $\Sigma_n := \{ \alpha > 1 \mid \alpha I \text{ is a sum of } n \text{ projections} \}$ follows that αI is a finite sum of projections for every $\alpha > 1$.

- Fillmore (69) If a ∈ M_n(C)₊, then a is a (finite) sum of projections if and only if tr(a) ∈ N and tr(a) ≥ rank(a).
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich & Samoilenko (2000-2) From the characterization of

 $\Sigma_n := \{ \alpha > 1 \mid \alpha I \text{ is a sum of } n \text{ projections} \}$ follows that αI is a finite sum of projections for every $\alpha > 1$.

▶ Wu (94, announcement), Choi & Wu (current preprint) $||a||_{ess} > 1 \Rightarrow a$ is a finite sum of projections.

- Fillmore (69) If a ∈ M_n(C)₊, then a is a (finite) sum of projections if and only if tr(a) ∈ N and tr(a) ≥ rank(a).
- Fillmore (69) Characterization of sums of two projections.
- Kruglyak, Rabanovich & Samoilenko (2000-2) From the characterization of

 $\Sigma_n := \{ \alpha > 1 \mid \alpha I \text{ is a sum of } n \text{ projections} \}$ follows that αI is a finite sum of projections for every $\alpha > 1$.

▶ Wu (94, announcement), Choi & Wu (current preprint) $||a||_{ess} > 1 \Rightarrow a$ is a finite sum of projections.

Notice: $||a||_{ess} > 1 \iff a_+ \notin K(H)$.

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center.

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center. Let $a = \beta e \oplus \alpha f$, $\mathbb{R} \ni \beta \ge 0$, and $\mathbb{R} \ni \alpha > 1$.

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center. Let $a = \beta e \oplus \alpha f$, $\mathbb{R} \ni \beta \ge 0$, and $\mathbb{R} \ni \alpha > 1$. Then a is a finite sum of projections.

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center. Let $a = \beta e \oplus \alpha f$, $\mathbb{R} \ni \beta \ge 0$, and $\mathbb{R} \ni \alpha > 1$. Then a is a finite sum of projections.

Sketch of proof (to simplify, assume M is a factor

$$a = \beta e + \alpha \sum_{1}^{\infty} e_{j} \quad \text{where} \quad e_{j} \sim e \quad \forall j$$
$$= \underbrace{\beta e + \sum_{1}^{n_{1}-1} \alpha e_{j} + (\alpha - \gamma_{1}) e_{n_{1}}}_{1} + \gamma_{1} e_{n_{1}} + \sum_{n_{1}+1}^{\infty} \alpha e_{j}$$

finite sum of projections for appropriate γ_1

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center. Let $a = \beta e \oplus \alpha f$, $\mathbb{R} \ni \beta \ge 0$, and $\mathbb{R} \ni \alpha > 1$. Then a is a finite sum of projections.

Sketch of proof (to simplify, assume M is a factor

$$a = \beta e + \alpha \sum_{1}^{\infty} e_{j} \quad \text{where} \quad e_{j} \sim e \quad \forall j$$
$$= \beta e + \sum_{1}^{n_{1}-1} \alpha e_{j} + (\alpha - \gamma_{1})e_{n_{1}} + \gamma_{1}e_{n_{1}} + \sum_{n_{1}+1}^{\infty} \alpha e_{j}$$

finite sum of projections for appropriate γ_1

Number of projections in each block uniformly bounded.

Lemma

Assume that M is a properly infinite W*-algebra and $e, f \in M$ are projections with $e \perp f$, $e \prec f$, f properly infinite, and $M_f(= fMf)$ has no finite type I summands with infinite dim center. Let $a = \beta e \oplus \alpha f$, $\mathbb{R} \ni \beta \ge 0$, and $\mathbb{R} \ni \alpha > 1$. Then a is a finite sum of projections.

Sketch of proof (to simplify, assume M is a factor

$$a = \beta e + \alpha \sum_{1}^{\infty} e_{j} \quad \text{where} \quad e_{j} \sim e \quad \forall j$$
$$= \underbrace{\beta e + \sum_{1}^{n_{1}-1} \alpha e_{j} + (\alpha - \gamma_{1}) e_{n_{1}}}_{1} + \gamma_{1} e_{n_{1}} + \sum_{n_{1}+1}^{\infty} \alpha e_{j}$$

finite sum of projections for appropriate γ_1

Number of projections in each block uniformly bounded. Non-consecutive blocks are orthogonal.

Theorem

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. Then a is a finite sum of projections if "the central essential norm of a" $\geq \nu I$ for some $\nu > 1$.

Theorem

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. Then a is a finite sum of projections if "the central essential norm of a" $\geq \nu I$ for some $\nu > 1$.

The central essential norm condition cannot be eliminated: $a := \bigoplus (1 + \frac{1}{n})I_n \in \bigoplus B(H_n)$ is NOT the sum of finitely many projections because each summand $(1 + \frac{1}{n})I_n$ requires at least n + 1 projections by Kruglyak, Rabanovich & Samoilenko.

Theorem

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. Then a is a finite sum of projections if "the central essential norm of a" $\geq \nu I$ for some $\nu > 1$.

The central essential norm condition cannot be eliminated: $a := \bigoplus (1 + \frac{1}{n})I_n \in \bigoplus B(H_n)$ is NOT the sum of finitely many projections because each summand $(1 + \frac{1}{n})I_n$ requires at least n + 1 projections by Kruglyak, Rabanovich & Samoilenko.

In particular, if M is a σ -finite factor

► M is type I: ||a||_{ess} > 1 (usual essential norm: Choi & Wu result, new proof)

Theorem

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. Then a is a finite sum of projections if "the central essential norm of a" $\geq \nu I$ for some $\nu > 1$.

The central essential norm condition cannot be eliminated: $a := \bigoplus (1 + \frac{1}{n})I_n \in \bigoplus B(H_n)$ is NOT the sum of finitely many projections because each summand $(1 + \frac{1}{n})I_n$ requires at least n + 1 projections by Kruglyak, Rabanovich & Samoilenko.

In particular, if M is a σ -finite factor

- ► M is type I: ||a||_{ess} > 1 (usual essential norm: Choi & Wu result, new proof)
- ► *M* is type II: ||*a*||_{ess} > 1 (ess. norm relative to the Breuer ideal of relative compact operators. No need for diagonalizability.)

Theorem

Let M be a properly infinite W*-algebra M and let $a \in M_+$ with range projection $R_a = I$. Then a is a finite sum of projections if "the central essential norm of a" $\geq \nu I$ for some $\nu > 1$.

The central essential norm condition cannot be eliminated: $a := \bigoplus (1 + \frac{1}{n})I_n \in \bigoplus B(H_n)$ is NOT the sum of finitely many projections because each summand $(1 + \frac{1}{n})I_n$ requires at least n + 1 projections by Kruglyak, Rabanovich & Samoilenko.

In particular, if M is a σ -finite factor

- ► M is type I: ||a||_{ess} > 1 (usual essential norm: Choi & Wu result, new proof)
- ► M is type II: ||a||_{ess} > 1 (ess. norm relative to the Breuer ideal of relative compact operators. No need for diagonalizability.)
- ► *M* is type III: ||*a*|| > 1.

A sufficient condition for the type II_1 case

Recall that we had that if M is a type II factor, $a \in M_+$ is diagonalizable, and $\tau(a_+) \ge \tau(a_-)$, then a is a possibly infinite sum of projections. We can improve this result:

A sufficient condition for the type II_1 case

Recall that we had that if M is a type II factor, $a \in M_+$ is diagonalizable, and $\tau(a_+) \ge \tau(a_-)$, then a is a possibly infinite sum of projections. We can improve this result:

Theorem

Let *M* be a type II₁ factor and $a \in M_+$ be diagonalizable. If $\tau(a_+) > \tau(a_-)$, then a is a finite sum of projections.

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• if $a_{-} = 0$, then a_{+} has finite rank;

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

- if $a_{-} = 0$, then a_{+} has finite rank;
- if a_− ≠ 0, then a₊ and a_− generate the same two-sided (non-closed) principal ideal of B(H).

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

- if $a_{-} = 0$, then a_{+} has finite rank;
- if a_− ≠ 0, then a₊ and a_− generate the same two-sided (non-closed) principal ideal of B(H).

In particular the "test" $h = \text{diag}(1 + 1, 1 + \frac{1}{2}, \dots, 1 + \frac{1}{n}, \dots)$ is NOT a finite sum of projections because $h_{-} = 0$ and h_{+} has infinite rank!

Theorem

Let $a \in B(H)_+$ be a finite sum of projections and assume that $||a||_{ess} = 1 \iff a_+ \in K(H)$.) Then also $a_- \in K(H)$ and

- if $a_{-} = 0$, then a_{+} has finite rank;
- if a_− ≠ 0, then a₊ and a_− generate the same two-sided (non-closed) principal ideal of B(H).

In particular the "test" $h = \text{diag}(1 + 1, 1 + \frac{1}{2}, \dots, 1 + \frac{1}{n}, \dots)$ is NOT a finite sum of projections because $h_{-} = 0$ and h_{+} has infinite rank!

The result for W*-algebras is similar.

Tools in the proof

 Frame transform methods permit to construct an isometry w such that

$$\exists \sum_{1}^{n} q_{j} = I$$
 and $q_{j}waw^{*}q_{j} = q_{j}$ $orall j$

Tools in the proof

 Frame transform methods permit to construct an isometry w such that

$$\exists \sum_{1}^{n} q_j = l$$
 and $q_j waw^* q_j = q_j \quad \forall j$

Let Ψ be conditional expectation Ψ(x) = ∑₁ⁿ q_jxq_j on the block-diagonal algebra. Then Ψ(waw^{*}) = I and

$$\Psi(wa_+w^*) = \Psi(wa_-w^*) + \Psi(I - ww^*)$$

Tools in the proof

 Frame transform methods permit to construct an isometry w such that

$$\exists \sum_{1}^{n} q_j = l$$
 and $q_j waw^* q_j = q_j \quad \forall j$

Let Ψ be conditional expectation Ψ(x) = ∑₁ⁿ q_jxq_j on the block-diagonal algebra. Then Ψ(waw^{*}) = I and Ψ(wa₊w^{*}) = Ψ(wa₋w^{*}) + Ψ(I - ww^{*})

Question

Find a necessary and sufficient condition for $a \in B(H)_+$ to be a finite sum of projections.

Theorem

Every positive element of A is a positive combination of projections when:

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

• A is be a purely infinite simple σ -unital C*-algebra.

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

- A is be a purely infinite simple σ -unital C*-algebra.
- A = M(B) is the multiplier algebra of a purely infinite simple σ-unital C*-algebra B.

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

- A is be a purely infinite simple σ -unital C*-algebra.
- A = M(B) is the multiplier algebra of a purely infinite simple σ-unital C*-algebra B.

Theorem

Let \mathcal{B} is a purely infinite simple σ -unital but not unital C*-algebra and $a \in \mathcal{M}(\mathcal{B})_+ \setminus \mathcal{B}$. If $||a||_{ess} > 1$, then a is a finite sum of projections in $\mathcal{M}(\mathcal{B})$. If $||a||_{ess} = 1$ and ||a|| > 1, then a is an infinite sum of projections in \mathcal{B} (strict convergence).
Some C*-algebra results - a preview

Theorem

Every positive element of \mathcal{A} is a positive combination of projections when:

- \mathcal{A} is be a purely infinite simple σ -unital C*-algebra.
- A = M(B) is the multiplier algebra of a purely infinite simple σ-unital C*-algebra B.

Theorem

Let \mathcal{B} is a purely infinite simple σ -unital but not unital C*-algebra and $a \in \mathcal{M}(\mathcal{B})_+ \setminus \mathcal{B}$. If $||a||_{ess} > 1$, then a is a finite sum of projections in $\mathcal{M}(\mathcal{B})$. If $||a||_{ess} = 1$ and ||a|| > 1, then a is an infinite sum of projections in \mathcal{B} (strict convergence).

Theorem

If $a \in (\mathcal{O}_n)_+$ (the Cuntz algebra) with $2 \le n < \infty$ and ||a|| > 1, then a is a finite sum of projections.

THANK YOU!

<□ > < @ > < E > < E > E のQ @