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Let A be a commutative Banach algebra. A map
T : A → A is said to be a multiplier if it satisfies
xT (y) = T (x)y for all x , y ∈ A. We denote the set of all
multiplier on A by M(A). If A has a bounded approximate
identity, then M(A) is a closed subalgebra of B(A) (The
Banach algebra of all bounded operators on A), and in this
case for T ∈ M(A) we have

T (xy) = xT (y) = T (x)y for all x , y ∈ A.

Let me state the Notation and preliminaries

Abdol majid Fattahi Institute for Mathematical Stochastic



Introdution
Preliminary Matters

Closed range multipliers on Character amenable Banach algebra

Let A be a commutative Banach algebra. A map
T : A → A is said to be a multiplier if it satisfies
xT (y) = T (x)y for all x , y ∈ A. We denote the set of all
multiplier on A by M(A). If A has a bounded approximate
identity, then M(A) is a closed subalgebra of B(A) (The
Banach algebra of all bounded operators on A), and in this
case for T ∈ M(A) we have

T (xy) = xT (y) = T (x)y for all x , y ∈ A.

Let me state the Notation and preliminaries

Abdol majid Fattahi Institute for Mathematical Stochastic



Introdution
Preliminary Matters

Closed range multipliers on Character amenable Banach algebra

In [7], Lau, Pym and Kaniuth introduced and investigated a
large class of Banach algebras which they called ϕ-amenable
Banach algebras. Given ϕ ∈ ∆(A), a Banach algebra A is said
to be ϕ-amenable if there exists m ∈ A∗∗ such that

〈
m, ϕ

〉
= 1

and
〈
m, f .a

〉
= ϕ(a)

〈
m, f

〉
for all f ∈ A∗ and a ∈ A. A

commutative Banach algebra A is said to be character
amenable, if A has a bounded approximate identity and for
each ϕ ∈ ∆(A) ∪ {0}, A is ϕ-amenable. Here we mention
some of the well-known properties of these algebras that we
shall need. By theorem 1.4. of [7], for ϕ ∈ ∆(A) the Banach
algebra A is ϕ-amenable if and only if there exists a bounded
net (uα)α in A such that ‖auα − ϕ(a)uα‖ → 0 for all a ∈ A and
ϕ(uα) = 1 for all α. Also, a commutative Banach algebra is
character amenable if and only if for each ϕ ∈ ∆(A), the ideal
kerϕ has a bounded approximate identity, see [7, corollary 2.3].
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The following lemma plays a crucial role in the study of the
structure of multipliers on a commutative character amenable
Banach algebra with closed range.

Lemma

If A is a character amenable Banach algebra, and T : A → A
is a multiplier with closed range, then for each ϕ ∈ ∆(T (A)) the
Banach algebra T (A) is ϕ-amenable.

Proof. For arbitrary ϕ ∈ ∆(T (A)) we can choose b ∈ A for
which ϕ(T (b)) = 1. If now define the linear functional ϕ̃ on A
by ϕ̃(a) := ϕ(T (b)a) for a ∈ A, then ϕ̃ is multiplicative and
non-zero, and the definition of ϕ̃ is independent of the choice of
b. Therefore ϕ̃ ∈ ∆(A). As we mentioned in preliminaries, by
ϕ̃-amenability of A, there exist a net (uα)α∈I in A such that
ϕ̃(uα) = 1 for all α ∈ I, and ‖auα − ϕ̃(a)uα‖ → 0 for each a ∈ A.
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Now for each α ∈ I, set να := T (b)uα. So we have ϕ(να) = 1
and for each a ∈ A

‖T (a)να − ϕ(T (a))να‖ ≤ ‖T (b)‖.‖T (a)uα − ϕ̃(T (a))uα‖ → 0

and this complete the proof. �
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Now we are going to show that for a closed range multiplier T
on a commutative character amenable Banach algebra A, the
Banach algebra T (A) has a bounded approximate identity. For
this end I must state some definitions. Given a Banach algebra
A and a Banach A-bimodule X , a continuous derivation of A to
X , or X -derivation is a continuous linear mapping D from A into
X such that D(ab) = D(a).b + a.D(b) for all a,b ∈ A. For each
x ∈ X , the mapping Dx : A → X defined by Dx (a) = a.x − x .a
is a bounded X -derivation, called the inner derivation
associated with x . We denote the space of all continuous
X -derivations by Z 1(A,X ) and the subspace of all inner
derivations in X by N1(A,X ) .
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The quotient space H1(A,X ) = Z 1(A,X )/N1(A,X ) is called
the first continuous cohomology group of A with coefficients in
X . Therefore if H1(A,X ) = {0}, then every continuous
X -derivation is inner.

The following theorem is known; (a)⇔ (b) and (b)⇔ (c) were
proved in [7] and [5] respectively.
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Theorem
Let A be a commutative Banach algebra and T : A → A be a
multiplier with closed range. Then the following assertion are
equivalent.
(a) For each ϕ ∈ ∆(T (A)) ∪ {0} the Banach algebra T (A) is
ϕ-amenable.
(b) For each ϕ ∈ ∆(T (A)) ∪ {0}, if X is a Banach T ()-bimodule
such that T (a).x = ϕ(T (a)).x for all x ∈ X and a ∈ A, then
H1(T (A),X ∗) = {0};
(c) T (A) has a bounded approximate identity.
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By combination of Lemma 3.1 and Theorem 3.2 we have
the following result, that is an important consequence of
Lemma 3.1.

Theorem
Let A be a commutative character amenable Banach algebra
and T : A → A be a multiplier with closed range. Then the
Banach algebra T (A) has a bounded approximate identity.
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Now we are ready to state and prove the following theorem
as the main result of this section.

Theorem
Let T : A → A be a multiplier on a commutative character
amenable Banach algebra A. Then the following statements
are equivalent:
(a) T has closed range.
(b) T (A) has a bounded approximate identity.
(c) T 2(A) = T (A)
(d) A = T (A)⊕ Ker(T )
(e) T = BP = PB, where B ∈ M(A) is invertible and p ∈ M(A)
is idempotent.
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Proof.

(a) implies (b) by theorem 3.3. Suppose that (b) holds. Then
by Cohen’s factorization theorem we have
T 2(A) = T 2(AA) = T (A)T (A) = T (A). So (b)⇒(c).
Now it is easy to see that the hypothesis (c) implies that
A = T (A) + Ker(T ). Therefore the implication (c)⇒ (d)
follows if we show that T (A) ∩ Ker(T ) = {0}. For this end, if
T (z) = x ∈ Ker(T ), then xT (A) = xKer(T ) = {0}. Thus, since
A has a bounded approximate identity we have x = 0.
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Now, suppose that A = T (A)⊕ Ker(T ). Since in this case
T 2(A) = T (A) and Ker(T ) = Ker(T 2), T is a bijection on T (A).
Therefore, the linear operator B on A, defined by
B(a + b) := T (a) + b for all a ∈ T (A) and b ∈ Ker(T ), is
obviously bijective. Moreover, let P be the linear projection on
A defined by P(a + b) = a for all a ∈ T (A) and b ∈ Ker(T ), it is
straightforward to see that T = PB = BP. Thus (d) implies (e).
That (e) implies (a) is trivial. �
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Remark: It should be noted that, the class of the Banach
algebras satisfying the hypothesis of the theorem 3.4 is
quite rich. It contains for instance all the C∗-algebras, the
commutative semisimple amenable Banach algebras and
the most of Banach algebras which come from harmonic
analysis, such as the Herz-Figa-Talamanca algebra Ap(G)
of a locally compact amenable group G. Also, there is no
well-known Banach algebra which is not character
amenable, but each multiplier T on it factors as a product
of an idempotent multiplier P and an invertible multiplier B.
i.e. T = BP = PB.
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Theorem 3.4 gives us a necessary condition for character
amenability of Banach algebras.

Example
Let A be the classical disk algebra and T : A → A be the
multiplier defined by T (f )(z) = z.f (z). Then
T (A) = {f ∈ A : f (0) = 0} and
T 2(A) = {f ∈ A : f (0) = f ′(0) = 0}. The ideal T (A) is closed
in A, but T 2(A) is not dense in T (A), and the closed ideal
T (A) does not have a bounded approximate identity. Therefore,
by 3.4, the classical disk algebra is not character amenable.
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Example
Since every closed ideal of a C∗-algebra has a bounded
approximate identity, a multiplier T on a commutative
C∗-algebra has a closed range if and only if T is the product of
an idempotent multiplier P and an invertible multiplier B (i.e.
T = P ◦ B).
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Thank you very much for your attention
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