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Abstract

We consider in this paper iterations of smooth non-invertible maps on manifolds of real
dimension 4, which are hyperbolic, conformal on stable manifolds, and finite-to-one on basic sets.
The dynamics of non-invertible maps can be very different than the one of diffeomorphisms, as
was shown for example in [4], [7], [12], [17], [19], etc. In [13] we introduced a notion of inverse
topological pressure P− which can be used for estimates of the stable dimension δs(x) (i.e
the Hausdorff dimension of the intersection between the local stable manifold W s

r (x) and the
basic set Λ, x ∈ Λ). In [10] it is shown that the usual Bowen equation is not always true
in the case of non-invertible maps. By using the notion of inverse pressure P−, we showed
in [13] that δs(x) ≤ ts(ε), where ts(ε) is the unique zero of the function t → P−(tφs, ε), for
φs(y) := log |Dfs(y)|, y ∈ Λ and ε > 0 small. In this paper we prove that if Λ is not a repellor,
then ts(ε) < 2 for any ε > 0 small enough. In [11] we showed that a holomorphic s-hyperbolic
map on P2C has a global unstable set with empty interior. Here we show in a more general setting
than in [11], that the Hausdorff dimension of the global unstable set Wu(Λ̂) is strictly less than
4 under some technical derivative condition. In the non-invertible case we may have (infinitely)
many unstable manifolds going through a point in Λ, and the number of preimages belonging
to Λ may vary. In [17], Qian and Zhang studied the case of attractors for non-invertible maps
and gave a condition for a basic set to be an attractor in terms of the pressure of the unstable
potential. In our case the situation is different, since the local unstable manifolds may intersect
both inside and outside Λ and they do not form a foliation like the stable manifolds. We prove
here that the upper box dimension of W s

r (x) ∩ Λ is less than ts(ε) for any point x ∈ Λ. We
give then an estimate of the Hausdorff dimension of Wu(Λ̂) by a different technique, using the
Holder continuity of the unstable manifolds with respect to their prehistories.
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§1. Introduction and motivation; properties of inverse topological pressure.
§2. The stable dimension δs(x) and the stable upper box dimension are strictly smaller than 2.
§3. Applications to the study of Lebesgue measure and Hausdorff dimension of the global unstable
set W u(Λ̂).
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1 Introduction; properties of inverse topological pressure

Let us start by giving some information about the particularities of the non-invertible case. In the
diffeomorphism case, Bowen ([2]) proved the following:

Theorem (Bowen). Let Λ be a basic set for a C2 diffeomorphism f : M →M . Then the following
are equivalent:

a) Λ is an attractor;
b) m(W s(Λ)) > 0, with m the Lebesgue measure on M and W s(Λ) the global stable set of Λ;
c) Pf |Λ(φu) = 0, where φu(y) := − log |Df |Euy |, y ∈ Λ.

Nevertheless in [3], Bowen gave an example of a C1 map f and a basic set Ω for f such that
the Lebesgue measure of Ω is positive; hence the C2 hypothesis is essential. In the diffeomorphism
case, it is important for the above Bowen Theorem ([2]) that there exists a foliation with local
stable manifolds near the attractor.

In the sequel we will concern ourselves with the case of a basic set Λ for a smooth (for example
C2), possibly non-invertible map f . The non-invertible (endomorphism) case is different than the
diffeomorphic one. Indeed we do not have the foliation with local unstable manifolds since now the
unstable manifolds depend on entire prehistories (not only on their base points). Also we do not
know in general whether the number of f -preimages belonging to Λ of a point from Λ is constant
or not; this number may vary along Λ which is complicating further the study. If Λ is connected,
the fact that the number of preimages is constant on Λ is related to the openness of f on Λ
([14]). For a diffeomorphism f hyperbolic on a basic set Λ, the stable dimension (i.e the Hausdorff
dimension of the intersection W s

r (x)∩Λ) is given by the zero of the function t→ P (tΦs),Φs(y) :=
log |Dfs(y)|, y ∈ Λ, as was shown by Manning and McCluskey in [8]. But for hyperbolic basic
sets of endomorphisms, the stable dimension is not always equal to the zero of the pressure of the
potential φs, as was proved in Example 2 of [10]. Also, by contrast with the diffeomorphic case
([8]), we showed in [12] that there exists a class of perturbations of the map (z, w) → (z2 + c, w2)
which are homeomorphisms on their respective basic sets, and thus the stable dimension is not
varying continuously with the map.

In [17], Qian and Zhang studied several properties of hyperbolic endomorphisms (i.e hyperbolic
non-invertible maps), in particular the case of attractors and their relationship with the pressure
of the unstable potential and the existence of an SRB measure.

Bothe proved in [4] that there exists open sets of crossed solenoids which are non-invertible on
their basic sets.

Also, in [19], Tsuji studied a class of dynamical systems generated by solenoidal maps of type
T : S1×R→ S1×R, T (x, y) = (lx, λy+f(x)), with l ≥ 2 an integer, 0 < λ < 1 and f a C2 function
on S1. One can notice that T is a skew product Anosov endomorphism. One can then form the

SBR measure associated to T , namely µT := lim
n→∞

1
n

n−1∑
i=0

δT i(x) and it is shown in [19] that we have

this convergence for Lebesgue almost every point x ∈ S1 ×R. In the case λl < 1 the SBR measure
of T is totally singular
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with respect to the Lebesgue measure m since T contracts area; hence due to the fact that
µT is T -invariant, we cannot have that µT is absolutely continuous with respect to m. However
for the case λl > 1, Tsuji proved that the set of (λ, f) for which the associated SBR measure µT
is absolutely continuous with respect to the Lebesgue measure on S1 × R, is an open and dense
subset of (1

l , 1)×C2(S1,R). Such derivative conditions will appear also in our results, in Theorems
4, 5. In a similar direction, Liu ([7]) studied invariant measures and their Lyapunov exponents
and conditional measures on stable manifolds, for non-invertible maps (not necessarily uniformly
hyperbolic).

Also in [15], we studied families (Fλ)λ of noninvertible hyperbolic skew products and used a
transversality condition in order to prove a Bowen type formula for almost all parameters λ. This
equation is considered on the natural extension Λ̂λ of the basic set Λλ. We also proved the existence
of conditional measures on the stable fibers, generated by an equilibrium measure, and then used
them to obtain probability measures on the set of prehistories of points x ∈ Λ. This is something
specific to endomorphisms, because for diffeomorphisms each point has a unique preimage.

In order to deal with the new phenomena and particularities of the endomorphism situation, we
introduced and studied a notion of inverse pressure P− in [13] and [14]. This inverse pressure takes
into consideration consecutive preimages of points in Λ, rather than forward iterates like in the
case of the usual pressure. Instead of covering with Bowen balls Bn(x, ε) we use tubular unstable
sets Λ(C, ε) (where C is an n-prehistory in Λ) formed with points which have an n-prehistory ε-
shadowed by C. These tubular unstable sets have the property that can be concatenated in order
to form arbitrarily long prehistories. This property was used in [14] to prove that if f is open on
Λ, and each point in Λ has d preimages in Λ, then the stable dimension is equal to the unique zero
of the pressure functional t→ P (tφs − log d). We also proved that the stable dimension in general
(i.e without the openness condition) is smaller or equal than the unique zero of the inverse pressure
functional t→ P−(tφs). For non-invertible maps, the unstable manifolds W u

r (x̂) depend in general
on the prehistories x̂ ∈ Λ̂ (precise definitions are given below), and we may have several unstable
manifolds (even infinitely many) going through the same point in the basic set Λ. This makes the
usual proofs from the diffeomorphism case to break down and even generates new phenomena as
we explained above.

In [11] we studied the case of a non-degenerate (hence non-invertible) holomorphic mapping on
the 2-dimensional complex projective space P2C (denoted also by P2). Such a map has the form

f([z : w : t]) = [P (z, w, t) : Q(z, w, t) : R(z, w, t)], [z : w : t] ∈ P2,

where P,Q,R are homogeneous polynomials having the same degree. We then assumed that f is
s-hyperbolic, a condition introduced by Fornaess and Sibony ([5]). This means: i) f has Axiom
A and f−1(S2) = S2; ii) there exists a neighbourhood U of S1 such that f−1(S1) ∩ U = S1, and
iii) there exists an analytic set of positive dimension outside S1; here S1, S2 represent the sets of
points from the non-wandering set of f where the unstable index is 1, respectively 2. For this type
of holomorphic endomorphisms we proved that the global unstable set of the saddle part S1 of
the nonwandering set of f , namely W u(Ŝ1) has empty interior, extending thus in this case some
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results of Bedford and Smillie from the case of Henon maps (which are difeomorphisms). For this
we used certain several complex variables techniques, Kontinuitatsatz, etc. However there remains
the question of when is the Lebesgue measure of W u(Ŝ1) zero or when is the Hausdorff dimension
of the same set strictly less than 4. For endomorphisms we do not have a laminar structure for the
unstable manifolds, and thus there may appear a jump in the Hausdorff dimension.

In this paper we study this problem on hyperbolic basic sets for partially conformal maps. Hence
in particular the results apply to the holomorphic case too. We start with the case of the stable
dimension which we know that it is smaller than the zero ts(ε) of the inverse pressure functional
t → P−(tφs, ε) from [13]. Then we prove that for any ε small, if Λ is not a repellor, then ts(ε) is
strictly smaller than 2. Still this does not mean that the Hausdorff dimension of W u(Λ̂) is strictly
less than 4. We do not know in general whether all disks transversal to the unstable directions
intersect W u(Λ̂) in sets of Lebesgue measure zero. However if some technical conditions are satisfied
we will prove that this is indeed the case (Theorem 5). We also show that the upper box dimension
dim(W s

r (x) ∩ Λ) is strictly less than 2. Finally we will give an estimate for the HD(W u(Λ̂)) using
the Holder dependence of local unstable manifolds with respect to their prehistories as in [10].
Examples of hyperbolic endomorphisms, where the above results can be applied will also be given
namely perturbations of product maps and skew products with overlaps in their fibers.

Main Results: The main results of this paper are contained in Theorems 1, 2, 3, 4, and 5,
and in Proposition 1. They treat conditions when the stable dimension is strictly less than 2, the
stability of these conditions, the upper box dimension for the stable intersection, respectively in the
first three Theorems. Theorems 4, 5 study the estimates for the Hausdorff dimension of the global
unstable set of the basic set for a cf-hyperbolic map which does not have local repellors. And in
Proposition 1 we give dynamical-topological and analytical conditions guaranteeing that Λ is not
a local repellor. �

In the rest of this Section we give precise definitions and notations that will be used throughout
the paper.

The notion of hyperbolicity can be extended to the non-invertible case by allowing the unstable
spaces to depend on entire prehistories (for example [18]). Indeed, if M is a compact Riemannian
manifold and f : M → M is a smooth map (by ”smooth” in this paper we mean Cr, r ≥ 2), and
Λ is an invariant set for f , then we say that f is hyperbolic over Λ if there exists a continuous
invariant splitting of the tangent bundle TΛ̂M into contracting , respectively expanding directions
for Df (for more details, we refer to [10], [12], [18]); in the above, the set Λ̂ denotes the natural
extension of Λ relative to f , i.e the set of all sequences x̂ := (x, x−1, x−2, ...), where x−i ∈ Λ, and
f(x−i−1) = x−i, i ≥ 0.

Definition 1. The elements of Λ̂ of the form (x, x−1, x−2, ...) where f(x−i−1) = x−i, i ≥ 1 and x0 =
x, are called prehistories (or full prehistories) of x. The n-truncation (x, x−1, ..., x−n) of a full pre-
history will be called an n-prehistory of x. We understand by n-prehistory of a point x ∈ Λ a finite
sequence C = (x, x−1, . . . , x−n) of consecutive preimages of x, i.e f(x−n) = x−n+1, . . . , f(x−1) = x.
Also a point y will be called n-preimage of x (with respect to f) if fn(y) = x for n ≥ 1.
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We have also the shift homeomorphism f̂ : Λ̂→ Λ̂, f̂(x̂) = (fx, x, x−1, ...), x̂ ∈ Λ̂.

Definition 2. a) Let M be a compact Riemannian manifold of real dimension 4, and f : M →M

be a smooth (for example Cr, r ≥ 2) finite-to-one map, possibly non-invertible. We also assume that
Λ is a compact basic set for f , i.e f |Λ is topologically transitive and there exists a neighbourhood
U of Λ such that Λ = ∩

n∈Z
fn(U).

b) We assume that f is hyperbolic as a non-invertible map on Λ having both contracting and
expanding directions, and that Λ does not intersect the critical set Cf . We suppose that the stable
index (i.e the real dimension of stable tangent spaces) over Λ is equal to 2 and that f is conformal
on its stable manifolds over Λ. We will say in this case that f is cf-hyperbolic on Λ. �

The fact that M has real dimension 4 is not essential, we use it just to fix ideas. The same
results hold in more general cases.

It is important to remark that in the case of non-invertible maps, the unstable spaces Eux̂
depend in general on the entire prehistories, and not just on their base points as in the case
of diffeomorphisms. One can also define local stable and unstable manifolds, W s

r (x) := {y ∈
M,d(f ix, f iy) < r, i ≥ 0} andW u

r (x̂) := {y ∈M,y has a prehistory ŷ = (y, y−1, ...), with d(y−i, x−i) <
r, i ≥ 0}, where x̂ = (x, x−1, ...) ∈ Λ̂ and r > 0 is some small positive number. The local stable and
unstable manifolds are embedded smooth disks (since we assumed that the real dimension of Esx, E

u
x̂

are both equal to 2, for all x̂ ∈ Λ̂). In the case when f is a holomorphic map on P2 and hyperbolic
on a basic set Λ, the local stable and unstable manifolds are embedded analytic disks. A priori
the local unstable manifolds do not realize a lamination over Λ, (in contrast to the diffeomorphism
case). Also, in the non-invertible case, we do not always have that a neighbourhood Λ ∩B(x, r) is
homeomorphic to the product (W s

r (x)∩Λ)×(W u
r (x̂)∩Λ). So the methods from the diffeomorphism

case usually break down in the non-invertible case.
For a map f as above, define also the global stable set of a point x ∈ Λ as the union

∪
n≥0

f−nW s
r (x), and denote it by W s(x); the global stable set of x is in fact the set {y, d(fny, fnx)→

0, as n → ∞}. We also define the global unstable set of a prehistory x̂ ∈ Λ̂ as W u(x̂) :=
∪
n≥0

fnW u
r (x̂). The global unstable set of Λ, W u(Λ̂), is defined as the union of all global unstable

sets W u(x̂), over all prehistories x̂ ∈ Λ̂. Define also W u
r (Λ̂) := ∪

x̂∈Λ̂
W u
r (x̂).

Definition 3. Given a cf-hyperbolic map f on a basic set Λ and a point x ∈ Λ, let us denote by
δs(x) := HD(W s

r (x)∩Λ), for some fixed small positive r (HD stands for the Hausdorff dimension).
We shall say that δs(x) is the stable dimension of Λ at x (with respect to f). Also we call stable
upper box dimension the upper box dimension of the intersection W s

r (x) ∩ Λ for x ∈ Λ and
r > 0 small and fixed.

Notation: Denote the derivative in the stable direction at x, Df |Esx , by Dfs(x), and the
derivative in the unstable direction, Df |Eux̂ , by Dfu(x̂) for any x̂ ∈ Λ̂. Dfs(x) will be called the
stable derivative at x, and Dfu(x̂), the unstable derivative at x̂ ∈ Λ̂. Define also the stable
potential φs on Λ by φs(y) := log |Dfs(y)|, y ∈ Λ, where |Dfs| represents the norm of Dfs as an
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R-linear transformation. Due to the condition Cf ∩ Λ = ∅, we know that −∞ < φs < 0. Similarly
we have the unstable potential on Λ̂, φu(x̂) := − log |Dfu(x̂)|, x̂ ∈ Λ̂. �

From the properties of topological pressure ([20]), it follows that t→ P (tφs) is strictly decreasing
and this function will have then a unique zero, denoted by t∗. In [10] we showed that δs(x) ≤ t∗,
but we gave also examples of hyperbolic non-invertible maps where the inequality is strict. In
particular in [10], there is an example when t∗ > 2 (while δs(x) ≤ 2, being the Hausdorff dimension
of a subset of a disk). In order to give a better estimate for the stable dimension, we introduced
in [13] the concept of inverse topological pressure. We recall here for the convenience of the
reader the definition and some useful properties:

Consider (X, d) a compact metric space and f : X → X a continuous surjective map. The
surjectivity of f implies the existence of n-prehistories C = (x, x−1, ..., x−n) of any point x ∈ X.
Given a prehistory C = (y, y−1, ...y−n), we denote by n(C) its length, i.e n(C) = n. In the case
n(C) = ∞, C is a full prehistory. Denote by Cn (or more precisely Cn(X)), the set of prehistories
of length n with elements from X, and let also C∗ := ∪

n≥0
Cn (this set may also be denoted by

Cn(X) when need be). We do not record dependence on f unless necessary. Let also C(X,R)
be the space of real continuous functions on X. Let C = (x, x−1, ..., x−n) ∈ Cn and ε > 0; then
we define X(C, ε) to be the set of points which are ε-shadowed by C, defined by: X(C, ε) :=
{y ∈ B(x, ε),∃y−1 ∈ f−1(y) ∩ B(x−1, ε), ...,∃y−n ∈ f−1(y−n+1) ∩ B(x−n, ε)}. The set X(C, ε)
will be called also tubular unstable set of size ε generated by C, since for the case when f is
smooth and hyperbolic on X, X(C, ε) is a tubular set around an unstable manifold W u

ε (x̂), for a
prehistory x̂ of x starting with the elements of C. For a function φ ∈ C(X,R) and an n-prehistory
C = (x, x−1, ...x−n), define the consecutive sum S−n φ(C) := φ(x) + φ(x−1) + ... + φ(x−n). We
define now the notion of inverse topological pressure (introduced in [13]); this notion takes
into consideration the many different prehistories of points instead of their (uniquely determined)
forward orbits. Thus, given a continuous surjective map f : X → X, take φ ∈ C(X,R), λ ∈ R, ε > 0
small and N positive integer; assume also that Y is a subset of X. Then define the quantity
M−f (λ, φ, Y,N, ε) := inf{

∑
C∈Γ

exp(−λn(C) + S−n(C)φ(C),Γ ⊂ C∗, s.t Y ⊂ ∪
C∈Γ

X(C, ε), and n(C) ≥

N,C ∈ Γ}. M−f (λ, φ, Y,N, ε) will also be denoted by M−(λ, φ, Y,N, ε) when the map f is clear from
the context. If a collection Γ ⊂ C∗ has the property that Y ⊂ ∪

C∈Γ
X(C, ε), we will say that Γ ε-

covers Y . Now, keep λ, φ, Y, ε fixed as above and letN increase. Then lim
N→∞

M−(λ, φ, Y,N, ε) exists

as the limit of an increasing sequence; it will be denoted by M−(λ, φ, Y, ε). Next let P−(φ, Y, ε) :=
inf{λ,M−(λ, φ, Y, ε) = 0}. Let us also remark that, if M−(λ, φ, Y, ε) = 0, then M−(λ, φ, Y,N, ε) =
0, ∀N ≥ 1. Also the limit lim

ε→0
P−(φ, Y, ε) exists and will be denoted by P−(φ, Y ).

Definition 4. The quantity P−(φ, Y ) introduced above is called the inverse topological pres-
sure of φ on Y (relative to the map f), and P−(φ, Y, ε) is called the ε-inverse pressure of φ
on Y . When we want to emphasize the dependence of P− on f , we will denote it by P−f (φ, Y ),
respectively P−f (φ, Y, ε).

When Y = X, we will denote the inverse pressure of φ on X by P−(φ), and the ε-inverse
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pressure by P−(φ, ε). A useful property which was proved in [13] says that the inverse pressure
can also be computed by employing at each step only prehistories of the same length.

Proposition ([13]). Assume that X is a compact metric space and f : X → X is a continuous
and surjective map on X. Let P−n (φ, ε) := inf{

∑
C∈Γ

exp(S−n φ(C)), X = ∪
C∈Γ

X(C, ε),Γ ⊂ Cn}, where

φ ∈ C(X,R). Then P−(φ, ε) = lim
n→∞

1
n logP−n (φ, ε) and P−(φ) = lim

ε→0
lim
n→∞

1
n logP−n (φ, ε).

The proof of this proposition is quite technical and is based on the fact that we can concatenate
two sets X(C, ε), C ∈ Cn, respectively X(C ′, ε), C ′ ∈ Cm, in order to form a set X(C”, 2ε), with
C” ∈ Cn+m. We proved also the following property of inverse pressure:

Proposition ([13]). If φ < 0 on X, then the map t→ P−(tφ, Y, ε) is strictly decreasing; if P−(·, Y )
is finitely valued, then also t→ P−(tφ, Y ) is strictly decreasing.

P− defines also a notion of inverse entropy h− := P−(0). Let us remark that 0 ≤ h− ≤
min{hi, htop}, where hi is a notion of preimage entropy ([16]) and htop is the usual topological
entropy. In particular, using a theorem from [16], we see that h− = 0 for a continuous function f

defined on a finite graph X (for example when X is a circle or a Jordan curve). Since φs(y) :=
log |Dfs(y)|, y ∈ Λ, we see that φs < 0; also since f is smooth we have that its topological entropy
on Λ is finite, hence by the above remark, h−(f |Λ) is finite; then by the previous Proposition, the
function t→ P−(tφs, ε) has a unique zero ts(ε), for ε > 0 small. Similarly as in [13], we prove:

Theorem (Estimate of the stable dimension). Let f be cf-hyperbolic on a basic set of saddle type
Λ. Then δs(x) ≤ ts(ε), x ∈ Λ, for any ε > 0 small.

In the sequel we shall use the estimate δs(x) ≤ ts(ε) in order to prove that δs(x) ≤ ts(ε) < 2.
Then we will use this inequality to study the Hausdorff dimension and the Lebesgue measure of
the global unstable set of Λ.

2 The stable dimension δs(x) and the stable upper box dimension

are strictly smaller than 2

We consider as before a compact Riemannian manifold M of real dimension 4 and a smooth (for
example C2) map f : M → M which is cf-hyperbolic on a basic set Λ, according to Definition
2. We work in general with basic sets of saddle type, i.e for which there are both stable and
unstable directions, as follows from Definition 2. We shall prove that if Λ is not a local repellor
for f , then the unique zero of the ε-inverse pressure of the stable potential on such a set, ts(ε), is
strictly smaller than 2. Let us give first two lemmas which will be used throughout the paper.

Lemma 1 (Laminated Distortion Lemma). Let f : M →M be a cf-hyperbolic map on a basic set
of saddle type Λ. Consider also an n-prehistory C = (x, x−1, ..., x−n) in Cn(Λ) and consider a point
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y ∈ Λ(C, ε), for ε > 0 small; then, there is a constant C0 > 1 independent of n, x, y, such that, if
(y, y−1, ..., y−n) is the n-prehistory of y ε-shadowed by C, then we have:

1
C0
≤ |Df

n
s (y−n)|

|Dfns (x−n)|
≤ C0

This lemma is proved in [14]. The next lemma is similar to the Volume Lemma of Bowen ([2]);
the proof uses the same arguments as in [2] and [17]. We denote in general by Hs the s-dimensional
Hausdorff measure, for s > 0 arbitrary. In the sequel we use the Riemannian metric on M , or the
induced metric on submanifolds of M to define Hs in the case of subsets of M . Recall also that M
has real dimension 4 and that H4 is equivalent as measures with the Lebesgue (volume) measure
on M . If Y ⊂ M is a submanifold of real dimension m, then if we restrict Hm to Y , we obtain a
measure which is equivalent to the m-dimensional Lebesgue (area) measure on the submanifold Y .

Lemma 2 (Volume Lemma). In the above setting, consider C = (x, x−1, ..., x−n) ∈ Cn(Λ); then
there is a constant C1 > 0, independent of n or C, such that for all ε > 0 small,

1
C1
ε4|Dfns (x−n)|2 ≤ H4(M(C, ε)) ≤ C1ε

4|Dfns (x−n)|2

If ∆ is any local embedded smooth disk (i.e ∆ ⊂ B(x, ε) for some x ∈ Λ), transversal to the unstable
directions, then 1

C1
ε2|Dfns (x−n)|2 ≤ H2(∆ ∩M(C, ε)) ≤ C1ε

2|Dfns (x−n)|2, where H2 denotes the
area measure on the disk ∆.

We will also need the following topological condition:

Definition 5. Let f be a continuous map on a compact metric space X, f : X → X; we will say
that f is preimage-transitive if any point y ∈ X has the set of all its preimages F(y) := {z ∈
X,∃n ≥ 0, fn(z) = y} dense in X.

For instance the map f(z, w) = (z2 + c, w2), (z, w) ∈ C2 and |c| small, is preimage-transitive
on Jc × {0}, (where Jc is the Julia set of z → z2 + c). We will now give the definition of repellor
slightly differently than the usual one for diffeomorphisms and will explain later the advantages of
this definition in the case of endomorphisms.

Definition 6. Let a smooth (C2) map on a Riemannian manifold M , f : M → M , and assume
that f is hyperbolic on a basic set Λ. Then we say that Λ is a local repellor for f if there exist
local stable manifolds of f contained in Λ.

For diffeomorphisms, a basic set Λ is said to be a repellor if there exists a neighbourhood U of Λ
such that f(U) ⊃ Ū . So Λ is not a repellor if and only if such a neighbourhood U does not exist. For
endomorphisms this condition alone does not guarantee a priori that all of the local stable manifolds
are not contained in Λ. This happens because of the subtle structure of foldings and overlappings
for endomorphisms, which may take a point outside Λ into a point from Λ. If we want to have
equivalence between our Definition 6 and the fact that there exists a neighbourhood U of Λ with Ū ⊂
f(U), then we have to assume in addition that f is preimage-transitive or that f |Λ is open on Λ. On
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the other hand one can notice that these two conditions are not stable under perturbations. Indeed
let us consider the examples of maps from [12], fε(z, w) = (z2 + c+ aεz + bεw + dεzw + eεw2, w2)
for b 6= 0, |c| small and ε small also, 0 < ε < ε(a, b, c, d, e). We showed that fε has a basic set
Λε close to {p0(c)} × S1 (with p0(c) the fixed attracting point of f0(z) := z2 + c), and that fε
is hyperbolic and a homeomorphism on Λε. Due to the conjugacy between the liftings f̂ |Λ̂ and
f̂ε|Λ̂ε , there must exist fixed points for fε inside Λε. But in this case such fixed points w ∈ Λε
have only one prehistory in Λε, namely (w,w,w, . . .), since fε is a homeomorphism on Λε. So the
set of preimages F(w) contains only the point w and thus it cannot be dense in Λε. So fε is not
preimage-transitive on Λε, although f0 is preimage-transitive on Λ.

The following Proposition gives several cases when Λ cannot be a local repellor for f .

Proposition 1. a) Let f : M → M be a cf-hyperbolic map on Λ, a basic set of f which does not
have any neighbourhood U with f(U) ⊃ Ū , Ū 6= M . Assume also that f is preimage-transitive on
Λ, and denote by r > 0 the uniform size of local stable manifolds along Λ. Then for any τ ∈ (0, r)
there exists γ = γ(τ) > 0 such that for any z ∈ Λ there exists z′ ∈ W s

τ (z) with d(z′,Λ) > γ. In
particular it follows that Λ is not a local repellor.

b) In case f : P2 → P2 is a holomorphic map on the 2-dimensional complex projective space
and s-hyperbolic on a basic set of saddle type Λ, it follows that we always have the conclusion of a)
along Λ.

c) The same conclusion as in a) is true if we replace the condition f preimage-transitive on Λ,
with the condition f |Λ : Λ→ Λ is open.

Proof. As before r denotes the uniform size of local stable manifolds on Λ.
a) Suppose that the conclusion is wrong and let us prove that this will lead to a contradiction.

So assume that there exists a small positive number ε1 ∈ (0, r) such that for any γ > 0 small, there
exists z = z(γ) ∈ Λ with d(W s

ε1(z),Λ) < γ.
But now, by taking a sequence of γ’s of the form ( 1

n)n, we get a sequence of zn’s in Λ.
Due to the compactness of Λ, choose among these points a convergent sequence, which for

convenience will be denoted also by (zn)n, and assume that zn → w. Now, by continuity of the
stable lamination, we have that W s

ε1(zn)→ W s
ε1(w), thus W s

ε1(w) ⊂ Λ. So we found a local stable
manifold entirely contained in Λ.

Assume now that η is a small positive number smaller than ε1.
Let us take now an arbitrary point y ∈ Λ and assume that its local stable manifold W s

η (y) is not
contained in Λ; hence there exists a point ζ ∈W s

η (y) \Λ. Take the largest disk centered at ζ which
does not intersect Λ and denote it by ∆(ζ); then on the boundary of this disk there will exist at
least a point ξ ∈ Λ. Then we can apply the preimage-transitivity for ξ. Indeed ξ has m-preimages
ξ−m as close as we want to w when m increases. But W s

ε1(w) ⊂ Λ, so through any point of W s
ε1(w)

there passes at least an unstable manifold which will intersect transversaly W s
ε1(ξ−m) in a point

χ(m) belonging to Λ (since Λ has local product structure as being a basic set, [6]). In fact we
see that in W s

ε1(ξ−m) there may exist only disks of radius less or equal than Cd(ξ−m, w), which
disks do not contain some point χ(m) obtained in this fashion. Now if m is large enough, then

9



d(fm(χ(m)), fm(ξ−m)) can be made as small as we want and since Λ is f -invariant, it follows that
fm(χ(m)) is in Λ. But this implies that for any ρ > 0 small, there exist points from Λ in any disk
of radius ρ contained in a larger disk of radius r(ρ) centered at ξ. This contradicts the fact that ξ
is on the boundary of the disk ∆(ζ) with ∆(ζ)∩Λ = ∅. But y was taken arbitrarily in Λ, so for any
point y ∈ Λ, there exists a stable manifold W s

η (y) which is contained in Λ (with η > 0 fixed, and
η < ε1); we assume also without loss of generality that η < ε0, where ε0 is the injectivity constant
of f near Λ.

Using the above property, we will prove that there exists a neighbourhood V of Λ such that
V̄ ⊂⊂ f(V ). Let two positive numbers ρ ∈ (0, η) and ρ′ = ρ′(ρ) ∈ (ρ, η) so that, if x̂ is a prehistory
in Λ̂, and y ∈ B(x, ρ)\Λ and y−1 is the preimage of y close to x−1, then y−1 ∈ B(x−1, ρ

′); moreover
we assume that B(z, r′) ∩ W s

ε1(z) ⊂ W s
η (z), z ∈ Λ. Due to the fact that W s

η (x) ⊂ Λ, we know
that the point y from B(x, ρ) \Λ, has a preimage y−1 such that d(y−1,W

s
η (x−1)) ≤ λ · d(y,W s

η (x))
for some fixed λ ∈ (0, 1) independent of x, y, η. This holds because of the hiperbolicity of f on Λ
and since all the contracting directions are contained in Λ, so the (uniform) unstable directions are
transversal to W s

η (x) and hence distances between preimages of f decrease. If y ∈ B(x, ρ) \Λ then
we saw that y−1 ∈ B(x−1, ρ

′) for a preimage x−1 in Λ of x. But recall that the entire W s
η (x−1)

is contained in Λ, so there must exist a point ζ ∈ W s
η (x−1) with d(ζ, y−1) < ρ; hence there exists

a preimage y−2 of y−1, with y−2 ∈ B(ζ−1, ρ
′) for some preimage ζ−1 in Λ of ζ. Recall also that

d(y−2,W
s
ρ′(ζ−1)) ≤ λ · d(y−1,W

s
η (x−1)). In conclusion, by repeating this procedure, we shall find a

sequence of consecutive preimages (y, y−1, y−2, ...), with d(y−n,Λ) < η, n ≥ 0. Thus, from the local
maximality of Λ, it follows that y ∈W u

η (Λ̂). So we proved that there exists a neighbourhood V of
Λ such that V̄ ⊂ f(V ), and V ⊂W u

η (Λ̂). This implies then a contradiction with the hypothesis.
Therefore, for any small τ > 0 there is γ = γ(τ) > 0 such that for any z ∈ Λ, there is z′ ∈W s

τ (z)
with d(z′,Λ) > γ; the conclusion of (a) is proved.

b) We are now in the case when f : P2 → P2 is holomorphic. Redoing the argument in the proof
of (a), we see that through any point y of Λ there passes a complex analytic disk W s

η (y), contained
in Λ. Hence from a theorem of Takeuchi, P2 \ Λ is a domain of holomorphy ([5] for references).
But by hypothesis we have that Λ ∩ Cf = ∅, so Cf ⊂ P2 \ Λ, which is a contradiction with another
theorem of Takeuchi which says that a domain of holomorphy in P2 (different from P2) cannot
contain a complex variety of positive dimension (like Cf ). So the conclusion of (a) is true in this
case too.

c) For the case when f |Λ is open, we see that this condition implies that there exists ε1 > 0 such
that f−1(Λ) ∩B(Λ, ε1) = Λ (where B(Λ, ε1) stands for the union of the balls centered at points of
Λ, of radii ε1). Indeed we have the following:

Topological Fact:
If f |Λ is open, then there exists ε1 > 0 small enough such that f−1(Λ) ∩B(Λ, ε1) = Λ.
Proof of Topological Fact :
Denote by ε0 the injectivity constant of f near Λ, i.e a number ε0 > 0 so that f is injective

on balls of radius ε0 centered on Λ. Let us assume that the Topological Fact is not true; then
for any ε > 0 small, there exists a point zε ∈ B(yε, ε) \ Λ such that f(zε) = xε ∈ Λ and yε ∈ Λ.
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But then when ε → 0, it follows that one can extract a subsequence of points zε converging
towards a point z, and a subsequence of yε converging towards a point y ∈ Λ; without loss of
generality these subsequences can be denoted in the same way, i.e zε → z, yε → y and xε → x, with
zε ∈ B(yε, ε) \ Λ, f(zε) = xε ∈ Λ. From this we obtain that f(y) = x, and since f |Λ : Λ → Λ is
open, there exists η(ε) small with η(ε) →

ε→0
0 such that we can find ξε ∈ B(y, η(ε)) ∩ Λ satisfying

f(ξε) = xε. But on the other hand we have f(zε) = xε and zε ∈ B(y, ε0/2) for ε small. Therefore we
found two points zε, ξε in B(y, ε0) with f(zε) = f(ξε) = xε ∈ Λ, which is a contradiction with the
injectivity of f on B(y, ε0). So there must exist a positive number ε1 with f−1(Λ) ∩B(Λ, ε1) = Λ.
This finishes the proof of the Topological Fact. �

Coming back to the proof of c), the idea is that we can use this Topological Fact and the
transitivity of f on the basic set Λ to pull back (i.e to take preimages) of local stable manifolds
near any point of Λ. By this pull back, the size of the local stable manifolds is enlarged.

More precisely, if the conclusion of a) would be wrong then there would exist a local stable
manifold W s

τ (z) ⊂ Λ. Take now another point y of Λ and fix some η, with 0 < η < ε1. Consider
also a neighbourhood B(z, ε)∩Λ, of z in Λ, for some small 0 < ε < η. Then, from transitivity, there
is a point ξ ∈ B(z, ε) ∩ Λ, a large integer m, and a preimage ξ−m of ξ (with respect to fm), such
that ξ−m ∈ B(y, ε/2)∩Λ. But now, for any prehistory ξ̂ ∈ Λ̂ of ξ, containing ξ−m on the (m+1)-th
position, the unstable manifold W u

ε (ξ̂) intersects W s
η (z) in a point ζ ∈ Λ (from the local product

structure of basic sets, [6]). Therefore this point ζ will have a preimage ζ−m which is ε-close to y.
We can take m arbitrarily large, hence we obtain that W s

η (ζ−m) ⊂ f−m(W s
ε1(z)) ⊂ f−m(Λ) ∩

B(Λ, ε1), so W s
η (ζ−m) ⊂ Λ by the above Topological Fact applied at each inverse iterate of order

less or equal than m.
We consider now ε → 0 and take for each such ε, the points ξ, ξ−m, ζ−m for m = m(ε) →

ε→0
∞;

thus one sees that ζ−m → y when ε → 0 since ζ−m ∈ B(y, ε). Now, from the continuity of local
stable manifolds, we see that W s

η (ζ−m) → W s
η (y) when ε → 0; but we proved that W s

η (ζ−m) ⊂
Λ, 0 < ε < ε1, therefore W s

η (y) ⊂ Λ. But y was taken arbitrarily in Λ, so for any point y ∈ Λ,
there exists a stable manifold W s

η (y) which is contained in Λ (with η > 0 fixed, and η < ε1),
and assume also that η < ε0, where ε0 is the injectivity constant of f near Λ. Using the above
property, we will prove that there exists a neighbourhood V of Λ such that V ⊂⊂ f(V ). Let then
two positive numbers ρ ∈ (0, η) and r′ ∈ (ρ, η) so that, if x̂ is a prehistory in Λ̂, and y ∈ B(x, ρ),
and y−1 is the preimage of y close to x−1, then y−1 ∈ B(x−1, r

′); moreover we assume that
B(z, r′)∩W s

ε1(z) ⊂W s
η (z), z ∈ Λ. Due to the fact that W s

η (x) ⊂ Λ, we know that y has a preimage
y−1 such that d(y−1,W

s
η (x−1)) ≤ λ · d(y,W s

η (x)), for some fixed λ ∈ (0, 1) independent of x, y, η. If
y ∈ B(x, ρ), then y−1 ∈ B(x−1, r

′). But recall that the entire W s
η (x−1) is contained in Λ, so there

must exist a point x1 ∈ W s
η (x−1) with d(x1, y−1) < ρ; hence there exists a preimage y−2 of y−1,

with y−2 ∈ B(x1
−1, r

′), for some preimage x1
−1 of x1, in Λ.

We recall also that d(y−2,W
s
r′(x

1
−1)) ≤ λ · d(y−1,W

s
η (x−1)). In conclusion, by repeating this

procedure, we shall find a sequence of consecutive preimages (y, y−1, y−2, ...), with d(y−n,Λ) <
η, n ≥ 0. Thus, from the local maximality of Λ, it follows that y ∈W u

η (Λ̂). So we proved that there
exists a neighbourhood V of Λ such that V̄ ⊂ f(V ), and V ⊂W u

η (Λ̂).
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We will use in the sequel the following Covering Theorem, proved in [12], as a consequence of
the classical Besicovitch Theorem:

Theorem (Covering Theorem). Let A be a bounded set of Rm; assume that A is covered by a
family of balls {B(xi, ri)}i∈I centered at some points xi of A, where ri > 0, i ∈ I. Then there exists
a cover of A with balls {B(xj , 2rj)}j∈J , where J ⊂ I and the multiplicity of this cover is bounded
by a universal constant b(m) depending only on the dimension m.

Proposition 2. (a) Let f be cf-hyperbolic and preimage-transitive on Λ and assume that Λ is not
a repellor. Then for any arbitrary given point x ∈ Λ, ms(W ) = 0, where W := W s

r (x) ∩ Λ (for
some r > 0 small) and ms is the Lebesgue measure on W s

r (x).
(b) In the setting of (a), for any κ ∈ (0, 1), there exists a positive integer N = N(κ) and a

covering of W with sets of the form M(C ′, r), C ′ ∈ Γ ⊂ CN such that∑
C′∈Γ

ms(M(C ′, r) ∩W s
r (x)) < κ ·ms(W s

r (x)),

for any point x ∈ Λ and r > 0 small enough; N(κ) is independent of x, r.
Same conclusions follow also when f is holomorphic on P2 and s-hyperbolic on a basic set Λ.

Proof. First, let us notice that the measure H2 restricted to W s
r (x) is equivalent with the Lebesgue

measure ms on W s
r (x).

(a) If Λ is not a repellor, it follows from the last Lemma that there exists r > 0 and γ > 0 such
that for any point z ∈ Λ, there exists z′ ∈ W s

r (z) with d(z′,Λ) > γ; the same conclusion follows
also in the case when f is holomorphic on P2 and s-hyperbolic on Λ.

If y ∈W s
r (z), for some z ∈ Λ, and if η > 0, denote by Bs(y, η) the intersection B(y, η)∩W s

r (z).
Take also some small δ = δ(γ) ∈ (0, r) such that d(B(z′, δ),Λ) > γ/2, for all z ∈ Λ and z′ as above.
Consequently there exists some constant β = β(r) ∈ (0, 1), independent of z, z′, such that

ms(Bs(z′, δ)) > β ·ms(Bs(z, r)), and Bs(z′, δ) ∩ Λ = ∅ (1)

We want to prove that ms(W s
r (x) ∩ Λ) = 0, for any point x ∈ Λ. For this let us take an arbitrary

point y ∈ Λ, a local stable manifold W s
ρ (y), and then an arbitrary point z ∈ Λ; we know that

there exists the point z′ ∈W s
r (z) with Bs(z′, δ)∩Λ = ∅. Assume that δ is the largest number with

this property; it must be less or equal to r since z ∈ Λ. Then from the maximality of δ it follows
that there exists a point w on the boundary of Bs(z′, δ) which is in Λ. Then from the preimage-
transitivity of f on Λ, it follows that w has preimages as close as we want to y. So there exists a j-
preimage w−j of w (for j large enough) such that there exists a local inverse j-iterate f−jw−j (Bs(w, 2δ))
of Bs(w, 2δ) which is very close to W s

ρ (y). When j increases, f−jw−j (Bs(w, 2δ)) ∩ B(y, ρ) becomes
as close as we want to W s

ρ (y). But since w is on the boundary of Bs(z′, δ) which is outside Λ, it
follows that there is always a subset of Bs(w, 2δ) \Λ whose Lebesgue measure is larger than a fixed
percentage larger than 1

4 , from the area of Bs(w, 2δ). And then all the preimages of Bs(w, 2δ) \ Λ

12



are outside Λ (otherwise their forward iterates would be in Λ, which is f -invariant). So if j is
large enough it follows that f−jw−j (Bs(w, 2δ)) ∩ B(y, ρ) has a certain subset outside Λ, whose area
is larger than 1

4 of ms(f
−j
w−j (Bs(w, 2δ)) ∩ B(y, ρ)). Since this area is in fact a disk sector (we use

always the fact that f is conformal on stable manifolds), we obtain that in W s
ρ (y) \ Λ there is a

subset whose area is larger than 1
4ms(W s

ρ (y)). But since this is happening for all ρ ∈ (0, r), it
follows that y is not a point of Lebesgue density along stable manifolds, and hence there are no
Lebesgue density points in W s

r (x) ∩ Λ. Thus ms(W s
r (x) ∩ Λ) = 0, for any x ∈ Λ.

(b) Let κ arbitrary in the interval (0, 1), and r > 0 fixed, as in (a).
We proved in (a) that ms(W s

r (x)∩Λ) = 0, ∀x ∈ Λ. Then, from applying inductively the uniform
procedure of constructing disk sectors in W s

ρ (y) \ Λ detailed in a), we see that for any θ ∈ (0, 1)
there exists N = N(θ) > 1 independent of x ∈ Λ, such that there exists a covering Γ̃x ⊂ CN of
W s
r (x) ∩ Λ with

ms( ∪
C∈Γ̃x

M(C, r) ∩W s
r (x)) < θ

But the sets M(C, r)∩W s
r (x), C ∈ Γ̃x can be assimilated with disks since f is conformal on stable

manifolds. So we can use the previous Covering Theorem and obtain a subcover with multiplicity
bounded by a universal constant b. We will denote this subcover by Γx; hence we obtain

∑
C∈Γx

ms(W s
r (x) ∩M(C, r)) ≤ bθ,

so the conclusion of b) follows for κ = bθ.

If f is a smooth function on the real 4-dimensional manifold M , then the stable potential φs(y)
is computed as log |Dfs(y)|, y ∈ Λ, where |Dfs| represents the norm of the R-linear transformation
Dfs between real 2-dimensional vector spaces. Now we prove that, if Λ is not a local repellor, then
the Hausdorff dimension of the intersection of any stable manifold with Λ, is strictly less than 2.

Theorem 1. Let M be a smooth compact Riemannian manifold of real dimension 4 and f : M →M

be a cf-hyperbolic map on a basic set of saddle type Λ which is not a local repellor. Then for any
point x ∈ Λ, we have δs(x) ≤ ts(ε) < 2, for some ε > 0. In particular this holds also in the case of
a holomorphic map f : P2 → P2 which is s-hyperbolic on a basic set of saddle type Λ.

Proof. Denote by W := W s
r (x)∩Λ, for a point x ∈ Λ. We will denote by ms the induced Lebesgue

measure on a local stable manifold.
We know from the Introduction that δs(x) ≤ ts(ε), ε > 0 small, where ts(ε) is the unique zero

of the function t → P−(tφs, ε), with φs(y) := log |Dfs(y)|, y ∈ Λ. Consider a fixed ε > 0 small
enough (in particular ε < ε0). We will show that P−(2φs, ε) < 0, which will imply that ts(ε) < 2.

In order to do this, recall first that P−(2φs, ε) can be computed using P−n (2φs, ε) (from the
Introduction). But from the Laminated Distortion Lemma we know that there exists a constant χ >
0 such that, if ω ∈M(C, ε), C = (y, y−1, ..., y−n) ∈ Cn(Λ), and (ω, ω−1, ..., ω−n) is the corresponding
prehistory of ω which is ε-shadowed by C, then 1

χ |Df
n
s (y−n)| ≤ |Dfns (ω−n)| ≤ χ|Dfns (y−n)|.

13



Therefore we can write P−n (2φs, ε) = ω(ε) · inf{
∑
C∈Γ

ms(M(C, ε)),Γ ⊂ Cn,Γε − covering Λ}, with

ω(ε) some positive function of ε and ms(M(C, ε)) := ms(W s(y, ε) ∩M(C, ε)). Then we have

P−(2φs, ε) = lim
n→∞

logP−n (2φs, ε)
n

The idea will be to find a number υ ∈ (0, 1) and a positive integer N = N(υ), such that for
n > N , we have P−n+N (2φs, ε) ≤ υ · P−n (2φs, ε).

Now, let an arbitrarily small ε′ > 0 and find an integer n and a collection Γ ⊂ Cn such that

P−(2φs, ε) ≤ ε′ +
log(

∑
C∈Γ

ms(M(C,ε))

n , where C = (y, y−1, ..., y−n) ∈ Γ. Due to the fact that Λ is not
a local repellor for f , there are no local stable manifolds contained in Λ, hence there will exist a
positive integer N = N(ε) such that for any z ∈ Λ, we can cover the set Λ∩W s

ε (z) with sets of the
form M(C ′, ε), C ′ ∈ Γz ⊂ CN such that∑

C′∈Γz

ms(M(C ′, ε) ∩W s
ε (z)) ≤ υ ·ms(W s

ε (z)),

for some υ ∈ (0, 1). The collection Γz depends on z, but N is independent of z. Consider now the
collection Γ ⊂ Cn(Λ) found above, which ε-covers Λ. For each prehistory C = (y, y−1, ..., y−n) ∈ Γ
we can cover the set Λ ∩W s

ε (y−n) with sets of the form M(C ′, ε), where C ′ ∈ Γ(C) ⊂ CN , for N
found above; this cover Γ(C) is in fact the family Γy−n , and hence satisfies the condition:∑

C′∈Γ(C)

ms(M(C ′, ε) ∩W s
ε (y−n)) ≤ υ ·ms(W s

ε (y−n)) (2)

Consider now a positive integer n and a prehistory C ∈ Cn(Λ), C = (y, y−1, ..., y−n) like above;
assume also that f−n∗ is the local inverse iterate of f , which takes y into y−n; then f−n∗ (M(C, ε) ∩
W s
ε (y)) ⊂ W s

ε (y−n). Let us see now what happens to the points in M(C, ε) after applying f−n∗ :
the points in M(C, ε)∩W s

ε (y) are taken by f−n∗ into W s
ε (y−n), while the points outside W s

ε (y) will
be taken into points which are (λ′)n-close to W s

ε (y−n), for some λ′ ∈ (0, 1) (λ′ does not depend
on n, y, C). Recall also that we cover each set W s

ε (y−n) ∩ Λ for C = (y, y−1, ..., y−n) ∈ Γ, with
sets of the form M(C ′, ε), C ′ ∈ Γ(C), where Γ(C) ⊂ CN . Therefore from the above discussion it
follows that, if n is large enough in comparison to N , i.e if n > n(N), then ∪

C′∈Γ(C)
M(C ′, ε) is an

open neighbourhood of W s
ε (y−n)∩Λ, and so it contains the local inverse iterate f−n∗ (M(C, ε)). This

means that we obtain a cover of Λ with sets of typeM(CC ′, 2ε), C ∈ Γ, C ′ ∈ Γ(C), where Γ ⊂ Cn(Λ),
Γ(C) ⊂ CN (Λ), and n > n(N); CC ′ represents the prehistory obtained by concatenation of C and
then C ′ ([14] for more details on the concatenation procedure). The new collection obtained from
these concatenations CC ′ is called Γ′ and we see that Γ′ ∈ Cn+N (Λ). Then after multiplying by
|Dfs(y−n)|n in both sides of (2), we obtain from the fact that f is conformal on stable manifolds
that: ∑

C′∈Γ(C)

ms(M(CC ′, ε)) ≤ υ ·ms(M(C, ε))

So there exists positive integers N and n(N) such that for all n > n(N) we have:

P−n+N (2φs, ε) ≤ υ · P−n (2φs, ε)
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But then P−n+kN ≤ υk · P−n (2φs, ε), k ≥ 1, therefore logP−n+kN (2φs, ε) ≤ k log υ + logP−n (2φs, ε),
hence

P−(2φs, ε) ≤ log υ
N

< 0,

The last inequality follows since υ ∈ (0, 1). In conclusion we obtained ts(ε) < 2, ε > 0 small. Since
from the Introduction, δs(x) ≤ ts(ε), x ∈ Λ, we obtain the announced conclusion, i.e δs(x) < 2 for
all x ∈ Λ.

The holomorphic case follows similarly.

We will show next that the condition that Λ is not a local repellor for f is stable under per-
turbations, by proving that the stable dimension remains strictly less than 2 for perturbations g
of f . By the Conjugacy Theorem for perturbations ([18]; see also [10]), if g is a perturbation of f ,
then there exists a basic set Λg close to Λ so that g is hyperbolic on Λg and there exists a Holder
continuous homeomorphism Φg : Λ̂→ Λ̂g conjugating f̂ with ĝ. However this Theorem alone does
not give us the stability of the property that Λ is not a local repellor for f , since it does not control
the local stable manifolds of size much smaller than dC1(f, g). For the stability issue we need the
following:

Theorem 2. Let f be a cf-hyperbolic map on a basic set Λ which is not a local repellor. Then for
any perturbation g close enough to f (in the C2 topology), the corresponding basic set Λg is not a
local repellor for g either.

Proof. First let us notice that the proof of Theorem 1 works if, for some small ε, there are no local
stable manifolds of size ε contained in Λ. This is guaranteed if Λ is not a local repellor for f . From
this and the fact that f is cf-hyperbolic it follows that δs(x) ≤ ts(ε) < 2 for all x ∈ Λ. But if ε
is fixed then there exists a number ρ = ρ(ε) > 0 such that if dC2(f, g) < ρ, then the local stable
manifolds of size ε/2 relative to g, W s

ε/2(y, g) are not contained in Λg, for any y ∈ Λg. Thus we
can repeat the proof of Theorem 1 and obtain that δs(y, g) := HD(W s

ε/2(y, g)∩Λg) < 2. Therefore
if δs(y, g) < 2, ∀y ∈ Λg, we obtain that there are no local stable manifolds of size less than ε/2
contained in Λg, since otherwise δs(y, g) would be equal to 2; hence Λg is not a local repellor for g.

This Theorem gives us many classes of examples of maps and corresponding basic sets which
are not local repellors, by taking perturbations of some known examples. In particular for these
perturbations one can apply Theorem 1, 4, 5.

In the remainder of this Section we will prove an additional theorem, showing that in the
above setting we have dimB(W s

r (x) ∩ Λ) ≤ ts(ε), where dimB denotes the upper box (Minkowski)
dimension ([9]). First let us remind the definition of upper box dimension.

Definition 7. Let A be a non-empty bounded set of Rn. For 0 < ε < ∞, denote by N(A, ε) the
smallest number of balls of radius ε necessary to cover A. Then the upper box dimension of A
is defined as: dimB(A) := inf{s, lim sup

ε→0
N(A, ε)εs = 0}.
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Theorem 3. Let f a cf-hyperbolic map on a basic set Λ. Then for any point x ∈ Λ we have
dimB(W s

r (x) ∩ Λ) ≤ ts(ε), for ε > 0 small.

Proof. Let us fix a point x from Λ. We will use the inverse pressure ([13]) and coverings of
W := W s

r (x) ∩ Λ with sets of type Λ(C, ε) having the same stable diameter. Let us consider a
number t > ts(ε). There exists then a positive integer n0 and a finite family Γ ⊂ Cn0 such that
Λ = ∪

C∈Γ
Λ(C, ε) and if n0 is large enough, then:

∑
C∈Γ

diam(Λ(C, ε) ∩W s
r (x))t ≤ A

∑
C∈Γ

eS
−
n0

(tΦs)(C) <
1
2

(3)

The above inequality follows from the definition of the pressure P (tΦs, ε) and the fact that ts(ε)
is the unique zero of t → P (tΦs, ε) ([13], [14]). Let us assume now that Γ = {C1, . . . , Cm} and
δi := A · eS

−
n0

(tΦs)(Ci), i = 1, . . . ,m. We consider all the products δiδj , i, j ∈ {1, . . . ,m}. Denote
by ω(2) := inf{δiδj , i, j = 1, . . . ,m}. If for some i, j we have δiδj > ω(2), then let us consider the
concatenation

Λ(CiCj , ε) := {z ∈ Λ(Ci, ε), s.t for the preh. (z, . . . , z−i) ε−shadowed by Ci,we have z−i ∈ Λ(Cj , ε)}

But then if z ∈ Λ(CiCj , ε) with the corresponding prehistory (z, . . . , z−(n(Ci)+n(Cj))) ε-shadowed by
CiCj , it follows that there exists k ∈ {1, . . . ,m} so that z−(n(Ci)+n(Cj)) ∈ Λ(Ck). If δiδjδk ≤ ω(2) we
stop; if not, then we continue this process until we obtain a concatenated prehistory CiCjCk1 . . . Ckq
so that δiδj . . . δkq ≤ ω(2) and δiδjδkq−1 > ω(2).

Denote by I(i, j) := {(k1, . . . , kq), q ≥ 1, s.t δiδjδk1 . . . δkq ≤ ω(2), but δiδj . . . δkq−1 > ω(2)};
then we have Λ(CiCj) = ∪

(k1,...,kq)∈I(i,j)
Λ(CiCjCk1 . . . Ckq). Therefore Λ = ∪

1≤i,j≤m
Λ(CiCj) =

∪
1≤i,j≤m

∪
(k1,...,kq)∈I(i,j)

Λ(CiCjCk1 . . . Ckq). On the other hand it is clear that diam(Λ(CiCjCk1 . . . Ckq)∩

W s
r (x))t = δiδj . . . δkq ≈ ω(2).

Hence we covered Λ ∩W s
r (x) with sets of comparable diameter, and by the same procedure we

can cover Λ∩W s
r (x) with sets of type Λ(Ci1 . . . CinCk1 . . . Ckl) for 1 ≤ i1, . . . , in ≤ m, (k1, . . . , kl) ∈

I(i1, . . . , in), n ≥ 2. And if we denote by ω(n) := inf{δj1 . . . δjn , 1 ≤ j1, . . . , jn ≤ m}, then

diam(Λ(Ci1 . . . CinCk1 . . . Ckl) ∩W
s
r (x))t ∈ (ω(n)χs, ω(n)χ−1

s ), for (k1, . . . , kl) ∈ I(i1, . . . , in)

Thus we obtained a cover of W s
r (x) ∩ Λ with sets of comparable diameter (i.e the ratios of di-

ameters of any two sets from this cover are bounded below and above by some positive universal
constants). On the other hand we have lim

n→∞
ω(n) = 0. So we can use this cover for estimating

dimB(W ). Denote by Un this cover with the sets W s
r (x) ∩ Λ(Ci1 . . . CinCk1 . . . Ckl), i1, . . . , in ∈

{1, . . . ,m}, k1, . . . , kl ∈ I(i1, . . . , in), n ≥ 2. Now:∑
U∈Un

diam(U)t ≤
∑

1≤i1,...,in≤m

∑
k1,...,kl∈I(i1,...,in)

δi1 . . . δinδk1 . . . δkl ≤

≤
∑
p≥1

(δ1 + . . .+ δm)p <
∑
p≥1

1
2p

<∞
(4)
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Therefore from 4 we conclude that dimB(W s
r (x) ∩ Λ) ≤ ts(ε) for any ε small enough.

By combining Theorem 1 with Theorem 3 we obtain the following Corollary showing that the
upper box dimension of the intersection between the basic set Λ and the local stable manifolds is
also strictly less than 2 if Λ is not a local repellor.

Corollary 1. Let us take a smooth function f : M → M on a Riemannian manifold of real
dimension 4 and assume that f is cf-hyperbolic on a basic set Λ which is not a local repellor. Then
the stable upper box dimension is strictly less than 2 on Λ, i.e dimB(W s

r (x) ∩ Λ) < 2, x ∈ Λ.

3 Applications to the Lebesgue measure and Hausdorff dimension

of the set W u(Λ̂).

In this section we study the global unstable set W u(Λ̂) of a basic set Λ for a cf-hyperbolic map
f : M → M on a Riemannian manifold of real dimension 4. Since we work with non-invertible
maps on Λ, the unstable manifolds are not uniquely determined by their base points, but instead
depend on prehistories, W u

r (x̂), x̂ ∈ Λ̂. So through a given point x ∈ Λ there may pass several
(possibly infinitely many) local unstable manifolds.

In [11] we showed that for a holomorphic s-hyperbolic map on the complex projective space P2,
the interior of W u(Λ̂) is empty for any basic set of saddle type Λ.

However it remains the question whether the global unstable set W u(Λ̂) has zero volume and
even if its volume is zero, whether its Hausdorff dimension is strictly less than 4. The situation is
complicated also by the possible complicated foldings of Λ and by the fact that different points in
Λ may have different number of preimages belonging to Λ.

We will show below that, if Λ is not a local repellor and if the system f |Λ intuitively contracts
volume, then HD(W u(Λ̂)) < 4.

Then we will obtain an estimate for the Hausdorff dimension of W u(Λ̂) when Λ is not a local
repellor, by using the Holder estimates for the distances between local unstable manifolds in the
non-invertible case ([10]). We will also give in the end some examples for which one can conclude
that the volume (4-dimensional Lebesgue measure) of the global unstable set is strictly less than 4.

Let us mention also that for Henon diffeomorphisms g(z, w) = (w, p(w)− az) with p a monic
polynomial of degree d ≥ 2 and a 6= 0, Bedford and Smillie ([1]) proved that K−(g) = W u(K(g)),
whereK−(g) = {x ∈ C2, (g−n(x))n is bounded in C2} andK(g) := {x ∈ C2, (g±n(x))n is bounded in C2}.
They proved that, if g is hyperbolic on its Julia set, it follows that for |a| ≤ 1 the interior of
W u(K(g)) is empty, and if |a| > 1, then Int(W u(K(g))) =

m
∪
i=1

B(pi), where B(pi) are repelling
basins for some repelling periodic points p1, . . . , pm. This has some similarity with our result men-
tioned above for the dissipative case, since |a| represents the Jacobian of the Henon map g. Before
proceeding to the theorems in this section, let us give a Lemma which will be used in the sequel,
and whose proof can be found in Mattila’s book [9].
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Theorem (Frostman Lemma). Let B be a Borel set in Rn. Then Hs(B) > 0 if and only if there
exists a Radon measure µ with compact support contained in B, with 0 < µ(Rn) <∞ and satisfying
µ(B(x, r)) ≤ rs for any x ∈ Rn and r > 0. Moreover we can find µ so that µ(B) ≥ c · Hs∞(B),
where c > 0 is a constant depending only on n.

We shall prove now that, under a derivative condition implying that the contraction is stronger
than the dilation near Λ, the set W u(Λ̂) has Hausdorff dimension strictly smaller than 4. Notice
that Theorem 4 will complement well the main theorem in [11], which says that the interior of K− is
empty. Indeed, if f : P2 → P2 is holomorphic and s-hyperbolic, then K− = W u(Ŝ1)∪ S0, where S0

is just a finite set of attracting periodic points, and S1 is the set of points from the non-wandering
set with (complex) unstable index 1 (so Λ ⊂ S1). We recall that in the case of non-invertible maps
the unstable manifolds do not realize a lamination near Λ, and that through every point x of Λ
there may pass uncountably many local unstable manifolds, which makes their union, i.e W u

r (Λ̂)
hard to control outside its intersection with Λ.

Theorem 4. Let M be a compact Riemannian manifold of real dimension 4, and f : M → M be
a smooth cf-hyperbolic map on a basic set of saddle type Λ, which is not a local repellor. Assume
also that the following condition on derivatives is satisfied:

sup
ξ̂∈Λ̂

|Dfu(ξ̂)| · |Dfs(ξ)| < 1 (5)

Then HD(W u(Λ̂)) < 4.
The same conclusion holds if f : P2 → P2 is a holomorphic map which is s-hyperbolic on a basic

set of saddle type Λ and satisfies (5).

Proof. We suppose for the begining that HD(W u(Λ̂)) = 4 and will obtain from here a contradiction.
If HD(W u(Λ̂)) = 4, then Hσ(W u(Λ̂)) = ∞,∀σ < 4. We can find then a subset of W u(Λ̂) with
Hausdorff dimension 4, and if it is not close enough to Λ, then we can take backward iterates until
we get a set ∆̃0 close to Λ (for example so close that f can be approximated well with Df , and
moreover |Dfs| > 0); the condition HD(∆̃0) = 4 is preserved by taking backward iterates.

Then we construct inductively a sequence of Borel sets ∆̃n such that d(∆̃n,Λ)→ 0 when n→∞,
and f(∆̃n+1) = ∆̃n, n ≥ 1. Let also δ0 > 0 be a small number so that we can apply the Mean Value
Inequality for f on balls of diameter δ0.

We shall estimate Hσ∞(∆̃n+1). Without loss of generality we can assume that ∆̃n+1 is cov-
ered with sets Ei, i ∈ I, which are cubes with side equal to ri, i ∈ I. Then Hσ∞(∆̃n+1) =
inf{

∑
i∈I

rσi , ∆̃n+1 ⊂ ∪
i
Ei}. If there exists some i with ri > δ0, then Hσ∞(∆̃n+1) ≥ δσ0 .

We notice also that, if (Ei)i∈I cover ∆̃n+1, then (fEi)i∈I will cover ∆̃n. Now, fEi will have
its side in the stable direction of length (|Dfs(ξi)| + η(n))ri, and the ”unstable side” of length
(|Dfu(ξ̂′i)| + η(n))ri, where η(n) > 0 is a small positive number which converges towards 0 when
n → ∞, and where ξi, ξ′i ∈ Ei and ξ̂′i is an arbitrary prehistory of ξ′i. So, f(Ei) is approximately
a box with a smaller side (|Dfs(ξi)|+ η(n))ri, and a larger side (|Dfu(ξ̂′i)|+ η(n))ri. Assume also
that n is large enough such that |Dfs(ξi)|+ η(n) < |Dfu(ξ̂′i)|+ η(n), i ∈ I.
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Then the set f(Ei) can be covered with m2
i cubes with side (|Dfs(ξi)|+ η(n)) · ri, where mi is

a positive integer satisfying mi(|Dfs(ξi)|+ η(n)) · ri ≥ (|Dfu(ξ̂′i)|+ η(n)) · ri ≥ (mi− 1)(|Dfs(ξi)|+
η(n)) · ri, i ∈ I.

Thus we obtain the estimate:

Hσ∞(∆̃n) ≤
∑
i∈I

m2
i · (|Dfs(ξi)|+η(n))σ ·rσi ≤

∑
i∈I

rσi (1+
|Dfu(ξ̂′i)|+ η(n)
|Dfs(ξi)|+ η(n)

)2 · (|Dfs(ξi)|+η(n))σ (6)

But we can consider a finite iterate of f instead of f ; assume this iterate is fp for some p large
enough. The basic set Λ remains the same, the stable/unstable local manifolds remain the same
as before. But for p large enough we will have 1 + |D(fp)u(x)|

|D(fp)s(x)| < 2 |D(fp)u(x)|
|D(fp)s(x)| , x ∈ Λ. Now recall that

d(ξi, ξ′i) < 3ri, i ∈ I. Hence there exists a small δ1 ∈ (0, δ0) such that if ri < δ1, i ∈ I, and n is
sufficiently large (equivalently η(n) sufficiently small), then condition (5) implies:

(|Dfs(ξi)|+ η(n))σ(1 +
|Dfu(ξ̂′i)|+ η(n)
|Dfs(ξi)|+ η(n)

)2 < 22,

for σ very close to 4, i.e σ ∈ (σ0, 4) (0 < σ0 := σ(p) < 4 being independent of n). Thus, for σ
very close to 4, we will obtain

Hσ∞(∆̃n) ≤
∑
i∈I

rσi ,

in case ri < δ1, i ∈ I. So in this case (i.e if ri < δ1, i ∈ I), we got Hσ∞(∆̃n) ≤ Hσ∞(∆̃n+1). Therefore
in general Hσ∞(∆̃n) ≥ min{δσ1 ,Hσ∞(∆̃0)}, n ≥ 1, σ ∈ (σ0, 4). This means that there exists some
number β0 > 0 such that Hσ∞(∆̃n) > β0 > 0, for n ≥ 1 and σ ∈ (σ0, 4).

Since Hσ(∆̃n) = ∞, n ≥ 1, we can apply Frostman Lemma, to get that for each n ≥ 1, there
exists a Radon measure µn on ∆̃n with µn(∆̃n) ≥ c · Hσ∞(∆̃n) > c · β0 > β′0 > 0, (where c, β0, β

′
0

are constants which do not depend on n). We also have that µn(B(y, r)) ≤ rσ, y ∈M, r > 0, n ≥ 1.
The measure µn is compactly supported inside the Borel set ∆̃n.

But, since d(∆̃n,Λ)→ 0, as n→∞, we see that there exists R > 1 large enough such that for
each n, ∆̃n ⊂ B(y0, R), for some y0 ∈ Λ. Hence µn(∆̃n) ≤ R4, n ≥ 1, so by a classical theorem
in functional analysis, there exists a convergent subsequence of (µn)n. For brevity, we will denote
this convergent subsequence also by (µn)n, and denote its limit by µ. We see also that, due to the
fact that d(supp µn,Λ) → 0 when n → ∞, it follows that supp µ ⊂ Λ. But, since Λ ⊂ B(y0, R),
it follows that µ(Λ) ≤ R4 < ∞; on the other hand, µ(B(y0, R)) ≥ lim

n
µn(B(y0, R)) > β′0 > 0, so

0 < µ < ∞. Notice also that for all y ∈ M and all r > 0, the properties of the limit µ (Theorem
1.24 of [9]), imply that µ(B(y, r)) ≤ lim

n
µn(B(y, r)) ≤ rσ.

In conclusion, µ is a Radon measure supported inside Λ, with 0 < µ < ∞ and such that
µ(B(y, r)) ≤ rσ, y ∈M, r > 0. Frostman’s Lemma implies then that Hσ(Λ) > 0, for σ ∈ (σ0, 4).

But recall that we showed in Section 2 that δs(x) = HD(W s
r (x)∩Λ) ≤ ts(ε) < 2, for all x ∈ Λ.

Since Λ can be laminated locally with intersections of type W s
r (x) ∩ Λ, we conclude that there

exists σ1 ≤ 2 + ts(ε) < 4 with Hσ(Λ) = 0,∀σ ∈ (σ1, 4). This leads then to a contradiction with the
previous conclusion, and hence HD(W u(Λ̂)) < 4.
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Next we will use Holder estimates from [10] in order to prove a Theorem about the Hausdorff
dimension of W u(Λ̂) by taking in consideration also the number of preimages of points in Λ. This
condition can be verified on a number of examples.

Theorem 5. Let M be a compact Riemannian manifold of real dimension 4, and f : M → M be
a smooth cf-hyperbolic map on a basic set of saddle type Λ, which is not a local repellor. Let us
denote by χs := infΛ |Dfs|, λs := supΛ |Dfs| and sup

x̂∈Λ̂

|Dfs(x)| · |(Df |Eu(x̂))−1| =: τ . Suppose that

every point from Λ has at most d f -preimages and at least d′ f -preimages in Λ. If the condition:

2 inf{1, − log τ
| logχs|

} − log d
| logχs|

≥ htop(f |Λ)− log d′

| log λs|

is satisfied, then HD(W u(Λ̂)∩∆) < 2 for any disk ∆ transversal to the unstable directions. More-
over we obtain HD(W u(Λ̂)) < 4.

Proof. Corollary 2 from [10] can be extended easily to the setting of cf-hyperbolic maps. Obviously
τ < 1.

Let us assume that ∆ ⊂ B(x, r) for some x ∈ Λ and r > 0, and that ∆ ∩ W u(Λ̂) =
∪

y∈W s
r (x)∩Λ,ŷ∈Λ̂

(∆ ∩W u
r (ŷ)). Let us cover now the set W s

r (x) ∩ Λ with disks Ui of radius δi, i ∈ I,

such that ∑
i∈I

δηi < 1, (7)

where η is arbitrarily larger than the Hausdorff dimension of W s
r (x) ∩ Λ.

We want now to cover ∆ ∩W u(Λ̂) with disks centered at W u
r (ŷ) ∩ ∆ for y ∈ Ui, i ∈ I. Here

we take into consideration the dependence of the distance between two unstable manifolds going
through the same point, with respect to the distance between their corresponding prehistories.
Indeed we have from Corollary 2 of [10] that d(W u

r (x̂),W u
r (ŷ)) ≤ CdK(x̂, ŷ)θ, where C is a positive

constant, θ ∈ (0, 1], and K > 1 satisfies the relationship τ ·Kθ < 1.
Let us consider a certain prehistory ŷ = (y, y−1, . . . , ) ∈ Λ̂, y ∈W s

r (x)∩Λ. We will assume that

K · χs > 1

Also let us assume that ni is the first positive integer n so that 1
Kn < δi. Without loss of

generality we can assume that 1
Kni = δi. Then if we consider the tubular set M(D, r), where

D = (x, . . . , x−ni) and if (y, . . . , y−ni) is the prehistory of y r-shadowed by D, we have that
d(x−j , y−j) ≤ d(x, y)χ−js , j = 0, . . . , ni. But dK(x̂, ŷ) ≤ d(x, y)(1 + χ−1

s
K + . . .+ χ−n+1

s

Kn−1 ) + M
Kn ≤ Cδi,

if 1
Kni = δi, i ∈ I; therefore we obtain:

diam(M(D, r) ∩∆) < CdK(x̂, ŷ)θ < Cδθi , (8)

for a possibly different constant C > 0 and all i ∈ I. But there exist at most dni such sets of
type M(D, r) ∩∆. Consequently we can cover ∆ ∩W u(Λ̂) with sets of type M(D, r) ∩∆, where
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there are at most dni such sets for each i ∈ I. But recall that we assumed δi = 1
Kni , i ∈ I, so

dni = δ
− log d

logK

i . Also from above we can take the constant K arbitrarily larger than 1
χs

.
In conclusion we cover the set ∆ ∩W u(Λ̂) with dni sets of radius δi + δθi , for each i ∈ I.
We want to show that there exists some ρ < 2 (ρ close to 2), so that

∑
i∈I

dni(δi + δθi )
ρ <∞.This

would imply that HD(∆∩W u(Λ̂) ≤ ρ < 2. For this it would be enough to show that
∑
i∈I

dniδρθi <∞,

since θ ≤ 1. But now we have that dni = δ
log d
− logK

i , θ = log τ
− logK ≤ 1. If log τ

− logK > 1, then we will take

θ = 1. So dniδθρi = δ
ρθ− log d

| logχs|
i , i ∈ I.

Now we recall from (7) that for any η > HD(W s
r (x) ∩ Λ),

∑
i∈I

δηi < 1.

Then we shall use an estimate of the stable dimension from [14]; if f |Λ is at least d′-to-1 over Λ,
then HD(W s

r (x)∩Λ) ≤ td′ , where td′ is the unique zero of the pressure function t→ P (tΦs− log d′).
Thus we obtain that HD(W s

r (x) ∩ Λ) ≤ htop(f |Λ)−log d′

| log λs| . Therefore it is enough to have

2 inf{1, − log τ
| logχs|

} − log d
| logχs|

>
htop(f |Λ)− log d′

| log λs|

This implies that HD(∆ ∩W u(Λ̂)) < 2, for any disk ∆ transversal to the unstable directions.
Then from Fubini Theorem it follows that HD(W u(Λ̂)) < 4, since we can take the disks ∆ to

be parallel to Es(x).

Corollary 2. The conditions in Theorem 4 are satisfied for perturbations g of the holomorphic
map (z, w)→ (z2 + c, w2), for small |c|. Thus HD(W u(Λ̂g)) < 4 for the respective basic set Λg of
g which is close to {p0(c)} × S1 (where p0(c) is the fixed attracting point of z → z2 + c).

The conditions in Theorem 5 or in Theorem 4 can be verified also for many skew products with
overlaps of the type studied in [15], and for their perturbations.
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