# OPERATOR REPRESENTATIONS OF WEAK\*- DIRICHLET ALGEBRAS

### Adina JURATONI and Nicolae SUCIU

Politehnica University of Timişoara West University of Timişoara

### 29.06-04.07 2010 The 23nd Conference in Operator Theory 2010

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

- ( E ) ( E )

## Outline

- Introduction and preliminaries
- 2 Extension of a representation to the space  $L^{p}(m)$
- 3 Reduction to functional calculus
- Application to the scalar case



The 23nd Conference in Operator Theory 2010

글 🕨 🖌 글

## Introduction and preliminaries

- Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex continuous functions on X;
- Denote by A a function algebra on X, M(A) stands for the set of all non zero complex homomorphisms of A;
- For γ ∈ M(A), A<sub>γ</sub> means the kernel of γ, and M<sub>γ</sub> designates the set of all representing measures *m* for γ, that is *m* is a probability Borel measure on X satisfying γ(f) = ∫ fdm, f ∈ A.

The 23nd Conference in Operator Theory 2010

< p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p < < p

## Introduction and preliminaries

- Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex continuous functions on X;
- Denote by A a function algebra on X, M(A) stands for the set of all non zero complex homomorphisms of A;
- For γ ∈ M(A), A<sub>γ</sub> means the kernel of γ, and M<sub>γ</sub> designates the set of all representing measures *m* for γ, that is *m* is a probability Borel measure on X satisfying γ(f) = ∫ fdm, f ∈ A.

The 23nd Conference in Operator Theory 2010

< < p>< < p>

## Introduction and preliminaries

- Let X be a compact Hausdorff space and C(X) the Banach algebra of all complex continuous functions on X;
- Denote by A a function algebra on X, M(A) stands for the set of all non zero complex homomorphisms of A;
- For γ ∈ M(A), A<sub>γ</sub> means the kernel of γ, and M<sub>γ</sub> designates the set of all representing measures *m* for γ, that is *m* is a probability Borel measure on X satisfying γ(f) = ∫ fdm, f ∈ A.

The 23nd Conference in Operator Theory 2010

- Let A be a function algebra on X which is weak\*-Dirichlet in L<sup>∞</sup>(m), that is A + A is weak\* dense in L<sup>∞</sup>(m), for some fixed m ∈ M<sub>γ</sub> and γ ∈ M(A).
- Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H.
- Any bounded linear and multiplicative map Φ of A in B(H) with Φ(1) = I (the identity operator on H) is called a *representation* of A on H. When ||Φ|| ≤ 1 one says that Φ is *contractive*. Here, we only consider representations Φ for which there exist a scalar ρ > 0 and a system {μ<sub>x</sub>}<sub>x∈H</sub> of positive measures on X with ||μ<sub>x</sub>|| = ||x||<sup>2</sup> such that

$$\langle \Phi(f)x,x\rangle = \int [\rho f + (1-\rho)\gamma(f)]d\mu_x$$

for any  $f \in A$  and  $x \in \mathcal{H}$ . Such a  $\mu_x$  is called a *weak*  $\rho$ -spectral measure for  $\Phi$  attached to x by  $\gamma$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

- Let A be a function algebra on X which is weak\*-Dirichlet in L<sup>∞</sup>(m), that is A + A is weak\* dense in L<sup>∞</sup>(m), for some fixed m ∈ M<sub>γ</sub> and γ ∈ M(A).
- Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H.
- Any bounded linear and multiplicative map  $\Phi$  of A in  $\mathcal{B}(\mathcal{H})$ with  $\Phi(1) = I$  (the identity operator on  $\mathcal{H}$ ) is called a *representation* of A on  $\mathcal{H}$ . When  $\|\Phi\| \le 1$  one says that  $\Phi$ is *contractive*. Here, we only consider representations  $\Phi$  for which there exist a scalar  $\rho > 0$  and a system  $\{\mu_X\}_{X \in \mathcal{H}}$  of positive measures on X with  $\|\mu_X\| = \|X\|^2$  such that

$$\langle \Phi(f)x,x\rangle = \int [\rho f + (1-\rho)\gamma(f)]d\mu_x$$

for any  $f \in A$  and  $x \in \mathcal{H}$ . Such a  $\mu_x$  is called a *weak*  $\rho$ -spectral measure for  $\Phi$  attached to x by  $\gamma$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

- Let A be a function algebra on X which is weak\*-Dirichlet in L<sup>∞</sup>(m), that is A + A is weak\* dense in L<sup>∞</sup>(m), for some fixed m ∈ M<sub>γ</sub> and γ ∈ M(A).
- Let H be a complex Hilbert space and B(H) be the Banach algebra of all bounded linear operators on H.
- Any bounded linear and multiplicative map  $\Phi$  of A in  $\mathcal{B}(\mathcal{H})$ with  $\Phi(1) = I$  (the identity operator on  $\mathcal{H}$ ) is called a *representation* of A on  $\mathcal{H}$ . When  $\|\Phi\| \le 1$  one says that  $\Phi$ is *contractive*. Here, we only consider representations  $\Phi$  for which there exist a scalar  $\rho > 0$  and a system  $\{\mu_X\}_{X \in \mathcal{H}}$  of positive measures on X with  $\|\mu_X\| = \|X\|^2$  such that

$$\langle \Phi(f)x,x\rangle = \int [\rho f + (1-\rho)\gamma(f)]d\mu_x$$

for any  $f \in A$  and  $x \in \mathcal{H}$ . Such a  $\mu_x$  is called a *weak* 

 $\rho$ -spectral measure for  $\Phi$  attached to x by  $\gamma$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

۲

# $w(\Phi(f)) \le \|\rho f + (1 - \rho)\gamma(f)\|$ (f $\in A$ ) (1.1)

If the representation Φ of A on H admits a system {μ<sub>x</sub>}<sub>x∈H</sub> of weak ρ-spectral measures attached by γ such that μ<sub>x</sub> is m - a.c. for any x ∈ H, then Φ has a γ-spectral ρ-dilation, that is there exists a contractive representations Φ of C(X) on a Hilbert space K ⊃ H satisfying the relation

$$\Phi(f) = \rho P_{\mathcal{H}} \widetilde{\Phi}(f) | \mathcal{H} \qquad (f \in A_{\gamma}), \tag{1.2}$$

where  $P_{\mathcal{H}}$  is the orthogonal projection on  $\mathcal{H}$ . Moreover, in this case there exists a unique semispectral measure  $F_{\Phi}: Bor(X) \to \mathcal{B}(\mathcal{H})$  such that  $\langle F_{\Phi}(\cdot)x, x \rangle = \mu_x$ , or equivalently

$$\langle \Phi(f)x,y\rangle = \int [
ho f + (1-
ho)\gamma(f)] d\langle F_{\Phi}x,y
angle \qquad (f\in A),$$

The 23nd Conference in Operator Theory 2010 West University of Timişoara Politehnica University of Timişoara West University of Timişoara

 $\langle \Box \rangle \langle B \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \langle 1.3 \rangle$ 

۲

$$w(\Phi(f)) \le \|\rho f + (1-\rho)\gamma(f)\| \qquad (f \in A) \tag{1.1}$$

If the representation Φ of A on H admits a system {μ<sub>x</sub>}<sub>x∈H</sub> of weak ρ-spectral measures attached by γ such that μ<sub>x</sub> is m - a.c. for any x ∈ H, then Φ has a γ-spectral ρ-dilation, that is there exists a contractive representations Φ of C(X) on a Hilbert space K ⊃ H satisfying the relation

$$\Phi(f) = \rho P_{\mathcal{H}} \widetilde{\Phi}(f) | \mathcal{H} \qquad (f \in A_{\gamma}), \tag{1.2}$$

where  $P_{\mathcal{H}}$  is the orthogonal projection on  $\mathcal{H}$ . Moreover, in this case there exists a unique semispectral measure  $F_{\Phi} : Bor(X) \to \mathcal{B}(\mathcal{H})$  such that  $\langle F_{\Phi}(\cdot)x, x \rangle = \mu_x$ , or equivalently

$$\langle \Phi(f)x,y\rangle = \int [\rho f + (1-\rho)\gamma(f)] d\langle F_{\Phi}x,y\rangle \qquad (f \in A),$$

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

We characterize below some representations  $\Phi$  of A on  $\mathcal{H}$ which can be linearly and boundedly extended to the space  $L^p(m)$  for  $1 \le p \le \infty$ . Our characterization is given in the terms of Radon-Nikodym derivative with respect to m of the corresponding  $\mathcal{B}(\mathcal{H})$ -valued semispectral measure  $F_{\Phi}$ . In the sequel we put  $\varphi_{x,y} = \langle F_{\Phi}(\cdot)x, y \rangle \in L^1(m)$  for  $x, y \in \mathcal{H}$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### Theorem 2.1

Let  $\Phi$  be a representation of A on  $\mathcal{H}$  which admits a system of m - a.c. weak  $\rho$ -spectral measures attached by  $\gamma$ . Then  $\Phi$  has a bounded linear extension  $\Phi_p$  from  $L^p(m)$  into  $\mathcal{B}(\mathcal{H})$  for  $1 \le p \le \infty$ , if and only if  $\varphi_{x,y} \in L^q(m)$  and there exists a constant c > 0 such that

$$\|\varphi_{x,y}\|_q \le c \|x\| \|y\| \qquad (x,y \in \mathcal{H}), \tag{2.1}$$

where  $\frac{1}{p} + \frac{1}{q} = 1$ . In this case,  $\Phi_p$  is uniquely determined and it satisfies for  $h \in L^p(m)$  and  $x, y \in \mathcal{H}$  the relation

$$\langle \Phi_{\rho}(h)x,y\rangle = \int [\rho h + (1-\rho)\int h dm]\varphi_{x,y}dm.$$
 (2.2)

The 23nd Conference in Operator Theory 2010

### Theorem 2.1

Furthermore, for  $h \in L^2(m)$  and  $x \in \mathcal{H}$  we have the inequality

$$\|\Phi_2(h)x\|^2 \leq \int |\rho h + (1-\rho) \int h dm|^2 \varphi_{x,x} dm.$$
 (2.3)

Hence, if  $\{h_{\alpha}\} \subset L^{\infty}(m)$  is a bounded net such that  $\{h_{\alpha}\}$  converges a.e.(m) to  $h \in L^{\infty}(m)$ , then  $\{\Phi_{p}(h_{\alpha})\}$  strongly converges to  $\Phi_{p}(h)$  in  $\mathcal{B}(\mathcal{H})$ , for  $p \geq 2$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### Remark 2.2

The equivalent conditions of Theorem 2.1 imply

$$\|\Phi\|_{\rho} := \sup_{f \in A, \|f\|_{\rho} \le 1} \|\Phi(f)\| < \infty.$$
(2.4)

It is easy to see that the condition (2.4) is equivalent to the existence of a bounded linear extension  $\widehat{\Phi}_p$  of  $\Phi$  to  $H^p(m)$ , where  $H^p(m)$  is the closure of *A* into  $L^p(m)$ . In this case,  $\widehat{\Phi}_p$  is the uniquely determined and it satisfies the relation (2.2) for  $g \in H^p(m)$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### **Proposition 2.3**

Let  $\Phi$  be a representation of *A* on  $\mathcal{H}$  as in Theorem 2.1 such that  $\|\Phi\|_{\rho} < \infty$ . Then

$$\widehat{\Phi}_{
ho}(\mathit{fg}) = \widehat{\Phi}_{
ho}(\mathit{f}) \widehat{\Phi}_{
ho}(g) \qquad (\mathit{f} \in \mathit{H}^{\infty}(\mathit{m}), \ \mathit{g} \in \mathit{H}^{
ho}(\mathit{m})) \quad (2.5)$$

and, in particular,  $\widehat{\Phi} := \widehat{\Phi}_{\rho} | H^{\infty}(m)$  is a representation of  $H^{\infty}(m)$ on  $\mathcal{H}$ . Moreover, if  $\{f_{\alpha}\} \subset H^{\infty}(m)$  is a bounded net which converges a.e.(m) to  $f \in H^{\infty}(m)$ , then  $\{\widehat{\Phi}(f_{\alpha})\}$  strongly converges to  $\widehat{\Phi}(f)$  in  $\mathcal{B}(\mathcal{H})$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### Remark 2.4

If the representation  $\Phi$  in Theorem 2.1 is contractive, that is  $\rho = 1$  and  $\|\Phi\| = 1$  (because  $\Phi(1) = I$ ), then it extension  $\Phi_{\rho}$  is also contractive, in the case when it exists. Indeed, if  $\tilde{\Phi}$  is as in the proof of Theorem 2.1, we have for  $f \in A$ ,  $g \in A_{\gamma}$  and  $x, y \in \mathcal{H}$ ,

$$\begin{aligned} \left| \int (f + \overline{g}) \varphi_{x,y} dm \right| &= |\langle (\Phi(f) + \Phi(g)^*) x, y \rangle| = |\langle P_{\mathcal{H}} \widetilde{\Phi}(f + \overline{g}) x, y \rangle| \\ &\leq \| \widetilde{\Phi}(f + \overline{g}) \| \|x\| \|y\| \le \|f + \overline{g}\| \|x\| \|y\|, \end{aligned}$$

because  $\tilde{\Phi}$  is a contractive representation of C(X).

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

In the sequel we denote by  $H_0^p(m)$  the closure (weak<sup>\*</sup>, if  $p = \infty$ ) of  $A_\gamma$  in  $L^p(m)$ , that is

$$H^p_0(m) = \left\{ f \in H^p(m) : \int f dm = 0 
ight\}.$$

We say ([Na], [Sr]) that  $H_0^p(m)$  is *simply invariant* if the closure of  $A_{\gamma}H_0^p(m)$  in  $L^p(m)$  is strictly contained into  $H_0^p(m)$ . If  $H_0^p(m)$  is simply invariant then there exists a function  $Z \in H_0^{\infty}(m)$  with |Z| = 1 a.e.(m) such that  $H_0^p(m) = ZH^p(m)$ . As in Theorem 3 [Lu] one can prove that, if  $m_0$  is the normalized Lebesgue measure on  $\mathbb{T}$ , there exists an isometric \*-isomorphism  $\tau$  of  $L^p(m_0)$  onto a closed subspace of  $L^p(m)$ , taking  $H^p(m_0)$  onto a closed subspace of  $H^p(m)$ , for  $1 \le p \le \infty$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

The following main result shows that under the simple invariance of  $H_0^p(m)$  with  $1 \le p \le 2$ , the representations from Theorem 2.1 and the extensions to  $H^p(m)$  can be reduced to functional calculus. We define  $S : H^p(m) \to L^p(m)$ 

$$Sg = \overline{Z}(g - \int g dm)$$
  $(g \in H^p(m)).$  (3.1)

Also, for  $T \in \mathcal{B}(\mathcal{H})$  we denote by r(T) the spectral radius of T.

The 23nd Conference in Operator Theory 2010

### Theorem 3.1

Suppose that  $H_0^p(m)$  is a simply invariant subspace for  $1 \le p < \infty$ , and let  $\Phi$  be a representation of *A* on  $\mathcal{H}$  satisfying Theorem 2.1. Then  $r(\widehat{\Phi}(Z)) < 1$ , and if  $1 \le p \le 2$  one has

$$\widehat{\Phi}_{p}(g) = \sum_{n=0}^{\infty} \widehat{g}(n) \widehat{\Phi}(Z)^{n} \qquad (g \in H^{p}(m))$$
 (3.2)

where  $\widehat{g}(n) = \int \overline{Z}^n g dm$  for  $n \in \mathbb{N}$ , the series being absolutely convergent in  $\mathcal{B}(\mathcal{H})$ .

Moreover, the relation (3.2) is also true when  $2 , for <math>g \in H^p(m)$  such that  $\{S^n g\}$  is a bounded sequence in  $H^p(m)$ , *S* being the operator from (3.1).

The 23nd Conference in Operator Theory 2010

### Remark 3.2

By

$$g = \sum_{j=0}^{n} \widehat{g}(j) Z^{j} + Z^{n+1}(S^{n+1}g)$$
  $(g \in H^{p}(m)).$  (3.3)

we have that the sequence  $\{S^ng\}_n$  is bounded if and only if the sequence  $\{\sum_{j=0}^n \widehat{g}(j)Z^j\}_n$  is bounded in  $H^p(m)$ , and in particular, this happens if *S* is a power bounded operator in  $\mathcal{B}(H^p(m))$ . But, even if the second sequence before converges, it limit is not necessary the function *g*. In fact, one has (by (3.3))  $g = \sum_{i=0}^{\infty} \widehat{g}(j)Z^j$  in  $H^p(m)$  if and only if  $S^ng \to 0$   $(n \to \infty)$ .

The 23nd Conference in Operator Theory 2010 West University of Timişoara Politehnica University of Timişoara West University of Timişoara

#### Theorem 3.4

Suppose  $1 \le p \le 2$  and that  $H_0^p(m)$  is a simply invariant subspace in  $H^p(m)$ . Let  $\Phi$  be a representation of A on  $\mathcal{H}$ satisfying Theorem 2.1. Then the semispectral measure  $F_{\Phi}$  has the form  $F_{\Phi} = \theta(\cdot)m$  where the function  $\theta : X \to \mathcal{B}(\mathcal{H})$  is given by

$$\theta(s) = \sum_{n=-\infty}^{\infty} \overline{Z}^n(s) \widehat{\Phi}(Z)^{(n)}_{\rho},$$
(3.6)

while the series converges absolutely and uniformly a.e.(m) for  $s \in X$ . Moreover,  $\theta$  is a bounded function *a.e.*(*m*) on *X*.

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

▲ 同 ▶ ▲ ヨ ▶ ▲ ヨ

From this theorem it follows that, for  $\Phi$  as in Theorem 2.1, the  $L^q(m)$ - boundedness of  $\varphi_{x,y}$  in the sense of (2.1) for any  $x, y \in \mathcal{H}$  and some q in the range  $2 \leq q \leq \infty$ , is equivalent to the fact that the Radon-Nikodym derivative of  $F_{\Phi}$  is a bounded function a.e.(m) on X, if  $H_0^p(m)$  is simply invariant. In this last case,  $\Phi$  can be extended to whole  $L^1(m)$  as in Theorem 2.1 and one has  $\Phi_p = \Phi_1 | L^p(m)$  for  $1 . Moreover, if <math>1 \leq p \leq r \leq \infty$  then  $\widehat{\Phi}_r = \widehat{\Phi}_p | H^r(m)$ .

The 23nd Conference in Operator Theory 2010

## Application to the scalar case

In this section we consider the case when  $\Phi$  is an homomorphism of *A*, this is the one-dimensional case  $\mathcal{H} = \mathbb{C}$ . In this context, we generalize to weak\* Dirichlet algebra some classical results concerning the function algebra with the uniqueness property for representing measures ([Gam], [SI])

The 23nd Conference in Operator Theory 2010

### Theorem 4.1

Suppose that  $H_0^{\rho}(m)$  is a simply invariant subspace for some  $\rho \in [1, 2]$ . Then for any homomorphism  $\varphi \in \mathcal{M}(A)$  with  $\|\varphi\|_{\rho} < \infty$  we have  $|\widehat{\varphi}(Z)| < 1$  and

$$\varphi_p(g) = \sum_{n=0}^{\infty} \widehat{g}(n) \widehat{\varphi}(Z)^n \qquad (g \in H^p(m)) \qquad (4.1)$$

where  $\varphi_p$  respectively ( $\hat{\varphi}$ ) is the bounded linear extension of  $\varphi$  to  $H^p(m)$  (respectively, to  $H^{\infty}(m)$ ), the series being absolutely convergent. Moreover, the measure

$$u = \frac{1 - |\varphi(Z)|^2}{|Z - \varphi(Z)|^2} m$$
(4.2)

is a representing measure for  $\varphi$ .

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

## Application to the scalar case

Remark that only boundedness of  $\varphi$  on  $H^p(m)$  assures that  $\varphi$  is m-a.c. that is  $\varphi$  has a m-a.c. representing measure, if  $H_0^p(m)$  is simply invariant. In the general setting of Theorem 3.1, we cannot prove  $r(\widehat{\Phi}(Z)) < 1$  without to suppose that  $\Phi$  is m-a.c. Concerning the existence of homomorphism of *A* which are bounded on  $H^p(m)$ , we give the following result which generalize Theorem 6.4 [S] (or Theorem V 7.1, and Theorem VI 7.2 of [CS]) in the context of weak\* Dirichlet algebras.

## Application to the scalar case

### Theorem 4.2

Suppose that  $H_0^p(m)$  is a simple invariant subspace for some  $p \in [1, 2]$ . Then the set  $\Delta_p(m)$  of all homomorphisms of A which are bounded on  $H^p(m)$  is not reduced to  $\{\gamma\}$ , and  $\Delta_p(m)$  is contained in the Gleason part of A which contains  $\gamma$ . Moreover, there exists an one to one continuous map  $\Gamma$  from  $\mathbb{D}$  into  $\mathcal{M}(A)$  such that (i)  $\Gamma(\mathbb{D}) = \Delta_p(m), \Gamma(0) = \gamma$ , (ii) For any  $f \in A$ , the function  $\widehat{f} \circ \Gamma$  is analytic on  $\mathbb{D}$ , where  $\widehat{f}$  is the Gelfand transform of f.

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

[CS2] Cassier, G., Suciu, N. Mapping theorems and Harnack ordering for  $\rho$ -contractions Indiana Univ. Math. Journal (2005), 483-524. [JS] A. Juratoni and N. Suciu, Spectral  $\rho$ - dilations for some representations of uniform algebras. Proc. of the 9th Nat. Conf. Roumanian Math. Soc., Ed. Univ. de Vest Timisoara, 2005, 194-210. G] Gaşpar, D. On the harmonic analysis of representations of function algebras (Romanian; English summary), Stud. Cerc. Mat. 24, 1 (1972), 7-95. ▲ 同 ▶ ▲ 国 ▶ ▲ 国

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### [Le] A. Lebow,

On von Neumann's theory of spectral sets,

J.Math.Anal. and Appl., 7(1963), 64-90.

[Lu] G. Lumer,

 $H^{\infty}$  and the embedding of the classical  $H^{p}$  spaces in arbitrary ones,

Function Algebra, Scott, Foresman and Co., 1966, 285-286.

[N] T. Nakazi,

 $\rho$ -dilations and hypo-Dirichlet algebras,

Acta Sci.Math.(Szeged), 56(1992), 175-181.

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara

### [Sr] T.P. SRINIVASAN and Ju-Kwei WANG, Weak \*-Dirichlet algebras, Function Algebras, Scott, Foresman and Co, 1966, 216-249 [SN] Suciu, N., On Harnack ordering of contractions Bull. Acad. Polon. Sci. Math., 27,6 (1979), 467-471. [Sch] Schreiber, M. Absolutely continuous operators Duke Math., 29 (1962), 175-190.

The 23nd Conference in Operator Theory 2010

Politehnica University of Timişoara West University of Timişoara



🍆 [Gam] T. GAMELIN,

Uniform Algebras.

Prentice-Hall, Englewood Cliffs, N.J., 1969.



[SI] Suciu, I.,

Function Algebras

Noordhoff Intern. Publ. Leyden, The Netherlands, 1975.



🛸 [SzF] Sz-Nagy, B., Foias, C., Harmonic Analysis of Operators on Hilbert Space, North Holland, New York, 1970.

The 23nd Conference in Operator Theory 2010

Politehnica University of Timisoara West University of Timisoara