Group actions on topological graphs

Valentin Deaconu, Alex Kumjian, John Quigg

(work in progress)

OT23, Timişoara, 29 June-4 July, 2010

Outline

Topological graphs and their C* -algebras Group actions on topological graphs Group actions on C* -correspondences The fundamental group References

Outline

- We recall basic facts about topological graphs and their *C**-algebras, with examples.
- We define the action of a group G on a topological graph E. We give a structure theorem for free and proper actions, and define the quotient graph E/G.
- This action induces a natural action of *G* on the *C*^{*}-correspondence $\mathcal{H}(E)$ and on the graph *C*^{*}-algebra *C*^{*}(*E*) such that $C^*(E) \rtimes_r G$ is strongly Morita equivalent to $C^*(E/G)$.
- We also introduce the fundamental group and the universal covering of a topological graph via a geometric realization. We give examples, one having the Baumslag-Solitar group as fundamental group.

Topological graphs and their C^* -algebras

- Let $E = (E^0, E^1, s, r)$ be a topological graph. Recall that E^0 (vertices) and E^1 (edges) are locally compact (Hausdorff) spaces, $s, r : E^1 \to E^0$ are continuous maps, and *s* is a local homeomorphism.
- The C*-algebra $C^*(E)$ is the Cuntz-Pimsner algebra $\mathcal{O}_{\mathcal{H}}$ of the C^* -correspondence $\mathcal{H} = \mathcal{H}(E)$ over $A = C_0(E^0)$, obtained as a completion of $C_c(E^1)$ using

$$\langle \xi,\eta
angle(
u)=\sum_{s(e)=
u}\overline{\xi(e)}\eta(e),\;\xi,\eta\in C_c(E^1)$$

$$(\xi \cdot f)(e) = \xi(e)f(s(e)), \ (f \cdot \xi)(e) = f(r(e))\xi(e).$$

Examples

- Example 1. Let $E^0 = E^1 = \mathbb{T}$, s(z) = z, and $r(z) = e^{2\pi i \theta} z$ for $\theta \in [0, 1]$ irrational. Then $C^*(E) \cong A_{\theta}$, the irrational rotation algebra.
- Example 2. Let $E^0 = E^1 = X$, for X a locally compact metric space, let s = id and let $r = h : X \to X$ be a homeomorphism. Then $C^*(E) \cong C_0(X) \rtimes \mathbb{Z}$, since $C^*(E)$ is the universal C^* -algebra generated by $C_0(X)$ and a unitary *u* satisfying $\hat{h}(f) = u^* f u$ for $f \in C_0(X)$, where $\hat{h}(f) = f \circ h$.
- Example 3. Let $n \in \mathbb{N} \setminus \{0\}$ and $m \in \mathbb{Z} \setminus \{0\}$. Take

$$E^0 = E^1 = \mathbb{T}, s(z) = z^n, r(z) = z^m.$$

If $m \notin n\mathbb{Z}$, then $C^*(E)$ is simple and purely infinite.

Skew products

Skew products of topological graphs. Let E = (E⁰, E¹, s, r) be a topological graph, let G be a locally compact group, and let c : E¹ → G be continuous. Define the skew product graph E ×_c G = (E⁰ × G, E¹ × G, š, ř), where

$$\tilde{s}(e,g) = (s(e),g), \quad \tilde{r}(e,g) = (r(e),gc(e)).$$

 Then *E* ×_c *G* becomes a topological graph using the product topology. If *E* has one vertex and *n* loops {*e*₁,...,*e_n*} and if *G* has a set of generators *S* = {*h*₁,...,*h_n*} such that *c*(*e_i*) = *h_i*, *i* = 1,...,*n* then we get the Cayley graph *E*(*G*, *S*).

Graph morphisms

• Let E, F be two topological graphs. A graph morphism $\phi : E \to F$ is a pair of continuous maps $\phi = (\phi^0, \phi^1)$ such that the diagram

is commutative.

- A graph morphism ϕ is a graph covering if both ϕ^0, ϕ^1 are covering maps.
- An isomorphism is a graph morphism φ = (φ⁰, φ¹) such that φⁱ are homeomorphisms for i = 0, 1. It follows that φ⁻¹ = ((φ⁰)⁻¹, (φ¹)⁻¹) is also a graph morphism.

Group actions

- A locally compact group G acts on E if there are continuous maps $\lambda^i : G \times E^i \to E^i$ for i = 0, 1 such that $g \mapsto \lambda_g$ is a homomorphism from G into Aut(E).
- The action λ is called free if $\lambda_g^0(v) = v$ for some $v \in E^0$ implies $g = 1_G$. In this case the action of *G* is also free on E^1 .
- The action is called proper if the maps $G \times E^0 \to E^0 \times E^0, (g, v) \mapsto (\lambda_g^0(v), v)$ and $G \times E^1 \to E^1 \times E^1, (g, e) \mapsto (\lambda_g^1(e), e)$ are proper. (It is sufficient to require properness of the first map).
- A group G acts freely and properly on a skew product $E \times_c G$ by $\lambda_g^0(v,h) = (v,gh)$ and $\lambda_g^1(e,h) = (e,gh)$.

Principal G-bundles and the quotient graph

A map $q: P \to X$ is called a principal *G*-bundle if there is a free and proper action of *G* on *P* such that P/G can be identified with *X*.

Theorem

Given $F = (F^0, F^1, s, r)$ a topological graph, a principal G-bundle $P \to F^0$ and an isomorphism of pull-backs $s^*(P) \cong r^*(P)$, there is a topological graph $E = (E^0, E^1, \tilde{s}, \tilde{r})$ with a free and proper action of G such that $E^0 = P, E^1 = s^*(P)$ and $F \cong E/G$. Moreover, every topological graph E on which G acts freely and properly arises this way.

Corollary

The topological graph *E* constructed above is *G*-equivariantly isomorphic to a skew product $F \times_c G$ iff the principal bundle $E^0 \to F^0$ is trivial.

The main results

Group actions on C^* -correspondences

- A group *G* acts on a *C**-correspondence \mathcal{H} over *A* if there is a map $G \times \mathcal{H} \to \mathcal{H}$, $(g, \xi) \mapsto g \cdot \xi$ such that $g \mapsto g \cdot \xi$ is continuous, $\xi \mapsto g \cdot \xi$ is linear, and if *G* acts on *A* by *-automorphisms such that $\langle g \cdot \xi, g \cdot \eta \rangle = g \cdot \langle \xi, \eta \rangle$, $g \cdot (\xi a) = (g \cdot \xi)(g \cdot a)$, $g \cdot (\varphi(a)\xi) = \varphi(g \cdot a)(g \cdot \xi)$.
- An action of G on the C*-correspondence H defines an action on the Cuntz-Pimsner algebra O_H since all defining relations are equivariant.

Proposition.

If G acts on the topological graph $E = (E^0, E^1, s, r)$, then G acts on the C^{*}-correspondence $\mathcal{H} = \mathcal{H}(E)$ and hence on C^{*}(E).

Proof.

Define $g \cdot \xi(e) = \xi(g^{-1}e)$ for $\xi \in C_c(E^1)$, $g \cdot f(v) = f(g^{-1}v)$ for $f \in C_0(E^0)$. Then this action is compatible with the bimodule structure since *s* and *r* are equivariant.

The main results

Proper actions on C^* -algebras

- The action *α* of a locally compact group *G* on a *C**-algebra *A* is *proper* if there is a dense *α*-invariant *-subalgebra *A*₀ of *A* such that
- for every $a, b \in A_0$ the functions

$$x \mapsto a\alpha_x(b)$$
 and $x \mapsto \Delta(x)^{-1/2}a\alpha_x(b)$

are integrable on G, and

• for all $a, b \in A_0$ there exists $\langle a, b \rangle_r \in M(A_0)$, where

$$M(A_0) := \{ m \in M(A) : a \in A_0 \Rightarrow ma \in A_0 \}$$

such that

$$c\langle a,b
angle_r=\int_G clpha_x(a^*b)dx ext{ for all } c\in A_0.$$

The main results

Proper action cont'd

• For such an action,

$$A^{\alpha} := \overline{span}\{\langle a, b \rangle_r : a, b \in A_0\} \subset M(A)$$

is called the generalized fixed-point algebra.

• Define a (left) inner product on A_0 with values in $A \rtimes_{\alpha,r} G$ by

$$_{\ell}\langle a,b\rangle(x)=\Delta(x)^{-1/2}a\alpha_{x}(b^{*}).$$

The set

$$I := \overline{span} \{ \ell \langle a, b \rangle : a, b \in A_0 \}$$

is an ideal in $A \rtimes_{\alpha,r} G$, and the closure \mathcal{Z} of A_0 in the norm $||a||^2 := ||\langle a, a \rangle_r||$ is an $I - A^{\alpha}$ imprimitivity bimodule.

• The action is called *saturated* if $I = A \rtimes_{\alpha,r} G$.

The main results

The main results

Theorem

If G acts freely and properly on the topological graph E, then G acts properly on $C^*(E)$ and the action is saturated. Moreover, $C^*(E) \rtimes_r G$ and $C^*(E/G)$ are strongly Morita equivalent.

Sketch of proof. Since *G* acts freely and properly on E^0 and there is an equivariant map $C_0(E^0) \to M(C^*(E))$, it follows that the action of *G* on $C^*(E)$ is proper and saturated with respect to the *-subalgebra

$$A_0 = C_c(E^0)C^*(E)C_c(E^0).$$

To prove that the generalized fixed point algebra is isomorphic to $C^*(E/G)$, we construct an injective homomorphism from $C^*(E/G)$ into $M(C^*(E))$ whose image is $C^*(E)^{\alpha}$. This is done in several steps, using multipliers of C^* -correspondences.

The main results

The main results cont'd

Recall that *G* acts freely and properly on $E \times_c G$ and that $(E \times_c G)/G = E$. We have

Corollary

The C^* -algebras $C^*(E \times_c G) \rtimes_r G$ and $C^*(E)$ are strongly Morita equivalent. In particular, for a finitely generated locally compact group Gwith generators $S = \{h_1, h_2, ..., h_n\}$ and Cayley graph E(G, S), we get that $C^*(E(G, S)) \rtimes_r G$ is strongly Morita equivalent to the Cuntz algebra \mathcal{O}_n .

Corollary

If G is abelian, $c : E^1 \to G$ induces an action α^c of \hat{G} on $C^*(E)$ such that $(\alpha_{\chi}^c \xi)(e) = \langle \chi, c(e) \rangle \xi(e)$ for $\xi \in C_c(E^1)$ and $\chi \in \hat{G}$. Then

$$C^*(E) \rtimes_{\alpha^c} \hat{G} \cong C^*(E \times_c G).$$

The fundamental group

• The geometric realization of a topological graph E is

$$R(E) := E^1 \times [0,1] \sqcup E^0 / \sim,$$

where $(e, 0) \sim s(e)$ and $(e, 1) \sim r(e)$ (a kind of double mapping torus).

• If the group G acts on the topological graph E, then G acts on R(E) by

$$g \cdot (e,t) = (\lambda_g^1(e), t), e \in E^1, t \in [0,1], \ g \cdot v = \lambda_g^0(v), v \in E^0.$$

- The fundamental group $\pi_1(E)$ is by definition $\pi_1(R(E))$. The universal covering \tilde{E} of *E* is a simply connected graph which covers *E*.
- The group $\pi_1(E)$ acts freely on \tilde{E} , and the orbit space \tilde{E}/G is isomorphic to E.
- If *E* is discrete, then $\pi_1(E)$ is free, and the universal covering is a tree *T*.

Examples of coverings

- Example 1. Let *E* with $E^0 = E^1 = \mathbb{T}$ and with $s(z) = z, r(z) = e^{2\pi i \theta} z$ for θ irrational. The geometric realization is homeomorphic to \mathbb{T}^2 , hence $\pi_1(E) \cong \mathbb{Z}^2$.
- The universal covering \tilde{E} has $\tilde{E}^0 = \tilde{E}^1 = \mathbb{R} \times \mathbb{Z}$, and $s(y,k) = (y,k), r(y,k) = (y + \theta, k + 1)$. Here \mathbb{Z}^2 acts on \tilde{E} by $(j,m) \cdot (y,k) = (y + m\theta + j, k + m)$, and $\tilde{E}/\mathbb{Z}^2 \cong E$.
- Example 2. Let $h : X \to X$ be a homeomorphism, and let *E* with $E^0 = E^1 = X$, s = id and r = h. The geometric realization of *E* is homeomorphic to the mapping torus of *h*.
- The universal covering *E* has *E*⁰ = *E*¹ = *X* × Z, where *X* is the universal covering of *X*. The source and range maps are *s*(*y*, *k*) = (*y*, *k*), *r*(*y*, *k*) = (*h*(*y*), *k* + 1), where *h* : *X* → *X* is a lifting of *h*.
- Then π₁(E) ≅ π₁(X) ⋊ Z, and the action of π₁(X) ⋊ Z on X̃ × Z is given by (g, m) · (y, k) = (g · h̃^m(y), k + m).

Examples cont'd

• Example 3. Let again $E^0 = E^1 = \mathbb{T}$ with $s(z) = z^p$, $r(z) = z^q$ for p, q positive integers. Then R(E) is obtained from a cylinder, where the two boundary circles are identified using the maps *s* and *r*.

Figure: The case p = 2, q = 3.

Examples cont'd

- Then $\pi_1(E)$ is isomorphic to the Baumslag-Solitar group $B(p,q) = \langle a,b \mid ab^p a^{-1} = b^q \rangle$.
- For p = 1 or q = 1, this group is a semi-direct product and it is amenable. For $p \neq 1, q \neq 1$ and (p,q) = 1, it is not amenable.
- The universal covering space of R(E) is obtained from the Cayley graph of B(p, q) by filling out the squares. It is the cartesian product $T \times \mathbb{R}$, where *T* is the Bass-Serre tree of B(p, q), viewed as an HNN-extension of $\pi_1(\mathbb{T})$.
- Recall that B(p,q) is the quotient of the free product $\pi_1(\mathbb{T}) * \mathbb{Z}$ by the relation $as_*(b)a^{-1} = r_*(b)$, where *a* is the generator of \mathbb{Z} , $b \in \pi_1(\mathbb{T})$, and $s_*, r_* : \pi_1(\mathbb{T}) \hookrightarrow \pi_1(\mathbb{T})$.

Examples cont'd

Figure: Cayley complex for B(2,3).

Examples cont'd

- The 1-skeleton is the directed Cayley graph of B(2,3), where the generators a, b multiply on the right. The group action is given by left multiplication.
- In the corresponding tree *T*, each vertex has 5 edges. The vertex set T^0 is identified with the left cosets $g\langle b \rangle \in B(2,3)/\langle b \rangle$, and the edge set T^1 with the left cosets $g\langle b^2 \rangle \in B(2,3)/\langle b^2 \rangle$.
- The source and range maps are given by $s(g\langle b^2 \rangle) = g\langle b \rangle, r(g\langle b^2 \rangle) = ga^{-1}\langle b \rangle$ for $g \in B(2,3)$.
- We have $\tilde{E}^0 \cong T^0 \times \mathbb{R}$, $\tilde{E}^1 \cong T^1 \times \mathbb{R}$ with $\tilde{s}(t, y) = (s(t), py), \tilde{r}(t, y) = (r(t), qy)$ for $t \in T^1$ and $y \in \mathbb{R}$.
- The group B(p,q) acts freely and properly on \tilde{E} , and the quotient graph $\tilde{E}/B(p,q)$ is isomorphic to E.
- In particular, \tilde{E} is not a skew product. We have $C^*(\tilde{E}) \rtimes_r B(p,q)$ strongly Morita equivalent to $C^*(E)$.

References

- A. an Huef, I. Raeburn, D. Williams, *A symmetric imprimitivity theorem for commuting proper actions*, Canad. J. Math. 57 (2005) 983–1011.
- C. Anantharaman-Delaroche, J. Renault, Amenable groupoids.
- G. Baumslag, Topics in combinatorial group theory.
- M. Bridson, A. Haefliger, Metric spaces of non-positive curvature.
- S. Echterhoff, Siegfried, S. Kaliszewski, J. Quigg and I. Raeburn, A categorical approach to imprimitivity theorems for *C**-dynamical systems. Mem. Amer. Math. Soc. 180 (2006), no. 850, viii+169 pp.
- T. Katsura, A class of C*-algebras generalizing both graph algebras and homeomorphism C*-algebras I, Fundamental results, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4287–4322.
- T. Katsura, A class of C^{*}-algebras generalizing both graph algebras and homeomorphism C^{*}-algebras IV, pure infiniteness, J. Funct. Anal. 254 (2008), no. 5, 1161–1187.

References cont'd

- T. Katsura, *Continuous graphs and crossed products of Cuntz algebras*, Recent aspects of *C**-algebras (Japanese) (Kyoto, 2002). Sūrikaisekikenkyūsho Kōkyūroku No. 1291 (2002), 73–83.
- A. Kishimoto, A. Kumjian, *Crossed products of Cuntz algebras by quasi-free automorphisms* Operator algebras and their applications (Waterloo, ON, 1994/1995), 173–192.
- A. Kumjian, D. Pask, *C**-algebras of directed graphs and group actions. Ergodic Theory Dynam. Systems 19 (1999), no. 6, 1503–1519.
- R. C. Lyndon, P. E. Schupp, Combinatorial group theory.
- M. Pimsner, A Class of C*-Algebras Generalizing both Cuntz-Krieger Algebras and Crossed Products by Z.
- M. Rieffel, *Proper actions of groups on C*-algebras*, Mappings of operator algebras (Philadelphia, PA, 1988), 141–182.
- M. Rieffel, *Integrable and proper actions on C*-algebras, and square-integrable representations of groups*, Expo. Math. 22 (2004) 1–53.