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Abstract. Given a Banach Algebra A and a ∈ A, several re-
lationships among the Drazin spectrum of a and the ascent, the
descent and the Drazin spectra of the multiplication operators La

and Ra will be presented; the Banach space operator case will be
also examined. In addition, a characterization of the spectrum of
a in terms of the Drazin spectrum and the poles of the resolvent of
a will be considered. Furthermore, several basic properties of the
Drazin spectrum in Banach algebras will be studied.
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1. Introduction

The main objective of the present talk is to present several results
concerning basic properties of the Drazin spectra of Banach algebra
elements and Banach space operators studied in [3, 4]. The ascent and
the descent spectra will be also considered.
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2. The Drazin spectrum

From now on, X will denote a Banach space and L(X) the Banach
algebra of all operators defined on and with values in X. In addition,
if T ∈ L(X), then N(T ) and R(T ) will stand for the null space and
the range of T respectively.

Recall that the descent and the ascent of T ∈ L(X) are d(T ) =
inf{n ≥ 0: R(T n) = R(T n+1)} and a(T ) = inf{n ≥ 0: N(T n) =
N(T n+1)} respectively, where if some of the above sets is empty, its
infimum is then defined as ∞.

On the other hand, A will denote a unital Banach algebra and e
will stand for the unit element of A. If a ∈ A, then La : A → A and
Ra : A → A will denote the maps defined by left and right multiplica-
tion respectively, namely La(x) = ax and Ra(x) = xa, where x ∈ A.

Next follow the key notions of the present talk, see [6]. Given a
Banach algebra A, an element a ∈ A is said to be Drazin invertible, if
there exists a necessarily unique b ∈ A and some m ∈ N such that

amba = am, bab = b, ab = ba.

If the Drazin inverse of a exists, then it will be denoted by aD. In
addition, the index of a, which will be denoted by index(a), is the least
non-negative integer m for which the above equations hold. Let DR(A)
be the set of all a ∈ A such that a is Drazin invertible. According to
[2], DR(A) is a regularity in the sense of [7, 8]. For the next definition
see [2].

Definition 1. Let A be a unital Banach algebra. The Drazin spectrum
of an element a ∈ A is the set

σDR(a) = {λ ∈ C : a− λ /∈ DR(A)}.

Naturally σDR(a) ⊆ σ(a), the spectrum of a. In addition, the Drazin
spectrum of a Banach algebra element satisfies the spectral mapping
theorem for analytic functions defined on a neighborhood of the usual
spectrum which are non-constant on each component of its domain of
definition. Moreover, σDR(a) is a closed subset of C, see [7, 8, 2].
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When A = L(X), X a Banach space, the left and the right Drazin
spectra of an operator have been introduced. Before recalling these
notions, consider the sets

LD(X) = {T ∈ L(X) : a(T ) is finite and R(T a(T )+1) is closed},
RD(X) = {T ∈ L(X) : d(T ) is finite and R(T d(T )) is closed}.

Definition 2. Let X be a Banach space. An operator T ∈ L(X) will
be called left Drazin invertible (respectively right Drazin invertible), if
T ∈ LD(X) (respectively if T ∈ RD(X)). Given T ∈ L(X), the
left Drazin spectrum of T (respectively the right Drazin spectrum of T )
is defined as usual from LD(X) (respectively from RD(X)). These
spectra will be denoted by σLD(T ) and σRD(T ) respectively.

In the conditions of Definition 2, σLD(T ) and σRD(T ) satisfy the
spectral mapping theorem under the same hypothesis that the Drazin
spectrum does. Moreover, σRD(T ) and σLD(T ) are closed subsets of C,
see [8, 1].

Let X be a Banach space and consider the sets

Ra
4(X) = {T ∈ L(X) : d(T ) is finite},
Ra

9(X) = {T ∈ L(X) : a(T ) is finite}.

The descent and the ascent spectrum of ∈ L(X) can be derived as
for the other spectra just considered. They will be denoted by σdsc(T ),
T ∈ L(X) and σasc(T ) respectively, see [8, 5].

In the following theorem the relationships among the recalled spectra
will be presented.

Theorem 3. Let X be a Banach space and consider T ∈ L(X). Then

σDR(T ) = σLD(T ) ∪ σRD(T ) = σasc(T ) ∪ σdsc(T ).



5

3. The Drazin Spectrum in Banach Algebras

Next the relationships among the Drazin spectra of a Banach algebra
element and of the multiplication operators will be considered.

Theorem 4. Let A be a unital Banach algebra. Then, the following
statements are equivalent.

(i) The element a ∈ A is Drazin invertible and index(a) = k,

(ii) La ∈ L(A) is Drazin invertible and index(La) = k,

(iii) Ra ∈ L(A) is Drazin invertible and index(Ra) = k.

Moreover, in this case, if b is the Drazin inverse of a, then Lb (re-
spectively Rb) is the Drazin inverse of La (respectively Ra).

As a consequence,
(iv) σDR(a) = σDR(La) = σDR(Ra).

Theorem 5. Consider a unital Banach algebra A, and let a ∈ A.
Then, the following statements hold.

(i) σasc(Ra) ⊆ σdsc(La), σasc(La) ⊆ σdsc(Ra),

(ii) σDR(a) = σRD(La) ∪ σRD(Ra) = σdsc(La) ∪ σdsc(Ra).
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4. Drazin Spectra of Banach Space Operators

In the particular case of A = L(X), X a Banach space, the following
results were obtained. See [5, 1] where some of the following results
were proved.

Proposition 6. Consider a Banach space X, and let T ∈ L(X).

(i) If dsc(LT ) is finite, then dsc(T ) is finite. In addition, dsc(T )

≤ dsc(LT ).

(ii) If dsc(T ) = d is finite and N(T d+1) has a direct complement,

then dsc(LT ) is finite. Moreover, dsc(LT ) = dsc(T ).

(iii) Necessary and suffcient for asc(LT ) to be finite, is the fact that

asc(T ) is finite. Furthermore, in this case asc(LT ) = asc(T ).

(iv) If R(LT ) is closed, then R(T ) is closed.

(v) If R(T ) is closed and N(T ) has a direct complement, then

R(LT ) is closed.

(vi) If dsc(RT ) is finite, then asc(T ) is finite. In addition, asc(T )

≤ dsc(RT ).

(vii) If asc(T ) = a is finite and T a+1 is a regular operator, then

dsc(RT ) is finite. Moreover, dsc(RT ) = asc(T ).

(viii) If asc(RT ) = a is finite and there exists k ≥ a such that

R(T k+1) has a direct complement, then dsc(T ) is finite.

Furthermore, dsc(T ) = asc(RT ).

(ix) If dsc(T ) is finite, then asc(RT ) is finite. What is more,

asc(RT ) ≤ dsc(T ).



7

Theorem 7. Consider a Banach space X, and T ∈ L(X). Then, the
following statements hold.

(i) σdsc(T ) ⊆ σdsc(LT ), σasc(T ) = σasc(LT ),

(ii) σRD(T ) ⊆ σRD(LT ), σLD(T ) ⊆ σLD(LT ),

(iii) σasc(T ) ⊆ σdsc(RT ), σasc(RT ) ⊆ σdsc(T ).

Theorem 8. Consider a Hilbert space H, and let T ∈ L(H). Then,
the following statements hold.

(i) σdsc(T ) = σdsc(LT ).

(ii) σRD(T ) = σRD(LT ).

(iii) σLD(T ) = σLD(LT ).

(iv) σLD(T ) = σRD(RT ).

(v) σRD(T ) = σLD(RT ).

As a result,

(vi) σDR(T ) = σLD(LT ) ∪ σLD(RT ).

Compare Theorem 5 (ii) with Theorem 8 (vi).
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5. A Characterization of the Drazin Spectrum

Let K ⊆ C be a compact set. Then iso K will stand for the set of
all isolated points of K and acc K = K\ iso K. When A is a unital
Banach algebra and a ∈ A, Π(a) will denote the sets of poles of a ∈ A
and IES(a) = iso σ(a) \ Π(a). Recall also that ρDR(a) = C \ σDR(a).

Theorem 9. Let A be a unital Banach algebra and consider a ∈ A.
Then, the following statements hold.

(i) Π(a) = Π(La) = Π(Ra),

(ii) IES(a) = IES(La) = IES(Ra).

In particular, if X is a Banach space and T ∈ L(X), then

Π(T ) = Π(LT ) = Π(RT ), IES(T ) = IES(LT ) = IES(RT ).

Theorem 10. Let A be a unital Banach algebra and consider a ∈ A.
Then, the following statements hold.

(i) Π(a) = σ(a) ∩ ρDR(a), σ(a) = σDR(a) ∪ Π(a),

(ii) σDR(a) ∩ Π(a) = ∅, iso σ(a) ∩ σDR(a) = IES(a).

(iii) acc σ(a) = acc σDR(a), iso σDR(a) = IES(a).

(iv) σDR(a) = acc σ(a) ∪ IES(a).

(v) Necessary and sufficient for a to be Drazin invertible is that

λ = 0 is a pole of the resolvent operator of a.
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6. Basic properties of the Drazin Spectrum
Given a unital Banach algebra A and a ∈ A, ∂σ(a) will denote the

topological boundary of σ(a) and ρ(a) = C \ σ(a).

Theorem 11. Let A be a unital Banach algebra and consider a ∈ A.
Then, the following statements are equivalent.

(i) σDR(a) = ∅, (ii) ∂σ(a) ⊆ ρDR(a), (iii) a is algebraic.

Theorem 12. Let A be a unital Banach algebra and consider a ∈ A.
Then, the following statements are equivalent.

(i) σ(a) is at most countable, (ii) σDR(a) is at most countable.

Furthermore, in this case

σDR(a) = σLD(La) = σRD(La) = σdsc(La)

= σLD(Ra) = σRD(Ra) = σdsc(Ra).

Given a Banach algebra A and a and b ∈ A, the identity

σ(ab) \ {0} = σ(ba) \ {0},

is well known. However, in the case of the Drazin spectrum, both
spectra coincide.

Theorem 13. Let A be a unital Banach algebra and consider a and
b ∈ A. Then,

σDR(ab) = σDR(ba).

Remark 14. Let A be a unital Banach algebra. Note that

Π(ab) \ {0} = Π(ba) \ {0},

where a and b belong to A. Furthermore, this identity can not be
improved. Consider for example the Banach space X = l2(N) and the
operator S, T ∈ L(X) defined by

S((xn)n≥1) = (0, x1, x2, . . . , xn, . . .), T ((xn)n≥1) = (x2, x3, . . . , xn, . . .),

where (xn)n≥1 ∈ X. Then, a straightforward calculation shows that

Π(ST ) = {0, 1}, Π(TS) = {1}.
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Theorem 15. Let A be a unital Banach algebra and consider Ω a
connected component of ρDR(a), a ∈ A. Then Ω \ Π(a) ⊆ ρ(a). Fur-
thermore, Ω is not contained in σ(a), unless Ω = ∅.

Theorem 16. Let A be a C∗-algebra. Then, the following statements
hold.

(i) σdsc(La∗) = σdsc(Ra), σdsc(Ra∗) = σdsc(La).

(ii) σRD(La∗) = σRD(Ra), σRD(Ra∗) = σRD(La).

(iii) σasc(La∗) = σasc(Ra), σasc(Ra∗) = σasc(La).

(iv) σLD(La∗) = σLD(Ra), σLD(Ra∗) = σLD(La).

Furthermore, when a is a hermitian element of A, all the spectra
considered in statements (i)-(iv) are contained in the real line, and

(v) σasc(La) = σasc(Ra), σLD(La) = σLD(Ra),

(vi) σDR(a) = σdsc(La) = σdsc(Ra) = σRD(La) = σRD(Ra).

Theorem 17. Let H be a Hilbert space. Then, the following statement
hold.

(i) σdsc(RT ) = σdsc(LT ∗) = σdsc(T ∗), σdsc(RT ∗) = σdsc(LT ) = σdsc(T ).

(ii) σasc(RT ) = σasc(LT ∗) = σasc(T ∗), σasc(RT ∗) = σasc(LT ) = σasc(T ).

Furthermore, when T = T ∗, σdsc(RT ) and σasc(RT ) are subsets of
the real line, and

(iii) σasc(RT ) = σasc(LT ) = σasc(T ),

(iv) σDR(T ) = σdsc(RT ) = σdsc(LT ) = σdsc(T ).
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Theorem 18. Let X be a Banach space and consider T ∈ L(X).
(a) The following statements are equivalent.

(i) T is meromorphic, (ii) σDR(T ) ⊆ {0},
(iii) LT ∈ L(L(X)) is meromorphic, (iv) RT ∈ L(L(X)) is meromorphic.

(b) Let S and T ∈ L(X) . Then, necessary and sufficient for ST to be
meromorphic is the fact that TS is meromorphic.
(c) Let F ∈ L(X) and suppose that there exists a positive integer n
such that F n has finite dimensional range and F commutes with T .
Then, if T is meromorphic, T + F is meromorphic.
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