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Abstract. We study the case of a smooth noninvertible map f with Axiom
A, in higher dimension. In this paper, we look first at the unstable dimension
(i.e the Hausdorff dimension of the intersection between local unstable mani-
folds and a basic set Λ), and prove that it is given by the zero of the pressure

function of the unstable potential, considered on the natural extension Λ̂ of
the basic set Λ; as a consequence, the unstable dimension is independent of
the prehistory x̂. Then we take a closer look at the theorem of construction
for the local unstable manifolds of a perturbation g of f , and for the conjugacy

Φg defined on Λ̂. If the map g is holomorphic, one can prove some special
estimates of the Hölder exponent of Φg on the liftings of the local unstable
manifolds. In this way we obtain a new estimate of the speed of convergence
of the unstable dimension of g, when g → f . Afterwards we prove the real
analyticity of the unstable dimension when the map f depends on a real an-
alytic parameter. In the end we show that there exist Gibbs measures on the
intersections between local unstable manifolds and basic sets, and that they
are in fact geometric measures; using this, the unstable dimension turns out to
be equal to the upper box dimension. We notice also that in the noninvertible
case, the Hausdorff dimension of basic sets does not vary continuously with
respect to the perturbation g of f . In the case of noninvertible Axiom A maps
on P2, there can exist an infinite number of local unstable manifolds passing
through the same point x of the basic set Λ, thus there is no unstable lami-
nation. Therefore many of the methods used in the case of diffeomorphisms
break down and new phenomena and methods of proof must appear. The
results in this paper answer to some questions of Urbanski ([21]) about the
extension of one dimensional theory of Hausdorff dimension of fractals to the
higher dimensional case. They also improve some results and estimates from
[7].

1. Introduction. In one complex variable, it is known ([17]) that the Hausdorff
dimension of the Julia set J of a hyperbolic rational map f is given by the unique
zero of the pressure function t → P (tϕ), where ϕ(z) := − log |Df(z)|, z ∈ J .

In this paper we extend this result to the higher dimensional case, i.e that of a
conformal map with Axiom A on the complex projective space P2, thus answering
some questions from [21]. Moreover, we give some theorems (like the one about
Lipschitz dependence of the unstable manifolds with respect to perturbations, and
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the one about Hölder continuity of conjugacy maps) in the smooth case, without
holomorphicity conditions.

Let us introduce some notation. Many of the definitions and results will be
given for smooth maps on compact Riemannian manifolds. So, let M be such a
manifold and f : M → M be a Cr map, with r ≥ 1. The map f is not necessarily
injective. The nonwandering set Ω of f is defined as the set of points which
come arbitrarily close to their original position, if we iterate f a sufficient number
of times, Ω := {y ∈ M, ∀U neighbourhood of y, ∃nU ≥ 1, s.tfnU (U) ∩ U 6= ∅}. It
is easy to see that Ω is compact. Let us also assume that f has Axiom A. For
this definition, we send to [3], or [18]. In short, Axiom A says that the periodic
points of f are dense in the nonwandering set Ω of f and that we have a splitting
of the tangent bundle over the natural extension (defined below) Ω̂ of Ω, in two
subbundles, one of which is Es, representing the contracting directions(lines) for
the derivative Df , and the other Eu, representing the expanding directions for Df .

Definition 1. Let (X, d) be a compact metric space, and f : X → X a continuous
map on X. Then the natural extension of X with respect to f is the space X̂ :=
{x̂, x̂ = (x, x−1, x−2, ...), where f(x−i) = x−i+1, i ≥ 1}. The shift map on X̂ is
f̂ : X̂ → X̂, defined by f̂(x̂) = (f(x), x, x−1, ...). The canonical projection map
π : X̂ → X is given by π(x̂) = x, x̂ ∈ X̂; the projection π is sometimes denoted by πf

when we want to emphasize its dependence on f . There exists also a natural metric
on X̂, for every K > 1, given by dK(x̂, ŷ) := d(x, y) + d(x−1,y−1)

K + d(x−2,y−2)
K2 + ...,

if x̂ = (x, x−1, x−2, ...), and ŷ := (y, y−1, y−2, ...) belong to X̂. ¤

Let us notice also that in the definition of hyperbolicity for noninvertible maps,
the unstable tangent space Eu

x̂ depends a priori on the whole prehistory x̂ ∈ Ω̂.

Definition 2. Let X be a nonempty Hausdorff topological space and f : X → X
a continuous map on X. We will say that f is topologically transitive (or
simply transitive) if for any nonempty open sets U, V , there exists n ∈ Z with
fn(U) ∩ V 6= ∅.

We will say that f is topologically mixing (or simply mixing) on X if for any
nonempty open sets U, V in X, there exists N ≥ 0 such that fnU ∩ V 6= ∅, for any
n ≥ N . ¤

One can prove that transitivity is equivalent to the existence of a point x ∈
X with dense full orbit in X, where by full orbit of x we understand O(x) :=
{fn(x), n ∈ Z}. If there exists x ∈ X with O+(x) := {fn(x), n ≥ 0} dense in X, we
say that f is topologically + transitive ( [18], [19]); however in the case where we
will actually need it, i.e in the Spectral Decomposition Theorem, transitivity and
topological + transitivity coincide ([18]). Also, it is immediate to see that mixing
implies transitivity.

If f is an Axiom A map as above, the Spectral Decomposition Theorem ([18])
says that the nonwandering set Ω can be partitioned into a finite number of f -
invariant subsets, on which f is transitive. These sets are unique up to order and
are called basic sets. We say that a basic set Λ is of saddle type if there are both
stable and unstable directions on Λ, i.e if dimEu

x̂ ≥ 1, x̂ ∈ Λ̂ and dimEs
x ≥ 1, x ∈ Λ.

In the sequel we will work only with basic sets of this type.
Now, given a smooth (Cr, r ≥ 2) map f : M → M with Axiom A, and a basic

set Λ of saddle type, there exist local stable and unstable manifolds at every point
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x of Λ ([18] or [5]),

W s
β(f, x) := {y ∈ M, d(fnx, fny) < β, n ≥ 0}

Wu
β (f, x̂) := {y ∈ M, ∃ a prehistory ŷ = (y, y−1, ...),with d(y−i, x−i) < β, i ≥ 0},

where x̂ = (x, x−1, ...) ∈ Λ̂ and β is a sufficiently small positive number.
If the map f is clear from the context, we denote these sets by W s

β(x),Wu
β (x̂).

In case f is a holomorphic map on the complex projective space P2, then the local
stable and unstable manifolds are embedded complex disks ([3]).

It is well-known ([18]) that, if f has Axiom A, then its nonwandering set Ω has
local product structure, i.e for any x ∈ Ω, ŷ ∈ Ω̂, the intersection W s

β(f, x) ∩
Wu

β (f, ŷ) has at most one point, denoted by [x, ŷ] and this point belongs to Ω.
In the sequel, we will denote by HD(A) the Hausdorff dimension of a set A. Let

us define now two important notions which will be used throughout the paper:

Definition 3. In the above setting (hence with Λ a basic set of saddle type),
we call the Hausdorff dimension δs(x, β) := HD(W s

β(f, x) ∩ Λ) the stable di-
mension (of size β > 0) at the point x ∈ Λ. Also, the Hausdorff dimension
δu(x̂, β) := HD(Wu

β (f, x̂) ∩ Λ) will be called the unstable dimension (of size β)
at the prehistory x̂ ∈ Λ̂. In general, if the size β > 0 is fixed, we will not record the
dependence of the stable/unstable dimension on β, and will write simply δs(x) or
δu(x̂). ¤

Notation: In the sequel, we shall denote the derivative in the stable direction,
Df |Es

x
, by Dfs(x), and the derivative in the unstable direction, Df |Eu

x̂
, by Dfu(x̂),

for x̂ ∈ Λ̂.
In the sequel we will also use extensively the notions of entropy and topo-

logical pressure (or simply pressure). These notions can be introduced for any
continuous map f : X → X on a compact metric space (X, d); we refer to [5] or [22]
for definitions and properties. Denote by C(X) the space of continuous functions
defined on X and with values in R.

Definition 4. For an integer n > 0 define the metric dn on X by dn(x, y) :=
max{d(f i(x), f i(y), i = 0, .., n − 1}, x, y ∈ X. We say that a set E ⊂ X is (n, ε)-
separated (for some positive number ε), if for any x, y ∈ E, x 6= y, we have that
dn(x, y) ≥ ε. We will say that a subset F ⊂ X is (n, ε)- spanning, if for every
x ∈ X there exists some y ∈ F such that dn(x, y) < ε. ¤
Definition 5. In the setting from the previous Definition, denote by Bf (x, ε, n),
the ball of radius ε and center x in the metric dn. We will call it the (n, ε)-ball
centered at x. ¤

Hence it follows that a subset F is (n, ε)-spanning in X iff the union of the
(n, ε)-balls centered at the points of F covers X.

Definition 6. The topological pressure of f is a functional Pf : C(X) → R̄
defined by :

Pf (ϕ) := lim
ε→0

lim
n→∞

1
n

log sup{
∑

x∈E

exp(
n−1∑

i=0

ϕ(f i(x))), E ⊂ X is (n, ε)− separated}

= lim
ε→0

lim
n→∞

1
n

log inf{
∑

x∈F

exp(
n−1∑

i=0

ϕ(f i(y))), F ⊂ X is (n, ε)− spanning}
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When we take ϕ ≡ 0, we will obtain the topological entropy of f , denoted by
h(f) or by htop(f). ¤

The proof that the above limits exist when ε → 0, and that they are equal is
done for example in [22]. When the map f was fixed and is clear from the context,
we may denote the pressure of ϕ also by P (ϕ).

In ergodic theory, another important notion is that of measure theoretic en-
tropy, hµ (denoted also by hµ(f) when we want to emphasize the dependence on
f), where µ is an f -invariant Borel probability measure on X. (we will not give the
definition of hµ here, it can be found in all texts on ergodic theory, for example in
[22]).

There exists an interesting relationship between Borel invariant measures and
Pf , contained in the following:

Theorem (Variational Principle). In the above setting, Pf (ϕ) = sup
µ
{hµ(f) +

∫
ϕ dµ}, where the supremum is taken over all f -invariant Borel probability mea-

sures µ, and hµ(f) = measure-theoretic entropy of µ.

Definition 7. In the setting from the Variational Principle, let ϕ be a continuous
potential from C(X), and assume that µ is an f -invariant Borel probability measure
on X with Pf (ϕ)hµ +

∫
ϕ dµ. Any such measure µ will be called an equilibrium

measure (or equilibrium state) for ϕ. ¤
Let us list now several well-known properties of topological pressure, which will

be used in the sequel ([19], [5], [22] are good references):

Theorem (Properties of Pressure). If f : X → X is a continuous transformation,
and ϕ,ψ ∈ C(X), then:

1) ϕ ≤ ψ ⇒ Pf (ϕ) ≤ Pf (ψ)
2) Pf (·) is either finitely valued or constantly ∞
3) Pf is convex
4) For a strictly negative function ϕ, the mapping t → Pf (tϕ) is strictly decreas-

ing if P (0) < ∞.
5) Pf is a topological conjugacy invariant.
6) Assume that f is expansive on X, i.e there exists a small positive number ε0

such that, if x̂ := (x, x−1, ...), ŷ := (y, y−1, ...) ∈ X̂, (where X̂ is the natural
extension of X w.r.t f), and d(xi, yi) < ε0, ∀i ≤ 0, d(f jx, f jy) < ε0, j ≥ 0,
then x = y. Then there exists a bijection µ → µ̂, between f -invariant measures
µ on X and f̂ -invariant measures µ̂ on X̂, such that π∗(µ̂) = µ. Under this
bijection, we have that hµ = hµ̂ and that Pf (ϕ) = Pf̂ (ϕ ◦π). In particular the
equilibrium states of ϕ with respect to f (on X) are obtained as push-forwards
of the equilibrium states of ϕ ◦ π with respect to f̂ (on X̂), i.e if µ is an
f-invariant equilibrium state for ϕ ∈ C(X) on X, then there exists a unique
f̂-invariant Borel probability measure µ̂ on X̂, such that µ̂ is an equilibrium
state for ϕ ◦ π and π∗(µ̂) = µ.

7) If X can be written as a union of compact subsets, X = ∪
i∈I

Xi and f(Xi) ⊂
Xi, i ∈ I, then for any ϕ ∈ C(X), we have Pf (ϕ) = sup

i∈I
Pf |Xi

(ϕ|Xi).

Now let us say a few words about the special case of Axiom A holomorphic maps
on P2. For most of this, a good reference is [3]. First of all, if f is a holomorphic map,
f : P2 → P2, then there exist homogeneous polynomials P (z0, z1, z2), Q(z0, z1, z2),
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R(z0, z1, z2) of the same degree D such that f [z0 : z1 : z2] = [P (z0, z1, z2) :
Q(z0, z1, z2) : R(z0, z1, z2)], where [z0 : z1 : z2] represent the homogeneous coordi-
nates on P2. We will work only with the nontrivial case when D ≥ 2 (nondegenerate
maps). If f is hyperbolic on its basic set Λ, then we know from above that the local
stable/unstable manifolds are embedded complex disks, such that W s

β(f, x) is tan-
gent at x to the stable space Es

x, x ∈ Λ and Wu
β (f, x̂) is tangent at x to the unstable

space corresponding to x̂, Eu
x̂ , x̂ ∈ Λ̂. Let us notice that the above expression of f

using polynomials, implies that f is finite-to-one.
We will also denote by S0, S1, S2 the sets of points in Ω with their unstable index

(i.e the dimension of the unstable space ) equal to 0, 1, 2 respectively.
We take this opportunity to say that the case of endomorphisms is not just a

simple extension of the diffeomorphisms case,and that there appear new phenomena,
which can be explained by the non-injectivity of f . Indeed, in [7], I proved that,
although δs(x) ≤ ts∗, where ts∗ is the unique zero of the pressure function t → P (tφs)
(φs(y) := log |Dfs(y)|, y ∈ Λ), still the equality does not always hold. For example,
take the map f(z, w) := (z2 + c, w2 + d), c 6= 0, d 6= 0. Then, if the complex number
c is chosen such that |1 − √1− 4c| = 4

5 , we obtain P (2φs) > 0, therefore ts∗ > 2,
but on the other hand, δs(x) ≤ 2.

The stable dimension has been considered in the papers [9], [10]. As said before,
the stable dimension cannot be written using the Bowen equation, as the unique
zero of the pressure function for the stable potential. Instead we obtained estimates
using a new notion, that of inverse pressure.

Another important difference from the case of diffeomorphisms is that the local
unstable manifolds do not give a lamination near Λ in the case of noninvertible
maps ([11]). In fact, through any point x of Λ there may pass an uncountable
collection of unstable manifolds of type Wu

β (f, x̂). This has the effect that, a priori,
the Hausdorff dimension of Λ is not equal to the sum between the stable dimension
δs(x) and unstable dimension δu(x̂). This gives another difference from the case
of diffeomorphisms. Notice also that, although f̂ is a homeomorphism on X̂, it is
not smooth, so many of the properties of diffeomorphisms do not extend to f̂ (for
example those related to estimates where the derivatives are used).

We proved in [12] that the stable dimension of holomorphic Axiom A maps which
are open on the basic set Λ, is in fact independent of both the point x ∈ Λ and
of the size β (as long as β is small enough); that proof involved the sequence of
inverse pressure functions corresponding to the iterates of f on Λ. We will prove
the independence of the unstable dimension, by considering the (usual) topological
pressure on the natural extension of Λ.

In the sequel we will encounter also the notion of Smale space. We will give
its definition and some properties, following [19]. Then we will specify a particular
case of Smale space important in our applications.

Definition 8. Let (X, d) be a nonempty compact metric space with metric d, and
f : X → X be a homeomorphism of X. Assume that there are given some numbers
ε0 > 0 and λ ∈ (0, 1), and a continuous map [·, ·] : {(x, y) ∈ X ×X, d(x, y) < ε0} →
X with the following properties:

a) [x, x] = x, [[x, y], z] = [x, z], [x, [y, z]] = [x, z], whenever the two sides of the
last two relations are defined.

b) Let us define V −
δ (x) := {y, y = [x, y], and d(x, y) < δ} and V +

δ (x) := {y, y =
[y, x], and d(x, y) < δ}, where δ < ε0 is small enough.
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Then, suppose that f [x, y] = [fx, fy], x, y ∈ X and that

d(fnz, fny) ≤ λnd(z, y), y, z ∈ V −
δ (x), n > 0

d(f−ny, f−nz) ≤ λnd(y, z), y, z ∈ V +
δ (x), n > 0

A compact metric space (X, d) with a homeomorphism f : X → X for which
there exist ε0, λ with the above properties is called a Smale space. The sets
V −

δ (x), V +
δ (x) will be called, respectively, the local stable set (of size δ) of x ∈ X,

and the local unstable set (of size δ) of x; they may also be denoted by V −
δ (f, x)

and V +
δ (f, x) when we want to emphasize their dependence on f . ¤

If X is a Smale space as above, and δ > 0 is small enough, then it follows easily
that

V −
δ (x) ∩ V +

δ (y) = [x, y]

Also, notice that, by replacing eventually δ with a smaller number, we get :

V −
δ (x) = {y, d(fnx, fny) < δ, n ≥ 0}

V +
δ (x) = {z, d(f−nz, f−nx) < δ, n ≥ 0}

One can prove easily that, if X is a Smale space for the homeomorphism f , then f is
expansive on X, and that the nonwandering set of f is in fact the closure of the set
of periodic points. Also, we have Smale’s Spectral Decomposition Theorem ([19]),
saying that the nonwandering set of X is the union of finitely many disjoint compact
subsets Ωj , which are f -invariant and such that f |Ωj is topologically transitive; the
sets Ωj are called basic sets. Moreover each basic set Ωj is the union of kj disjoint
subsets Ωj`, 1 ≤ ` ≤ kj , which are cyclically permuted by f and such that fkj |Ωj`

is topologically mixing. Let us also add that any f -invariant measure on X has its
support in the nonwandering set and that any f -invariant ergodic measure has its
support in one of the basic sets.

Notation: In the sequel we shall denote the space of Hölder continuous real
maps of exponent α > 0, defined on a compact metric space (X, d), by Hα(X). So
Hα(X) := {ϕ : X → R,∃C > 0, and δ > 0, s.t |ϕ(x) − ϕ(y)| ≤ Cd(x, y)α, ∀x, y ∈
X, with d(x, y) < δ}. When the constant C > 0 is also fixed, we will denote
by Hα

C(X) the space of real functions on X, satisfying the above inequality with
exponent α and multiplicative constant C. ¤

Another very important feature of Smale spaces is that they have Markov par-
titions of arbitrarily small diameter ([19]). From this it follows that there exists a
symbolic dynamical space modelling the action of f on X, i.e a subshift of finite
type ΣA with a transition matrix A (this subshift is denoted below also by X̃ and
is called a configuration space), and a projection p : X̃ → X such that the following
are satisfied:

Theorem (Properties of Smale spaces). If X is a Smale space for the homeomor-
phism f , and if X̃ is a configuration space for the symbolic dynamics of X , with
the shift map τ : X̃ → X̃, then we have the following properties:

(a) The canonical projection determined by the Markov partition, p : X̃ → X is
continuous and surjective;

(b) p ◦ τ = f ◦ p;
(c) If f is topologically transitive (respectively mixing) on X, then τ is also topo-

logically transitive (respectively mixing) on X̃; hence if f is mixing, (X̃, τ)
becomes a transitive Markov chain (one says that a shift σA : ΣA → ΣA is a



UNSTABLE MANIFOLDS AND HOLDER STRUCTURES 425

transitive Markov chain if A is a transitive matrix, i.e if there exists a positive
integer m such that the elements of Am are all strictly positive, [5]).

(d) Assume that f is topologically mixing on X and let a real function ϕ ∈ C(X).
Then Pf (ϕ)Pτ (ϕ ◦ p). If ϕ ∈ Hα(X), then there exists a unique equilibrium
state µϕ for ϕ on X which is obtained as µϕ = p∗νϕ◦p, where νϕ◦p is the
unique equilibrium state for ϕ ◦ p on X̃;

(e) Under the same assumption as in (d) (i.e topological mixing), we have that
the pressure functional Pf is real analytic on Hα(X);

(f) Under the same assumption as in (d), if ϕ ∈ Hα(X), then suppµϕ = X; also,
if ϕ, ψ ∈ Hα(X), then their unique equilibrium states µϕ, µψ are equal if and
only if there exist a constant χ ∈ R and a continuous function Φ on X, such
that

ψ − ϕ = Φ ◦ f − Φ + χ,

χ is unique, and Φ is unique up to an additive constant.

Notice that in part (c) of the previous Theorem, the fact that (ΣA, σA) is a
transitive Markov chain is not the same as saying that (ΣA, σA) is a Markov chain
with topological transitivity; the first property refers to the transitivity of the matrix
A and implies in fact that σA is topologically mixing on ΣA. Of great importance
in the theory of equilibrium states is also the notion of specification. There are
several equivalent definitions (see for example [2], [5], [19], etc.).

Definition 9. Consider an arbitrary compact metric space (X, d) and a homeo-
morphism f : X → X. Then we say that f satisfies specification on X if, for
every ε > 0, there exists a positive integer p(ε) such that the following condition
holds:

if I1 := [a1, b1], ..., In := [an, bn] are disjoint finite intervals in Z, contained in a
larger interval [a, b], with bi +p(ε) < ai+1, i = 1, .., n−1, and x1, ..., xn are arbitrary
points in X, then there exists a periodic point x ∈ X satisfying:

f b−a+p(ε)(x) = x, and

d(f `x, f `xi) < ε, ` ∈ Ii, i = 1, .., n.

¤
Remark 1: a) It is relatively easy to prove that any transitive Markov chain has

the specification property. Also, if a homeomorphism of a general compact metric
space X has the specification property, then it is topologically mixing.

b) Bowen ([2]) showed that, if f is an expansive homeomorphism on X satisfying
the specification property, then for any Hölder continuous potential ϕ ∈ Hα(X)
there exists a unique equilibrium state. ¤

Then using the symbolic dynamics representation (X̃, τ) associated to a Smale
space (X, f) (from the above Theorem on Properties of Smale Spaces), together
with the above remark, we obtain the following:

Theorem (Equilibrium states on Smale spaces). Let X be a Smale space for the
homeomorphism f , such that f is topologically mixing. Then for any α > 0 and
any potential ϕ ∈ Hα(X), there exists a unique equilibrium state µϕ, of ϕ on X.

Next, we shall give an example of Smale space which will have important appli-
cations in the sequel. Consider as above, a smooth (i.e Cr, r ≥ 2) map f : M → M ,
on a compact Riemannian manifold M . Let us assume that f satisfies Axiom A.
The following appears in [18], and we cite it for future reference:
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Theorem (Spectral Decomposition Theorem). In the above setting, the nonwan-
dering set Ω of f can be decomposed as the union of finitely many f-invariant dis-
joint closed sets Ωj, on which f is topologically transitive; these sets are unique up
to order and are called basic sets of f . Moreover, each set Ωj can be decomposed as a
disjoint union of subsets Ωj,k, k = 1, .., nj, such that f(Ωj,k) = Ωj,k+1, k = 1, .., nj,
Ωj,nj+1 = Ωj,1, and fnj is topologically mixing on each subset Ωj,k.

In the sequel, as announced before, we will work with f : M → M smooth map,
satisfying Axiom A, and with a basic set Λ of saddle type. One can form the natural
extension Λ̂ := {x̂ = (x, x−1, x−2, ...), f(x−i−1) = x−i, x−i ∈ Λ, i ≥ 0, x0 = x}. As
said before, for each number K > 1, there exists a metric dK on Λ̂, compatible with
the topology induced from the product space.

In this setting, for each x̂ ∈ Λ̂ and each δ > 0 small, let us define the following
subsets of Λ̂:

V −
δ (x̂) := {ŷ ∈ Λ̂, dK(f̂nx̂, f̂nŷ) < δ, n ≥ 0}, and

V +
δ (x̂) := {ŷ ∈ Λ̂, dK(f̂−nx̂, f̂−nŷ) < δ, n ≥ 0}

Using the fact that Λ̂ has local product structure ([18]) we can define a map [·, ·] as
in the definition of Smale spaces, by putting [x̂, ŷ] = V −

δ (x̂)∩V +
δ (ŷ), for dK(x̂, ŷ) <

δ/2. One can check easily that the conditions in the definition of Smale spaces
are satisfied, and hence Λ̂ is a Smale space with the above relation [·, ·] and the
homeomorphism f̂ : Λ̂ → Λ̂.

We know from the Spectral Decomposition Theorem that f is transitive on Λ
and this implies that f̂ is also transitive on Λ̂ ([19], pg. 145). Also, we know that
f̂ is expansive on Λ̂. Therefore the properties of Smale spaces from the Theorem
above apply to the natural extension Λ̂ and the homeomorphism f̂ . In particular
there exists a symbolic representation of Λ̂, denoted by Λ̃ and a projection map
p : Λ̃ → Λ̂; let us recall also the canonical projection π : Λ̂ → Λ. Also from [19],
it follows that, if ϕ ∈ C(Λ) then Pf (ϕ) = Pf̂ (ϕ ◦ π) and that π induces a bijection
µ̂ → µ, between the f̂ -invariant states on Λ̂ and the f -invariant states on Λ such
that π∗µ̂ = µ and hµ = hµ̂.

We study now the problem of uniqueness of equilibrium states and that of coin-
cidence between equilibrium states and Gibbs states. First of all, a definition:

Definition 10. Consider a continuous map f : X → X, where X is a compact
metric space and let ϕ ∈ C(X). Then we will call a probability measure ν on X, a
Gibbs state (or a Gibbs measure) for ϕ if and only if for each ε > 0, there exist
Aε, Bε > 0 such that for all y ∈ X and integer n > 0, we have:

Aεe
Snϕ(y)−nP (ϕ) ≤ ν(Bf (y, ε, n)) ≤ Bεe

Snϕ(y)−nP (ϕ),

where Snϕ(y) := ϕ(y) + ... + ϕ(fn−1y), y ∈ X and Bf (y, r, n) is the (n, r)-ball
centered at y (r > 0), from Definition 5. ¤

Regarding the construction of Gibbs states and their relation to the equilibrium
states, we have the following important Theorem ([1], [5]):

Theorem (Bowen’s Theorem on Construction of Gibbs/Equilibrium States). Let
(X, d) be a compact metric space and f : X → X an expansive homeomorphism
satisfying the specification property. Let also ϕ ∈ Hα(X), for some arbitrary α > 0.
Then there is exactly one equilibrium state µϕ for ϕ on X. The measure µϕ is a
Gibbs measure for ϕ and it is ergodic.
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If we denote by Fix(fn) the periodic points of period n of f on X, and by
P (f, ϕ, n) :=

∑
x∈Fix(fn)

eSnϕ(x), then the measure µϕ is obtained as:

µϕ = lim
n→∞

1
P (f, ϕ, n)

∑

x∈Fix(fn)

eSnϕ(x)δx,

where, as usual, δx denotes the Dirac measure at the point x.

Let us see how this may be applied to the case of Smale spaces associated to basic
sets of saddle type. We have a smooth map f : M → M on a compact Riemannian
manifold M satisfying Axiom A, and let Λ be a basic set of saddle type; we have also
Λ̂ the natural extension of Λ relative to f with the homeomorphism f̂ : Λ̂ → Λ̂. Λ̂
has a natural structure of a Smale space, and since f is transitive on Λ, it follows that
f̂ is transitive on Λ̂. Denote by Λ̃ the symbolic representation of the Smale space Λ̂;
we know from the Theorem on Properties of Smale Spaces that Λ̃ is also transitive,
however a transitive map on a compact space does not always have the specification
property. Therefore we have to decompose Λ into its mixing components, given by
the Spectral Decomposition Theorem. So, we know that there exist disjoint closed
subsets of Λ, denoted by Λ1, .., ΛN such that f permutes Λj among themselves and
fN is topologically mixing on each Λj . This means that f̂N is mixing on π−1Λj ,
where we recall that π : Λ̂ → Λ is the canonical projection, π(x̂) = x, x̂ ∈ Λ̂.
This implies that τN is mixing on p−1π−1Λj and hence it is easy to prove that
it has specification on that set ([1] or [5], pg. 581). But, from the definition of
specification and the properties of the projection p : Λ̃ → Λ̂, we get that also f̂N

has specification on π−1Λj . So, the Smale space Λ̂ can be written as the union of
finitely many disjoint compact subsets, Λ̂ = X1 ∪ ...∪XN , Xj = π−1(Λj) such that
f̂(Xj) = Xj+1, XN+1 = X1, and f̂N satisfies specification on each Xj . We want to
prove that Hölder continuous functions on Λ̂ have unique equilibrium states which
are also Gibbs states; the proof is based on the discussion for the mixing case.

Theorem 1. As above, consider a smooth Axiom A map f on a compact manifold
M and Λ a basic set of saddle type for f . Then, for each Hölder continuous real
function ϕ̂ on Λ̂, there exists a unique equilibrium measure µ̂ϕ̂ which is also a Gibbs
state for ϕ̂.

Proof. First, consider the topologically mixing map f̂N on Xj , for some fixed
j, 1 ≤ j ≤ N . (where we use the notations introduced before the statement of
the theorem). We know that f̂N is expansive on Xj and it satisfies specification,
from the previous discussion. Hence we can apply Bowen’s Theorem on Construc-
tion of Equilibrium/Gibbs States given before. Thus for each Hölder continuous
function ϕ̂ on Λ̂, there exists an f̂N -invariant measure µ̂j on Xj , which is the
unique equilibrium measure for ϕ̃|Xj , with ϕ̃ := ϕ̂ + ϕ̂ ◦ f̂ + ... + ϕ̂ ◦ f̂N−1. Define
now

µ̂(E) :=
1
N

N−1∑

k=0

µ̂1(X1 ∩ f̂kE),

for an arbitrary Borelian set E ⊂ Λ̂. It is easy to check that µ̂ is an f̂ -invariant
probability measure on Λ̂, with hµ̂1(f̂

N ) = Nhµ̂(f̂), and that
∫

ϕ̃dµ̂1 = N
∫

ϕ̂dµ̂.
Therefore, if µ̂1 is the unique equilibrium state for ϕ̃ on X1, with respect to f̂N ,
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then the measure defined above, µ̂, will be the unique equilibrium state for ϕ̂ on Λ̂,
with respect to f̂ .

We look now at the inequalities in the definition of Gibbs states. Firstly, the
map f̂ : Xi → Xi+1 gives a conjugation between the maps f̂N : Xi → Xi and
f̂N : Xi+1 → Xi+1; hence from the Theorem on Properties of Pressure given
above, Pf̂N |Xi

(ϕ̃|Xi) = Pf̂N |Xi+1
(ϕ̃|Xi+1), i = 1, ..N . But from the same Theorem,

Pf̂N |Λ̂(ϕ̃) = sup
1≤i≤N

Pf̂N |Xi
(ϕ̃|Xi

), since Λ̂ = ∪
1≤i≤N

Xi and each Xi is invariated by

f̂N . On the other hand, Pf̂N |Λ̂(ϕ̃) = NPf̂ (φ̂), so for each i, we have

Pf̂N |Xi
(ϕ̃) = NPf̂ (ϕ̂) (1)

Let us also notice that for any positive integer n,

Snϕ̃(ŷ; f̂N ) : = ϕ̃(ŷ) + ϕ̃ ◦ f̂N (ŷ) + ... + ϕ̃ ◦ f̂N(n−1)(ŷ)

= ϕ̂(ŷ) + .. + ϕ̂ ◦ f̂N−1(ŷ) + ϕ̂ ◦ f̂N (ŷ)

+ ϕ̂ ◦ f̂N+1(ŷ) + .. + ϕ̂ ◦ f̂Nn−1(ŷ)

= SnN (ϕ̂(ŷ))

(2)

Denote by ν := µ̂1 the equilibrium measure for ϕ̃|X1on X1, with respect to f̂N .
Let us take now E := Bf̂ (ŷ, ε, n), for some ŷ ∈ Λ̂ and estimate µ̂(E). Without
loss of generality, we can assume that ŷ ∈ X1. From the definition of µ̂, we have
µ̂(E) = 1

N (ν(X1∩E)+...+ν(X1∩f̂N−1E)). But X1∩Bf̂ (ŷ, ε, n) ⊂ Bf̂N |X1
(ŷ, ε, [ n

N ])
(if ω is a rational number, [ω] denotes its integer part). Also, from the fact that f is
smooth on M , there exists ε′ = ε′(ε) < ε such that Bf̂N |X1

(ŷ, ε′, [ n
N ]) ⊂ Bf̂ (ŷ, ε, n).

Let us use now the fact that ν is a Gibbs state for ϕ̃|X1 :

Aε′e
S[ n

N
]ϕ̃(ŷ;f̂N )−[ n

N ]Pf̂N |X1
(ϕ̃|X1 ) ≤ ν(X1 ∩ E) ≤ Bεe

S[ n
N

]ϕ̃(ŷ;f̂N )−[ n
N ]Pf̂N |X1

(ϕ̃|X1 )

Using now relations (1) and (2) and the above inequality, we obtain that there exist
constants Cε, Dε > 0 such that for all ŷ ∈ X1, n > 0,

Cεe
Snϕ̂(ŷ)−nPf̂ (ϕ̂) ≤ ν(X1 ∩ E) ≤ Dεe

Snϕ̂(ŷ)−nPf̂ (ϕ̂)

Repeating the above argument for ν(X1 ∩ f̂(E)), ..., ν(X1 ∩ f̂N−1(E)), and then
using the above definition of µ̂, we obtain that µ̂ is indeed a Gibbs measure for ϕ̂
on the entire Smale space Λ̂. This measure can be denoted by µ̂ϕ̂.

Corollary 1. In the above setting, let Λ be a basic set of saddle type for the Axiom
A map f : M → M . Then given any local unstable manifold Wu

β (x̂), x̂ ∈ Λ̂, and
any Hölder continuous function ϕ ∈ C(Λ), there exists a measure µ = µ(ϕ, x̂, β) on
Wu

β (x̂) ∩Λ such that for every ε > 0 there are positive constants Aε, Bε so that for
every y ∈ Wu

β (x̂) ∩ Λ and every positive integer n, we have

Aεe
Snϕ(y)−nPf (ϕ) ≤ µ(Bf (y, ε, n) ∩Wu

β (x̂) ∩ Λ) ≤ Bεe
Snϕ(y)−nPf (ϕ)

Proof. We use the lifting to the natural extension f̂ : Λ̂ → Λ̂, and the previous
Theorem in order to find a Gibbs measure µ̂ := µ̂ϕ̂ for the Hölder continuous
potential ϕ̂ : ϕ ◦ π on Λ̂. (π is Lipschitz, hence if ϕ ∈ Hα(Λ), for some α > 0, it
follows also that ϕ ◦ π ∈ Hα(Λ̂)). We can use now the local product structure on
Λ̂ so any neighbourhood B(x̂, δ) of a given point x̂ ∈ Λ̂ can be laminated by local
stable sets V −

δ (ŷ), ŷ ∈ V +
δ (x̂). Hence, if we have a measure µ̂ on Λ̂, there exists
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a measure µ̂x̂,δ defined on V +
δ (x̂) (δ > 0 small enough), given as µ̂x̂,δ = H∗(µ̂),

where H : B(x̂, δ) → V +
δ (x̂),H(ẑ) : V −

δ (ẑ) ∩ V +
δ (x̂). One can notice that the

measure µ̂x̂,δ does not depend on δ actually, so it can be denoted also by µ̂x̂.
Since f̂ contracts distances on the leaves of V −, we see that µ̂x̂(Bf̂ |

V
+
δ

(x̂)
(ŷ, ε, n)) =

µ̂(H−1(Bf̂ |
V

+
δ

(x̂)
(ŷ, ε, n))) = µ̂(Bf̂ (ŷ, ε, n), when ŷ ∈ V +

δ (x̂). Therefore we obtain

that there exist constants A′ε, B
′
ε > 0 such that

A′εe
Snϕ(y)−nP (ϕ) ≤ µ̂(Bf̂ |

V
+
δ

(x̂)
(ŷ, ε, n)) ≤ B′

εe
Snϕ(y)−nP (ϕ),

for all ŷ ∈ V +
δ (x̂), n > 0. But recall that we have a bi-Lipschitz map L : V +

δ (x̂) →
Wu

δ (x̂) ∩ Λ, given by L(x̂) = x (L is just the canonical projection restricted to
V +

δ (x̂)). Indeed, if the constant K (used in the definition of the metric dK on
Λ̂) is larger than 2, then Wu

δ/2(x̂) ∩ Λ ⊂ L(V +
δ (x̂)), and d(y, z) ≤ dK(ŷ, ẑ) ≤

2d(y, z), y, z ∈ Wu
δ/2(x̂) ∩ Λ and where ŷ, ẑ are the unique prehistories of y, z δ/2-

shadowed by x̂. (δ is small enough). Therefore L induces a measure µ = µ(x̂, β)
on Wu

β (x̂) ∩ Λ such that for ε < β < δ, µ̂(Bf̂ |
V

+
β/2(x̂)

(ŷ, ε/2, n)) ≤ µ(Bf (y, ε, n) ∩
Wu

β (x̂) ∩ Λ) ≤ µ̂(Bf̂ |
V

+
β

(x̂)
(ŷ, 2ε, n)). This implies that, for ε < β, there exist

constants Aε, Bε > 0 satisfying

Aεe
Snϕ(y)−nPf (ϕ) ≤ µ(Bf (y, ε, n) ∩Wu

β (x̂) ∩ Λ) ≤ Bεe
Snϕ(y)−nPf (ϕ),

for each n > 0 and y ∈ Wu
β (x̂) ∩ Λ.

We will consider in the next sections the intersection Wu
β (x̂) ∩ Λ and prove

that its Hausdorff dimension is given by the unique zero of the pressure function
t → Pf̂ (tφu), where φu(ŷ) := − log |Dfu(ŷ)|, ŷ ∈ Λ̂; in particular the unstable
dimension is independent of x̂ and β > 0 small.

We will show that, if g is an Axiom A perturbation of f , then the conjugating
map Φg is α-Hölder continuous as a map from V +

β (x̂) to Wu
β (x̂) ∩ Λ. For holo-

morphic maps (for instance when f : P2 → P2 is holomorphic and with Axiom A)
we are able to give a new and precise estimate of the Hölder exponent α. In the
proof of this theorem we will actually construct the unstable manifolds in the non-
invertible case and using this construction, will prove the existence of a Lipschitz
family of biholomorphic maps between the unstable manifolds of f and those of g.
Moreover, this theorem will imply that, if (fa)a is a family of holomorphic maps on
P2 depending real analytically on a, then the unstable dimension varies also real
analytically in a. Some estimates in the proofs will depend also on the constant K
used to define the metric dK on Λ̂.

We will also notice in the sequel that the stable dimension does not depend con-
tinuously on the parameter of fa; in particular the Hausdorff dimension of the basic
sets does not vary always continuously in the case of endomorphisms. Therefore in
the noninvertible case new phenomena can appear.

Lastly, using Corollary 1 we will look at the Gibbs states on the intersections of
local unstable manifolds and Λ. The Gibbs state of the unstable potential will prove
to be a geometric measure and we will use this fact (and a Laminated Distortion
Lemma on unstable manifolds) to show that the unstable dimension is equal to the
upper (and lower) box dimension.

The results above present an extension of the theory from the case of diffeo-
morphisms, although in this noninvertible case the proofs are different and one has
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to take into consideration prehistories, rather than points, and to introduce new
methods in order to deal with the lack of differentiability on the natural extension.

2. Unstable dimension is given by a Bowen type equation. Let us take
f : M → M a smooth Axiom A map on a compact Riemannian manifold M , with
the (real) dimension of the unstable spaces over a basic set Λ equal to 2, and f
conformal on its local unstable manifolds. Assume also that the entropy of f |Λ is
not zero. In particular f can be a holomorphic function on the complex projective
space P2, satisfying Axiom A.

Define the real function (called unstable potential) φu(ŷ) := − log |Dfu(ŷ)|. Due
to the expansion of derivative on unstable spaces, we see that φu is strictly negative
on Λ̂. Let also the pressure function t → Pf̂ (tφu), which is continuous and strictly
decreasing (from the Theorem on Properties of Pressure given in Section 1). Since
P (0) = h(f |Λ) > 0, and P (tφu) < 0 when t is large enough, it follows that it has a
unique zero tu.

Now, the distances between iterates of points from unstable manifolds, grow
exponentially. Using also the conformality of f along unstable manifolds we will
obtain a Laminated Distortion Lemma, similarly to the case of local stable manifolds
([7]):

Lemma 1. In the above setting, with f conformal on its local unstable manifolds,
there exists β > 0 and C > 0 such that: if x̂ ∈ Λ̂ and y ∈ Wu

β (x̂), and n > 0 is such
that fk(y) ∈ Wu

β (f̂kx̂), 1 ≤ k ≤ n, then

e−C ≤ |Dfn
u (ŷ)|

|Dfn
u (x̂)| ≤ eC ,

where ŷ is the unique prehistory of y, β-shadowed by x̂.

We will give next a very useful Hölder continuity theorem for the unstable spaces
and consequently for the unstable potential φu. For this theorem we do not need
the hypothesis of conformality on unstable manifolds.

Theorem 2. (a) Consider a smooth map f : M → M which satisfies Axiom A and
let Λ be one of its basic sets of saddle type. Assume also that on the natural extension
of Λ, Λ̂, we take the metric dK , for some K > 1. Then the unstable tangent spaces
over Λ̂ depend Hölder continuously on their prehistories, i.e the tangent bundle over
Λ̂ can be embedded in a trivial bundle Λ̂×Rm1+m2 , such that, if θ > 0 is a number
satisfying

sup
x̂∈Λ̂

|Dfs(x)| · |Dfu(x̂)|−1 ·Kθ < 1,

then the map E : Λ̂ → Gq(Λ̂), E(x̂) = Eu
x̂ is θ-Hölder continuous (where we take on

the Grassmannian Gq(Λ̂) of q-dimensional subspaces of the tangent bundle over Λ̂,
the metric induced by the embedding of TΛ̂ in Λ̂× Rm1+m2).

(b) If K > 1 and θ = θ(K) satisfies the inequality from (a) then φu ∈ Hθ(Λ̂).

Proof. (a) The proof is very similar with that of Theorem 2 of [7] and we do not
repeat it here. The condition on derivatives is the same here as in the case of
unstable manifolds studied in [7].

(b) This follows from (a) and the differentiability of log and of f on M .
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We give now the main theorem of this section, about the equality between the
unstable dimension and the zero of the pressure function associated to the unstable
potential :

Theorem 3. Let as above a smooth map f : M → M with Axiom A and conformal
on its local unstable manifolds. Consider also Λ a basic set of saddle type and a
small positive number β such that all unstable manifolds Wu

β (ẑ), ẑ ∈ Λ̂ are defined.
Then the unstable dimension δu(x̂; β) is equal to the unique zero tu of the pressure
function t → Pf̂ (tφu). In particular the unstable dimension does not depend on x̂

and β.

Proof. Let us take β > 0 small enough such that all the local unstable manifolds
of size β are defined and given as embedded smooth (poly)-disks in M . So with
this fixed β we will denote δu(x̂; β) by δu(x̂). Let us show first that δu(x̂) ≤ tu.
Denote Wu

δ (x̂) ∩ Λ by W , and take t > tu arbitrary. Then Pf̂ (tφu) < γ < 0, for
some negative γ. But, according to Theorem 9.8 of [22], for any ψ ∈ C(Λ̂), Pf̂ (ψ) =
Pf̂−1(ψ) (f̂ is a homeomorphism of Λ̂). For a continuous function ψ ∈ C(Λ̂), and
ε > 0 small enough, let us denote by

Pn(ψ, ε) := inf{
∑

ŷ∈F

eSnψ(ŷ), F is an (n, ε)− spanning set in Λ̂, relative to f̂−1}

Then we have Pf̂−1(tφu) = lim
ε→0

1
n log Pn(tφu, ε) < γ < 0.

Hence there exists an (n, ε)-spanning set F for f̂−1, of minimal cardinality and
satisfying ∑

ẑ∈F

eSn(tφu)(ẑ) < enγ (3)

Now, if y ∈ W ⊂ Wu
β (x̂), there exists a unique prehistory of y, denoted by ŷ∗,

which is β-shadowed by x̂ and such that ŷ ∈ Λ̂.
Assume that F = {ẑ1, ..., ẑ`}; then π(F ) = {z1, ..., z`}. Consider the set fn−1(W )

which is a subset of Λ. Hence for each y ∈ W , there must exist an i, 1 ≤
i ≤ `, such that f̂n−1ŷ∗ ∈ Bf̂−1(ẑi, ε, n). So, this means that dK(f̂n−1ŷ∗, ẑi) <

ε, ..., dK(ŷ∗, f̂−n+1ẑi) < ε. Let us take now Vi := W∩πf̂−n+1Bf̂−1(ẑi, ε, n), i = 1..`.
Since the diameter of fk(Vi) is bounded by 2ε, for all 1 ≤ k ≤ n− 1, and using also
the Laminated Distortion, Lemma (1) we see that there exists a constant C > 0
with:

diamVi ≤ Cε|Dfn−1
u (ŷ∗)|−1, 1 ≤ i ≤ ` (4)

But in (3) we have only unstable derivatives along the prehistories from F , so we
have to find relations between these and the prehistories ŷ∗ appearing in (4). This
will be done using Theorem 2. Indeed let us consider for each i as above, the point
ζi := W ∩W s

ε (zi
−n+1), where we denoted ẑi := (zi, zi

−1, ...) ∈ Λ̂. Then we have

|φu(f̂kŷ∗)−φu(f̂−n+1+kẑi)| ≤ |φu(f̂kŷ∗)−φu(f̂k ζ̂i
∗)|+ |φu(f̂k ζ̂i

∗)−φu(f̂−n+1+kẑi)|,
for 1 ≤ k ≤ n− 1.

For the second term of the above inequality, we will use that ζi ∈ W s
ε (zi

−n+1),
so there exists some λ ∈ (0, 1) such that d(fkzi

−n+1, f
kζi) < λk. Therefore, using

Theorem 2 and the conformality of f on unstable manifolds, we obtain:

|φu(f̂k ζ̂i
∗)− φu(f̂−n+1+kẑi)| ≤ C2dK(f̂k ζ̂i

∗, f̂
−n+1+kẑi),
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for some positive constant C2 independent of k. But dK(f̂kζi
∗, f̂

−n+1+kẑi) =

d(fkζi, zi
−n+1+k) + d(fk−1ζi,zi

−n+2+k)

K + ... + dK(ζ̂i
∗,f̂−n+1ẑi)

Kk ≤ ελk + ελk−1

K ... + c
Kk ≤

(λ′)k, where λ′ ∈ (0, 1), and 1 ≤ k ≤ n − 1. Hence from the previous displayed
inequality we get

|φu(f̂k ζ̂i
∗)− φu(f̂−n+1+kẑi)| ≤ C2(λ′)k

This implies that

| log |Dfn−1
u (ŷ∗)| − log |Dfn−1

u (f̂−n+1ẑi)|
≤ | log |Dfn−1

u (ŷ∗)− log |Dfn−1
u (ζ̂i

∗)||
+ | log |Dfn−1

u (ζ̂i
∗)| − log |Dfn−1

u (f̂−n+1ẑi)||
≤ C1 +

∑

1≤k≤n−1

|φu(f̂k ζ̂i
∗)− φu(f̂−n+k+1ẑi)| ≤ C1 + C2

We used above the inequality | log |Dfn−1
u (ŷ∗)− log |Dfn−1

u (ζ̂i
∗)|| ≤ C1, (for a posi-

tive constant C1 independent of n), which follows from the Lemma 1.
So we obtained that there exists a constant C̃ > 0, such that:

1
C̃
≤ |Dfn−1

u (ŷ∗)|
|Dfn−1

u (f̂−n+1ẑi)| ≤ C̃ (5)

But then , from (3) and (4) it follows that
∑

i

diam(Vi) ≤ C ′enγ ,

for a positive constant C ′.
This implies that HD(W ) ≤ t; but t has been chosen arbitrarily larger than tu,

so δu(x̂) = HD(W ) ≤ tu.
It remains to prove now the opposite inequality, i.e tu ≤ δu(x̂). For this, let us

consider some arbitrary t > δu(x̂) and show that t ≥ tu, i.e show that P (tφu) ≤ 0.
One can use now a Theorem of Pesin and Pitskel ([15]) which allows us to write
the pressure using balls Bf̂ (ŷ, ε, ni) for different integers ni. So, for a continuous
potential ψ ∈ C(Λ̂), a positive ε, a positive integer N , and an arbitrary real number
λ, let us denote

Mε(λ, ψ, N) := inf{
∑

ŷ∈F

eSnŷ
ψ(ŷ)−λnŷ , where Λ̂ ⊂ ∪

ŷ∈F
Bf̂ (ŷ, ε, nŷ), nŷ ≥ N, ŷ ∈ F}

Then denote by Mε(λ, ψ) := limN→∞Mε(λ, ψ,N); this limit exists since the se-
quence (Mε(λ, ψ, N))N is increasing. Let also Pε(ψ) := inf{λ, Mε(λ, ψ) = 0}; then
it is shown in [15] that P (ψ) = limε→0 Pε(ψ).

Therefore, in order to show that P (tφu) ≤ 0, it is enough to show that Mε(0, tφu) =
0, ε > 0 small enough, i.e Mε(0, tφu, N) = 0, N, ε > 0 small. For this , it is enough
to find a finite cover of Λ̂ with sets Bf̂ (ŷ, ε, nŷ), ŷ ∈ F , such that nŷ ≥ N and∑

ŷ∈F eSnŷ
(tφu)(ŷ) < 1.

Consider now an integer m such that f−mW ∩ Λ intersects all stable manifolds
W s

ε/2(z), of points in Λ (this can be done as in [9]); it can be seen easily that
HD(f−mW ∩Λ) = δu(x̂). Using the inequality t > δu(x̂), we can find a finite open
cover U = (Ui)i ∈ I, of f−m(W ) ∩ Λ, such that

∑

i∈I

(diamUi)t < α̃ < 1, (6)
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where α̃ is a small positive number to be determined later.
We will produce a spanning set (in the above sense) out of the cover U . In order

to do this, consider first for each i ∈ I, the set U∗
i := ∪W s

ε/2(z), union over all
local stable manifolds of size ε/2 which intersect Ui. From the assumption on m,
we know that U∗

i , i ∈ I cover the entire Λ. We need now a covering of the natural
extension Λ̂. Let us denote the diameter of Λ by ρ and assume that K > 1 defines
the metric dK on Λ̂; take a positive integer s = s(ε) such that ρ

Ks < ε. Now, take a
point yi in each Ui ∩Λ, and cover the set W s

ε/2(yi) with small open sets Vij , j ∈ Ji,

in such a way that diamf−s′
∗ (Vij) < ε, j ∈ Ji, for any local inverse iterate f−s′

∗ ,
and any 0 ≤ s′ ≤ s. But s depends only on ε, hence Ni(s) := |Ji| depends only
on ε. Let us denote by N(s) the largest such Ni(s), when i ∈ I. Next, for each
point z in some Vij , j ∈ Ji, we will have at most ds s-prehistories in Λ (if d denotes
the largest number of f -preimages that a point from Λ can have in Λ). Consider
C = (z, z−1, ..., z−s) an s-prehistory with z−j ∈ Λ, 1 ≤ j ≤ s. We will denote by

Λ(C, ε) := {ω ∈ Λ, ∃ an s− prehist. (ω, ..., ω−s) with d(ω−j , z−j) < ε, 1 ≤ j ≤ s}
Now, fix i ∈ I and j ∈ Ji; fix also a point z ∈ Vij and consider all the s-prehistories C
of z in Λ. Then for each Vij there are at most ds such prehistories C. We will denote
the set of these prehistories C corresponding to Vij by Γij (where j ∈ Ji, i ∈ I).
One can notice also that every local unstable manifold Wu

ε (ẑ′), z′ ∈ Vij is included
in one of the sets Λ(C, ε), for some C ∈ Γij , (because of the way in which Vij were
taken); in particular Vij ⊂ ∪

C∈Γij

Λ(C, ε).

Now, for each C ∈ Γij , consider some fixed complete prehistory ẑC ∈ Λ̂ which
starts with the truncated prehistory C, i.e which satisfies zC

−j = z−j , 1 ≤ j ≤ s,
(where C = (z, z−1, ..., z−s)). Denote the set of all these prehistories by F , i.e
F := {ẑC , C ∈ Γ}, where Γ := ∪

j∈Ji,i∈I
Γij .

Define now, for each i ∈ I, the positive integer ni with the property that

diamfk(Ui) < ε, 0 ≤ k < ni, but diamfni(Ui) > ε.

We want to prove that Λ̂ ⊂ ∪
i∈I

∪
C∈Γi

Bf̂ (ẑC , 5ε, ni), where Γi := ∪
j∈Ji

Γij . We will

also prove in the sequel that eSni
(tφu)(ẑC) ≤ χ0diamUi, C ∈ Γi, where χ0 is a positive

constant independent of C, i.
Consider then an arbitrary prehistory ω̂ of a point ω from U∗

i ; we know that
U∗

i , i ∈ I, cover the entire Λ, so for an arbitrary ω̂ ∈ Λ̂, there must exist an i
as above. We know also that there exists an s-prehistory C ∈ Γi such that ω̂
is ε-shadowed by C up to level s, i.e d(ω, zC) < ε, ..., d(ω−s, z

C
−s) < ε. Hence

dK(ω̂, ẑC) ≤ d(ω, zC)+ d(ω−1,zC
−1)

K +...+ d(ω−s,zC
−s)

Ks + ρ
Ks ≤ ε+ ε

K +...+ ε
Ks + ρ

Ks < 3ε.
Notice next that due to the fact that zC ∈ U∗

i ∩ Λ, there must exist a uniquely
defined point ξC ∈ Ui such that zC ∈ W s

ε/2(ξ
C). Also, since ω ∈ U∗

i ∩ Λ, it
follows that there exists a point ξ ∈ Ui such that ω ∈ W s

ε/2(ξ). So, d(fkω, fkzC) ≤
d(fkω, fkξ) + d(fkξ, fkξC) + d(fkξC , fkzC). But we know that d(fkω, fkξ) <
ε/2, k ≥ 0 and d(fkξC , fkzC) < ε/2, k ≥ 0,and also from the definition of ni, we see
that d(fkξ, fkξC) < ε, 0 ≤ k ≤ ni − 1. Hence we obtain from the above relations
that d(fkω, fkzC) ≤ 2ε, 0 ≤ k < ni. Therefore dK(f̂kω, f̂kẑC) ≤ 2ε+ 2ε

K +...+ ρ
Ks ≤

5ε, 0 ≤ k < ni (if K > 2). Thus we showed that ω̂ ∈ Bf̂ (ẑC , 5ε, ni) for some C ∈ Γi.
This implies that Λ̂ = ∪

C∈Γ
Bf̂ (ẑC , 5ε, ni).



434 EUGEN MIHAILESCU

But we denoted by F the set of the prehistories ẑC , C ∈ Γ, so we obtain that F
spans Λ̂.

Next, let us estimate eSni
(tφu)(ẑC). First of all, if ξ̂C is the unique prehistory of ξC

given by the fact that ξC belongs to a local unstable manifold which intersects Ui, we
see that there exists a constant γ > 0 such that eSni

(φu)(ξ̂C) ≤ γdiamUi, i ∈ I. From
the fact that zC ∈ W s

ε/2(ξ
C), we will get then that dK(ẑC , ξ̂C) < c, dK(f̂ ẑC , f̂ ξ̂C) ≤

cλs + c
K , ..., dK(f̂ni−1ξ̂C , f̂ni−1ẑC) ≤ c(λni−1

s + λ
ni−2
s

K + ... + 1
Kni−1 ) + ρ

Kni
, where

λs := sup
Λ
|Dfs|. But this implies that there exist constants c > 0, γ1 ∈ (0, 1) such

that dK(f̂kẑC , f̂k ξ̂C) < cγk
1 , 0 ≤ k < ni.

Now let us apply the Hölder continuity of φu from Theorem 2. So, we get
|φu(f̂kẑC) − φu(f̂k ξ̂C)| ≤ C1γ

k
2 , 0 ≤ k < ni, where C1 > 0 and γ2 ∈ (0, 1). Thus

|Sni(tφ
u)(ẑC) − Sni(tφ

u)(ξ̂C)| ≤ C1(1 + γ2 + ... + γni−1
2 ) < L1, for some positive

constant L1. Therefore there exists a constant L2 > 0 such that
1
L2

≤ eSni
(tφu)(ẑC)−Sni

(tφu)(ξ̂C) ≤ L2 (7)

Let us come back now to the sum
∑

C∈Γ

eSni
(tφu)(ẑC) and use (7) and the fact that

eSni
(φu)(ξ̂C) ≤ γdiamUi, i ∈ I. Recall that Γ = ∪

i∈I,j∈Ji

Γij , and |Ji| ≤ N(s), |Γij | ≤
ds, i ∈ I, j ∈ Ji.

So, we have
∑

C∈Γ

eSni
(tφu)(ẑC) ≤ L3d

sN(s)
∑
i∈I

(diamUi)t, for some positive con-

stant L3. Recall also that s depends only on ε and that N(s) depends only on s.
Therefore, if in the begining we take α̃ < 1

L3·dsN(s) we get
∑

C∈Γi,i∈I

eSni
(tφu)(ẑC) < 1

Recalling also that we showed that F = {ẑC , C ∈ Γ} spans Λ̂ in the sense that
Λ̂ ⊂ ∪

i∈I
∪

C∈Γi

Bf̂ (ẑC , 5ε, ni), we can conclude that Pε(tφu) ≤ 0, hence:

Pf̂ (tφu) ≤ 0

Thus t ≥ tu. But t has been chosen arbitrarily larger than δu(x̂), thus δu(x̂) ≥ tu.
Corroborating with the other inequality proved earlier, we obtain finally that tu =
δu(x̂).

In particular we notice that δu(x̂; β) does not depend on β (small), nor on x̂ ∈ Λ̂,
so it can be denoted simply by δu, the unstable dimension of Λ.

As said above, the stable dimension cannot be written similarly using a Bowen
type equation, and δs(x) is in general only strictly smaller than the zero ts of the
pressure function associated to the stable potential φs (see [7] for further details).
However in the estimates of δs(x), a very important role is played by the inverse
pressures P− and P−, as was observed in [9], [10], [12].

3. Construction and properties of unstable manifolds, α-Hölder continu-
ity of Φg along unstable manifolds, estimates for the exponent α in the
holomorphic case. We will now prove that if g is a perturbation of an Axiom A
noninvertible map f , then the unstable manifolds of g depend Lipschitz continu-
ously on g. This proof will also help us in proving a theorem of uniform α-Hölder
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continuity of the conjugating map Φg along the unstable set V +
β (x̂), x̂ ∈ Λ̂. In the

special case of holomorphic maps on P2, the method of proof will give a new precise
estimate for α. As a remark, the unstable manifolds depend smoothly on a (in a
certain sense), when (ga)a depends smoothly on the parameter a.

First, we need to define the notions of continuous family of submanifolds
and Lipschitz family of diffeomorphisms.

Definition 11. (a) Let (X, d) be a compact metric space and M a smooth Rie-
mannian manifold. Assume that to each x ∈ X we can associate a submanifold Fx

of M in such a way that this correspondence is continuous, i.e for each ε > 0, there
exists η(ε) > 0 such that if x, y ∈ X, d(x, y) < η(ε), then d(Fx,Fy) < ε, where
by d(Fx,Fy) we understand the distance in the Hausdorff metric between the re-
spective sets. Then we call F = {Fx}x a continuous family of submanifolds
indexed by X.

(b) Let now E be a metric space and Y ⊂ E an open subset of E such that to
each g ∈ Y we can associate a continuous family of submanifolds of M indexed by
X, denoted G(g). Assume that we fix an f ∈ Y and denote G(f) by F . Assume
also that for each g ∈ Y , there exists a family of smooth diffeomorphisms Ψg :=
{Ψg

x}x∈X , Ψg
x : Fx → G(g)x, x ∈ X (we assume that the diffeomorphisms Ψg

x are in
the same category Cr, r ≥ 2, as M and f). Then we say that a family (Ψg)g∈Y is a
Lipschitz family of diffeomorphisms if there exists a positive constant C such
that d(Ψg

x, Ψκ
x) ≤ C · dC0(κ, g), g, κ ∈ Y , and x ∈ X. (the distance d(Ψg

x, Ψκ
x) is the

usual supremum distance in C0(Fx,M) ).

We are ready to state now a theorem about perturbations of f and the cor-
responding conjugacy maps Φg, giving also a Lipschitz family of diffeomorphisms
between local unstable manifolds. The Lipschitz continuity of Φg (in g) and the
existence of a Lipschitz family of unstable diffeomorphisms are new facts in the case
of endomorphisms (but items 1)-3) are known, for example [18]).

Theorem 4. Let M be a compact Riemannian manifold, and f : M → M a
smooth map on M (M and f are of the same order Cr, r ≥ 2). Let also Λ be a
compact subset of M such that f(Λ) = Λ, f |Λ is transitive and f is hyperbolic (as
an endomorphism) and has local product structure over Λ. Assume also that g is
a perturbation of f , i.e g belongs to a small neighbourhood U of f in C1(M, M).
Then:

1) There exists a continuous map Φ : U → C0(Λ̂,M) such that Φ(g) ◦ f̂ =
g ◦ Φ(g), g ∈ U and Φ(f) = πf , where πf : Λ̂ → Λ is the canonical projection

2) If g ∈ U and Φ is the map from 1), let us denote by Φg := Φ(g). Let Λg :=
Φg(Λ̂); then g(Λg) = Λg and g is hyperbolic over Λg.

3) Φg can be lifted to a homeomorphism Φ̂g : Λ̂ → Λ̂g, which conjugates the
actions of f̂ and ĝ on Λ̂, Λ̂g respectively (Λ̂g represents the natural extension
of Λg with respect to g).

4) There is a constant C > 0 such that dC0(Λ̂,M)(Φg, Φκ) ≤ CdC0(M,M)(g, κ),
g, κ ∈ U .

5) There exists β > 0 such that for every g ∈ U , there are local unstable (sta-
ble) manifolds of size β at all points x̂ ∈ Λ̂g (x ∈ Λg respectively), and
there exists also a Lipschitz family of diffeomorphisms {Θu

x̂(g) : Wu
β (f, x̂) →

Wu
β (g, Φ̂g(x̂))}x̂∈Λ̂ (resp. {Θs

x̂(g) : W s
β(f, x) → W s

β(g, πgΦ̂g(x̂))}x̂∈Λ̂) such
that Θu

x̂(g)(x) = Φg(x̂) and Θs
x̂(g)(x) = Φg(x̂), x̂ ∈ Λ̂.
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Proof. The proof of item 1)-3) follows the general ideas from [20] and [4] adapted
to the natural extension Λ̂ and to the hyperbolicity of f as an endomorphism (i.e
where the unstable manifolds depend on the entire prehistory of the base point). It
is good to recall it here since it will be used in the proof of 4) and 5).

Proof of 1), 2), 3): Let us consider C(Λ̂,M) be the metric space of continuous
maps from Λ̂ to M , with the sup metric. For each g ∈ U define the map Lg :
C(Λ̂,M) → C(Λ̂,M),Lg(h) := g◦h◦f̂−1. Notice that Lf (h) = f◦h◦f̂−1 and that Lf

has a hyperbolic fixed point at πf . We can apply now the procedures from Theorem
7.8 of [20]. The idea is the following: first linearize C(Λ̂,M) by replacing it with the
space of continuous sections Γ(Λ̂, TΛ̂M), where TΛ̂M := {(x̂, v), x̂ ∈ Λ̂, v ∈ TxM}
is the tangent bundle over Λ̂; this replacement can be done using the exponential
maps. One then replaces Lg by its expression in exponential coordinates L̄g :
Γr(Λ̂, TΛ̂M) → Γ(Λ̂, TΛ̂M), where for small r > 0, Γr(Λ̂, TΛ̂M) denotes the bundle
of balls of radius r in Γ(Λ̂, TΛ̂M). Hence L̄g(σ)(x̂) = exp−1

x (g(expx−1σ(f̂−1x̂))),
where x̂ = (x, x−1, ...). Next we show easily that L̄g is Lipschitz close to a hyperbolic
linear operator F on the section space Γ(Λ̂, TΛ̂M), i.e that for a small ε > 0,
Lip(L̄g − F ) < ε. It can be shown that L̄g is a Lipschitz perturbation of its
derivative F at the zero section (Lip(F ) denotes in general the smallest Lipschitz
constant of a Lipschitz map F ). In this case, Proposition 7.7 of [20] shows that
L̄g has a fixed point Zg near the zero section. But this is equivalent to Lg having
a fixed point Φg ∈ C(Λ̂,M), close to the canonical projection πf : Λ̂ → Λ. This
implies that Φg ◦ f̂ = g ◦ Φg.

Next, we define the lifting Φ̂g of Φg. Let x̂ ∈ Λ̂ and y := Φg(x̂). Let also y−1 :=
Φg(f̂−1x̂); we see that g(y−1) = gΦg(f̂−1x̂) = Φg ◦ f̂(f̂−1x̂)Φg(x̂) = y; similarly we
can define y−i := Φg(f̂−i), i ≥ 1. One can prove as above that ŷ := (y, y−1, y−2, ...)
is indeed a prehistory of y in Λ̂g. Then it follows easily that Φ̂g is a homeomorphism
of Λ̂g. The fact that the hyperbolic structure of f on Λ̂ transfers to a hyperbolic
structure of g on Λ̂g is proved similarly as in Prop. 7.6 of [20]. This concludes the
proof of items 1), 2), 3).

Proof of 4): Let us estimate now d(Lg1 ,Lg2) for g1, g2 ∈ U . We know that
Lg1 ,Lg2 : C(Λ̂, M) → C(Λ̂,M), Lg1(h) = g1hf̂−1,Lg2(h) = g2hf̂−1; hence (Lg1 −
Lg2)(h) = (g1 − g2) ◦ hf̂−1. Thus we obtain sup

h∈C(Λ̂,M)

|Lg1 − Lg2 | ≤ d(g1, g2) since

M is a compact manifold.
Now, let us recall how the map L̄g was formed; we took χ the chart defined

on a neighborhood V of πf in C(Λ̂,M) given by χ : V → Γr′(Λ̂, TΛ̂M), χ(h)(x̂) =
exp−1

x h(x̂), x̂ ∈ Λ̂, where expx denotes the exponential map at x. This works since,
if h is close to πf , then h(x̂) is close to x, so we can apply the exponential map.
Then L̄g = χLgχ

−1. Thus d(L̄g1 , L̄g2) ≤ C1d(Lg1 ,Lg2) ≤ C1dC0(M,M)(g1, g2),
for some positive constant C1. But then from Proposition 7.7 of [20], we have
|Zg1 − Zg2 | ≤ C2d(g1, g2), g1, g2 ∈ U . So, if Zg ∈ Γr(Λ̂, TΛ̂M), we will define
Φg(x̂) := expxZg(x̂), x̂ ∈ Λ̂.

Since exp is a local diffeomorphism we also get from above that there exists a
constant C > 0 such that d(Φg1 ,Φg2) ≤ Cd(g1, g2).

So we showed that the conjugating map Φg depends Lipschitz continuously on
g ∈ U .
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Proof of 5): We shall now prove the existence of a Lipschitz family of diffeomor-
phisms {Θu

x̂}x̂∈Λ̂ satisfying the conditions from the statement. In the proof of 1), 2),
3), we defined the map Lg : C(Λ̂,M) → C(Λ̂,M),Lg(h) = ghf̂−1, h ∈ C(Λ̂,M), and
we proved that it has a hyperbolic fixed point denoted by Φg, which is close to the
projection πf : Λ̂ → M ; we also denoted Λg := Φg(Λ̂). Take now Wu

g ⊂ Cε(Λ̂,M)
be a local unstable manifold of the fixed hyperbolic point Φg, where Cε(Λ̂,M) is
a neighbourhood of the canonical projection πf : Λ̂ → M . In the same way as
in Theorem 3.2 of [4], one can prove that Wu

g (ŷ) := {h(x̂), h ∈ Wu
g } is a local

unstable manifold corresponding to the prehistory ŷ = Φ̂g(x̂) ∈ Λ̂g. But from
the Unstable Manifold Theorem for a Hyperbolic Point of [4], it follows also that
Wu

g is the graph of an unstable function Gg : Cε(Eu
Λ̂
) → Cε(Es

Λ̂
), where ε > 0 is

small and Cε(Eu
Λ̂
) represents the bundle of balls of radius ε centered at the zero

section, inside the bundle of continuous sections of Eu
Λ̂
. Notice also that Cε(Λ̂,M)

can be identified with Cε(Eu
Λ̂
) × Cε(Es

Λ̂
) by exponential coordinates. We will re-

call how the unstable function Gg was obtained, from the general Unstable Mani-
fold Theorem for Banach spaces ([4]), as the unique fixed point of a graph trans-
form. Indeed, we defined earlier the map χ (giving the exponential chart) and
L̄g : Γε(Λ̂, TΛ̂M) → Γ(Λ̂, TΛ̂M), L̄g = χLgχ

−1. The map L̄g has an associated
graph transform Γg : M → M, with M := {H : Cε(Eu

Λ̂
) → Cε(Es

Λ̂
),H(0) =

0, and Lip(H) ≤ 1}, where 0 = zero section.
In the sequel we will find an expression for Γg starting from the decomposition

of L̄g as T̃1 × T̃2, where T̃1 : Cε(TΛ̂M) → Cε(Eu
Λ̂
) and T̃2 : Cε(TΛ̂M) → Cε(Es

Λ̂
).

Now, if H ∈ M, define S1(H) := T̃1 ◦ (id,H), where id denotes here the identity
of the bundle Cε(Eu

Λ̂
) and S2(H) := T̃2 ◦ (id,H). Because Dg is expanding in the

unstable direction, we have that S1(H) is an injective map Cε(Eu
Λ̂
) → C(Eu

Λ̂
) and

S2(H) : Cε(Eu
Λ̂
) → C(Es

Λ̂
).Then, it can be shown that S1(H)(Cε(Eu

Λ̂
)) ⊃ Cε(Eu

Λ̂
), and

that S1(H) is a Lipschitz homeomorphism onto its image, with Lipschitz inverse.

Therefore
(
S1(H)|Cε(Eu

Λ̂
)

)−1

takes values into Cε(Eu
Λ̂
); hence it makes sense to apply

S2(H) to
(
S1(H)|Cε(Eu

Λ̂
)

)−1

, thus obtaining that:

Γg(H) = S2(H) ◦
(
S1(H)|Cε(Eu

Λ̂
)

)−1

Since the Lipschitz constant of S2(H) is easily seen to be strictly less than 1, we
conclude that Γg(H) ∈ M, so Γg is a well defined map M→M. Using the above
expression, it can be proved also that the graph transform Γg is a contraction.
Thus Γg has a unique fixed point Gg : Cε(Eu

Λ̂
) → Cε(Es

Λ̂
). The graph of Gg gives, by

exponential coordinates, the local unstable set Wg of Φg.
Let us prove next that this unstable function Gg depends Lipschitz continuously

on g, i.e that there exists a positive constant K0 such that

sup
σ∈Cε(Eu

Λ̂
),x̂∈Λ̂

|Gg(σ)(x̂)− Gκ(σ)(x̂)| ≤ K0|g − κ|, ∀g, κ ∈ U

We will prove this property in the general setting, i.e for an arbitrary map h :
E(r) → E, with E a Banach space and E(r) the closed ball of radius r centered at
0 in E. We assume that there exists a linear operator T = T1 × T2 : E → E,
Ti : Ei → Ei, i = 1, 2 and T is a hyperbolic operator, expanding on E1 and
contracting on E2; assume also that Lip(h − T ) < ε < 1, |h(0)| < δ < 1, for
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some small constants ε, δ. Let us define hi := pi ◦ h, i = 1, 2, with pi the pro-
jection from E to Ei and M := {H : E1(r) → E2(r),H(0) = 0,Lip(H) ≤ 1}.
Then let Sh

1 (H) := h1 ◦ (id, H), Sh
2 (H) = h2 ◦ (id,H); using the definitions, it

can be shown that Sh
1 (H)(E1(r)) ⊃ E1(r) and that the Lipschitz constant of

the map
(
Sh

1 (H)|E1(r)

)−1 is strictly less than 1. So, one can define the map
Γh(H) := Sh

2 (H) ◦ (
Sh

1 (H)|E1(r)

)−1. It can be checked that it is a contraction,
hence from the Contraction Principle it has a unique fixed point Gh ∈ M. We
prove now that Gh depends Lipschitz continuously on h. Indeed since Gh gives the
fixed point for Γh, we know that |Gκ−Gh| = |Γκ(Gκ)−Γh(Gh)| ≤ |Γκ(Gκ)−Γκ(Gh)|+
|Γκ(Gh)−Γh(Gh)| ≤ α′|Gκ−Gh|+ |Γκ(Gh)−Γh(Gh)|, with α′ ∈ (0, 1) the contraction
constant of Γκ. But from definition, Γκ(H) = Sκ

2 (H) ◦ (
Sκ

1 (H)|E1(r)

)−1 and simi-
larly for Γh(H). In the sequel we will write for simplicity Sκ

1 (H)−1 (and Sh
1 (H)−1)

instead of
(
Sκ

1 (H)|E1(r)

)−1 (respectively
(
Sh

1 (H)|E1(r)

)−1). So |Γκ(H)− Γh(H)| ≤
|Sκ

2 (H) ◦Sκ
1 (H)−1−Sκ

2 (H) ◦Sh
1 (H)−1|+ |Sκ

2 (H) ◦Sh
1 (H)−1−Sh

2 (H) ◦Sh
1 (H)−1| ≤

Lip(Sκ
2 (H))|Sκ

1 (H)−1 − Sh
1 (H)−1| + |Sκ

2 (H) − Sh
2 (H)|, and Lip(Sκ

2 (H)) < 1. But
recall that Sκ

2 (H) = κ2 ◦ (id,H), where here id denotes the identity of E1(r). Hence
|Sκ

2 (H) − Sh
2 (H)| = |κ2 ◦ (id,H) − h2 ◦ (id,H)| ≤ |κ − h|. Also, |Sκ

1 (H)−1 −
Sh

1 (H)−1| = |Sκ
1 (H)−1 ◦ Sh

1 (H) ◦ Sh
1 (H)−1 − Sκ

1 (H)−1 ◦ Sκ
1 (H) ◦ Sh

1 (H)−1| ≤
Lip(Sκ

1 (H)−1)|Sh
1 (H) − Sκ

1 (H)| ≤ C0|κ − h|, for some constant C0 > 0 and any
h, κ. In conclusion we proved the general statement that the fixed point Gh of Γh

depends Lipschitz continuously on h.
Hence, also in our case of the unstable function Gg, there exists a positive constant

K0 such that |Gg − Gκ| ≤ K0 · |κ− g|, ∀g, κ ∈ U .
In our case, the unstable function Gg gives the graph (modulo exponential coor-

dinates) of the unstable set Wu
g , ∀g ∈ U ; recall also that Wu

f ,Wu
g ⊂ Cε(Λ̂,M) and

we can assume that these are local unstable sets of size β > 0 (Wu
f is the local

unstable set of size β for the projection πf and Wu
g is the local unstable set of size

β of the conjugacy map Φg). We will define then a map Θu(g) : Wu
f →Wu

g in the
following fashion:

Θu(g)(v,Gf (v)) := (v,Gg(v)), v ∈ Cε(Eu
Λ̂
)

Now, for a prehistory x̂ ∈ Λ̂, let ŷ := Φ̂g(x̂) ∈ Λ̂g. Recall also that Wu
β (f, x̂) =

{w(x̂), w ∈ Wu
f } and Wu

β (g, ŷ) = {w′(ŷ), w′ ∈ Wu
g }. Then define a map between

local unstable manifolds of f and g by:

Θu
x̂(g) : Wu

β (f, x̂) → Wu
β (g, ŷ), Θu

x̂(g)(w(x̂)) := Θu(g)(w)(ŷ), w ∈ Wu
f

It is proved in [4] that Gg is of order C1 if g is C1, and g is C1-close to f . Hence
Θu

x̂(g) is also a C1 diffeomorphism. Notice also that from the definitions it fol-
lows that Θu

x̂(f) = the identity on Wu
β (f, x̂). We showed before that there exists

K0 > 0 such that |Gg − Gκ| ≤ K0|g − κ|, g, κ ∈ U , hence |(v,Gg(v)) − (v,Gκ(v))| ≤
K0|κ− g|, v ∈ Cε(Eu

Λ̂
). Thus by passing through exponential coordinates we obtain

|Θu
x̂(κ)(ξ) − Θu

x̂(g)(ξ)| ≤ K0d(κ, g), ξ ∈ Wu
β (f, x̂), x̂ ∈ Λ̂. This shows that Θu

x̂(g)
depends Lipschitz continuously on g, hence the family {Θu

x̂(g)}x̂∈Λ̂ is a Lipschitz
family of diffeomorphisms. Similarly it can be shown that (Θu

x̂(g))−1 depends Lip-
schitz continuously on g ∈ U .

Let us also show that Θu
x̂(g)(x)Φg(x̂) = y, x̂ ∈ Λ̂. First of all, Wu

f is the local
unstable set of the canonical projection πf : Λ̂ → Λ. So Θu

x̂(f)(x) = Θu(f)(πf )(x̂).
Now, for g ∈ U , we have Gg the unstable function, giving the graph of the local
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unstable set Wu
g of the fixed hyperbolic point Φg. So Φg = (0,Gg(0)), where

Φg ∈ Cε(Λ̂,M), 0 is the zero section over Λ̂ of the bundle Cε(Eu
Λ̂
), and where

we identified again Cε(Λ̂,M) with Cε(Eu
Λ̂
) × Cε(Es

Λ̂
) with the help of exponential

coordinates. But Φf = πf = (0,Gf (0)), so Φg = (0,Gg(0)) = Θu(g)(0,Gf (0)), i.e
Φg = Θu(g)(πf ). This implies that Θu

x̂(g)(x) = Θu(g)(πf )(x̂)Φg(x̂) = y, x̂ ∈ Λ̂.
Similarly, the conclusion of 5) can also be proved in the case of families of local

stable manifolds.

Remark 2: Assume that A is a non-empty open set in Rm. From the previous
proof it follows that if (ga)a∈A is a family of perturbations of f (in Cr(M,M), r ≥ 1),
which depend smoothly (Cr) on the parameter a, then the unstable manifolds
of ga depend smoothly (Cr) on a. This means that for any x̂ ∈ Λ̂, the map
(a, z) → Θu

x̂(ga)(z) is a Cr map from A × Wu
β (f, x̂) to M , and its derivatives de-

pend continuously on x̂ ∈ Λ̂. This is proved in the same way as before, using
also the Implicit Function Theorem to show that the fixed point of Γga

depends
smoothly on a ∈ A. Then we use the maps Θu(ga) to define the diffeomorphisms
Θu

x̂(ga) : Wu
β (f, x̂) → Wu

β (ga, Φ̂ga(x̂)). ¤

Corollary 2. Suppose that M is a compact complex manifold and f : M → M is
a holomorphic Axiom A map, and Λ is one of its basic sets of saddle type. Let also
another holomorphic map g on M , which belongs to a close neighbourhood U of f
inside C0(M, M).

(a) Then g has a basic set Λg on which it is hyperbolic and there exists a sur-
jective map Φg : Λ̂ → Λg, commuting with f̂ and g. The maps f and g have
systems of local unstable/stable manifolds Wu

β (f, x̂),W s
β(f, x), x̂ ∈ Λ̂, respectively

Wu
β (g, ŷ),W s

β(g, y), ŷ ∈ Λ̂g, for some β > 0; these manifolds are embedded complex
disks, with TxWu

β (f, x̂) = Eu
x̂ , TxW s

β(f, x) = Es
x, x̂ ∈ Λ̂ and similarly for g.

(b) There exists a Lipschitz family of biholomorphic maps Θu
x̂(g) : Wu

β (f, x̂) →
Wu

β (g, Φ̂g(x̂)), x̂ ∈ Λ̂, and Θs
x̂(g) : W s

β(f, x) → W s
β(g, Φg(x̂)), x̂ ∈ Λ̂ such that

Θu
x̂(g)(x) = Φg(x̂), Θs

x̂(g)(x) = Φg(x̂), x̂ ∈ Λ̂. Moreover there exists a constant
K0 > 0 satisfying:
|Θu

x̂(g)(ξ)−Θu
x̂(κ)(ξ)| ≤ K0|κ− g|, |Θs

x̂(g)(ξ′)−Θs
x̂(κ)(ξ′)| ≤ K0|κ− g|, ∀g, κ ∈

U , ξ ∈ Wu
β (f, x̂), ξ′ ∈ W s

β(f, x).
Similar inequalities are also true for (Θu

x̂(g))−1, (Θs
x̂(g))−1.

Proof. The proof follows along the same lines as in the previous Theorem. Now
we have to work with complex Banach spaces and with bundle maps which are
holomorphic on fibers. One constructs the diffeomorphisms Θu

x̂(g) as in the previous
Theorem and shows that they are now bi-holomorphic based on the fact that Gg is
holomorphic. The Lipschitz continuity of Θu

x̂(g) follows directly from the Theorem.

We are ready now to prove that the conjugacy map Φg is Hölder continuous
on certain subsets of unstable manifolds, when g is close to f , thus extending a
result of Palis and Viana ([14]). In the case of holomorphic maps on P2, we can
actually estimate the Hölder exponent in terms of the distance d(f, g), between f
and g, in the uniform convergence metric. For this last estimate the holomorphicity
hypothesis is essential. In the sequel, a map Ψ : X → Y , between two metric spaces
(X, d) and (Y, d′), is called (C,α)-Hölder continuous if there exists some δ0 > 0
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and constants C > 0, α > 0 such that d′(Ψ(x), Ψ(y)) ≤ Cd(x, y)α, x, y ∈ X with
d(x, y) < δ0.

Theorem 5. Let f : P2 → P2 be an Axiom A holomorphic map on the complex
projective space P2, and Λ a basic set of saddle type for f . Let g : P2 → P2 be
another holomorphic map such that we can define families of local unstable manifolds
for f and g of size β. Let also η = η(g) := d

B(Λ,2β)
(f, g) < ε for some small

ε > 0, where d
B(Λ,2β)

(f, g) denotes the distance between f, g in the sup metric

on the neighbourhood B(Λ, 2β) of Λ. Then there exist C > 0, and α = α(g) ∈
(0, 1) such that for any x̂ ∈ Λ̂, the restriction of Φg to V +

β (f̂ , x̂) induces a map
on Wu

β (f, x̂) ∩Λ, denoted by Φg|W u
β (f,x̂)∩Λ, which is (C,α)-Hölder continuous ; the

inverse (Φg|W u
β (f,x̂)∩Λ)−1 is also (C, α)- Hölder continuous.

Moreover we can take above α = α(g) = log(λu−ϑη)
log λu

, where ϑ is a fixed positive
constant, independent of g or η, and λu := inf

x̂∈Λ̂
{|Dfu(ẑ)|, z ∈ Wu

β (f, x̂)}, and ẑ is

the unique prehistory of z, β-shadowed by x̂.

Proof. If y is an arbitrary point in Wu
β (f, x̂) ∩ Λ, for some x̂ ∈ Λ̂, then there exists

a unique prehistory ŷ such that d(y−i, x−i) < β, i ≥ 0, where ŷ = (y, y−1, ...) and
x̂ = (x, x−1, ...). Hence d(y−i, Λ) < β, i ≥ 0, and also fk(y) ∈ Λ, k ≥ 0. So,
from the local maximality of Λ ([18]) it follows that, if β is small enough, then
y−i ∈ Λ, i ≥ 0. So for this particular prehistory we have ŷ ∈ Λ̂. Thus we can define
Φg|W u

β (f,x̂)∩Λ(y) as being Φg(ŷ), which is a point in Λg. It also follows from Theorem

4 that Φg(ŷ) ∈ Wu
β′(g, Φ̂g(x̂)), for some small β′. Let now λu := inf

x̂∈Λ̂
{|Dfu(ẑ)|, z ∈

Wu
β (f, x̂), and ẑ is the unique prehistory of z, β − shadowed by x̂}.
Assume that y, z are points in a local unstable manifold Wu

β (f, x̂), x̂ ∈ Λ̂; then
there exists a positive constant χ independent of x̂ ∈ Λ̂ such that

|Dfu(ŷ)−Dfu(ẑ)| = |D(f |W u
β (f,x̂))(y)−D(f |W u

β (f,x̂(z)| ≤ χdu(y, z), (8)

where du(·, ·) represents the metric induced by the metric from P2 on Wu
β (f, x̂).

This is true by applying the Mean Value Inequality on the complex disk Wu
β (f, x̂)

and recalling that Wu
β (f, x̂) varies continuously with x̂ ∈ Λ̂.

Assume that the distance η between f and g is small. From Corollary 2 and
Theorem 4 item 4), it follows that there exists a positive constant χ1 > K0 such
that:

du(y, Θu
x̂(g)(y)) ≤ χ1η, and du(y, (Θu

x̂(g))−1Φg(ŷ)) ≤ χ1η, y ∈ Wu
β (f, x̂), x̂ ∈ Λ̂ (9)

The last inequality in (9) follows from Corollary 2 and the inequality d(y, Φg(ŷ)) =
d(Φg(ŷ), πf (ŷ)) ≤ C · d(f, g) = Cη (Theorem 4, 4) ).

Let us recall now that the maps f, g and Θu
x̂(g), (Θu

x̂(g))−1 are all holomorphic,
for every x̂ ∈ Λ̂. Thus we can apply Cauchy’s inequalities on the complex disks
Wu

β (f, x̂) in order to bound the difference between derivatives by the difference
between the original maps. By using also inequalities (8) and (9) we will then
obtain:

|D((Θu
f̂x̂

(g))−1 ◦ g ◦Θu
x̂(g))(y)−Dfu(y)| ≤ χ2η,∀y ∈ Wu

β (f, x̂), x̂ ∈ Λ̂, (10)

where χ2 > 0 is a constant independent of y, g, x̂.
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Let two points y, z ∈ Wu
β (f, x̂), with 0 < du(y, z) < δ for some fixed small

δ > 0. Consider N to be the largest integer such that d(fky, fkz) < δ, k ≤ N .
Then du(fN+1y, fN+1z) > δ. From the conformality of f on Wu

β (f, x̂) and the
Laminated Distortion Lemma on unstable manifolds, we get that

du(fny, fnz) = du(y, z) · n−1

Π
j=0

|Dfu(f jξ)| ≤ M1du(y, z) · n−1

Π
j=0

|Dfu(f jy)|, (11)

where ξ is a point inside the ball Bu(y, 2du(y, z)) in the metric du, and M1 is a
positive universal constant. Using (8), (9), (10), we can assume that δ, ε are of the
form υ1 ·η, respectively υ2 ·η, for some constants υ1, υ2 > 0 (independent of η), and
that they satisfy:

i) if du(y, z) ≤ 4δ ⇒ |Dfu(y)−Dfu(z)| ≤ ε, y, z ∈ Wu
β (f, x̂);

ii) du(Θu
x̂(g)−1Φg(ŷ), y) ≤ δ/2, y ∈ Wu

β (f, x̂) ∩ Λ;
iii) |D(Θu

f̂x̂
(g)−1 ◦ g ◦Θu

x̂(g))(y)−Dfu(y)| ≤ ε, y ∈ Wu
β (f, x̂),

for all x̂ ∈ Λ̂ and g holomorphic on P2, g in the neighbourhood U of f .
Let us denote now Θu

f̂nx̂
(g) by Θn for a given map g inside U , n > 0 integer, and

x̂ ∈ Λ̂. Then, from ii), and the way in which y, z, N were chosen above, we get that

du(Θ−1
n Φg(f̂nŷ), Θ−1

n Φg(f̂nẑ)) ≤ 2δ, 0 ≤ n ≤ N (12)

But on the other hand, (Θ−1
n ◦ g ◦ Θn−1) ◦ ... ◦ (Θ−1

2 ◦ g ◦ Θ1)(Θ−1
1 ◦ g ◦ Φg) =

Θ−1
n ◦ gn ◦Φg = Θ−1

n ◦Φg ◦ f̂n. So, if y, z ∈ Wu
β (f, x̂)∩Λ, and 0 ≤ n ≤ N , we have:

du(Θ−1
n Φg(f̂nŷ),Θ−1

n Φg(f̂nẑ))

= du(Θu
x̂(g)−1Φg(ŷ), Θu

x̂(g)−1Φg(ẑ)) · n−1

Π
j=0

|D(Θ−1
j+1 ◦ g ◦Θj)(ξj)|,

where ξj ∈ Bu(Θ−1
j Φg(ŷ), du(Θ−1

j Φg(ŷ), Θ−1
j Φg(ẑ))), 0 ≤ j ≤ n− 1.

Hence using the last formula, together with (11) and (12), it follows that

du(Θu
x̂(g)−1Φg(ŷ),Θu

x̂(g)−1Φg(ẑ)) · N−1

Π
j=0

|D(Θ−1
j+1 ◦ g ◦Θj)(ξj)|

≤ 2δ ≤ 2δα ≤ 2 · du(y, z)α · N

Π
j=0

|Dfu(f jy)|α,

(13)

where α = α(g) ∈ (0, 1) is chosen such that λu − 2ελα
u (we recall that ε = υ2 · η).

But now du(ξj , f
jy) < 2δ, so |D(Θ−1

j+1◦g◦Θj)(ξj)| ≥ |Dfu(ξj)|−ε ≥ |Dfu(f jy)|−
2ε ≥ |Dfu(f jy)|α. Indeed, if we define the real map h : [λu,∞) → R, h(x) = xα−x,
then h′(x) = αxα−1 − 1, and since α ∈ (0, 1) and x ≥ λu > 1, we get xα−1 < 1,
hence h is strictly decreasing; so, if α has been chosen such that λu− 2ε = λα

u , then
|Dfu(z)|α − |Dfu(z)| ≤ λα

u − λu = −2ε, z ∈ Wu
β (ζ̂), ζ̂ ∈ Λ̂.

Therefore, from (13), we obtain:

du(Θu
x̂(g)−1Φg(ŷ), Θu

x̂(g)−1Φg(ẑ)) ≤ 2 · |Dfu(fNy)|α · du(y, z)α

Notice however that y, z ∈ Wu
β (f, x̂), and that for their prehistories ŷ, ẑ shadowed

by x̂, we get Φg(ŷ), Φg(ẑ) ∈ Wu
β (g, Φ̂g(x̂)). Now one can apply the bi-Lipschitz

continuity of the biholomorphic map Θu
x̂(g) : Wu

β (f, x̂) → Wu
β (g, Φ̂g(x̂)). Hence it

follows that there exists a positive constant C (independent of g and x̂ ∈ Λ̂) such
that

du(Φg(ŷ), Φg(ẑ)) ≤ C · du(y, z)α,
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for all y, z ∈ Wu
β (f, x̂), x̂ ∈ Λ̂, where the prehistories ŷ, ẑ are the unique prehistories

of y, z, β-shadowed by x̂.
Lastly, notice that α was chosen such that λu − 2ε = λα

u , where ε = υ2 · η; hence
log(λu − 2υ2 · η) = α · log λu. Thus we obtain the formula for α,

α =
log(λu − ϑ · η)

log λu
,

where ϑ := 2υ2 is a positive constant independent of g ∈ U , and η denotes the
distance in the sup metric between f and g on a neighbourhood of Λ.

In the case of holomorphic Axiom A endomorphisms, we found therefore an
estimate for the Hölder exponent α; it was proved using the fact that {Θu

x̂(g), x̂ ∈
Λ̂, g ∈ U} is a Lipschitz family of biholomorphic maps. The estimate for α is not
true without the holomorphicity condition. Using the previous Theorem, it is easy
to prove now the following

Corollary 3. In the setting of Theorem 5, denote by δu(g) := HD(Wu
β (g, x̂g) ∩

Λg), x̂g ∈ Λ̂g. Then if g is close enough to f , we have

α(g) · δu(f) ≤ δu(g) ≤ 1
α(g)

· δu(f),

where α(g) = log(λu−ϑ·d(f,g))
log λu

and ϑ > 0 is a constant independent of g. In particular
δu(g) → δu(f) when g → f .

4. Real analyticity of the unstable dimension and existence of Gibbs
states for noninvertible maps. Differences from the case of diffeomor-
phisms. In the one dimensional case, Ruelle [17] showed that the Hausdorff di-
mension of the Julia sets of hyperbolic rational maps, depends real analytically on
parameters. As explained in [9], Mihailescu and Urbanski have found examples
that prove that the Hausdorff dimension of the intersection between local stable
manifolds and basic sets (called stable dimension) does not vary continuously in
the case of rational maps on P2, even if the parameters vary real analytically. In
the sequel we will prove that, by contrast, the unstable dimension varies real an-
alytically when the parameters vary real analytically. As proved in Section 2, the
unstable dimension δu(β; x̂) does not depend either on β > 0 (small), nor on x̂ ∈ Λ̂.

We will need to use the following fact:

Lemma 2. Let M be a compact complex manifold and f : M → M a holomorphic
map satisfying Axiom A; let Λ be one of its basic sets of saddle type. Consider
now g : M → M another holomorphic map which is C0-close to f on Λ, i.e g ∈ U ,
where U is a neighbourhood of f in the sup metric on a neighbourhood B(Λ, 2β).
Denote by Φg : Λ̂ → Λg the conjugacy map given by Theorem 4. Then there exists
γ′(g) ∈ (0, 1) such that the lifting Φ̂g : Λ̂ → Λ̂g is γ′(g)-Hölder continuous for
certain metrics dK on Λ̂, Λ̂g. The exponent γ′(g) can be obtained as min{α(g), γ}
where α(g) is given in Theorem 5, and γ ∈ (0, 1) such that Kγ ·(sup

Λ
|Dfs|+ 1

K ) < 1.

In particular Φg : Λ̂ → Λg is γ′(g)-Hölder continuous, for any g ∈ U .

Let us make the observation that, if both f and g are holomorphic, it is enough
to have g in U in order to prove that also the derivative in the stable directions of g,
Dgs, is close to Dfs. (use the Cauchy formulas for the derivative of a holomorphic
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function and the fact that the stable directions of g are close to the stable directions
of f).

Proof. Take β > 0 as in Corollary 2, i.e such that one can form families of sta-
ble/unstable manifolds of size β for all g ∈ U . According to Proposition 19.1.1 from
[5], in order to prove that Φ̂g is Hölder continuous, it is enough to show that Φ̂g

is Hölder continuous on the stable/unstable sets V −
δ (f̂ , x̂), V +

δ (f̂ , x̂), of its Smale
space structure (0 < δ < β). But we know from Theorem 5 that Φg is Hölder when
restricted to Wu

β (f, x̂)∩Λ, x̂ ∈ Λ̂; using the bi-Lipschitz map between Wu
β (f, x̂)∩Λ

and V +
δ (f̂ , x̂) (for some appropiate δ), given by y → ŷ, (where ŷ ∈ Λ̂ is the unique

prehistory of y β-shadowed by x̂), we see that Φ̂g is Hölder on V +
δ (f̂ , x̂).

So, it remains only to show that Φ̂g is Hölder when restricted to the stable set
V −

δ (f̂ , x̂). To this end, consider prehistories ŷ, ẑ ∈ V −
δ (ĝ, x̂′), for some x̂′ ∈ Λ̂g.

Then dK(ĝŷ, ĝẑ) = d(gy, gz) + d(y,z)
K + d(y−1,z−1)

K2 + ... ≥ d(y,z)
K + d(y−1,z−1)

K2 + ... =
1
K dK(ŷ, ẑ), for g ∈ U ; hence

dK(ĝŷ, ĝẑ) ≥ 1
K

dK(ŷ, ẑ) (14)

Let us now take a positive number λ ∈ (0, 1) such that λ > |Dgs(y)|, for all
y ∈ W s

β(g, x′), x′ ∈ Λg, g ∈ U . If x̂′ ∈ Λ̂g, it follows that πg(V −
δ (f̂ , x̂′)) ⊂ W s

δ (g, x′).
Therefore using the above definition of λ, the Mean Value Inequality on stable disks,
and the fact that δ < β, we see that for any ŷ, ẑ ∈ V −

δ (ĝ, x̂′):

dK(ĝŷ, ĝẑ) ≤ λd(y, z) +
d(y, z)

K
+

d(y−1, z−1)
K2

+ ... ≤ (λ +
1
K

)dK(ŷ, ẑ) (15)

So, it is enough to assume that K > 1 is chosen so that Ξ := λ + 1
K < 1. K is

independent of g ∈ U .
Next, let us recall that, for every ε0 > 0, there exists δ0 > 0 such that, if

x̂, ŷ ∈ Λ̂ and dK(x̂, ŷ) < δ0, then dK(Φ̂g(x̂), Φ̂g(ŷ)) < ε0. Now, consider ŷ ∈
V −

δ (f̂ , x̂), ŷ 6= x̂. Let an integer n > 0 such that dK(f̂−nŷ, f̂−nx̂) ≤ KndK(x̂, ŷ) <
δ0 ≤ Kn+1dK(x̂, ŷ); the first inequality follows from (14). Therefore, from the way
ε0, δ0 were chosen, we would have dK(Φ̂g f̂

−nŷ, Φ̂g f̂
−nx̂) < ε0. Now we will use the

conjugacy property of Φ̂g: ĝ ◦ Φ̂g = Φ̂g ◦ f̂ , hence Φ̂g = ĝnΦ̂g f̂
−n, for all integers

n > 0. Thus Φ̂g f̂
−nŷ ∈ V −

δ′ (ĝ, Φ̂g f̂
−nx̂), for some δ′ > 0 small. This, and (15)

imply then the following:

dK(Φ̂gx̂, Φ̂g ŷ)

= dK(ĝnΦ̂g f̂
−nŷ, ĝnΦ̂g f̂

−nx̂) ≤ Ξn · ε0

= Ξn · ε0 · δγ
0

δγ
0

≤ Ξn · ε0

δγ
0

·Kγ(n+1)dK(x̂, ŷ)γ

= (Ξ ·Kγ)n · ε0K
γ

δγ
0

· dK(x̂, ŷ)γ

Supposing that γ ∈ (0, 1) is taken such that Kγ · Ξ < 1, we will get from the last
inequality that:

dK(Φ̂gx̂, Φ̂g ŷ) ≤ C ′ · dK(x̂, ŷ)γ ,

for all ŷ ∈ V −
δ (f̂ , x̂) and x̂ ∈ Λ̂, where C ′ is a positive constant. In conclusion

we showed that Φ̂g is (C ′, γ)-Hölder continuous on all stable sets V −
δ (f̂ , x̂), x̂ ∈ Λ̂.
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To recap, we chose the constants λ ∈ (0, 1),K > 1, γ ∈ (0, 1) and C ′ > 0 in the
following fashion:

1) λ > |Dgs(y)|, y ∈ W s
β(g, x′), x′ ∈ Λg;

2) K > 1 such that λ + 1
K < 1;

3) γ ∈ (0, 1) such that Kγ(λ + 1
K ) < 1;

4) C ′ = ε0·Kγ

δγ
0

.

So C ′ and γ depend on the constant K. We proved in Theorem 5 that Φ̂g is Hölder
continuous of exponent α on V +

δ (f̂ , x̂). Therefore, if γ′(g) denotes min{α(g), γ},
then the map Φ̂g is Hölder continuous of exponent γ′(g) on Λ̂, for g ∈ U .

Theorem 6. Let f be a holomorphic Axiom A map of degree D ≥ 2 on P2, and
Λ a basic set of saddle type for f . Let also (fa)a∈V be a family of perturbations of
f , where a is a p-multi-variable parameter, and fa depends real analytically on a.
Then if V ⊂ Rp is a small neighbourhood of 0, and f0 = f , it follows that fa has a
basic set Λa close to Λ, fa is hyperbolic on Λa, and the map a → δu

a is real-analytic,
where δu

a := HD(Wu
β (fa, x̂a) ∩ Λa), x̂a ∈ Λ̂a.

Proof. The number β above can be taken as in Corollary 2. Next, for a ∈ V , denote
by φu

a(ẑ) := − log |D(fa)u(ẑ)|, ẑ ∈ Λ̂a.
We use now the theorem of Hölder continuity for the unstable spaces with respect

to the prehistories , see [7]; this theorem implies also the Hölder continuity of φu
a

on Λ̂. From that theorem, it also follows that the Hölder exponent of φu
a can be

taken independent of a. Recall also the conclusion of Lemma 2 which says that for
all a ∈ V , the conjugacy Φ̂fa : Λ̂ → Λ̂a is γ′-Hölder continuous for some γ′ ∈ (0, 1).
Thus there exists θ ∈ (0, 1) such that for all a ∈ V , φu

a ◦ Φ̂fa ∈ Hθ(Λ̂,R).
We apply now a Theorem of [19], to get that the map ψ → Pf̂ (ψ) is real analytical

when considered as a map Hθ(Λ̂,R) → R. Using a similar proof as in [6], one can
also show that the map U → Hθ(Λ̂,R), fa → φu

a ◦ Φ̂fa is real analytical. Thus the
composition a → fa → φu

a ◦ Φ̂fa → Pf̂ (tφu
a ◦ Φ̂fa) is real analytical.

So, by using The Implicit Function Theorem we see that the unique zero tua of
the equation Pf̂ (tφu

a ◦ Φ̂fa) = 0, depends real analytically on a ∈ V . But recall from
Theorem 3 that δu

a := HD(Wu
β (fa, x̂a) ∩ Λa) is equal to tua . Therefore we obtained

the conclusion of the statement, i.e δu
a depends real analytically on a.

We show next the existence of a geometric measure on the intersection Wu
β (f, x̂)∩

Λ; this will imply the equality between δu
a and the corresponding upper (and lower)

box dimension. For the definition of a geometric measure we refer to [16]. We say
that a measure m on a metric space (X, d) is a geometric measure of exponent
t, if there exists a number t and a constant c > 1 with c−1rt ≤ m(B(x, r)) ≤
crt, x ∈ X, r > 0.

Theorem 7. In the setting of Theorem 3, and for β small, there exists a geometric
measure on Wu

β (f, x̂) ∩ Λ, of exponent tu, and the unstable dimension δu is equal
to the upper (and lower) box dimension of the intersection Wu

β (f, x̂) ∩ Λ.

Proof. It is enough to show the existence of a geometric measure of exponent tu on
each intersection Wu

β (f, x̂)∩Λ. Indeed, this would imply the equality HD(Wu
β (f, x̂)∩

Λ) = dim(Wu
β (f, x̂) ∩ Λ)dim(Wu

β (f, x̂) ∩ Λ), see for example [16]. Then we use the
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equality tu = HD(Wu
β (f, x̂) ∩ Λ), x̂ ∈ Λ̂. Moreover the geometric measure and the

tu-Hausdorff measure are equivalent, with bounded Radon-Nikodym derivatives.
Hence, let us prove now the existence of a geometric measure of exponent tu on

the intersection Wu
β (f, x̂) ∩ Λ. We will use Corollary 1. Since the unstable spaces

depend Hölder continuously on prehistories ([7]), it follows that the potential tu ·φu

is Hölder continuous on Λ̂, hence there exists a unique equilibrium measure for tu·φu,
denoted by µ̂u (in fact the measure depends also on x̂, but to simplify notation we do
not record this anymore, since x̂ is fixed in Λ̂). From Corollary 1 it also follows that
µ̂u is a Gibbs state, i.e for every ε > 0 small, there exist positive constants Aε, Bε

with Aε · eSn(tuφu(ŷ)) ≤ µ̂u(Bf̂ (ŷ, ε, n)) ≤ Bε · eSn(tuφu(ŷ)) for every ŷ ∈ Λ̂. But we
know that Λ̂ has local product structure ([18]), so for small β > 0, we can define a
map Ψ : B(x̂, β) → V +

β (f̂ , x̂),Ψ(ẑ) = V −
β (f̂ , ẑ) ∩ V +

β (f̂ , x̂). Then take µ̃u := Ψ∗µ̂u,
a measure on V +

β (f̂ , x̂). Recall now the canonical projection πf : Λ̂ → Λ and the
fact that d(y, z) ≤ dK(ŷ, ẑ) ≤ 2d(y, z), ŷ, ẑ ∈ V +

β (f̂ , x̂) and K large. So, we define
µu := (πf )∗µ̃u which is a measure on Wu

β (f, x̂) ∩ Λ. This measure µu is the one
given in the proof of Corollary 1. If y is a point in W := Wu

β (f, x̂) ∩ Λ, and ŷ is
the unique prehistory of y β-shadowed by x̂, we see that given any r small, r < ε,
there exists a unique positive integer n such that Bf (y, ε, n)∩W ⊂ Bu(y, r)∩W ⊂
Bf (y, ε, n − 1) ∩ W (where Bu(y, r) denotes the ball of center y and radius r in
the metric du induced on Wu

β (f, x̂)). Hence, using also Lemma 1, there must exist
positive constants L3, L4 with L3 · ε ≤ |Dfn

u (ŷ)| · r ≤ L4 · ε. Therefore, since µu

comes from a Gibbs measure and since P (tuφu) = 0, the proof of Corollary 1 shows
that there are positive constants A′, B′ so that for any r > 0 small, and y ∈ W ,

A′ · rtu ≤ µu(Bu(y, r) ∩W ) ≤ B′ · rtu

This implies that µu is indeed a geometric measure of exponent tu, on the intersec-
tion Wu

β (f, x̂) ∩ Λ.

In the end, let us emphasize an important difference between the case of non-
invertible maps and that of diffeomorphisms. For this we will use Theorem 4.1
of [9], which says that, given the holomorphic map (extendable to P2), fε(z, w) =
(z2+aεz+bεw+c+dεzw+eεw2, w2), there exist small positive constants c(a, b, d, e)
and ε(a, b, c, d, e) such that, if b 6= 0, 0 < |c| < c(a, b, d, e), 0 < ε < ε(a, b, c, d, e), we
have that fε is injective on its basic set Λε; Λε being the basic set of fε close to
{p0(c)} × S1 (where p0(c) denotes the attracting fixed point of z2 + c).

Since fε is a homeomorphism on Λε for ε > 0, we see that HD(Λε) = δu(fε) +
δs(fε), by a similar argument as for diffeomorphisms. Let us denote f(z, w) =
(z2 + c, w2) which can be extended as an Axiom A holomorphic map on P2. If
Λ = {p0(c)} × S1, denote by δu(f) := HD(Wu

β (f, x̂) ∩ Λ); then δu(f) = 1.
From Corollary 3 it follows that δu(fε) → δu(f) = 1, when ε → 0.
As far as the stable dimension is concerned, from Corollary 4.2 of [9], δs(fε)

does not converge towards 0, instead δs(fε) > log 2

log | 1+
√

1−4c
2c | , with c fixed, 0 < |c| <

c(a, b, d, e). Therefore HD(Λε) does not converge towards HD(Λ) = 1. This can
be summarized in the following:

Corollary 4. Let fε(z, w) = (z2 + aεz + bεw + c + dεzw + eεw2, w2); then there
exist small positive constants c(a, b, d, e), ε(a, b, c, d, e) such that if b 6= 0, 0 < |c| <
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c(a, b, d, e), 0 < ε < ε(a, b, c, d, e), we have

HD(Λε) > 1 +
log 2

log | 1+
√

1−4c
2c |

,

where Λε is the basic set of fε close to {p0(c)} × S1, and p0(c) is the attracting
fixed point of z → z2 + c. In particular the Hausdorff dimensions of basic sets of
perturbations do not always vary continuously, in the case of noninvertible maps.

The author thanks the referee for his comments about the paper.
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