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Definitions

Let A be a C ∗-algebra, A+ be the set of positive elements in A. The
modulus (X ∗X )1/2 of X ∈ A is written as |X |.

Definition. A weight on C ∗-algebra A is a function ϕ : A+ → [0,+∞]
such that
• ϕ(0) = 0,
• ϕ(λX ) = λϕ(X ) for X ∈ A+ and λ > 0,
• ϕ(X + Y ) = ϕ(X ) + ϕ(Y ) for all X ,Y ∈ A+.

Definition. A trace on C ∗-algebra A is a weight τ on A satisfying
τ(X ∗X ) = τ(XX ∗) for all X ∈ A.
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Information

If τ is a trace on A and U is a unitary in Ã, then τ(U∗XU) = τ(X ) for
every X ∈ A+ (τ is unitarily invariant). An interesting question is whether
the converse holds: is a unitarily invariant weight necessarily a trace?
The answer is "no"in general.

A positive linear functional ϕ on a von Neumann algebra M is said to be
normal if ϕ(supAi ) = sup ϕ(Ai ) for every bounded increasing net {Ai} of
positive operators in M.
A linear functional ϕ on M is said to be tracial if ϕ(AB) = ϕ(BA) for all
A,B in M.
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Problems

1. Characterization of traces among arbitrary weights on C ∗-algebras.

2. Characterization of the tracial functionals among all positive functionals
on a C ∗-algebras.
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L.T. Gardner’s characterization of the trace (1979)

Theorem 1.
The finite traces on a C ∗-algebra A are precisely those (positive) linear
functionals ϕ on A which satisfy

|ϕ(X )| ≤ ϕ(|X |) for all X ∈ A.

Theorem 2.
Let A be a W ∗-algebra, and ϕ a normal, strongly semifinite weight on A
satisfying the condition

For every ϕ-finite projection P ∈ A
|ϕ(X )| ≤ ϕ(|X |) for all X ∈ PAP.

Then ϕ is trace on A.
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D. Petz – J. Zemanek’s characterization of the trace (1988)

Theorem 3.
Let ϕ be a linear functional on a C ∗-algebra A. The following are
equivalent:

(i) ϕ is positive and tracial;
(ii) for every positive integer k and every X in A we have
|ϕ(X k)| ≤ ϕ(|X |k);
(iii) there exists a positive integer k such that |ϕ(X k)| ≤ ϕ(|X |k) for all X
in A.

Theorem 4.
A positive linear functional ϕ on a von Neumann algebra is tracial if and
only if it is subadditive (ϕ(P ∨ Q) ≤ ϕ(P) + ϕ(Q)) on the lattice of
projections in M.

Corollary 1. A von Neumann algebra is commutative if and only if every
state is subadditive on the lattice of projections.
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Characterization of the trace by monotonocity inequalities

Theorem 5. (A.M. Bikchentaev, O.E. Tikhonov (2004; 2007))
Let 1 < p < ∞ and ϕ be a positive linear functional on Mn, such that

ϕ(Ap) ≤ ϕ(Bp)

whenever 0 ≤ A ≤ B. Then ϕ is a nonnegative scalar multiple of the trace.

Corollary 2. Let ϕ be a positive linear functional on Mn, such that for any
pair A,B ∈ Mh

n with A ≤ B the inequality

ϕ(eA) ≤ ϕ(eB)

holds. Then ϕ is a nonnegative scalar multiple of the trace.
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A.M. Bikchentaev, O.E. Tikhonov (2004; 2007)

Corollary 3. Let 1 < p < ∞, 0 < λ < ∞, and ϕ be a positive linear
functional on Mn, such that

ϕ((A + λ)p) ≤ ϕ((B + λ)p),

whenever 0 ≤ A ≤ B. Then ϕ is a nonnegative scalar multiple of the trace.

Problem. Let f be a nondecreasing function defined on an interval S ,
which is not matrix monotone of order 2. Let ϕ be a positive linear
functional on Mn, such that

ϕ(f (A)) ≤ ϕ(f (B))

whenever f (A), f (B) are well-defined and A ≤ B. Does it follow that ϕ is
a nonnegative scalar multiple of the trace?
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Characterization of the trace by Young’s inequality

Theorem 6. (A.M. Bikchentaev, O.E. Tikhonov (2005))
Let ϕ be a positive linear functional on Mn and p, q be positive numbers
such that 1/p + 1/q = 1. If for any pair A,B ∈ M+

n the inequality

ϕ(|AB|) ≤ ϕ(Ap)

p
+

ϕ(Bq)

q

holds, then ϕ is a nonnegative scalar multiple of the trace.
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Young’s inequality and trace

Theorem 7. (K. Cho, T. Sano (2009))
Let ϕ be a positive linear functional on Mn and f , g mutually conjugate in
the sense of Young. Then the inequality

|ϕ(A∗B)| ≤ ϕ(f (|A|)) + ϕ(g(|B|)) (A,B ∈ Mn)

holds if and only if one of the following conditions is satisfied:
(i) the function f (x) is a positive scalar multiple of the quadratic function
x2;
(ii) the functional ϕ is a positive scalar multiple of the trace.
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Young’s inequality and trace

Theorem 8. (K. Cho, T. Sano (2009))
Let ϕ be a positive linear functional on Mn and f , g mutually conjugate in
the sense of Young. Then

ϕ(|A∗B|) ≤ ϕ(f (|A|)) + ϕ(g(|B|))

for all matrices A,B ∈ Mn if and only if ϕ is a positive scalar multiple of
the trace tr.
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The Peierls-Bogoliubov inequality

It is an important issue in statistical mechanics to calculate the value of the
so-called partition function tr(eĤ), where the Hermitian matrix Ĥ is the
Hamiltonian of a physical system. Since that computation is often difficult,
it is simpler to compute the related quantity tr(eH), where H is a
convenient approximation of the Hamiltonian Ĥ. Indeed, let Ĥ = H + K .
The Peierls-Bogoliubov inequality provides useful information on tr(eH+K )
from tr(eH). This inequlity states that, for two Hermitian operators H and
K

tr(eH) exp
tr(eHK )

tr(eH)
≤ tr(eH+K ).
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Characterization of the trace by Peierls-Bogoliubov
inequality

Theorem 9. (A.M. Bikchentaev (2010))
A positive functional ϕ on C ∗-algebra A is tracial if and only if

ϕ(eH) exp
ϕ(eH/2KeH/2)

ϕ(eH)
≤ ϕ(eH+K )

for all positive operators H,K in A.
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The Araki–Lieb–Thirring inequality

In [Lett. Math. Phys. (1990)] Araki proved the following inequality:

tr((A1/2BA1/2)rp) ≤ tr((Ar/2B rAr/2)p), r ≥ 1, p > 0.

Here, A, B are positive operators on a Hilbert space. This inequality is a
generalization of the one due to Lieb and Thirring, and closely related to
the Golden-Thompson inequality.

Theorem 10. (A.M. Bikchentaev (2010))
A positive functional ϕ on C ∗-algebra A is tracial if and only if

ϕ((A1/2BA1/2)rp) ≤ ϕ((Ar/2B rAr/2)p)

for some r > 1, p > 0 and for all positive operators A,B in A.

We also give the affirmative answer to the question of J. Zemánek (a
review Zbl 0942.15015 Zentralblatt MATH).
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We prove that either of inequalities Hölder, Cauchy-Schwarz-Bunyakovskii,
Golden-Tompson, etc., which holds only for projections characterizes the
tracial functionals among all positive normal functionals on a von Neumann
algebra. Most of these inequalities imply commutativity of projections. We
characterize traces among arbitrary weights on a von Neumann algebra in
terms of the commutation of products of projections under the weight sign.
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Commutativity of projections

Theorem 11. (A.M. Bikchentaev (2009, 2010))
For P,Q ∈ B(H)pr the following conditions are equivalent:

(i) PQ = QP ;

(ii) PQP = QPQ;

(iii) sr (PQP) = sr (QPQ) (sr (A) denote the support projection of
A ∈ B(H)+);

(iv) PQP ≤ Q;

(v) ePQP ≤ eQ ;

(vi) |P − Q| ≤ P + Q (D. Topping (1965)).
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Characterization of tracial functionals

Theorem 12. (A.M. Bikchentaev (2009, 2010))
For a normal positive functional ϕ on a von Neumann algebra M the
following conditions are equivalent:

(i) ϕ is tracial;

(ii) ϕ(PQP) = ϕ(QPQ) for all P,Q ∈Mpr ;

(iii) ϕ(sr (PQP)) = ϕ(sr (QPQ)) for all P,Q ∈Mpr ;

(iv) ϕ(PQP) ≤ ϕ(Q) for all P,Q ∈Mpr ;

(v) ϕ(ePQP) ≤ ϕ(eQ) for all P,Q ∈Mpr ;

(vi) ϕ(|P − Q|) ≤ ϕ(P + Q) for all P,Q ∈Mpr .
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Characterization of traces among weights

Theorem 13. (A.M. Bikchentaev (1998, 2009))
Let a weight ϕ on a von Neumann algebra M satisfy the condition

XnX = XXn, ‖X−Xn‖ → 0, Xn ↗ X ⇒ ϕ(X ) = lim
n→∞

ϕ(Xn), Xn,X ∈M+.

(1)
Then ϕ is a trace if and only if ϕ(PQP) = ϕ(QPQ) for all P,Q ∈Mpr .

Theorem 13 has applications in the theory of splitting subspaces (A.N.
Sherstnev, E.A. Turilova (1999)). The norm lower semicontinuous weights
satisfy condition (1); so are, for example, normal or finite weights.

Airat M. Bikchentaev (Kazan University) Timisoara, June 30, 2010 30.06.2010 20 / 22



Characterization of traces among weights

Theorem 13. (A.M. Bikchentaev (1998, 2009))
Let a weight ϕ on a von Neumann algebra M satisfy the condition

XnX = XXn, ‖X−Xn‖ → 0, Xn ↗ X ⇒ ϕ(X ) = lim
n→∞

ϕ(Xn), Xn,X ∈M+.

(1)
Then ϕ is a trace if and only if ϕ(PQP) = ϕ(QPQ) for all P,Q ∈Mpr .

Theorem 13 has applications in the theory of splitting subspaces (A.N.
Sherstnev, E.A. Turilova (1999)). The norm lower semicontinuous weights
satisfy condition (1); so are, for example, normal or finite weights.

Airat M. Bikchentaev (Kazan University) Timisoara, June 30, 2010 30.06.2010 20 / 22



Theorem 14 and Conjecture

Theorem 14. (A.M. Bikchentaev (2009))
A weight ϕ on a von Neumann algebra M is a trace if and only if
ϕ((PQR)∗(PQR)) = ϕ((PQR)(PQR)∗) for all P,Q,R ∈Mpr .

Conjecture. (A.M. Bikchentaev (1998, 2010))
A weight ϕ on a von Neumann algebra M is a trace if and only if
ϕ(PQP) = ϕ(QPQ) for all P,Q ∈Mpr .
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Thank you!

Airat M. Bikchentaev (Kazan University) Timisoara, June 30, 2010 30.06.2010 22 / 22


