Decomposition of multiplier operators on character amenable banach algebras

Abdol majid Fattahi

Deparment of Mathematics Razi University Kermanshah, Iran

01.07.2010

ヘロト 人間 ト ヘヨト ヘヨト

э

Table of Contents

Abdol majid Fattahi Institute for Mathematical Stochastic

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Table of Contents

Abdol majid Fattahi Institute for Mathematical Stochastic

・ロト ・ 理 ト ・ ヨ ト ・

Table of Contents

Closed range multipliers on Character amenable Banach algebra

ヘロト ヘアト ヘビト ヘビト

э

Let A be a commutative Banach algebra. A map T : A → A is said to be a multiplier if it satisfies xT(y) = T(x)y for all x, y ∈ A. We denote the set of all multiplier on A by M(A). If A has a bounded approximate identity, then M(A) is a closed subalgebra of B(A) (The Banach algebra of all bounded operators on A), and in this case for T ∈ M(A) we have

$$T(xy) = xT(y) = T(x)y$$
 for all $x, y \in A$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Let A be a commutative Banach algebra. A map T : A → A is said to be a multiplier if it satisfies xT(y) = T(x)y for all x, y ∈ A. We denote the set of all multiplier on A by M(A). If A has a bounded approximate identity, then M(A) is a closed subalgebra of B(A) (The Banach algebra of all bounded operators on A), and in this case for T ∈ M(A) we have

$$T(xy) = xT(y) = T(x)y$$
 for all $x, y \in A$.

Let me state the Notation and preliminaries

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

In [7], Lau, Pym and Kaniuth introduced and investigated a large class of Banach algebras which they called φ -amenable Banach algebras. Given $\varphi \in \Delta(\mathcal{A})$, a Banach algebra \mathcal{A} is said to be φ -amenable if there exists $m \in \mathcal{A}^{**}$ such that $\langle m, \varphi \rangle = 1$ and $\langle m, f.a \rangle = \varphi(a) \langle m, f \rangle$ for all $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$. A commutative Banach algebra \mathcal{A} is said to be *character amenable*, if A has a bounded approximate identity and for each $\varphi \in \Delta(\mathcal{A}) \cup \{0\}, \mathcal{A}$ is φ -amenable. Here we mention some of the well-known properties of these algebras that we shall need. By theorem 1.4. of [7], for $\varphi \in \Delta(\mathcal{A})$ the Banach algebra \mathcal{A} is φ -amenable if and only if there exists a bounded net $(u_{\alpha})_{\alpha}$ in \mathcal{A} such that $||au_{\alpha} - \varphi(a)u_{\alpha}|| \to 0$ for all $a \in \mathcal{A}$ and $\varphi(u_{\alpha}) = 1$ for all α . Also, a commutative Banach algebra is character amenable if and only if for each $\varphi \in \Delta(\mathcal{A})$, the ideal ker φ has a bounded approximate identity, see [7, corollary 2.3].

In [7], Lau, Pym and Kaniuth introduced and investigated a large class of Banach algebras which they called φ -amenable Banach algebras. Given $\varphi \in \Delta(\mathcal{A})$, a Banach algebra \mathcal{A} is said to be φ -amenable if there exists $m \in \mathcal{A}^{**}$ such that $\langle m, \varphi \rangle = 1$ and $\langle m, f.a \rangle = \varphi(a) \langle m, f \rangle$ for all $f \in \mathcal{A}^*$ and $a \in \mathcal{A}$. A commutative Banach algebra \mathcal{A} is said to be *character amenable*, if A has a bounded approximate identity and for each $\varphi \in \Delta(\mathcal{A}) \cup \{0\}, \mathcal{A}$ is φ -amenable. Here we mention some of the well-known properties of these algebras that we shall need. By theorem 1.4. of [7], for $\varphi \in \Delta(\mathcal{A})$ the Banach algebra \mathcal{A} is φ -amenable if and only if there exists a bounded net $(u_{\alpha})_{\alpha}$ in \mathcal{A} such that $||au_{\alpha} - \varphi(a)u_{\alpha}|| \to 0$ for all $a \in \mathcal{A}$ and $\varphi(u_{\alpha}) = 1$ for all α . Also, a commutative Banach algebra is character amenable if and only if for each $\varphi \in \Delta(\mathcal{A})$, the ideal ker φ has a bounded approximate identity, see [7, corollary 2.3]. The following lemma plays a crucial role in the study of the structure of multipliers on a commutative character amenable Banach algebra with closed range.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The following lemma plays a crucial role in the study of the structure of multipliers on a commutative character amenable Banach algebra with closed range.

Lemma

If \mathcal{A} is a character amenable Banach algebra, and $T : \mathcal{A} \to \mathcal{A}$ is a multiplier with closed range, then for each $\varphi \in \Delta(T(\mathcal{A}))$ the Banach algebra $T(\mathcal{A})$ is φ -amenable.

Proof. For arbitrary $\varphi \in \Delta(T(\mathcal{A}))$ we can choose $b \in \mathcal{A}$ for which $\varphi(T(b)) = 1$. If now define the linear functional $\tilde{\varphi}$ on \mathcal{A} by $\tilde{\varphi}(a) := \varphi(T(b)a)$ for $a \in \mathcal{A}$, then $\tilde{\varphi}$ is multiplicative and non-zero, and the definition of $\tilde{\varphi}$ is independent of the choice of *b*. Therefore $\tilde{\varphi} \in \Delta(\mathcal{A})$. As we mentioned in preliminaries, by $\tilde{\varphi}$ -amenability of \mathcal{A} , there exist a net $(u_{\alpha})_{\alpha \in I}$ in \mathcal{A} such that $\tilde{\varphi}(u_{\alpha}) = 1$ for all $\alpha \in I$, and $||au_{\alpha} - \tilde{\varphi}(a)u_{\alpha}|| \to 0$ for each $a \in \mathcal{A}$.

Now for each $\alpha \in I$, set $\nu_{\alpha} := T(b)u_{\alpha}$. So we have $\varphi(\nu_{\alpha}) = 1$ and for each $a \in A$

$$\|T(a)
u_{lpha} - arphi(T(a))
u_{lpha}\| \leq \|T(b)\|.\|T(a)u_{lpha} - \widetilde{arphi}(T(a))u_{lpha}\| o 0$$

and this complete the proof. \Box

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Now we are going to show that for a closed range multiplier Ton a commutative character amenable Banach algebra \mathcal{A} , the Banach algebra T(A) has a bounded approximate identity. For this end I must state some definitions. Given a Banach algebra \mathcal{A} and a Banach \mathcal{A} -bimodule X, a continuous derivation of \mathcal{A} to X, or X-derivation is a continuous linear mapping D from A into X such that D(ab) = D(a).b + a.D(b) for all $a, b \in A$. For each $x \in X$, the mapping $D_x : \mathcal{A} \to X$ defined by $D_x(a) = a \cdot x - x \cdot a$ is a bounded X-derivation, called the inner derivation associated with x. We denote the space of all continuous X-derivations by $Z^{1}(A, X)$ and the subspace of all inner derivations in X by $N^1(\mathcal{A}, X)$.

ヘロン 人間 とくほ とくほ とう

The quotient space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$ is called the first continuous cohomology group of \mathcal{A} with coefficients in *X*. Therefore if $H^1(\mathcal{A}, X) = \{0\}$, then every continuous *X*-derivation is inner.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The quotient space $H^1(\mathcal{A}, X) = Z^1(\mathcal{A}, X)/N^1(\mathcal{A}, X)$ is called the first continuous cohomology group of \mathcal{A} with coefficients in X. Therefore if $H^1(\mathcal{A}, X) = \{0\}$, then every continuous X-derivation is inner.

The following theorem is known; $(a) \Leftrightarrow (b)$ and $(b) \Leftrightarrow (c)$ were proved in [7] and [5] respectively.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Theorem

Let A be a commutative Banach algebra and $T : A \to A$ be a multiplier with closed range. Then the following assertion are equivalent.

(a) For each $\varphi \in \Delta(T(A)) \cup \{0\}$ the Banach algebra T(A) is φ -amenable.

(b) For each $\varphi \in \Delta(T(A)) \cup \{0\}$, if X is a Banach T()-bimodule such that $T(a).x = \varphi(T(a)).x$ for all $x \in X$ and $a \in A$, then $H^1(T(A), X^*) = \{0\}$; (c) T(A) has a bounded approximate identity.

イロン 不得 とくほ とくほう 一日

Theorem

Let A be a commutative Banach algebra and $T : A \to A$ be a multiplier with closed range. Then the following assertion are equivalent.

(a) For each $\varphi \in \Delta(T(A)) \cup \{0\}$ the Banach algebra T(A) is φ -amenable.

(b) For each $\varphi \in \Delta(T(A)) \cup \{0\}$, if X is a Banach T()-bimodule such that $T(a).x = \varphi(T(a)).x$ for all $x \in X$ and $a \in A$, then $H^1(T(A), X^*) = \{0\}$; (c) T(A) has a bounded approximate identity.

イロン 不得 とくほ とくほ とうほ

• By combination of Lemma 3.1 and Theorem 3.2 we have the following result, that is an important consequence of Lemma 3.1.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

E DQC

• By combination of Lemma 3.1 and Theorem 3.2 we have the following result, that is an important consequence of Lemma 3.1.

Theorem

Let A be a commutative character amenable Banach algebra and $T : A \to A$ be a multiplier with closed range. Then the Banach algebra T(A) has a bounded approximate identity.

ヘロン 人間 とくほ とくほ とう

• By combination of Lemma 3.1 and Theorem 3.2 we have the following result, that is an important consequence of Lemma 3.1.

Theorem

Let A be a commutative character amenable Banach algebra and $T : A \to A$ be a multiplier with closed range. Then the Banach algebra T(A) has a bounded approximate identity.

ヘロン 人間 とくほ とくほ とう

• Now we are ready to state and prove the following theorem as the main result of this section.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• Now we are ready to state and prove the following theorem as the main result of this section.

Theorem

Let $T : A \to A$ be a multiplier on a commutative character amenable Banach algebra A. Then the following statements are equivalent:

(a) T has closed range.

(b) T(A) has a bounded approximate identity. (c) $T^{2}(A) = T(A)$ (d) $A = T(A) \oplus \text{Ker}(T)$ (e) T = BP = PB, where $B \in M(A)$ is invertible and $p \in M(A)$ is idempotent.

ヘロン 人間 とくほ とくほ とう

Proof.

(a) implies (b) by theorem 3.3. Suppose that (b) holds. Then by Cohen's factorization theorem we have $T^2(\mathcal{A}) = T^2(\mathcal{A}\mathcal{A}) = T(\mathcal{A})T(\mathcal{A}) = T(\mathcal{A})$. So (b) \Rightarrow (c). Now it is easy to see that the hypothesis (c) implies that $\mathcal{A} = T(\mathcal{A}) + Ker(T)$. Therefore the implication (c) \Rightarrow (d) follows if we show that $T(\mathcal{A}) \cap Ker(T) = \{0\}$. For this end, if $T(z) = x \in Ker(T)$, then $xT(\mathcal{A}) = xKer(T) = \{0\}$. Thus, since \mathcal{A} has a bounded approximate identity we have x = 0.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Now, suppose that $\mathcal{A} = T(\mathcal{A}) \oplus Ker(T)$. Since in this case $T^2(\mathcal{A}) = T(\mathcal{A})$ and $Ker(T) = Ker(T^2)$, *T* is a bijection on $T(\mathcal{A})$. Therefore, the linear operator *B* on \mathcal{A} , defined by B(a+b) := T(a) + b for all $a \in T(\mathcal{A})$ and $b \in Ker(T)$, is obviously bijective. Moreover, let *P* be the linear projection on \mathcal{A} defined by P(a+b) = a for all $a \in T(\mathcal{A})$ and $b \in Ker(T)$, it is straightforward to see that T = PB = BP. Thus (*d*) implies (*e*). That (*e*) implies (*a*) is trivial. \Box

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Remark: It should be noted that, the class of the Banach algebras satisfying the hypothesis of the theorem 3.4 is quite rich. It contains for instance all the C^* -algebras, the commutative semisimple amenable Banach algebras and the most of Banach algebras which come from harmonic analysis, such as the Herz-Figa-Talamanca algebra $A_{\rho}(G)$ of a locally compact amenable group G. Also, there is no well-known Banach algebra which is not character amenable, but each multiplier T on it factors as a product of an idempotent multiplier P and an invertible multiplier B. ie T = BP = PB

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem 3.4 gives us a necessary condition for character amenability of Banach algebras.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Theorem 3.4 gives us a necessary condition for character amenability of Banach algebras.

Example

Let \mathcal{A} be the classical disk algebra and $T : \mathcal{A} \to \mathcal{A}$ be the multiplier defined by T(f)(z) = z.f(z). Then $T(\mathcal{A}) = \{f \in \mathcal{A} : f(0) = 0\}$ and $T^2(\mathcal{A}) = \{f \in \mathcal{A} : f(0) = f'(0) = 0\}$. The ideal $T(\mathcal{A})$ is closed in \mathcal{A} , but $T^2(\mathcal{A})$ is not dense in $T(\mathcal{A})$, and the closed ideal $T(\mathcal{A})$ does not have a bounded approximate identity. Therefore, by 3.4, the classical disk algebra is not character amenable.

イロト イポト イヨト イヨト 一日

Example

Since every closed ideal of a C*-algebra has a bounded approximate identity, a multiplier T on a commutative C*-algebra has a closed range if and only if T is the product of an idempotent multiplier P and an invertible multiplier B (i.e. $T = P \circ B$).

ヘロン 人間 とくほ とくほ とう

- [1] Aiena, P., Laursen, B.K., Multipliers with closed range on regular commutative Banach algebras. *Proc. Am. Math. Soc.* **121**, 1039-1408 (1994).
- [2] Glicksberg, I., When is μ * L¹(G) closed?. *Trans. Am. Math. Soc.* 160, 419-425 (1971).
- [3] HEWITT, E., ROSS, K., Abstract harmonic analysis I, Springer-Verlag, New York, 1970.
- [4] HOFFMAN, K., Banach Spaces of Analytic Functions. Prentice-Hall, Englewood Clifs (1962)
- [5] JOHNSON, B.E.: Cohomology in Banach algebras. Mem. Amer. Math. Soc. 127 (1972).
- [6]KANIUTH, E., A Course in Commutative Banach Algebras, Springer-Verlag, 2008.

ヘロン 人間 とくほ とくほ とう

- [7] KANIUTH, E., LAU, A.T. AND PYM, J.: On φ-amenability of Banach algebras. *Math. Proc. Cambridge Philos. Soc.* 144, 85-96 (2008).
- [8] LARSEN, R., The Theory of Multipliers. Springer, Berlin Heidelberg New York (1971).
- [9] LAURSEN, K.B., MBEKHTA, M.: Closed range multipliers and generalized inverses. *Stud. Math.* **107**, 127-135 (1993).
- [10] LAURSEN, K.B., NEUMANN, M.: Decomposable multipliers and applications to harmonic analysis. *Stud. Math.* 101, 194-213 (1992).
- [11] LAURSEN, K.B., NEUMANN, M., An Introduction to the Local Spectral Theory. Clanderon Press, Oxford (2000).

ヘロン 人間 とくほ とくほ とう

- [12] ÜLGER, A.: Multipliers with closed range on commutative semisimple Banach algebras. *Stud. Math.* 153, 59-80 (2002).
- [13] ÜLGER, A.: A characterization of the closed unital ideals of the Fourier-Stieljes algebra B(G) of a locally compact amenable group G. J. Funct. Anal. 205, 90-106 (2003).
- [14] ÜLGER, A.: When is the range of a multiplier on a Banach algebra closed. *Math.Z* **254**, 715-728 (2006).

ヘロト ヘアト ヘビト ヘビト

Thank you very much for your attention

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで