Ireductibilitate, Factorizari, Dimensiune Krull, si Aspectele lor Computationale in

Polinoame, Inele, Module, Latici, si Categorii Grothendieck

(contract ID-PCE nr. 443/19.12.2008, cod 1190)

Descriere succinta a proiectului de cercetare

Obiectivele proiectului sunt urmatoarele 7 subiecte:


1. Descompuneri ireductibile in latici cu aplicatii la teorii de torsiune si categorii Grothendieck. Mai intai intentionam sa extindem rezultatul principal al lui Fort [Fo 67] privind caracterizarea modulelor M bogate in coireductibile cu ajutorul descompunerilor reduse ale lui 0 in orice submodule ale lui M, de la module la latici modulare superior continue. Apoi, consideram o problema similara inlocuind submodulele coireductibile cu submodule subdirect ireductibile. Ne asteptam ca laticele avand aceasta proprietate, pe care le numim latice bogate in complet coireductibile, sa fie chiar laticele atomice. Apoi vom aplica aceste rezultate obtinute de natura laticiala la categorii Grothendieck si la categorii de module inzestrate cu o teorie de torsiune ereditara.

2. Descompuneri primale, complet ireductibile, si primare in module peste inele comutative arbitrare. Dupa cum Teorema Lasker-Noether a fost extinsa de la inele Noetheriene la module Noetheriene cf. [Bo 89], obiectivul urmator este extinderea de la ideale la module peste inele comutative a unor rezultate privind idealele primale si complet ireductibile datorate lui Fuchs, Heinzer, si Olberding [FuHeOl 04], [FuHeOl 06], si Heinzer, Olberding [HeOl 05], investigarea legaturilor lor cu descompunerile primare, cat si unicitatea si iredundanta unor asemenea descompuneri.

3. Dimensiunea Krull, dimensiunea Krull duala duala si Teorema Faith.

i) Legatura intre dimensiunea Krull si dimensiunea Krull duala a unui inel. O problema deschisa formulata de Albu si Smith in 1993 intreaba daca dimensiunea Krull duala a oricarui inel (comutativ) R avand dimensiune Krull este marginita superior de dimensiunea Krull a acestuia. Rezultate partiale privind aceasta problema au fost obtinute de Albu si Smith ([ASm 95], [ASm 99]). Ne propunem sa investigam aceasta problema, precum si relativizarea ei in raport cu o teorie de torsiunii ereditara.

ii) Teorema lui Faith. Un rezultat al lui Faith [Fa 99] stabileste ca un modul drept M este Noetherian daca si numai daca M este QFD (adica quotient (Goldie) finite dimensional) si satisface conditia lanturilor ascendente pentru submodule subdirect ireductibile. Rezultatul lui Faith poate fi reformulat intr-un context de dimensiune Krull duala pentru laticea L(M) a tuturor submodulelor lui M si a submultimii sale S(M) a submodulelor subdirect ireductibile ale lui M, dupa cum urmeaza: Dimensiunea Krull duala a lui L(M) este cel mult 0 daca si numai daca L(M) este latice QFD si dimensiunea Krull duala a posetului S(M) este cel mult 0. O problema naturala, inca deschisa, formulata de Albu si Rizvi in [ARi 01] este daca reformularea de mai sus a teoremei lui Faith ramane valabila pentru un ordinal arbitrar alpha in loc de 0. Un raspuns pozitiv la aceasta intrebare pentru orice ordinal finit, este dat in Albu, Iosif, Teply [AIoTe 05]. Ne asteptam sa demonstram acest rezultat pentru un ordinal arbitrar transfinit.

4. Estimari ale inaltimilor si normelor Bombieri pentru factorii polinoamelor. Vom rafina unele inegalitati privind inaltimea si norma Bombieri a divizorilor unui polinom intr-o nedeterminata avand coeficientii numere complexe. Pentru polinoamele cu coeficienti intregi vom obtine estimari mai fine decat cele date de inegalitatile lui Landau si Beauzamy.

5. Margini pentru valorile absolute si multiplicitatile radacinilor polinoamelor. Vom obtine noi rezultate privind localizarea radacinilor unui polinom cu coeficienti reali sau complecsi. Vor fi obtinute margini superioare pentru multiplicitatile radacinilor, in particular criterii de separabilitate.

6. Aplicatii ale metodei poligonului Newton la factorizarea polinoamelor. Vom utiliza proprietati ale pantelor poligonului Newton asociat unui produs de polinoame, pentru studierea factorizarii polinoamelor in mai multe nedeterminate peste corpuri algebric inchise. In particular vor fi obtinute noi criterii de ireductibilitate.

7. Studiul ireductibilitatii combinatiilor liniare de polinoame relative prime, grupuri Cogalois si conjectura Hardy-Littlewood. Se va studia ireductibilitatea anumitor combinatii liniare de polinoame relativ prime intr-una sau mai multe nedeterminate. In particular vom obtine noi criterii de ireductibilitate pentru polinoame de tip Schonemann si vom studia grupurile Cogalois pentru diverse clase de polinoame. Vom investiga aspectele algebro-analitice si computationale ale conjecturii Hardy-Littlewood.


BIBLIOGRAFIE

[AIoTe 04] T. ALBU, M. IOSIF, M.L. TEPLY, Modular QFD lattices with applications to Grothendieck categories and torsion theories, J. Algebra Appl. 3 (2004), 391-410.

[AIoTe 05] T. ALBU, M. IOSIF, M.L. TEPLY, Dual Krull dimension and quotient finite dimensionality, J. Algebra 284 (2005) , 52-79.

[AKrTe 00] T. ALBU, G. KRAUSE, M.L. TEPLY, The nilpotence of the tau-closed prime radical in rings with tau-Krull dimension, J. Algebra 229 (2000), 498-513.

[AKrTe 01] T. ALBU, G. KRAUSE, M.L. TEPLY, Bijective relative Gabriel correspondence over rings with torsion theoretic Krull dimension, J. Algebra 243 (2001), 644-674.

[AlBoBoZa 06] E. ALKAN, A.I. BONCIOCAT, N.C. BONCIOCAT, A. ZAHARESCU, A square-free criterion for polynomials using no derivatives, Proc. Amer. Math. Soc. 135 (2007), no. 3, 677-687.

[AlFi 04] M. ALLEN, M. FILASETA, A generalization of a third irreducibility theorem of I. Schur, Acta Arith. 114 (2004), no. 2, 183-197.

[AlFi 03] M. ALLEN, M. FILASETA, A generalization of a second irreducibility theorem of I. Schur, Acta Arith. 109 (2003), no. 1, 65-79.

[ANa 71] T. ALBU, C. NASTASESCU, Decomposition primaire dans les modules de torsion, C. R. Acad. Sci. Paris 273, Serie A (1971), 696-699.

[ANa 76a] T. ALBU, C. NASTASESCU, Decompositions primaires dans les categories de Grothendieck commutatives (I), J. Reine Angew. Math. 280 (1976), 172-194.

[ANa 76b] T. ALBU, C. NASTASESCU, Decompositions primaires dans les categories de Grothendieck commutatives (II), J. Reine Angew. Math. 282 (1976), 172-185.

[ANa 84] T. ALBU, C. NASTASESCU, "Relative Finiteness in Module Theory", Marcel Dekker, Inc., New York and Basel, 1984.

[AR02] M. AYAD, P. RYCKELYNCK, Algebraic independency of factors of generalized difference polynomials, cahiers du L.M.P.A février 2002, vol.167.

[ARi 01] T. ALBU, S.T. RIZVI, Chain conditions on quotient finite dimensional modules, Comm. Algebra, 29 (2001), 1909-1928.

[ASm 95] T. ALBU, P.F. SMITH, Dual relative Krull dimension of modules over commutative rings, in "Abelian Groups and Modules", edited by A. Facchini and C. Menini, Kluwer Academic Publisher, Dordrecht, pp. 1-15 (1995).

[ASm 96] T. ALBU, P.F. SMITH, Localization of Modular Lattices, Krull Dimension, and the Hopkins-Levitzki

Theorem (I). Math. Proc. Cambridge Philos. Soc. 120 (1996), 87-101.

[ASm 97] T. ALBU, P.F. SMITH, Localization of Modular Lattices, Krull Dimension and the Hopkins-Levitzki Theorem (II), Comm. Algebra 25 (1997), 1111-1128.

[ASm 99] T. ALBU, P.F. SMITH, Dual Krull dimension and duality, Rocky Mountain J. Math. 29 (1999), 1153-1165.

[ASm 00] T. ALBU, P.F. SMITH, Global Krull dimension, in "Ring Theory and Representations of Algebras", edited by M. Saorin and F. Van Oystaeyen, Marcel Dekker, Inc., New York Basel, pp. 1-23 (2000).

[ATe 00] T. ALBU, M.L. TEPLY, Generalized deviation of posets and modular lattices, Discrete Math. 214 (2000), 1-19.

[AVa 98], T. ALBU, P. VAMOS, Global Krull dimension and global dual Krull dimension of valuation rings, in "Abelian Groups, Module Theory, and Topology", edited by D. Dikranjan and L. Salce, Marcel Dekker, Inc., New York, pp. 37-54 (1998).

[AnWi] D.D. ANDERSON and M. WINDERS, “Idealization of a module”, Rocky Mountain J. Math., in curs de aparitie.

[Bo 89] N. BOURBAKI, Commutative Algebra”, Chapters 1-7, Springer-Verlag, 1989.

[BL06] C. BALLOT, F. LUCA, Prime factors of A^{f(n)}-1 with an irreducible polynomial f(X), New York J. Math, 12, 39-45 (2006).

[BMV07] P. BORWEIN, M.J. .MOSSINGHOFF, J.D. VAALER., Generalizations of Goncalves' inequality, Proc. Amer. Math. Soc. 135, No. 1, 253-261 (2007).

[Bon 04] N.C. BONCIOCAT, Upper bounds for the number of factors for a class of polynomials with rational coefficients, Acta Arith. 113 (2) (2004), 175-187.

[Bon 07] N.C. BONCIOCAT, Irreducibility criteria for pairs of polynomials whose resultant is a prime number, trimis pentru publicare.

[BoBo 06a] N.C. BONCIOCAT, A.I. BONCIOCAT, Some classes of irreducible polynomials, Acta Arith. 123 (2006), 349-360.

[BoBo 06b] N.C. BONCIOCAT, A.I. BONCIOCAT, The irreducibility of polynomials that have one large coefficient and take a prime value, in curs de aparitie in Canad. Math. Bull.

[BoBo 06c] A.I. BONCIOCAT, N.C. BONCIOCAT, A Capelli type theorem for multiplicative convolutions of polynomials, in curs de aparitie in Math. Nachr.

[BoBoZa 06] N.C. BONCIOCAT, A.I. BONCIOCAT, A. ZAHARESCU, Bounds for the multiplicities of the roots for some classes of complex polynomials, Math. Inequal. Appl. 9 (1) (2006), 11-22.

[BoBoZa 07] N.C. BONCIOCAT, A.I. BONCIOCAT, A. ZAHARESCU, On the number of factors of convolutions of polynomials with integer coefficients, in curs de aparitie in Rocky Mountain J. Math. vol 38 no. 2 (2008).

[Cav 00] M. CAVACHI, On a special case of Hilbert's irreducibility Theorem, J. Number Theory 82 (2000), 96-99.

[CaVaZa 02] M. CAVACHI, M. VAJAITU, A. ZAHARESCU, A class of irreducible polynomials, J. Ramanujan Math. Soc. 17 (2002), 161-172.

[Fa 99] C. FAITH, Quotient finite dimensional modules with ACC on subdirectly irreducible submodules are Noetherian, Comm. Algebra 27 (1999), 1807-1810.

[FiDo 05] M. FIILASETA, M. DOUGLAS, Irreducibility testing of lacunary 0,1-polynomials, J. Algorithms 55 (2005), 21-28.

[FiSc 04] M. FIILASETA, A. SSHINZEL, On testing the irreducibility of lacunary polynomials by cyclotomic polynomials, Math. Comp. 73 246 (2004), 957-965.

[FiLa 02] M. FIILASETA, T.-Y. LAM, On the irreducibility of the generalized Laguerre polynomials, Acta Arith. 105 (2002), no. 2, 177-182.

[FiTr 02] M.FIILASETA, O.TRIFONOV, The irreducibility of the Bessel polynomials, J.Reine Angew. Math.550 (2002),125-140.

[Fo 67] J. FORT, Sommes directes de sous-modules coirreductibles d'un module, Math. Z. 103 (1967), 363-388.

[Fu 50] L. FUCHS, On primal ideals, Proc. Amer. Math. Soc. 1 (1950), 1-6.

[FuHeOl 04] L. FUCHS, W. HEINZER, B. OLBERDING, Commutative ideal theory without finiteness conditions: primal ideals}, Trans. Amer. Math. Soc. 357 (2004), 2771-2798.

[FuHeOl 06] L. FUCHS, W. HEINZER, B. OLBERDING, Commutative ideal theory without finiteness conditions: completely irreducible ideals, Trans. Amer. Math. Soc. 358 (2006), 3113-3131.

[Gao01] S. GAO, Absolute irreducibility of polynomials via Newton polytopes, J. Algebra, 237, 501-520 (2001).

[Gao03] S. GAO, V. RODRIGUES, Irreducibility of polynomials modulo p via Newton polytopes, J. Number Theory, 101, 32-47 (2003).

[Ha04] L. HAJDU, Irreducible polynomials in arithmetic progressions and a problem of Szegedy, Publ. Math. Debrecen, 65, 363-370 (2004).

[HeOl 05] W. HEINZER, B. OLBERDING, Unique irredundant intersections of completely irreducible ideals, J. Algebra 287 (2005), 432-448.

[Kn03} D. E. KNUTH, The Art of Computer Programming, vol. 2 Seminumerical Algorithms, Addison-Willey (2003).

[Ko05] F.KOYUNCU, Irreducible polynomials by the polytope method over integral domains, Selcuk J.Appl..Math, 6, 3-7 (2005).

[NaPo 66] C. NASTASESCU, N. POPESCU, Sur la structure des objets de certains categories abeliennes, C. R. Acad. Sci. Paris 262, Serie A (1966), 1295-1297.

[P00] L. PANAITOPOL, Minorations pour les measures de Mahler de Certains polynomes particuliers, J. Theor. Nombres Bordeaux, 12, 127-132 (2000).

[PaSt 87] L. PANAITOPOL, D. STEFANESCU, A resultant condition for the irreducibility of the polynomials, J. Number Theory 25 (1987), no. 1, 107-111.

[PaSt 88] L. PANAITOPOL, D. STEFANESCU, Factorization of the Schoenemann polynomials, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N.S.) 32(80) (1988), no. 3, 259-262.

[PaSt 90] L. PANAITOPOL, D. STEFANESCU, On the generalized difference polynomials, Pacific Journal of Mathematics 143, 341--348 (1990).

[PaSt 06] L. PANAITOPOL, D. STEFANESCU, Polynomial factorizations, Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 49 (97) (2006), no. 1, 69-74.

[Po 71] N. POPESCU, "Categorii Abeliene", Editura Academiei, Bucuresti, 1971.

[Ra 81] N. RADU, "Lectii de Algebra: Descompunerea Primara in Inele Comutative", Tipografia Universitatii BucurestI 1981.

[RaMu 02] M. RAM MURTY, Prime numbers and irreducible polynomials, Amer. Math. Monthly 109 (2002) no. 5, 452-458.

[SMY08] C. J. SMYTH: The Mahler measure of Algebraic Numbers. A Survey, arXIV:math/0701397v2 [Jan2008].

[St 75] B. STENSTROM, "Rings of Quotients'', Springer-Verlag, Berlin Heidelberg New York, 1975.

Director de proiect:

Echipa de cercetare:

Cercetare sprijinita financiar in 2009


Engleza