Injective envelopes and local multiplier algebras of some spatial continuous trace C*-algebras

M Argerami¹, D Farenick², P Massey³

University of Regina, Canada ^(1,2) and Universidad Nacional de La Plata, Argentina ⁽³⁾

23rd International Conference on Operator Theory Timisoara, 2010

Enveloping structures: C*-algebras are usually studied within a bigger object (usually B(H)).

< 6 b

the double dual

the double dual the multiplier algebra

the double dual the multiplier algebra

For certain C*-algebras, we study two other enveloping objects:

the double dual the multiplier algebra

For certain C*-algebras, we study two other enveloping objects:

Injective envelopes

the double dual the multiplier algebra

For certain C*-algebras, we study two other enveloping objects:

Injective envelopes

Local Multipliers

An operator system *S* is injective: for any φ completely positive,

3 + 4 = +

4 6 1 1 4

An operator system *S* is injective: for any φ completely positive,

3 + 4 = +

< (17) × <

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

E N 4 E N

4 A & 4

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

Examples of injective operator algebras:

EN 4 EN

< A > <

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

Examples of injective operator algebras:

• Type I von Neumann algebras (Arveson, 1969)

EN 4 EN

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

Examples of injective operator algebras:

- Type I von Neumann algebras (Arveson, 1969)
- AFD von Neumann algebras (Connes, 1976)

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

Examples of injective operator algebras:

- Type I von Neumann algebras (Arveson, 1969)
- AFD von Neumann algebras (Connes, 1976)
- A", where A is nuclear (Choi & Effros, 1976)

An operator system S is injective: for any φ completely positive,

Equivalently: if $S \subset B(H)$, $\exists \phi : B(H) \rightarrow S$ conditional expectation.

Examples of injective operator algebras:

- Type I von Neumann algebras (Arveson, 1969)
- AFD von Neumann algebras (Connes, 1976)
- A", where A is nuclear (Choi & Effros, 1976)
- Type I AW*-algebras (Hamana, 1981)

4 **A** N A **B** N A **B** N

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

The Sec. 74

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

(a) I is an injective operator system

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric
- (c) If I_1 is injective and $\kappa(E) \subseteq I_1 \subseteq I$, then $I_1 = I$.

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric
- (c) If I_1 is injective and $\kappa(E) \subseteq I_1 \subseteq I$, then $I_1 = I$.

Theorem

(Hamana, 1979) Every operator system E admits an injective envelope, and any two injective envelopes of E are completely isometrically isomorphic

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric
- (c) If I_1 is injective and $\kappa(E) \subseteq I_1 \subseteq I$, then $I_1 = I$.

Theorem

(Hamana, 1979) Every operator system E admits an injective envelope, and any two injective envelopes of E are completely isometrically isomorphic (as operator systems!).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric
- (c) If I_1 is injective and $\kappa(E) \subseteq I_1 \subseteq I$, then $I_1 = I$.

Theorem

(Hamana, 1979) Every operator system E admits an injective envelope, and any two injective envelopes of E are completely isometrically isomorphic (as operator systems!).

Choi & Effros (1977): Each injective operator system I is completely order isomorphic to a C*-algebra.

Definition

An injective envelope for an operator system E is a pair (I, κ) such that

- (a) I is an injective operator system
- (b) $\kappa: E \rightarrow I$ is completely isometric
- (c) If I_1 is injective and $\kappa(E) \subseteq I_1 \subseteq I$, then $I_1 = I$.

Theorem

(Hamana, 1979) Every operator system E admits an injective envelope, and any two injective envelopes of E are completely isometrically isomorphic (as operator systems!).

Choi & Effros (1977): Each injective operator system *I* is completely order isomorphic to a C*-algebra.

Therefore, the injective envelope I(E) of *E* is unique, as a C*-algebra, up to isomorphism. Henceforth, we consider I(E) as a C*-algebra.

If *A* is separable and injective, then *A* is finite dimensional.

3 + 4 = +

< **1** → <

If A is separable and injective, then A is finite dimensional.
B(H) = I(K(H)).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If A is separable and injective, then A is finite dimensional.
 B(H) = I(K(H)).
- **3** if A = C([0, 1]), what is I(A)?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If *A* is separable and injective, then *A* is finite dimensional.
- **2** B(H) = I(K(H)).
- if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete:

BA 4 BA

• • • • • • • • • •

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

(3) if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints.

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

If A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]?

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{f \in B[0,1]: \exists M \text{ meagre with } f|_{M^c} = 0\}.$$

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{f \in B[0,1] : \exists M \text{ meagre with } f|_{M^c} = 0\}.$$

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{ f \in B[0, 1] : \exists M \text{ meagre with } f|_{M^c} = 0 \}.$$

The hyperfinite II₁-factor is injective, but is not the injective envelope of any separable C*-algebra (A & Farenick, 2005)

イベト イラト イラト

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{f \in B[0,1] : \exists M \text{ meagre with } f|_{M^c} = 0\}.$$

The hyperfinite II₁-factor is injective, but is not the injective envelope of any separable C*-algebra (A & Farenick, 2005)

So If $A = UHF(2^{\infty})$, *B*=hyperfinite II₁-factor, then $A \subset B$, *B* injective, and a closure of *A*.
Injective envelopes of C*-algebras are subtle.

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{f \in B[0,1] : \exists M \text{ meagre with } f|_{M^c} = 0\}.$$

The hyperfinite II₁-factor is injective, but is not the injective envelope of any separable C*-algebra (A & Farenick, 2005)

● If $A = UHF(2^{\infty})$, B=hyperfinite II₁-factor, then $A \subset B$, B injective, and a closure of A. But $I(A) \nsubseteq I(B)$:

Injective envelopes of C*-algebras are subtle.

If A is separable and injective, then A is finite dimensional.

2 B(H) = I(K(H)).

if A = C([0, 1]), what is I(A)? Injective C*-algebras are monotone complete: they contain suprema and infima of bounded monotone nets of selfadjoints. So maybe L[∞][0, 1]? No

$$I(A) =$$
 The Dixmier Algebra = $B[0, 1]/J$,

where

$$J = \{f \in B[0,1] : \exists M \text{ meagre with } f|_{M^c} = 0\}.$$

The hyperfinite II₁-factor is injective, but is not the injective envelope of any separable C*-algebra (A & Farenick, 2005)

So If $A = UHF(2^{\infty})$, *B*=hyperfinite II₁-factor, then $A \subset B$, *B* injective, and a closure of *A*. But *I*(*A*) \nsubseteq *I*(*B*): *I*(*B*) = *B*, while *I*(*A*) is a type III non-W^{*} AW^{*}-factor.

2. Local Multipliers

An ideal *K* of a C*-algebra *A* is essential if $K \cap J \neq \{0\}$ for every nonzero ideal *J* of *A*.

< ロ > < 同 > < 回 > < 回 >

2. Local Multipliers

An ideal *K* of a C*-algebra *A* is essential if $K \cap J \neq \{0\}$ for every nonzero ideal *J* of *A*.

Examples

- K(H) is an essential ideal of B(H).
- If Y is locally compact and Hausdorff, then K is an essential ideal of C₀(Y) if and only if

$$K = C_0(X),$$

for some open, dense subset $X \subseteq Y$.

• If *A* is a type I AW*-algebra, then the ideal *K* generated by the abelian projections of *A* is an essential ideal of *A*.

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

< ロ > < 同 > < 回 > < 回 >

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

 $M_{\mathrm{loc}}(A) = \lim_{\to} M(K).$

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) = \lim_{\to} M(K).$$

Why $M_{loc}(A)$?

< ロ > < 同 > < 回 > < 回 >

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\rm loc}(A) = \lim_{\to} M(K).$$

Why $M_{loc}(A)$? Pedersen (1978): any derivation on A extends to an inner derivation of $M_{loc}(A)$.

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) = \lim_{\to} M(K).$$

Why $M_{loc}(A)$? Pedersen (1978): any derivation on A extends to an inner derivation of $M_{loc}(A)$. Natural question: is $M_{loc}(M_{loc}(A)) = M_{loc}(A)$?

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) = \lim_{\to} M(K).$$

Why $M_{loc}(A)$? Pedersen (1978): any derivation on A extends to an inner derivation of $M_{loc}(A)$. Natural question: is $M_{loc}(M_{loc}(A)) = M_{loc}(A)$? Plus more applications

If K_1 and K_2 are essential ideals of A such that $K_1 \subseteq K_2$, then there is an embedding

 $M(K_2) \rightarrow M(K_1)$.

Definition

The local multiplier algebra of A is the direct limit C*-algebra

$$M_{\mathrm{loc}}(A) = \lim_{\to} M(K).$$

Why $M_{loc}(A)$? Pedersen (1978): any derivation on A extends to an inner derivation of $M_{loc}(A)$. Natural question: is $M_{loc}(M_{loc}(A)) = M_{loc}(A)$? Plus more applications (cfr. Ara & Mathieu)

イロト イポト イヨト イヨト

$M_{ m loc}(C[0,1]) = B[0,1]/J$

$$M_{
m loc}(C[0,1]) = B[0,1]/J$$

 $B[0,1]/J = C(\Delta), \Delta Stonean.$ So $M_{loc}(C[0,1]) = I(C[0,1]).$

$$M_{
m loc}(C[0,1]) = B[0,1]/J$$

 $B[0,1]/J = C(\Delta), \ \Delta Stonean.$ So $M_{loc}(C[0,1]) = I(C[0,1]).$

For $A = C[0, 1] \otimes K(H)$, $M_{loc}(A) \neq I(A)$ (more on this soon).

$$\mathit{M}_{\mathrm{loc}}\left(\mathit{C}[0,1]\right) = \mathit{B}[0,1]/\mathit{J}$$

 $B[0,1]/J = C(\Delta), \ \Delta Stonean.$ So $M_{loc}(C[0,1]) = I(C[0,1]).$

For $A = C[0, 1] \otimes K(H)$, $M_{loc}(A) \neq I(A)$ (more on this soon).

Fact of Life: $M_{loc}(A)$ is difficult to determine explicitly. M(A) "lives" naturally in A'' (as the idealizer of A in A'') Where does $M_{loc}(A)$ live?

3. Iterates of $M_{\rm loc}(\cdot)$

Theorem

(Frank & Paulsen, 2002)

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq I(A),$$

where each inclusion is an inclusion of C^* -subalgebras.

3. Iterates of $M_{\rm loc}(\cdot)$

Theorem

(Frank & Paulsen, 2002)

 $A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq I(A),$

where each inclusion is an inclusion of C*-subalgebras.

If $M_{\text{loc}}(A)$ is an AW*-algebra, then

$$(\dagger) \qquad M_{\rm loc}(A) = M_{\rm loc} \left[M_{\rm loc}(A) \right] \,.$$

Question: Is (†) true for all C*-algebras A?

3. Iterates of $M_{\rm loc}(\cdot)$

Theorem

(Frank & Paulsen, 2002)

$$A \subseteq M_{\mathrm{loc}}(A) \subseteq M_{\mathrm{loc}}(M_{\mathrm{loc}}(A)) \subseteq I(A),$$

where each inclusion is an inclusion of C*-subalgebras.

If $M_{\text{loc}}(A)$ is an AW*-algebra, then

$$(\dagger) \qquad M_{\rm loc}(A) = M_{\rm loc} [M_{\rm loc}(A)] .$$

Question: Is (\dagger) true for all C*-algebras A?

Theorem

(Ara & Mathieu, 2006) There is a separable, AFD, prime, antiliminal C^* -algebra A such that

$$M_{
m loc}(A) \neq M_{
m loc}[M_{
m loc}(A)]$$
.

• (A & Farenick, 2005) If *A* is a separable, prime, antiliminal C*-algebra *A*, then *I*(*A*) is a wild type III AW*-factor.

- (A & Farenick, 2005) If *A* is a separable, prime, antiliminal C*-algebra *A*, then *I*(*A*) is a wild type III AW*-factor.
- (Somerset, 2000) If *A* is separable and postliminal, then $M_{\text{loc}}[M_{\text{loc}}(A)] = I(A)$, a type I AW*-algebra.

- (A & Farenick, 2005) If *A* is a separable, prime, antiliminal C*-algebra *A*, then *I*(*A*) is a wild type III AW*-factor.
- (Somerset, 2000) If A is separable and postliminal, then $M_{\text{loc}}[M_{\text{loc}}(A)] = I(A)$, a type I AW*-algebra.

Question: Is $M_{loc}(A) = M_{loc}[M_{loc}(A)]$, for every separable, postliminal C*-algebra A?

(B)

- (A & Farenick, 2005) If *A* is a separable, prime, antiliminal C*-algebra *A*, then *I*(*A*) is a wild type III AW*-factor.
- (Somerset, 2000) If *A* is separable and postliminal, then $M_{\text{loc}}[M_{\text{loc}}(A)] = I(A)$, a type I AW*-algebra.

Question: Is $M_{loc}(A) = M_{loc}[M_{loc}(A)]$, for every separable, postliminal C*-algebra A?

Theorem

(A, Farenick, Massey, 2007) If H is separable and infinite-dimensional, and if $A = C([0, 1]) \otimes K(H)$, then

 $M_{\mathrm{loc}}(A) \neq M_{\mathrm{loc}}[M_{\mathrm{loc}}(A)]$.

3

- (A & Farenick, 2005) If *A* is a separable, prime, antiliminal C*-algebra *A*, then *I*(*A*) is a wild type III AW*-factor.
- (Somerset, 2000) If *A* is separable and postliminal, then $M_{\text{loc}}[M_{\text{loc}}(A)] = I(A)$, a type I AW*-algebra.

Question: Is $M_{loc}(A) = M_{loc}[M_{loc}(A)]$, for every separable, postliminal C*-algebra A?

Theorem

(A, Farenick, Massey, 2007) If H is separable and infinite-dimensional, and if $A = C([0, 1]) \otimes K(H)$, then

 $M_{\mathrm{loc}}(A) \neq M_{\mathrm{loc}}[M_{\mathrm{loc}}(A)]$.

Such an *A* is a particular example of a **Fell Algebra**.

4. Bundles

Definition

A continuous Hilbert bundle is a triple $(T, \{H_t\}_{t \in T}, \Omega)$, where Ω is a set of vector fields on T with fibres H_t such that:

- (I) Ω is a C(T)-module with the action $(f \cdot \omega)(t) = f(t)\omega(t)$;
- (II) for each $t_0 \in T$, $\{\omega(t_0) : \omega \in \Omega\} = H_{t_0}$;
- (III) the map $t \mapsto \|\omega(t)\|$ is continuous, for all $\omega \in \Omega$;

(IV) Ω is closed under local uniform approximation.

BA 4 BA

Bundles (continued)

Definition

A vector field $\nu : T \rightarrow \bigsqcup_t H_t$ is said to be weakly continuous with respect to $(T, \{H_t\}_{t \in T}, \Omega)$ if the function

 $t \longmapsto \langle \nu(t), \omega(t) \rangle$

is continuous for all $\omega \in \Omega$. The set of all bounded weakly continuous vector fields with respect to a given Ω will be denoted by Ω_{wk} , that is

 $\Omega_{\mathrm{wk}} = \{\nu : T \to \bigsqcup_{t} H_{t} : \sup_{t} \|\nu(t)\| < \infty \text{ and } \nu \text{ is weakly continuous}\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Assumption: *T* Stonean, further denoted by Δ .

э

Assumption: T Stonean, further denoted by Δ . Why?

э

イロト イポト イヨト イヨト

Assumption: T Stonean, further denoted by Δ . Why?

Remark

 $t \mapsto \langle \nu_1(t), \nu_2(t) \rangle$ is generally not continuous for arbitrary $\nu_1, \nu_2 \in \Omega_{wk}$.

3

Assumption: T Stonean, further denoted by Δ . Why?

Remark

 $t \mapsto \langle \nu_1(t), \nu_2(t) \rangle$ is generally not continuous for arbitrary $\nu_1, \nu_2 \in \Omega_{wk}$.

But it is lower-semicontinuous, and with Δ stonean, it differs from a continuous function off a meagre set.

A THE A THE

Assumption: T Stonean, further denoted by Δ . Why?

Remark

 $t \mapsto \langle \nu_1(t), \nu_2(t) \rangle$ is generally not continuous for arbitrary $\nu_1, \nu_2 \in \Omega_{wk}$.

But it is lower-semicontinuous, and with Δ stonean, it differs from a continuous function off a meagre set. Thus, one can canonically define $\langle \nu, \xi \rangle \in C(\Delta)$ for $\nu, \xi \in \Omega_{wk}$.

4 3 5 4 3 5 5

Assumption: T Stonean, further denoted by Δ . Why?

Remark

 $t \mapsto \langle \nu_1(t), \nu_2(t) \rangle$ is generally not continuous for arbitrary $\nu_1, \nu_2 \in \Omega_{wk}$.

But it is lower-semicontinuous, and with Δ stonean, it differs from a continuous function off a meagre set. Thus, one can canonically define $\langle \nu, \xi \rangle \in C(\Delta)$ for $\nu, \xi \in \Omega_{wk}$.

Theorem (A, Farenick, Massey 2009)

 Ω_{wk} is a Kaplansky–Hilbert module over $C(\Delta)$. Moreover, Ω is a C^* -submodule of Ω_{wk} and $\Omega^{\perp} = 0$.

What is a Kaplansky-Hilbert module? (also called faithful AW*-module by Kaplansky)

э

What is a Kaplansky-Hilbert module? (also called faithful AW*-module by Kaplansky)

It is a $C(\Delta)$ -Hilbert module such that

< 6 b

What is a Kaplansky-Hilbert module? (also called faithful AW*-module by Kaplansky)

It is a $C(\Delta)$ -Hilbert module such that

- (i) if $e_i \cdot \nu = 0$ for some family $\{e_i\}_i \subset C(\Delta)$ of pairwise-orthogonal projections and $\nu \in E$, then also $e \cdot \nu = 0$, where $e = \sup_i e_i$;
- (ii) if $\{e_i\}_i \subset C(\Delta)$ is a family of pairwise-orthogonal projections such that $1 = \sup_i e_i$, and if $\{\nu_i\}_i \subset E$ is a bounded family, then there is a $\nu \in E$ such that $e_i \cdot \nu = e_i \cdot \nu_i$ for all *i*;
- (iii) if $\nu \in E$, then $g \cdot \nu = 0$ for all $g \in C(\Delta)$ only if $\nu = 0$.

3

A (1) A (2) A (2) A
Definition

An operator field $a : \Delta \rightarrow \bigsqcup_{s \in \Delta} K(H_s)$ is:

- almost finite-dimensional if for each s₀ ∈ Δ and ε > 0 there exist an open set U ⊂ Δ ∋ s₀ and ω₁,..., ω_n ∈ Ω such that
 - (a) $\omega_1(s), \ldots, \omega_n(s)$ are linearly independent for every $s \in U$, and
 - (b) $||p_s a(s)p_s a(s)|| < \varepsilon$ for all $s \in U$, where
 - $p_s = [\operatorname{Span} \{\omega_j(s) : 1 \leq j \leq n\}];$
- 2 weakly continuous if $s \mapsto \langle a(s)\omega_1(s), \omega_2(s) \rangle$ is continuous for every $\omega_1, \omega_2 \in \Omega$.

Definition

An operator field $a : \Delta \rightarrow \bigsqcup_{s \in \Delta} K(H_s)$ is:

- almost finite-dimensional if for each s₀ ∈ Δ and ε > 0 there exist an open set U ⊂ Δ ∋ s₀ and ω₁,..., ω_n ∈ Ω such that
 - (a) $\omega_1(s), \ldots, \omega_n(s)$ are linearly independent for every $s \in U$, and
 - (b) $\|p_s a(s)p_s a(s)\| < \varepsilon$ for all $s \in U$, where $p_s = [\text{Span} \{\omega_i(s) : 1 \le j \le n\}];$
- **2** weakly continuous if $s \mapsto \langle a(s)\omega_1(s), \omega_2(s) \rangle$ is continuous for every $\omega_1, \omega_2 \in \Omega$.

Let Γ be the set of all weakly continuous, almost finite-dimensional operator fields $a : \Delta \to \bigsqcup_{s \in \Delta} K(H_s)$ for which $s \mapsto ||a(s)||$ is C_0 ,

Theorem (Fell 1961)

 $(\Delta, \{K(H_s)\}_{s \in \Delta}, \Gamma)$ is a continuous C^* -bundle and the C^* -algebra A of this bundle is a continuous trace C^* -algebra with spectrum $\hat{A} \simeq \Delta$.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

5. Some results

Define

$$\Theta_{
u_1,
u_2}\left(
u
ight) \;=\; \langle
u,
u_1
angle\cdot
u_2\,,\quad
u\in\Omega_{\mathrm{wk}}\,.$$

("rank-one operators").

æ

イロト イポト イヨト イヨト

5. Some results

Define

$$\Theta_{\nu_1,\nu_2}\left(\nu\right) \;=\; \langle \nu,\nu_1\rangle\cdot\nu_2\,,\quad \nu\in\Omega_{\rm wk}\,.$$

("rank-one operators").

 $B(\Omega_{wk}) = \{ adjointable \ C(\Delta) - endomorphisms of \ \Omega_{wk} \} \,,$

$$\mathcal{K}(\Omega_{\mathrm{wk}}) = \overline{\operatorname{Span}_{\mathbb{C}} \left\{ \Theta_{\nu_1, \nu_2} : \nu_1, \nu_2 \in \Omega_{\mathrm{wk}} \right\}}^{\parallel \parallel} \subseteq \mathcal{B}(\Omega_{\mathrm{wk}}),$$

$$\mathcal{K}(\Omega) = \overline{\operatorname{Span}_{\mathbb{C}} \left\{ \Theta_{\omega_1, \omega_2} : \omega_1, \omega_2 \in \Omega \right\}}^{\parallel \parallel} \subseteq \mathcal{K}(\Omega_{\mathrm{wk}}).$$

э

A (10) A (10)

5. Some results

Define

$$\Theta_{\nu_1,\nu_2}\left(\nu\right) \;=\; \langle \nu,\nu_1\rangle\cdot\nu_2\,,\quad \nu\in\Omega_{\rm wk}\,.$$

("rank-one operators").

 $B(\Omega_{wk}) = \{ adjointable \ C(\Delta) - endomorphisms of \ \Omega_{wk} \},$

$$\mathcal{K}(\Omega_{\mathrm{wk}}) = \overline{\operatorname{Span}_{\mathbb{C}} \left\{ \Theta_{\nu_1,\nu_2} : \nu_1, \nu_2 \in \Omega_{\mathrm{wk}} \right\}}^{\parallel \parallel} \subseteq \mathcal{B}(\Omega_{\mathrm{wk}}),$$

$$\mathcal{K}(\Omega) \;\;=\;\; \overline{\operatorname{Span}_{\mathbb{C}}\left\{\Theta_{\omega_1,\omega_2}\,:\,\omega_1,\omega_2\in\Omega
ight\}}^{\parallel\,\parallel}\,\subseteq\,\mathcal{K}(\Omega_{\mathrm{wk}})\,.$$

Theorem (A, Farenick, Massey 2009)

There exists a sequence of C*-algebra embeddings such that

$$K(\Omega) \subseteq A \subseteq B(\Omega) \subseteq B(\Omega_{wk}) = I(A).$$
(1)

-

Argerami, Farenick, Massey (U of R & UNLP) Weakly Continuous Hilbert Bundles

æ

Theorem (A, Farenick, Massey 2009)

 $M(A) \subseteq M(K(\Omega)) = B(\Omega) \subseteq M_{\rm loc}(K(\Omega)) \subseteq M_{\rm loc}(K(\Omega)) = B(\Omega_{\rm wk}).$

Theorem (A, Farenick, Massey 2009)

 $M(A) \subseteq M(K(\Omega)) = B(\Omega) \subseteq M_{\rm loc}(K(\Omega)) \subseteq M_{\rm loc}(K(\Omega)) = B(\Omega_{\rm wk}).$

The inclusion (*) is known to be proper even for trivial bundles with appropriate choice of Δ (Ara-Mathieu 2008)

Theorem (A, Farenick, Massey 2009)

 $M(A) \subseteq M(K(\Omega)) = B(\Omega) \subseteq M_{\mathrm{loc}}(K(\Omega)) \subseteq M_{\mathrm{loc}}(K(\Omega)) = B(\Omega_{\mathrm{wk}}).$

The inclusion (*) is known to be proper even for trivial bundles with appropriate choice of Δ (Ara-Mathieu 2008) For $K(\Omega_{wk})$, the situation is radically different:

Theorem (A, Farenick, Massey 2009)

 $M(A) \subseteq M(K(\Omega)) = B(\Omega) \subseteq M_{\mathrm{loc}}(K(\Omega)) \subseteq M_{\mathrm{loc}}(K(\Omega)) = B(\Omega_{\mathrm{wk}}).$

The inclusion (*) is known to be proper even for trivial bundles with appropriate choice of Δ (Ara-Mathieu 2008) For $K(\Omega_{wk})$, the situation is radically different:

$$M(K(\Omega_{wk})) = B(\Omega_{wk})$$
 (Kasparov),

SO

$$M_{\text{loc}}(K(\Omega_{\text{wk}})) = M_{\text{loc}}(M_{\text{loc}}(K(\Omega_{\text{wk}}))) = B(\Omega_{\text{wk}})$$

regardless of the choice of Ω .

Detailed structure of the product in $B(\Omega_{wk})$, extending Hamana's work on the product structure of $C(\Delta) \otimes B(H)$.

A B b 4 B b

Detailed structure of the product in $B(\Omega_{wk})$, extending Hamana's work on the product structure of $C(\Delta) \otimes B(H)$.

Thank you!

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()