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Abstract

We prove that expanding endomorphisms on arbitrary tori are 1-sided Bernoulli with re-

spect to their corresponding measure of maximal entropy and are thus, measurably, as far from

invertible as possible; this applies in particular to expanding linear toral endomorphisms and

their smooth perturbations. Then we study toral extensions of expanding toral endomorphisms,

in particular probabilistic systems on skew products, and prove that under certain, not too re-

strictive conditions on the extension cocycle, these skew products are 1-sided Bernoulli too. We

also give a large class of examples of group extensions of expanding maps in higher dimensions,

for which we check the conditions on the extension cocycle.
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1 Introduction and outline of main results.

From the point of view of ergodic properties, endomorphisms of Lebesgue spaces behave in a

very different way from automorphisms. The study of measure-preserving endomorphisms presents

also many different methods and ideas than that of diffeomorphisms/automorphisms. Even for

1-sided Bernoulli shifts, the problem of classification up to measure-theoretic isomorphism is very

far from the similar problem for 2-sided Bernoulli maps. For 2-sided Bernoulli shifts, it is well

known that Ornstein showed they can be classified by measure-theoretic entropy alone (see [16],

[26]), while for 1-sided shifts this is not at all the case; in fact as Parry and Walters ([21], [26])

showed, endomorphisms T on Lebesgue spaces (X,B, µ) cannot be classified even by a combination

of entropy, Jacobian and the sequence of decreasing algebras {T−nB}n≥0.

The existence of multiple preimages of a point and the possibly different behaviors of consec-

utive sums on different prehistories of points, imply that the dynamical and ergodic properties of

endomorphisms are different in results and in techniques, than those of automorphisms.

Endomorphisms were studied under various aspects, both from the point of view of smooth

dynamical behavior in the expanding/hyperbolic case, as well as from the point of view of er-

godic/statistical properties by several authors, for instance [2], [3], [4], [5], [6], [7], [8], [11], [18],

[21], [24], [25], [13], [14], [15], etc.

Ashley, Marcus and Tuncel gave in [2] a complete and computable classification of 1-sided

Markov chains (hence in particular of 1-sided Bernoulli shifts) up to measure-theoretic isomorphism.
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In [8], Katznelson proved that an automorphism of the m-dimensional torus Tm,m ≥ 2 whose

eigenvalues are never roots of unity, must be a 2-sided Bernoulli shift. However in the case of an

endomorphism fA of Tm induced by the matrix A, the situation is completely different and we

cannot say a priori whether fA is 1-sided Bernoulli with respect to the corresponding Lebesgue

(Haar) measure. Also in [8] it was shown that the inverse limit (natural extension) of a hyperbolic

toral endomorphism is 2-sided Bernoulli; however this does not imply that the endomorphism fA

is 1-sided Bernoulli. In [6] there are examples of endomorphisms T which are uniformly 2-to-1 but

which are not 1-sided Bernoulli, although the square T 2 is 1-sided Bernoulli; thus the inverse limit

S2 of T 2 is 2-sided Bernoulli and, from Ornstein [16] the inverse limit S (of T ) is 2-sided Bernoulli.

The main results of the paper are:

In Theorem 1 we show that an arbitrary expanding (linear) toral endomorphism fA is 1-sided

Bernoulli with respect to the Haar measure, by using a result of Hoffman and Rudolph from [7].

In Corollary 1 we extend Theorem 1 to smooth expanding endomorphisms g on tori (not

necessarily linear), together with their respective measure of maximal entropy µ0,g on Tm; in

particular this applies to smooth perturbations of expanding linear toral endomorphisms. We

notice that there is a relation between dilation and 1-sided Bernoullicity.

We then study group extensions for expanding toral endomorphisms fA, given by weakly

mixing skew products associated to summable cocycles with values in tori. These are non-invertible

maps fA,ψ : Tm × Tk → Tm × Tk, of type

fA,ψ(x, y1, . . . , yk) = (fA(x), ψ1(x) + y1 (mod 1), . . . , ψk(x) + yk (mod 1)),

with x ∈ Tm, (y1, . . . , yk) ∈ Tk, and where ψ : Tm → Tk is a Hölder continuous function; for

generalities about group extensions see for instance [1], [4], [18], [20], etc. The conditions for a

toral extension fA,ψ to be weakly mixing with respect to the product of Haar measures on Tm and

Tk, are related to the ”liniar independence” of the components of the cocycle; or in other words to

the fact that ψ is not a coboundary (see [1], [19], [20], etc.)

In Theorem 2 we find a large class of examples of group extensions of higher dimen-

sional expanding toral endomorphisms which are shown to be 1-sided Bernoulli as well. Such toral

extensions can be constructed also for perturbations g of fA, as above.

In particular for expanding toral endomorphisms and for extensions as above, there will exist

generating Rohlin partitions (see [5]).

2 1-sided Bernoulli toral maps. Group extensions.

In the sequel we work with Lebesgue space systems, i.e with measurable endomorphisms f :

X → X on Lebesgue spaces (X,B, µ) s.t f preserves the probability measure µ. In some cases, when

there is no confusion on the σ-algebra B on X, we shall write only (X,µ) for the Lebesgue space and

(X,µ, f) for the system. We shall investigate toral endomorphisms of type fA : Tm → Tm,m ≥ 2,

given by an integer-valued matrix A all of whose eigenvalues are strictly larger than 1 in absolute
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value. Then we see that fA is a distance expanding map with respect to the Riemannian metric

on Tm. We consider the Lebesgue (Haar) measure µm on Tm, which clearly is preserved by fA.

A 1-sided Bernoulli shift is a Lebesgue space system (X,µ, f) isomorphic to the model

system (Σ+
r , σr, νp), where Σ+

r = {(ω0, ω1, . . .), ωj ∈ {1, . . . , r}, j ≥ 0} is the space of positively

indexed sequences on r symbols, and σr, νp as before. A uniform model 1-sided Bernoulli shift

(Σ+
r , ν( 1

r
,..., 1

r
), σr) corresponds to the uniform probability vector p with pi = 1

r , i = 1, . . . , r.

As said before, ergodic properties of 1-sided Bernoulli shifts are very different than those for 2-

sided Bernoulli shifts, due to non-invertibility ([21], [26], etc.) The notion of very weakly Bernoulli

(for instance [9], [8], etc.) involves automorphisms which interchange the sets in partitions of type

T kξ, k ≥ 1 (for a certain partition ξ); it is a generalization of weakly Bernoulli (see [3], [17], etc).

Consider f : X → X a measure-preserving endomorphism on a Lebesgue space (X,B, µ), and

let the measurable partition of X given by fibers f−1(x), x ∈ X; associated to this partition there

is the family of conditional measures of µ, denoted by {µx}x (see [22]).

In [7], Hoffman and Rudolph introduced a notion of tree very weakly Bernoulli for endomor-

phisms, which we now recall. Assume f is uniformly r-to-one, i.e that hµ(f) = log r, that x ∈ X has

r f -preimages and the conditional measures µx are uniformly distributed in f−1(x), for µ-a.a x ∈ X.

Let T be an abstract infinite tree having rn nodes at each index (level) n ≥ 0; and Tn the truncation

at level n of T . Now for Y a compact metric space, a (T , Y )-name is any function h : T → Y ; h is

tree adapted if for any v and i, j ∈ {0, . . . , r − 1}, i 6= j, we have h(vi) 6= h(vj). If φ : X → Y is a

map, let F(φ) be the σ-algebra on X given by the pullback of borelians B(Y ) through φ; we say φ

generates if ∨if−i(F(φ)) = B. Next take a Rohlin partition {E0, . . . , Er−1} of (X,B, µ) (see [22],

[3]), s.t f |Ei : Ei → X is bijective µ-a.e; and let fi be the inverse of f |Ei , i. For a node v ∈ Tn, define

the inverse iterate fv(x) := fjn(. . . (fj1(x)) . . .). For x ∈ X the (T , Y )-name T φx of φ-values on the

preimages of x, is given by T φx (v) := φ(fv(x)), v ∈ T . A map φ : X → Y is called tree adapted on

X if T φx is a tree adapted (T , Y )-name for µ-a.e x ∈ X. Let A be the set of tree automorphisms

on T and An the similar set on Tn. For n > 1, tn(g, h) := inf
A∈An

1
n

∑
0<|v|≤n

1
r|v|

d(h(v), g(Av)) gives

a metric on (T , Y )-names. Then (X,B, µ, f) and the tree adapted map φ : X → Y are called

tree very weakly Bernoulli if, for any ε > 0 and n large enough there exists a set G(ε, n) with

µ(G(ε, n)) > 1− ε, s.t tn(T φz , T φw ) < ε, ∀z, w ∈ G(ε, n).

Theorem 1. Let fA be a toral endomorphism on Tm,m ≥ 2, given by the integer-valued matrix

A, all of whose eigenvalues are strictly larger than 1 in absolute value. Then the endomorphism fA

on the torus Tm equipped with its Lebesgue (Haar) measure µm, is isomorphic to a uniform model

1-sided Bernoulli shift.

Proof. From the fact that all the eigenvalues of A are larger than 1 in absolute value, it follows that

fA is an expanding map on Tm. Also it is well-known that fA is |det(A)|-to-1 on Tm (for instance

[26]). Assume |det(A)| = r ≥ 2 (otherwise fA is an automorphism, and toral automorphisms are

2-sided Bernoulli shifts by [8]).

Now if fA is expanding and r-to-1, we know that µm is the limit of a sequence of probability
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measures of type

νxn :=
1

rn

∑
y∈f−nA x

δy,

for some x ∈ Tm (see for example [24], [10]). Thus by working for νxn, then going to limit (n→∞) on

borelian sets with boundaries of µm-measure zero, and finally by approximating arbitrary borelians

with such sets, we obtain that

µm(fA(B)) = rµm(B),

for any borelian set B so that f |B is injective. Thus the conditional probabilities of µm, associated

to the partition ξ into fibers {f−1(z)}z, are equidistributed on the fibers of µm-almost all points

from Tm, i.e they give weight equal to 1
r to each of the r preimages of z.

But µm is the Lebesgue (Haar) measure on Tm and fA is supposed to be r-to-1, hence the

entropy hµm(fA) = log r. So hµm(fA) = log r, the conditional probabilities of µm on the preimages

are all equal to 1
r and fA is r-to-1, meaning that (Tm,B, µm, fA) is a uniform measure preserving

endomorphism.

Now fA is expanding and open (since f |Λ is r-to-1), hence f |Λ is topologically exact. Thus

for any ε > 0 small there exists some positive integer N (independent of y, z) so that, given any

y, z ∈ Tm and any N -preimage y−N of y, there exists an N -preimage z−N of z, such that

d(y−N , z−N ) < ε (1)

As our generating function we will take the identity Id : Tm → Tm which clearly generates the

σ-algebra of borelians on Tm.

From (1), and the fact that local inverse iterates of f contract distances, we infer that given

any points y, z ∈ Tm, there exists N = N(ε) such that for any n > N and any n-preimage y−n

of y, there exists a unique n-preimage z−n of z, so that z−n ∈ Bn(y−n, ε); and vice-versa, for

any n-preimage z−n ∈ Λ of z, there is a unique n-preimage y−n ∈ Λ of y with y−n ∈ Bn(z−n, ε).

Therefore for any ε > 0, there exists N(ε) so that we have:

tn(Ty, Tz) < Cε, ∀y, z ∈ Tm, n > N(ε) (2)

where C > 0 is a constant, independent of ε, n, y, z (C depends only on the minimum expansion

coefficient of fA on Tm). So in our case the set G(ε, n) from the definition of tree very weakly

Bernoulli, is the whole Tm.

Thus the measure preserving uniform endomophism (Tm,B, µm, fA) and the generating function

Id : Tm → Tm are tree very weakly Bernoulli.

In conclusion from the characterization result for 1-sided Bernoulli shifts given in [7], we see

that (Tm,B, µm, fA) is 1-sided Bernoulli and conjugate to the uniform model (Σ+
r , ν( 1

r
,..., 1

r
), σr).

We consider now arbitrary expanding maps g : Tm → Tm, i.e maps with ||Dg|| > 1 on Tm.

A particular case is when g is a smooth perturbation of an expanding linear toral endomorphism.
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Corollary 1. Let g be an expanding endomorphism on Tm, and denote by µ0,g its unique measure

of maximal entropy. Then the system (Tm, µ0,g, g) is 1-sided Bernoulli. In particular this applies

when g is a smooth perturbation of an expanding linear endomorphism of Tm.

Proof. An expanding map g has a unique measure of maximal entropy µ0,g. We know that µ0,g is

absolutely continuous with respect to the Lebesgue measure µm and the Radon-Nykodim derivative
dµ0,g
dµm

is Hölder continuous and bounded away from 0 and ∞ (see for instance [10]).

Since g is an expanding endomorphism on Tm, it follows from Shub (see [25]) that g is topo-

logically conjugate to a linear endomorphism fA on Tm. Thus there exists a homeomorphism

H : Tm → Tm so that H ◦ g = fA ◦ H. This implies that since fA is r-to-1 (where r = |detA|),
then g is also r-to-1 on Tm. Also we obtain that the topological entropy of g is the same as the

topological entropy of fA, i.e htop(g) = hµ0,g(g) = htop(fA) = log r.

Next if g is expanding we can apply the results of [10], [24] in order to obtain the unique measure

of maximal entropy µ0,g of g, as the limit of the sequence of probabilities

νxg,n :=

∑
y∈g−n(x)

δy

rn
, n ≥ 1

But as in the proof of Theorem 1 this shows that µ0,g(g(B)) = rµ0,g(B), for any borelian set

B ⊂ Tm. Thus the conditional measures of µ0,g associated to the fiber partition, are equally

distributed among the r preimages in almost all fibers of g. Thus we obtain that g is a uniform

r-to-1 endomorphism with respect to the measure µ0,g on Tm.

Now we proceed as in the proof of Theorem 1 in order to obtain that g is tree very weakly

Bernoulli and thus the system (Tm, µ0,g, g) is 1-sided Bernoulli.

For the particular case, if g is a smooth perturbation of an expanding linear toral endomorphism,

then it is clear that g itself is expanding and we can apply the above arguments.

Example. An example of a perturbation of an expanding toral endomorphism is g : T2 → T2

g(x, y) = (2x+ ε sin(2πx+ 4πy), 3y + ε cos(2πx)), (x, y) ∈ T2

The expanding map g has a unique measure of maximal entropy µ0,g on T2, and this measure is

absolutely continuous with respect to the Haar measure, although not necessarily equal to it. So

from Corollary 1, g is 1-sided Bernoulli with respect to its measure of maximal entropy µ0,g. �

Corollary 2. Let the hyperbolic linear toral endomorphism fA on Tm with |det(A)| > 1. Then fA

is 1-sided Bernoulli with respect to the Haar measure µm on Tm if and only if fA is expanding, i.e

all the eigenvalues of A are strictly larger than 1 in absolute value.

Proof. The proof follows from Theorem 1 above, and from Theorem 2 and Corollary 1 of [12].

If fA is expanding and µφ is the equilibrium measure of a Hölder potential φ, then it follows

also that (Tm, µφ, fA) is 1-sided Bernoulli if and only if µφ is the Haar measure µm (see [12]).
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We study now a special class of endomorphisms, namely group extensions, which are skew-

products that can be constructed starting with known endomorphisms. Many aspects of group

extensions have been investigated in the literature, for exp. in [1], [4], [18], [19], [20], [23], etc.

Let us start with a measure-preserving endomorphism f on a Lebesgue space f : (X,B, µ) →
(X,B, µ). Consider also a compact metric space (Z, d) with Isom(Z) being the space of its isome-

tries (with uniform topology). Assume that Isom(Z) acts transitively on Z, so Z is a homogeneous

space; then Z is homeomorphic to Isom(Z)/H for some closed subgroup H ⊂ Isom(Z). Now we

can consider on Z the restricted Haar measure µZ induced from the topological group with uniform

topology G = Isom(Z) (see [23]). Next let us take an arbitrary function ψ : X → Isom(Z) and

define the group extension fψ : X × Z → X × Z,

fψ(x, z) = (f(x), ψ(x)(z)), (x, z) ∈ X × Z

The function ψ is called a cocycle and fψ a cocycle extension. On X × Z we consider the product

measure µ×µZ , where µZ is the induced Haar measure on Z. The cocycle ψ is called a coboundary

with respect to the endomorphism f : X → X, if there exists a measurable function χ and a

constant c so that ψ = χ ◦ f − χ+ c, µ-almost everywhere.

In the sequel we shall work with a specific case, namely when the metric space Z is a torus

Tk, k ≥ 1. We will use the additive notation on Tk. Our cocycle will be given by a map ψ : Tm →
Tk, ψ = (ψ1, . . . , ψk), with ψi : Tm → S1, i = 1, . . . , k. The group extension of the expanding

toral endomorphism fA : Tm → Tm is the skew product fA,ψ : Tm × Tk → Tm × Tk, fA,ψ(x, z) =

(fA(x), ψ1(x) + z1 (mod 1), . . . , ψk(x) + zk (mod 1)), (x, z) ∈ Tm×Tk, which preserves the product

measure µm × µk on Tm × Tk (where µm and µk represent the Lebesgue (Haar) measures on Tm,

respectively on Tk).
Now let us assume that the map ψ : Tm → Tk used above is Hölder continuous. Since fA is

distance expanding, we see that the branches of inverse iterates of fA contract exponentially, hence

from the Hölder continuity of ψ it follows that ψ is a summable cocycle.

The next step will be to assure the weak mixing of fA,ψ with respect to µm × µk. Ergodicity

of a measure-preserving endomorphism f means that the operator Uf given by composition with

f on integrable functions, has only constants as eigenfunctions of the eigenvalue 1 ([26]). If f is

ergodic and in addition, Uf has no eigenfunctions except essential constants, then f has continuous

spectrum. However this is equivalent to weak mixing (see for instance [26]); thus there are strong

relations between weak mixing and Livsic type conditions.

Criteria for the weak mixing of the group extension endomorphism fψ were given first for skew

products with rotations ([1]), then in an abstract setting (see for instance [19], [20], [23], etc.), and

are centered on the condition that ψ is not a coboundary.

Assume that ψ is Hölder continuous with exponent α > 0, i. e ψ ∈ Cα(Tm,Tk). Then we have

Theorem (Mixing Conditions for Extensions, [20]). The above expanding map fA,ψ is weak mixing

with respect to the product of Haar measures µm × µk on Tm × Tk if the equation

F ◦ fA(x) = c+ `1ψ1(x) + . . .+ `kψk(x) + F (x) mod 1, a.e (3)
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with F : Tm → R measurable, (`1, . . . , `k) ∈ Zk and c ∈ R, has only the trivial solution c =

0, (`1, . . . , `k) = (0, . . . , 0) and F constant.

Proposition 1. Let fA : Tm → Tm be an expanding toral endomorphism and ψ : Tm → Tk

be a Hölder continuous function. Assume that, if there exist a measurable function F on Tm, a
constant c ∈ R and a k-tuple of integers (`1, . . . , `k) with F ◦ fA(x) = c+ `1ψ1(x) + . . .+ `kψk(x) +

F (x)(mod 1) a.e, then c = 0, (`1, . . . , `k) = (0, . . . , 0) and F is constant (i.e the equation (3) has

only the trivial solution). Then the skew product fA,ψ is 1-sided Bernoulli with respect to the product

of the respective Haar measures µm × µk on Tm × Tk.

Proof. We know from the Hölder continuity of ψ and from the uniform dilation of fA on Tm that

ψ generates a summable cocycle with respect to fA.

Also since the only solution to equation (3) is the trivial one, we obtain from the above Mixing

Conditions for Extensions, that fA,ψ is weak mixing with respect to the product measure µm×µk.
On the other hand, we showed in Theorem 1 that the expanding toral endomorphism fA is

1-sided Bernoulli with respect to µm.

Thus we can use Theorem 6.4 of [7], to conclude that the extension fA,ψ is tree very weakly

Bernoulli, hence 1-sided Bernoulli with respect to µm × µk.

The next Theorem shows that there is a dense set of cocycles that give weak mixing extensions

with expanding toral endomorphisms, and it also gives concrete examples where this happens.

Theorem 2. a) Let fA : Tm → Tm be an expanding toral endomorphism and ψ : Tm → Tk

be a Hölder continuous function from Cα(Tm,Tk). Assume that there exists no constant c s.t

for any periodic point z ∈ Tm with fnA(z) = z, −nc = Sn(`1ψ1 + . . . `kψk)(z) mod 1, where

Snω(y) := ω(y) + . . . + ω(fn−1
A (y)), y ∈ Tm, n ≥ 1. Then the group extension fA,ψ is 1-sided

Bernoulli with respect to the Lebesgue measure on Tm × Tk.
b) The collection of cocycles ψ ∈ Cα(Tm,Tk) which are not coboundaries in the sense of

equation (3) (i.e which give a 1-sided Bernoulli extension fA,ψ), contains a dense Gδ set in the

space Cα(Tm,Tk) endowed with the norm ||ψ|| := |ψ|α + |ψ|∞, where |ψ|α := sup
x 6=y

|ψ(x)−ψ(y)|
|x−y|α and

|ψ|∞ is the uniform norm.

c) Consider the toral endomorphism fA given by the matrix A =

(
2 1

0 6

)
, and the cocycle

ψ : T2 → T2 given in additive notation by

ψ(x1, x2) = (sin 2π(x1 + 3x2), sin 2πx2)

Then the extension fA,ψ is 1-sided Bernoulli with respect to the Lebesgue measure on T4.

Proof. a) Given ψ = (ψ1, . . . , ψk) ∈ Cα(Tm,Tk), we know from Livsic results that: there exists

a measurable function F : Tm → R and a constant c such that F ◦ fA(x) = c + `1ψ1(x) + . . . +
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`kψk(x) + F (x)mod 1 a.e, if and only if there exists F̃ ∈ Cα(Tm,R) such that F̃ (·) = F (·) a.e and

F̃ ◦ fA(x) = c+ `1ψ1(x) + . . .+ `kψk(x) + F̃ (x) mod 1, for all x ∈ Tm (see for instance [20]).

This last condition happens if and only if, for any periodic point z ∈ Tm with fnA(z) = z, we

have that

−nc = Sn(`1ψ1 + . . . `kψk)(z) mod 1,

where Snω(y) := ω(y) + . . . + ω(fn−1
A (y)), y ∈ Tm, defines the n-th consecutive sum of ω(·), for

n ≥ 1.

b) From [19] it follows that the collection of functions ψ ∈ Cα(Tm,Tk) which are not cobound-

aries in the sense of equation (3), i.e which give a weak mixing extension fA,ψ, contains a dense

Gδ set in Cα(Tm,Tk). This can be proved by using the above condition on periodic points.

Thus for ”most” cocycles ψ ∈ Cα(Tm,Tk), the toral extension fA,ψ is 1-sided Bernoulli with

respect to the product of Haar measures µm × µk.

c) First notice that the matrix A has two eigenvalues larger than 1, so fA is expanding on T2.

With the toral endomorphism fA and the extension cocycle ψ given above (which is well-defined

on T2), we can form the toral extension fA,ψ : T2 × T2 → T2 × T2,

fA,ψ(x1, x2, y1, y2) = (2x1 + x2, 6x2, y1 + sin 2π(x1 + 3x2), y2 + sin 2πx2) mod 1

Let us check if condition (3) is satisfied. Assume there exists (`1, `2) ∈ Z2, a Hölder continuous

function F and a constant c such that F ◦ fA = c+ `1ψ1 + `2ψ2 + F (mod 1). Then

−nc = Sn(`1ψ1 + `2ψ2)(z) mod 1, as long as fnA(z) = z, n ≥ 1

But one of the fixed points of fA is (0, 0) so if `1ψ1(0, 0) + `2ψ2(0, 0) = 0, then c = 0. Consider now

(4
5 ,

1
5) which is another fixed point of fA. Then we should have:

`1ψ1(
4

5
,
1

5
) + `2ψ2(

4

5
,
1

5
) = 0 mod 1

This implies that−`1 sin π
5 +`2 sin 2π

5 = 0 mod 1; but sin π
5 = 1

4

√
10− 2

√
5 and sin 2π

5 = 1
4

√
10 + 2

√
5,

so we obtain a contradiction. Hence we conclude that the only solution of (3) is the trivial one,

meaning that fA,ψ is weakly mixing.

By Theorem 1 we obtain then that the group extension fA,ψ is 1-sided Bernoulli with respect

to the Lebesgue (Haar) measure on T4.

Remarks:

1) Given the toral endomorphism fA from Theorem 2 c), it follows from Corollary 1 that for

a smooth perturbation g of fA there exists a dense set of cocycles ψ such that the extension gψ

is 1-sided Bernoulli. In this way we can find a large class of examples of 1-sided Bernoulli group

extensions.
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2) Also from Theorem 2 it follows that expanding toral endomorphisms and their weak mixing

group extensions do have generating Rohlin partitions (see [22], [5]).
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