Group actions on topological graphs

Valentin Deaconu, Alex Kumjian, John Quigg

(work in progress)

OT23, Timișoara, 29 June-4 July, 2010
We recall basic facts about topological graphs and their C^*-algebras, with examples.

We define the action of a group G on a topological graph E. We give a structure theorem for free and proper actions, and define the quotient graph E/G.

This action induces a natural action of G on the C^*-correspondence $\mathcal{H}(E)$ and on the graph C^*-algebra $C^*(E)$ such that $C^*(E) \rtimes_r G$ is strongly Morita equivalent to $C^*(E/G)$.

We also introduce the fundamental group and the universal covering of a topological graph via a geometric realization. We give examples, one having the Baumslag-Solitar group as fundamental group.
Let $E = (E^0, E^1, s, r)$ be a topological graph. Recall that E^0 (vertices) and E^1 (edges) are locally compact (Hausdorff) spaces, $s, r : E^1 \to E^0$ are continuous maps, and s is a local homeomorphism.

The C*-algebra $C^*(E)$ is the Cuntz-Pimsner algebra O_H of the C*-correspondence $H = H(E)$ over $A = C_0(E^0)$, obtained as a completion of $C_c(E^1)$ using

$$\langle \xi, \eta \rangle(v) = \sum_{s(e) = v} \overline{\xi(e)} \eta(e), \; \xi, \eta \in C_c(E^1)$$

$$(\xi \cdot f)(e) = \xi(e)f(s(e)), \; (f \cdot \xi)(e) = f(r(e))\xi(e).$$
Examples

- **Example 1.** Let $E^0 = E^1 = \mathbb{T}$, $s(z) = z$, and $r(z) = e^{2\pi i \theta} z$ for $\theta \in [0, 1]$ irrational. Then $C^*(E) \cong A_\theta$, the irrational rotation algebra.

- **Example 2.** Let $E^0 = E^1 = X$, for X a locally compact metric space, let $s = id$ and let $r = h : X \to X$ be a homeomorphism. Then $C^*(E) \cong C_0(X) \rtimes \mathbb{Z}$, since $C^*(E)$ is the universal C^*-algebra generated by $C_0(X)$ and a unitary u satisfying $\hat{h}(f) = u^*fu$ for $f \in C_0(X)$, where $\hat{h}(f) = f \circ h$.

- **Example 3.** Let $n \in \mathbb{N} \setminus \{0\}$ and $m \in \mathbb{Z} \setminus \{0\}$. Take

\[E^0 = E^1 = \mathbb{T}, \ s(z) = z^n, \ r(z) = z^m. \]

If $m \not\in n\mathbb{Z}$, then $C^*(E)$ is simple and purely infinite.
Skew products

- **Skew products of topological graphs.** Let $E = (E^0, E^1, s, r)$ be a topological graph, let G be a locally compact group, and let $c : E^1 \to G$ be continuous. Define the skew product graph $E \times_c G = (E^0 \times G, E^1 \times G, \tilde{s}, \tilde{r})$, where

\[
\tilde{s}(e, g) = (s(e), g), \quad \tilde{r}(e, g) = (r(e), gc(e)).
\]

- Then $E \times_c G$ becomes a topological graph using the product topology. If E has one vertex and n loops $\{e_1, \ldots, e_n\}$ and if G has a set of generators $S = \{h_1, \ldots, h_n\}$ such that $c(e_i) = h_i, i = 1, \ldots, n$ then we get the Cayley graph $E(G, S)$.
Graph morphisms

- Let E, F be two topological graphs. A graph morphism $\phi : E \to F$ is a pair of continuous maps $\phi = (\phi^0, \phi^1)$ such that the diagram

\[
\begin{array}{ccc}
E^0 & \xleftarrow{s} & E^1 & \xrightarrow{r} & E^0 \\
\phi^0 \downarrow & & \phi^1 \downarrow & & \phi^0 \downarrow \\
F^0 & \xleftarrow{s} & F^1 & \xrightarrow{r} & F^0
\end{array}
\]

is commutative.

- A graph morphism ϕ is a graph covering if both ϕ^0, ϕ^1 are covering maps.

- An isomorphism is a graph morphism $\phi = (\phi^0, \phi^1)$ such that ϕ^i are homeomorphisms for $i = 0, 1$. It follows that $\phi^{-1} = ((\phi^0)^{-1}, (\phi^1)^{-1})$ is also a graph morphism.
Group actions

- A locally compact group G acts on E if there are continuous maps $\lambda^i : G \times E^i \rightarrow E^i$ for $i = 0, 1$ such that $g \mapsto \lambda_g$ is a homomorphism from G into $\text{Aut}(E)$.

- The action λ is called free if $\lambda^0_g(v) = v$ for some $v \in E^0$ implies $g = 1_G$. In this case the action of G is also free on E^1.

- The action is called proper if the maps $G \times E^0 \rightarrow E^0 \times E^0$, $(g, v) \mapsto (\lambda^0_g(v), v)$ and $G \times E^1 \rightarrow E^1 \times E^1$, $(g, e) \mapsto (\lambda^1_g(e), e)$ are proper. (It is sufficient to require properness of the first map).

- A group G acts freely and properly on a skew product $E \times_c G$ by $\lambda^0_g(v, h) = (v, gh)$ and $\lambda^1_g(e, h) = (e, gh)$.
Principal G-bundles and the quotient graph

A map $q : P \to X$ is called a **principal G-bundle** if there is a free and proper action of G on P such that P/G can be identified with X.

Theorem

Given $F = (F^0, F^1, s, r)$ a topological graph, a principal G-bundle $P \to F^0$ and an isomorphism of pull-backs $s^*(P) \cong r^*(P)$, there is a topological graph $E = (E^0, E^1, \tilde{s}, \tilde{r})$ with a free and proper action of G such that $E^0 = P$, $E^1 = s^*(P)$ and $F \cong E/G$. Moreover, every topological graph E on which G acts freely and properly arises this way.

Corollary

The topological graph E constructed above is G-equivariantly isomorphic to a skew product $F \times_c G$ iff the principal bundle $E^0 \to F^0$ is trivial.
Group actions on \(C^* \)-correspondences

- A group \(G \) acts on a \(C^* \)-correspondence \(\mathcal{H} \) over \(A \) if there is a map \(G \times \mathcal{H} \to \mathcal{H}, \ (g, \xi) \mapsto g \cdot \xi \) such that \(g \mapsto g \cdot \xi \) is continuous, \(\xi \mapsto g \cdot \xi \) is linear, and if \(G \) acts on \(A \) by \(*\)-automorphisms such that \(\langle g \cdot \xi, g \cdot \eta \rangle = g \cdot \langle \xi, \eta \rangle \), \(g \cdot (\xi a) = (g \cdot \xi)(g \cdot a) \), \(g \cdot (\varphi(a) \xi) = \varphi(g \cdot a)(g \cdot \xi) \).

- An action of \(G \) on the \(C^* \)-correspondence \(\mathcal{H} \) defines an action on the Cuntz-Pimsner algebra \(O_{\mathcal{H}} \) since all defining relations are equivariant.

Proposition.

If \(G \) acts on the topological graph \(E = (E_0, E_1, s, r) \), then \(G \) acts on the \(C^* \)-correspondence \(\mathcal{H} = \mathcal{H}(E) \) and hence on \(C^*(E) \).

Proof.

Define \(g \cdot \xi(e) = \xi(g^{-1}e) \) for \(\xi \in C_c(E_1) \), \(g \cdot f(v) = f(g^{-1}v) \) for \(f \in C_0(E_0) \). Then this action is compatible with the bimodule structure since \(s \) and \(r \) are equivariant. □
Proper actions on C^*-algebras

The action α of a locally compact group G on a C^*-algebra A is proper if there is a dense α-invariant $*$-subalgebra A_0 of A such that for every $a, b \in A_0$ the functions

$$x \mapsto a\alpha_x(b) \quad \text{and} \quad x \mapsto \Delta(x)^{-1/2}a\alpha_x(b)$$

are integrable on G, and for all $a, b \in A_0$ there exists $\langle a, b \rangle_r \in M(A_0)$, where

$$M(A_0) := \{ m \in M(A) : a \in A_0 \Rightarrow ma \in A_0 \}$$

such that

$$c\langle a, b \rangle_r = \int_G c\alpha_x(a^*b)dx \quad \text{for all} \quad c \in A_0.$$
Proper action cont’d

- For such an action,

\[A^\alpha := \overline{\text{span}}\{\langle a, b \rangle_r : a, b \in A_0\} \subset M(A) \]

is called the \textit{generalized fixed-point algebra}.

- Define a (left) inner product on \(A_0 \) with values in \(A \rtimes_{\alpha, r} G \) by

\[\ell\langle a, b \rangle(x) = \Delta(x)^{-1/2} a\alpha_x(b^*) . \]

- The set

\[I := \overline{\text{span}}\{\ell \langle a, b \rangle : a, b \in A_0\} \]

is an ideal in \(A \rtimes_{\alpha, r} G \), and the closure \(\mathcal{Z} \) of \(A_0 \) in the norm \(\|a\|^2 := \|\langle a, a \rangle_r\| \) is an \(I - A^\alpha \) imprimitivity bimodule.

- The action is called \textit{saturated} if \(I = A \rtimes_{\alpha, r} G \).
The main results

Theorem

If G acts freely and properly on the topological graph E, then G acts properly on C(E) and the action is saturated. Moreover, C*(E) RTimes, G and C*(E/G) are strongly Morita equivalent.*

Sketch of proof. Since G acts freely and properly on E₀ and there is an equivariant map \(C_0(E^0) \to M(C^*(E)) \), it follows that the action of G on C*(E) is proper and saturated with respect to the \(*\)-subalgebra

\[
A_0 = C_c(E^0)C^*(E)C_c(E^0).
\]

To prove that the generalized fixed point algebra is isomorphic to C*(E/G), we construct an injective homomorphism from C*(E/G) into M(C*(E)) whose image is C*(E)\(^\alpha\). This is done in several steps, using multipliers of C*-correspondences.
Recall that G acts freely and properly on $E \times_c G$ and that $(E \times_c G)/G = E$. We have

Corollary

The C^*-algebras $C^*(E \times_c G) \rtimes_r G$ and $C^*(E)$ are strongly Morita equivalent. In particular, for a finitely generated locally compact group G with generators $S = \{h_1, h_2, ..., h_n\}$ and Cayley graph $E(G,S)$, we get that $C^*(E(G,S)) \rtimes_r G$ is strongly Morita equivalent to the Cuntz algebra \mathcal{O}_n.

Corollary

If G is abelian, $c : E^1 \to G$ induces an action α^c of \hat{G} on $C^*(E)$ such that $(\alpha^c_\chi \xi)(e) = \langle \chi, c(e) \rangle \xi(e)$ for $\xi \in C_c(E^1)$ and $\chi \in \hat{G}$. Then

$$C^*(E) \rtimes_\alpha^c \hat{G} \cong C^*(E \times_c G).$$
The geometric realization of a topological graph E is

$$R(E) := E^1 \times [0, 1] \sqcup E^0 / \sim,$$

where $(e, 0) \sim s(e)$ and $(e, 1) \sim r(e)$ (a kind of double mapping torus).

If the group G acts on the topological graph E, then G acts on $R(E)$ by

$$g \cdot (e, t) = (\lambda_g^1(e), t), e \in E^1, t \in [0, 1], \quad g \cdot v = \lambda_g^0(v), v \in E^0.$$

The fundamental group $\pi_1(E)$ is by definition $\pi_1(R(E))$. The universal covering \tilde{E} of E is a simply connected graph which covers E.

The group $\pi_1(E)$ acts freely on \tilde{E}, and the orbit space \tilde{E}/G is isomorphic to E.

If E is discrete, then $\pi_1(E)$ is free, and the universal covering is a tree T.
Examples of coverings

- **Example 1.** Let E with $E^0 = E^1 = \mathbb{T}$ and with $s(z) = z$, $r(z) = e^{2\pi i \theta} z$ for θ irrational. The geometric realization is homeomorphic to \mathbb{T}^2, hence $\pi_1(E) \cong \mathbb{Z}^2$.

 The universal covering \tilde{E} has $\tilde{E}^0 = \tilde{E}^1 = \mathbb{R} \times \mathbb{Z}$, and $s(y, k) = (y, k)$, $r(y, k) = (y + \theta, k + 1)$. Here \mathbb{Z}^2 acts on \tilde{E} by $(j, m) \cdot (y, k) = (y + m\theta + j, k + m)$, and $\tilde{E}/\mathbb{Z}^2 \cong E$.

- **Example 2.** Let $h : X \to X$ be a homeomorphism, and let E with $E^0 = E^1 = X$, $s = id$ and $r = h$. The geometric realization of E is homeomorphic to the mapping torus of h.

 The universal covering \tilde{E} has $\tilde{E}^0 = \tilde{E}^1 = \tilde{X} \times \mathbb{Z}$, where \tilde{X} is the universal covering of X. The source and range maps are $s(y, k) = (y, k)$, $r(y, k) = (\tilde{h}(y), k + 1)$, where $\tilde{h} : \tilde{X} \to \tilde{X}$ is a lifting of h.

 Then $\pi_1(E) \cong \pi_1(X) \rtimes \mathbb{Z}$, and the action of $\pi_1(X) \rtimes \mathbb{Z}$ on $\tilde{X} \times \mathbb{Z}$ is given by $(g, m) \cdot (y, k) = (g \cdot \tilde{h}^m(y), k + m)$.
Example 3. Let again $E^0 = E^1 = \mathbb{T}$ with $s(z) = z^p$, $r(z) = z^q$ for p, q positive integers. Then $R(E)$ is obtained from a cylinder, where the two boundary circles are identified using the maps s and r.

Figure: The case $p = 2, q = 3$.
Examples cont’d

- Then $\pi_1(E)$ is isomorphic to the Baumslag-Solitar group $B(p, q) = \langle a, b \mid ab^p a^{-1} = b^q \rangle$.
- For $p = 1$ or $q = 1$, this group is a semi-direct product and it is amenable. For $p \neq 1, q \neq 1$ and $(p, q) = 1$, it is not amenable.
- The universal covering space of $R(E)$ is obtained from the Cayley graph of $B(p, q)$ by filling out the squares. It is the cartesian product $T \times \mathbb{R}$, where T is the Bass-Serre tree of $B(p, q)$, viewed as an HNN-extension of $\pi_1(\mathbb{T})$.
- Recall that $B(p, q)$ is the quotient of the free product $\pi_1(\mathbb{T}) \star \mathbb{Z}$ by the relation $as_*(b)a^{-1} = r_*(b)$, where a is the generator of \mathbb{Z}, $b \in \pi_1(\mathbb{T})$, and $s_*, r_* : \pi_1(\mathbb{T}) \hookrightarrow \pi_1(\mathbb{T})$.
Examples cont’d

Figure: Cayley complex for $B(2, 3)$.
The 1-skeleton is the directed Cayley graph of $B(2, 3)$, where the generators a, b multiply on the right. The group action is given by left multiplication.

In the corresponding tree T, each vertex has 5 edges. The vertex set T^0 is identified with the left cosets $g\langle b \rangle \in B(2, 3)/\langle b \rangle$, and the edge set T^1 with the left cosets $g\langle b^2 \rangle \in B(2, 3)/\langle b^2 \rangle$.

The source and range maps are given by $s(g\langle b^2 \rangle) = g\langle b \rangle$, $r(g\langle b^2 \rangle) = ga^{-1}\langle b \rangle$ for $g \in B(2, 3)$.

We have $\tilde{E}^0 \cong T^0 \times \mathbb{R}$, $\tilde{E}^1 \cong T^1 \times \mathbb{R}$ with $\tilde{s}(t, y) = (s(t), py)$, $\tilde{r}(t, y) = (r(t), qy)$ for $t \in T^1$ and $y \in \mathbb{R}$.

The group $B(p, q)$ acts freely and properly on \tilde{E}, and the quotient graph $\tilde{E}/B(p, q)$ is isomorphic to E.

In particular, \tilde{E} is not a skew product. We have $C^*(\tilde{E}) \rtimes_r B(p, q)$ strongly Morita equivalent to $C^*(E)$.

C. Anantharaman-Delaroche, J. Renault, *Amenable groupoids*.

G. Baumslag, *Topics in combinatorial group theory*.

M. Bridson, A. Haefliger, *Metric spaces of non-positive curvature*.

References cont’d

- R. C. Lyndon, P. E. Schupp, Combinatorial group theory.

- M. Pimsner, *A Class of C^*-Algebras Generalizing both Cuntz-Krieger Algebras and Crossed Products by \mathbb{Z}*.
