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Abstract. The dynamics of endomorphisms (i.e non-invertible smooth maps)

presents many significant differences from that of diffeomorphisms, as well as
from the dynamics of expanding maps. There are numerous concrete exam-

ples of hyperbolic endomorphisms. Many methods cannot be used here due

to overlappings in the fractal set and to the existence of (possibly infinitely)
many local unstable manifolds going through the same point. First we will

present the general problems and explain how to construct certain useful limit

measures for atomic measures supported on various prehistories. These limit
measures are in many cases shown to be equal to certain equilibrium mea-

sures for Hölder potentials. We obtain thus an analogue of the SRB measure,

namely an inverse SRB measure in the case of a hyperbolic repeller, or of an
Anosov endomorphism. We study then the 1-sided Bernoullicity (or lack of

it) for certain measures invariant to endomorphisms, and give a Classification
Theorem for the ergodic and metric types of behaviour of perturbations of a

class of maps on their respective basic sets, in terms of the values of the sta-

ble dimension. We give also relations between thermodynamic formalism and
fractal dimensions (Hausdorff dimension of stable/unstable intersections with

basic sets, stable/unstable box dimensions, dimension of the global unstable

set for endomorphisms). Applications to certain nonlinear evolution models
are also given in the end.

1. Introduction to the non-invertible case. The dynamics of hyperbolic dif-
feomorphisms has answered a great deal of important questions related to the distri-
bution of forward iterates near an attractor (given by the associated SRB measure),
in the form of the celebrated results of Sinai, Bowen and Ruelle (see [3], [47], [6],
[50], [15], etc.) In the hyperbolic diffeomorphism case one always has Markov parti-
tion ([3], [47], etc.) which help in coding the system endowed with some equilibrium
measure, with a 2-sided Bernoulli shift. An important tool in proving results for dif-
feomorphisms is the Birkhoff Ergodic Theorem. If we work with a homeomorphism
f which has an inverse f−1, we can find the ergodic distribution of the consecutive
preimages of a generic point (with respect to an f -invariant probabilistic measure
µ) by using Birkhoff Ergodic Theorem for f−1 on a basic set Λ. If the map f is
not invertible on the basic set Λ, then there is no inverse of f for which to apply
Birkhoff Ergodic Theorem.
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Also in the diffeomorphism case, or in the expanding 1-dimensional complex
case, thermodynamic formalism was originally applied to obtain formulas for various
types of fractal dimensions as in [14], [38], [45], [43], etc.

In this survey we will collect several results of the author or of other researchers,
about the case of non-invertible hyperbolic dynamics. Here the methods and results
are often completely new, and different from the diffeomorphism case.

By basic set for a smooth endomorphism f : M →M defined on a Riemannian
manifold, we understand (as in [9]) a compact f -invariant set Λ such that there
exists a neighbourhood U of Λ with Λ = ∩

n∈Z
fn(U). We can consider then a useful

construction, namely that of the natural extension (or inverse limit), Λ̂ :=
{x̂ = (x, x−1, x−2, . . .), f(x−i) = x−i+1, x−i ∈ Λ, i ≥ 1}. The infinite sequences of
consecutive preimages of type x̂ are called prehistories of x, for x ∈ Λ. We define the

shift homeomorphism f̂ : Λ̂→ Λ̂, f̂(x̂) = (f(x), x, x−1, . . .); we have also π : Λ̂→ Λ
the canonical projection on the first coordinate. Let us also make the observation
that, if µ is an f -invariant probability measure on Λ, then there exists a unique

f̂ -invariant probability measure µ̂ on Λ̂ so that π∗µ̂ = µ (see [42]); it is easy to show
that µ is ergodic if and only if its lift µ̂ is ergodic.

Hyperbolicity for endomorphisms is defined similarly as for diffeomorphisms, with
the crucial difference that the unstable spaces/unstable manifolds depend now on

whole prehistories; they are then defined as Eux̂ ,W
u
r (x̂), x̂ ∈ Λ̂ ([39], [44]). In the

case of a smooth endomorphism f which is uniformly hyperbolic on the basic set
Λ, we shall denote by Φs(x) := log |Dfs(x)|, x ∈ Λ the stable potential of f , and by

Φu(x̂) := − log |Dfu(x̂)|, x̂ ∈ Λ̂ the unstable potential, where again we denoted by
Dfs(x), Dfu(x̂), the restrictions of Df to the stable space Esx, respectively to the

unstable space Eux̂ , x̂ ∈ Λ̂. Also we will denote by δs(x) := HD(W s
r (x)∩Λ) and by

δu(x̂) := HD(Wu
r (x̂)∩Λ), the stable dimension at a point x ∈ Λ, respectively the

unstable dimension at x̂ ∈ Λ̂ (see also [19], [24]). Let us state now the Birkhoff

Ergodic Theorem for the inverse f̂−1:

Theorem 1 (Birkhoff Theorem on the natural extension). Let f̂ : Λ̂ → Λ̂ be the

lift homeomorphism on the natural extension Λ̂ as above and µ̂ the f̂ -invariant
lift measure of an f -invariant Borel probability measure µ on Λ. Let also φ ∈
C(Λ̂,R) be a continuous map on Λ̂; then for µ̂ almost all points x̂ from Λ̂, we have
1
n (φ(x) + . . . + φ(f̂−nx̂)) →

n→∞
φ̄(x̂), where φ̄ is µ̂-integrable, φ̄ ◦ f̂ = φ̄ on Λ̂, and∫

φ̄dµ̂ =
∫
φdµ̂. In particular, if µ is ergodic on Λ, then φ̄ is constant µ̂-a.e.

The problem is that this Theorem does not give us the distribution of all preim-
ages at once, but instead only that of a certain generic prehistory (one at a time);
however a point may have uncountably many different prehistories. Thus in the
case of non-invertible maps, when there may exist several preimages of any given
point from Λ, we need a different approach and different methods for studying the
global set of preimages.

In the hyperbolic endomorphism case we also notice that the local unstable man-
ifolds do not form a foliation like in the diffeomorphism setting, but instead they
may intersect both inside and outside Λ. Another difficulty is that we do not always
have Markov partitions on basic sets like in the diffeomorphism so it is impossible
in general to code the system with a Bernoulli shift. One may also have sudden
drops in the fractal dimensions caused by self-intersections in the basic set; these
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dimensions do not have to depend continuously on parameters (unlike for diffeomor-
phisms); see [31] for a discussion and examples of polynomial maps which become
homeomorphisms when restricted to some invariant sets. Thus subtle methods must
be devised to overcome all these problems.

In this survey we will discuss the particularities of the dynamics of hyperbolic
endomorphisms from several angles. First, in Section 2 we give several classes of
examples of non-reversible dynamical systems and showcase some of their differences
from the diffeomorphism situation. Then in Section 3 we present the new problem
of inverse SRB measures, which give the distribution of the various preimages of
generic points near folded repellors. They appear in some physical non-reversible
models, when describing the distribution of past trajectories for Lebesgue almost
all points. In Section 4 we study the relationships between the stable dimension
and the preimage counting function on a basic set of saddle type; and in Section
5 we give connections with the ergodic theory of 1-sided Bernoulli shifts, for var-
ious equilibrium measures of the non-invertible system. Finally in Section 6 we
present several results about applications of inverse pressure to dimension estimates
of fractal stable slices or of global unstable sets, in the conformal case; in particular
this applies to hyperbolic invariant sets for holomorphic maps in higher dimensions.
Also the above results on non-invertible fractals can be applied to certain chaotic
evolution models from statistical physics, economics, etc.

2. Examples of non-invertible dynamics. Let us mention now some literature
in the case of endomorphisms f on a basic set Λ, and some examples. In [6] Eckmann
and Ruelle studied the relations between attractors, SRB measures, dimension, Lya-
punov exponents and entropy, with a view towards applications in physics (chaotic
dynamics, turbulence theory, etc.); in the same paper there appears a non-injective
example in the plane, due to Ushiki et al., in which the computer picture of the
attractor displays folded drapes.

In [7] it was constructed a family of piecewise linear maps which were proved to be
homeomorphisms on their respective basic sets, for Lebesgue-almost all parameters.
This kind of behaviour appears when there is a transversality type condition
present for a certain parametrized family (as in [37], [48], [46] or [30]). In [30] we
gave actually examples of skew products having iterated function systems in the
base, and also several examples from higher dimensional complex dynamics which
satisfy the transversality condition; for these examples it is then possible to find the
stable dimension (i.e the Hausdorff dimension of the intersection between the basic
set Λ and the local stable manifolds) as the zero of the pressure of a certain growth

potential on Λ̂.
In [39], Przytycki studied Anosov endomorphisms and gave also examples of

perturbations of hyperbolic toral endomorphisms for which, through a given point
x ∈ Tm there pass uncountably many local unstable manifolds, corresponding to
the different prehistories of x.

Also in the recent paper [16] we considered the dynamics of a family of skew
products with overlaps in fibers fα, which were shown to be far from being homeo-
morphism and also far from being constant-to-1 maps. For these maps we showed
that different prehistories of the same point have different unstable tangent spaces
associated to them and we estimated also the angle between such unstable direc-
tions. This implies that the associated local unstable manifolds are different too.
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In order to present this class, let us fix first a small α ∈ (0, 1); then take the subin-
tervals Iα1 , I

α
2 ⊂ I = [0, 1] so that Iα1 is contained in [ 1

2 − ε(α), 1
2 + ε(α)] and Iα2 is

contained in [1−α−ε(α), 1−α+ε(α)], for some small ε(α) < α2. We consider more-
over a strictly increasing smooth map g : Iα1 ∪ Iα2 → I such that g(Iα1 ) = g(Iα2 ) = I;
assume there exists a large β >> 1 s. t β2 > g′(x) > β >> 1, x ∈ Iα1 ∪ Iα2 . Hence
there exist subintervals Iα11, I

α
12 ⊂ Iα1 , I

α
21, I

α
22 ⊂ Iα2 such that g(Iα11) = g(Iα21) = Iα1

and g(Iα12) = g(Iα22) = Iα2 . Then let Jα := Iα11 ∪ Iα12 ∪ Iα21 ∪ Iα22 and Jα∗ := {x ∈
Jα, gi(x) ∈ Jα, i ≥ 0}. Now define the endomorphism fα : Jα∗ × I → Jα∗ × I,

fα(x, y) = (g(x), hα(x, y)), with hα(x, y) =


ψ1,α(x) + s1,αy, x ∈ Iα11

ψ2,α(x) + s2,αy, x ∈ Iα21

ψ3,α(x)− s3,αy, x ∈ Iα12

s4,αy, x ∈ Iα22,

(1)

where for some small ε0, we take s1,α, s2,α, s3,α, s4,α to be positive numbers, ε0-close
to 1

2 ,
1
2 ,

1
2 ,

1
2 respectively; and ψ1,α(·), ψ2,α(·), ψ3,α(·) are smooth (say C2) functions

on I which are ε0-close in the C1-metric, to the linear functions x → x, x → 1− x
and x→ 1, respectively. By |g1 − g2|C1 we denote the distance in the C1(I)-metric
between two smooth functions on I, g1 and g2. We shall denote also the function
hα(x, ·) : I → I by hx,α(·), for x ∈ Jα∗ . Denote by

Λ(α) := ∪
x∈Jα∗

∩
n≥0

∪
y∈g−nx∩Jα∗

hny,α(I), (2)

where hny,α := hfn−1y,α ◦ . . . ◦ hy,α, n ≥ 0. For x ∈ Jα∗ let also: Λx(α) :=
∩
n≥0

∪
y∈g−nx∩Jα∗

hny,α(I), the fiber (or slice) of the fractal Λ(α) over x. Then we have

the following:

Theorem 2. ([16]) There exists a function ϑ(α) > 0 defined for all positive small
enough numbers α, with ϑ(α) →

α→0
0, such that if fα is the map defined in (1) whose

parameters satisfy:

max

{
|ψ1,α(x)− x|C1 , |ψ2,α(x)− 1 + x|C1 , |ψ3,α(x)− 1|C1 , |si,α −

1

2
|, i = 1, . . . , 4

}
<ϑ(α) (3)

then we obtain:
a) For x ∈ Jα∗ ∩ Iα1 , there exists a Cantor set Fx(α) ⊂ Λx(α), s. t every point

of Fx(α) has two different fα-preimages in Λ(α). And if x ∈ Jα∗ ∩ Iα2 , then there
exists a Cantor set Fx(α) ⊂ Λx(α) s. t every point of Fx(α) has two different
f2
α-preimages in Λ(α).

b) fα is hyperbolic on Λ(α).

c) If ẑ, ẑ′ ∈ Λ̂(α) are two different prehistories of an arbitrary point z ∈ Λ(α),
then Euẑ 6= Euẑ′ .

Another large class of endomorphisms consists of holomorphic maps in one di-
mension or in several dimensions. The one-dimensional case has been studied first,
and here were the first applications of thermodynamic formalism to calculate the
Hausdorff dimension of rational hyperbolic maps (starting with Bowen, Ruelle). In
the higher dimensional case we may have saddle type basic sets obtained as compo-
nents of the non-wandering set, for Axiom A holomorphic maps on the projective
space Pk, k ≥ 2; see [8]. As in the diffeomorphism case (for example Henon maps),
great importance is given to the set K−; in the diffeomorphism case this is the set
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of points having bounded backward iterates, but in the holomorphic endomorphism
case on Pk, the set K− is the complement of the set of points that have all of their
preimages converging towards the support of the Green measure. In fact it can be
shown in the s-hyperbolic holomorphic endomorphism case, that K− is the global
unstable set Wu(Ŝ1) union with the (finite) set of periodic attracting points (see
[8]). In [25] we proved that for s-hyperbolic holomorphic endomorphisms on Pk, the
set K− has empty interior. Then in [19] we studied in greater detail the Hausdorff
dimension of K−, and the Hausdorff and upper box dimensions of the stable inter-
sections, with the help of the inverse pressure (see also [32], [29]). Many differences
appear from the case of holomorphic automorphisms on Stein manifolds ([26]).

Another type of non-invertible dynamics is given by the family of hyperbolic
horseshoes with overlaps introduced by Bothe in [2]. He proved in fact that the
set of such non-invertible horseshoes with overlaps has non-empty interior in some
sense. As examples of non-invertible systems, we mention also the families of
self-similar sets with overlaps studied in [48], and the conformal iterated function
systems with overlaps from [33].

In [49], Tsujii studied a class of dynamical systems generated by maps T : S1 ×
R→ S1×R, T (x, y) = (`x, λy+ g(x)), where ` ≥ 2 is an integer, 0 < λ < 1 and g is
a C2-function on S1. Then T is an Anosov endomorphism, which has thus a unique
SRB measure µ. Let D ⊂ (0, 1)×C2(S1,R) be the set of pairs (λ, f) for which the
SRB measure of the corresponding endomorphism T is absolutely continuous with
respect to Lebesgue measure on S1 × R; also let D◦ the interior of D with respect
to the product topology. In [49] it was shown that there exist examples as above
for which the SRB measure is totally singular; nevertheless “most” maps T satisfy:

Theorem 3. ([49]) Let `−1 < λ < 1. There exists a finite collection of C∞

functions φi : S1 → R, i = 1, . . . ,m s.t for any C2 function g ∈ C2(S1,R), the
subset of Rm

{(t1, . . . , tm) ∈ Rm, (λ, g(x) +

m∑
i=1

tiφi(x)) /∈ D◦}

is a null set with respect to the Lebesgue measure on Rm. Consequently D contains
an open and dense subset of ( 1

` , 1)× C2(S1,R).

In [30] we considered a parametrized family of skew products with overlaps in
their fibers F : X × V → X × V, F (x, y) = (f(x), h(x, y)), where f : X → X is an
expanding map on a compact metric space X, and h(x, ·) : V → V (denoted also
by hx) is a contraction on an open convex set V ⊂ Rm; the map hx is assumed to

depend continuously on x ∈ X. The basic set here is Λ := ∪
x∈X

∞
∩
n=0

∪
z∈f−nx

hnz (V̄ ),

where hnz := hfn−1z ◦ . . . ◦ hz, n ≥ 1, z ∈ X. We studied then the conditional
measures of equilibrium states induced on fibers and their relation to the stable
dimension of fibers. We employed a transversality type condition in order to show
that for Lebesgue almost all parameters, the stable dimension of the fibers is given
by the unique solution of a Bowen type equation on Λ̂. Several examples where
these results can be applied were given in [30], among which some iterated function
systems and examples from higher dimensional complex dynamics.

3. SRB, and inverse SRB measures for endomorphisms. Axiom A endo-
morphisms and the SRB (Sinai, Ruelle, Bowen) measures for such non-invertible
maps, have been studied in [40]. In [13], Liu established a Pesin entropy formula in
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the case of an absolutely continuous invariant measure for an endomorphism. And
in [41], Qian and Zhu studied a notion of SRB measures in the non-uniform setting
of invariant measures for smooth endomorphisms. They showed the following Pesin
type entropy formula (see also the entropy formula for diffeomorphisms established
earlier by Ledrappier and Young in [11]):

Theorem 4 (Pesin’s entropy formula for endomorphisms, [41]). Let f : M →M be
a C2 endomorphism having an f -invariant probability borelian measure µ, so that
log |detDf | ∈ L1(M,µ). Then the entropy formula

hµ(f) =

∫
M

∑
λi>0

λi(x)mi(x)dµ(x)

holds if and only if µ has the SRB property, i.e for every measurable partition η
of the natural extension M̂ subordinate to the unstable manifolds of (f, µ), we have

that, for µ̂-a. e x̂ ∈ M̂ , π(µ̂ηx̂) << mx̂; here mx̂ is the Lebesgue measure induced on
the local unstable manifold Wu

r(x̂)(x̂), λi are the Lyapunov exponents of the measure

µ and mi their respective multiplicities.

Another research direction is the study of fractal dimensions, among which the
Hausdorff dimension of the intersections between local stable/unstable manifolds
and the basic set Λ, the Hausdorff dimension of Λ, the upper and lower box dimen-
sions, the dimensions of certain invariant measures, etc. Ruelle and Bowen were the
first to use thermodynamical formalism in order to find formulas for the Hausdorff
dimension of dynamically significant fractal sets. In the case of hyperbolic rational
maps f (i.e f is expanding on its Julia set J(f)), Ruelle proved that the Hausdorff
dimension of the respective Julia set is equal to the unique zero of the pressure
t → P (tΦu),Φu(y) := − log |Df(y)|, y ∈ J(f) (see [45]). For the case of hyper-
bolic diffeomorphisms on surfaces, Manning and McCluskey ([14]) proved that the
stable dimension on a basic set Λ (i.e the Hausdorff dimension of the intersection
between the local stable manifolds and Λ) is equal to the unique zero of the pres-
sure t → P (tΦs), where Φs(y) := log |Dfs(y)|, y ∈ Λ, where we denote Dfs(y) the
derivative of f restricted to the stable tangent space, Df |Esy , y ∈ Λ. And similarly
for the unstable dimension.

In [43] (see also [15]) it was studied the distribution of the preimages for ex-
panding maps; the main method was the use of Perron-Frobenius operators, and
the fact that the diameters of the images of small balls by local inverse iterates
decrease exponentially. However for non-invertible non-expanding maps, this
useful property does no longer hold.

In a series of papers, namely [22], [23], [20] we initiated a study of an analogue
of the SRB measure for endomorphisms, but this time involving the various con-
secutive preimages of points. As noticed before, due to the non-invertibility of f ,
we cannot apply the case of the forward iterates, and the problem is difficult and
subtle. New methods were developed, involving estimates of the equilibrium mea-
sures on pieces of neighbourhoods of unstable manifolds (corresponding to various
prehistories), inverse pressure, non-Bernoullicity of some measures, combinatorial
arguments, estimates of the lifts of measures on certain borelian sets from the natu-
ral extension, consideration of families of certain appropriate conditional measures,
etc. A priori there may exist preimages of points from Λ which do not remain in Λ,
as Λ is a fractal set, not necessarily totally invariant. First let us specify what
we understand by repellor for an endomorphism:
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Definition 5. Let f be a smooth (say C2) endomorphism on a Riemannian manifold
M and let Λ be a basic set for f . We say that Λ is a repellor for f if the critical
set of f does not intersect Λ and if there exists a neighbourhood U of Λ such that
Ū ⊂ f(U).

We can prove the following result for the number of preimages remaining in the
repellor:

Proposition 6. In the setting of Definition 5, if Λ is a repellor for f , then f−1Λ∩
U = Λ. If moreover Λ is assumed to be connected, the number of f -preimages that
a point has in Λ is constant.

Proof. Consider a point x ∈ Λ, and y be an f -preimage of x from U . Then fny ∈
Λ, n ≥ 1. From Definition 5, since Λ is assumed to be a repellor, the point y has a
preimage y−1 in U ; then y−1 has a preimage y−2 from U , and so on. Thus y has a
full prehistory belonging to U and also its forward orbit belongs to U , hence y ∈ Λ
since Λ is a basic set. So f−1Λ ∩ U = Λ.

We prove now the second part of the statement. Let a point x ∈ Λ and assume
that it has d f -preimages in Λ, denoted x1, . . . , xd. Consider also another point
y ∈ Λ close to x. If y is close enough to x and since Cf ∩ Λ = ∅, it follows that
y also has exactly d f -preimages in U , denoted by y1, . . . , yd. Since from the first
part we know that f−1Λ∩U = Λ, we obtain then y1, . . . , yd ∈ Λ. In conclusion the
number of f -preimages in Λ of a point is locally constant. If Λ is assumed to be
connected, then the number of preimages belonging to Λ of any point from Λ, must
be constant.

The importance of the fact that all points in Λ have a constant number of preim-
ages remaining in Λ, is given by the following Theorem, proved in [20]:

Theorem 7. ([20]) Consider Λ to be a connected hyperbolic repellor for the smooth
endomorphism f : M →M ; let us assume that the constant number of f -preimages
belonging to Λ of any point from Λ is equal to d. Then P (Φs − log d) = 0.

Using this, we showed in [20] that in the case of a hyperbolic repellor which is
not necessarily expanding, we can obtain the distribution of consecutive preim-
ages as an inverse SRB measure; the important role of the inverse SRB measure
is played here by the equilibrium measure of the stable potential. The methods
of proof are however different from the diffeomorphism case, and involve a careful
study of the types of behaviours of consecutive sums along various prehistories.

Theorem 8. ([20]) Let Λ be a connected hyperbolic repellor for a smooth endomor-
phism f : M → M . There exists a neighbourhood V of Λ, V ⊂ U such that if we
denote by

µzn :=
1

n

∑
y∈f−nz∩U

1

d(f(y)) · . . . · d(fn(y))

n∑
i=1

δfiy, z ∈ V

where d(y) is the number of f -preimages belonging to U of a point y ∈ V , then for
any continuous function g ∈ C(U,R) we have∫

V

|µzn(g)− µs(g)|dm(z) →
n→∞

0,

where µs is the equilibrium measure of the stable potential Φs(x) := log |det(Dfs(x))|,
x ∈ Λ.
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Corollary 9. In the same setting as in Theorem 8, it follows that there exists a
borelian set A ⊂ V with m(V \ A) = 0 and a subsequence (nk)k, such that for any
point z ∈ A, we have the following weak convergence of measures on U

µznk →k→∞µs

Moreover we proved in [20] that a property like the one satisfied by usual SRB
measures in regard to their conditional measures on unstable manifolds, is verified
now by the inverse SRB measure, but on local stable manifolds:

Theorem 10. ([20]) Let Λ be a connected hyperbolic repellor for a smooth endo-
morphism f : M → M on a Riemannian manifold M ; assume that f is d-to-1 on
Λ. Then there exists a unique f -invariant probability measure µ− on Λ satisfying
an inverse Pesin entropy formula:

hµ−(f) = log d−
∫

Λ

∑
i,λi(x)<0

λi(x)mi(x)dµ−(x)

In addition the measure µ− has absolutely continuous conditional measures on local
stable manifolds.

Connected hyperbolic repellors are very useful as examples since, at perturba-
tions, they preserve the property of having a constant number of preimages remain-
ing in the repellor, for any point (Proposition 6 above). Also, their hyperbolicity
and connectedness are preserved by perturbations. Therefore one can construct
examples like the one below, from [20]:

Example. Let us take F : PC1 × T2 → PC1 × T2 given by:
F ([z0 : z1], (x, y)) = ([z2

0 : z2
1 ], fA(x, y)), where fA is the toral endomorphism

induced by the matrix A =

(
2 1
2 2

)
. Then F has a connected hyperbolic repellor

Λ := S1×T2. Consider the following perturbation of F , Fε : PC1×T2 → PC1×T2

given by:

Fε([z0 : z1], (x, y))

=
(

[z2
0 + εz2

1 · e2πi(2x+y) : z2
1 ], (2x+ y + εsin(2π(x+ y)), 2x+ 2y + εcos2(4πx))

)
Then Fε is well defined as a smooth endomorphism on PC1 × T2 and it is a C1

perturbation of F . It follows from the discussion above that Fε has a connected
hyperbolic repellor Λε (on which Fε has both stable as well as unstable directions),
and that Λε is close to Λ. However Λε is different from Λ, and it has a complicated
fractal structure with self-intersections; its projection on the second coordinate is
T2. On Λε we can apply Theorem 8 to get a physical measure µ−ε for the local
inverse iterates of Fε. This physical measure µ−ε is the equilibrium measure of the
non-constant stable potential

Φsε([z0 : z1], (x, y)) := log |det(DFε)s([z0 : z1], (x, y))|, for ([z0 : z1], (x, y)) ∈ Λε

�
The distribution of preimages for expanding maps is given by equilibrium mea-

sures (see [43]). However if the basic set Λ is of saddle type, the problem is very
different and needs new methods for the proof. We lack the fact that the local
inverse iterates act as contractions on small balls; in fact they are dilations in the
stable directions in backward time, and this is changing completely the situation
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and the ideas of proof. In [22] we solved the above problem of the weighted preim-
age distribution with a Holder continuous weight φ, along a general hyperbolic
basic set (i. e not necessarily a repellor, and not necessarily for an expanding
map):

Theorem 11. ([22]) Let f : M →M be a smooth (say C2) map on a Riemannian
manifold M , which is hyperbolic and finite-to-one on a basic set Λ so that Cf∩Λ = ∅.
Assume that φ is a Holder continuous potential on Λ and that µφ is the equilibrium
measure of φ on Λ. Then∫

Λ

| < 1

n

∑
y∈f−nx∩Λ

eSnφ(y)∑
z∈f−nx∩Λ

eSnφ(z)
·
n−1∑
i=0

δfiy−µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

The proof of this Theorem is difficult and is based on a careful study of the
measure µφ of various pieces of Bowen balls, and of iterates of Bowen balls; one
has to estimate the measure of the set of n-preimages y−n behaving badly, i.e on

which the consecutive averages φ(y)+...+φ(y−n)
n oscillate more than some positive ε,

from their median value
∫
φdµφ. As a Corollary, we obtained in [22] the following

result giving the weak convergence of the above atomic measures along the same
subsequence, for all points in a set of full µφ-measure, in the case of a basic set of
saddle type Λ and a smooth non-invertible map f :

Corollary 12. ([22]) In the same setting as in Theorem 11, for any Holder potential
φ, it follows that there exists a subset E ⊂ Λ, with µφ(E) = 1 and an infinite
subsequence (nk)k such that for any z ∈ E we have the weak convergence of measures

µznk →k→∞µφ

Corollary 13. ([22]) Assume that f : M →M is an Anosov endomorphism without
critical points on a Riemannian manifold. Let also φ a Holder continuous potential
on M and µφ the equilibrium measure of φ. Then∫

M

| < 1

n

∑
y∈f−nx

eSnφ(y)∑
z∈f−nx

eSnφ(z)
·
n−1∑
i=0

δfiy − µφ, g > |dµφ(x) →
n→∞

0,∀g ∈ C(Λ,R)

In particular, if µ0 is the measure of maximal entropy, it follows that for µ0-almost

all points x ∈ Λ, 1
n

∑
y∈f−nx

n−1∑
i=0

δfiy

Card(f−nx) →n→∞µ0

By applying some results from [12] and [41] we obtain sufficient conditions when
the usual SRB measure is equal to our inverse SRB measure (see [20], [22]):

Corollary 14. Let f : M →M be an Anosov endomorphism, φ : Λ→ R a Holder
potential and assume that the equilibrium measure µφ is absolutely continuous with
respect to the Lebesgue measure on M . Then the measure µφ with this property is
unique, it is an SRB measure and it also satisfies an inverse SRB condition in the
sense that there exists a set E of full Lebesgue measure in M and a sequence (nk)k
such that µznk→k µφ, z ∈ E.

An example of an Anosov endomorphism, so that each point has a constant num-
ber of preimages, is that of a hyperbolic toral endomorphism fA : Tm → Tm,m ≥ 2,
given by an integer-valued matrix A whose eigenvalues λi all have absolute values
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different from 1. Each point of Tm has exactly |detA| preimages in Tm. Then for
any Holder continuous potential φ on Tm, we can apply the Corollary 13 in order
to obtain the weighted distribution of all n-preimages on Tm, asymptoti-
cally converging to the equilibrium measure µφ, when n → ∞. In particular, if
φ ≡ 0, we obtain the distribution of the atomic measures supported on preimages
of order smaller than n, towards the measure of maximal entropy (i. e towards
the Lebesgue measure on Tm). We notice also that Corollary 13 applies for Anosov
endomorphisms on infranilmanifolds (see for example [15] for definitions). More-
over, Theorem 11 applies also to basic sets of saddle type which are not necessarily
Anosov, like the examples from [30] recalled in Section 2.

4. Fractal dimensions and the preimage counting function. We talk now
about the relations between ergodic theory/thermodynamic formalism and the frac-
tal dimensions of dynamical significance in the case of smooth hyperbolic endomor-
phisms (i.e smooth hyperbolic non-invertible maps) on basic sets. This case is very
different from the diffeomorphism case and new methods are needed for the proofs.
Also new type of phenomena appear, which did not appear in the diffeomorphism
case. Firstly the usual Bowen formula does not always work in this case, for the
Hausdorff dimension of the intersection between a local stable manifold and a ba-
sic set Λ (see [31], [29]). Also the unstable dimension has to be computed on the

natural extension Λ̂, but in this case we do have a Bowen type formula, namely
δu(x̂) = tu, where tu is the unique zero of the pressure function

t→ Pf̂ (tΦu),Φu(ŷ) := − log |Dfu(ŷ)|, ŷ ∈ Λ̂,

as it was shown in [24]. However we do not have such a formula for the stable
dimension since, by contrast with the unstable manifolds, the stable manifolds do
not lift bi-Lipschitz homeomorphically to the natural extension. This is caused
by the fact that the local unstable manifolds depend on their whole prehistories
(see [39], [16] for examples with different unstable spaces corresponding to different
prehistories), and thus do not form a nice foliation like in the diffeomorphism case;
so a holonomy map on local stable manifolds (in the sense of [38]) cannot be defined
in general.

In [29] and [28] we gave the following answer to the difficult question of estab-
lishing a Bowen formula for the stable dimension in the non-invertible case; in this
setting the problem presents many qualitative differences from the classical diffeo-
morphism or expanding cases (see also [31]). It was stated originally for holomorphic
maps on P2, but the same proof can be extended as below:

Theorem 15. ([29], [28]) Consider a smooth endomorphism f : M →M which is
hyperbolic on a basic set of saddle type Λ such that f is conformal on local stable
manifolds and there are no critical points in Λ. Assume also that there exists a
continuous function ω on Λ such that for any point z ∈ Λ, we have d(z) ≤ ω(z).
Then δs(x) ≥ tω, for any x ∈ Λ, where tω is the unique zero of the pressure function
t→ P (tΦs − logω).

In case the preimage counting function is constant on Λ and equal to d, we obtain
that for any x ∈ Λ the stable dimension δs(x) = tsd, where tsd is the unique zero of
the pressure function t→ P (tΦs − log d), and Φs(y) := log |Dfs(y)|, y ∈ Λ.

The proof of this Theorem uses some new ideas related to the inverse pressure and
to the concatenation of tubular unstable neighbourhoods. Moreover we proved in
[21] that the conditional measures induced by the equilibrium measure µs of δsΦs
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on local stable manifolds (corresponding to a measurable partition whose existence
we showed in [21]), are geometric probabilities of exponent δs; this was done by
estimating the measure µs of different parts of a generic fn(Bn(z, ε)).

Theorem 16. ([21]) Let f,Λ be as in Theorem 15. Assume moreover that f is
d-to-1 on Λ. Let δs the stable dimension of Λ, and µs be the equilibrium measure
of the potential δsΦs on Λ. Then the conditional measures of µs, associated to the
partition ξ subordinated to the local stable manifolds, are geometric probabilities of
exponent δs.

A surprising, and useful consequence of Theorem 15 is the following:

Corollary 17. ([28]) Assume that f is c-hyperbolic on a basic set Λ and that the
preimage counting function d(·) reaches a maximum value of d on Λ. If there exists
a point x ∈ Λ such that δs(x) = td, where td is the unique zero of the pressure
function t→ P (tΦs− log d), then d(y) = d, ∀y ∈ Λ. And hence the stable dimension
at every point of Λ is equal to td.

So the last Corollary says that, if the stable dimension attains its lowest possible
value at a certain point x ∈ Λ, then the preimage counting function is constant on
Λ; and hence, by Theorem 15 the stable dimension must be constant on Λ (this is
not always known for general endomorphisms).

Theorem 15 and Corollary 17 can be applied to c-hyperbolic skew products
with overlaps in fibers, and with a finite iterated function system (IFS) in the
base. Let us consider a finite union of compact sets X1, . . . , Xm in an open set
S ⊂ Rl and denote by X := X1 ∪ . . . ∪Xm. Consider also a continuous expanding
topologically transitive function f : X → X. Assume that f is injective on each
Xi and that f(Xi) = X(i, 1) ∪ . . . ∪ X(i,mi), i = 1, . . . ,m, where X(i, j) are sets
from the same collection {X1, . . . , Xm}. The source-model for this is the case of an
expanding map f : I1∪. . .∪Im → I1∪. . .∪Im, with I1, . . . , Im compact subintervals
in [0, 1], such that f(Ij) is a union of some of the same subintervals, i.e f(Ij) =

I(j, 1)∪ . . .∪ I(j,mj), j = 1, . . . ,m. Take the functions g(x, y) : X × W̃ → X × W̃ ,

with W̃ ⊂ Rk a neighbourhood of the closure of an open setW , such that g is smooth
(say C2) in (x, y), and such that for every x ∈ X, the function g(x, ·) : W → W
is contracting uniformly in x, and it is injective and conformal. We shall denote
the function g(x, ·) also by gx; due to the contraction, gx(W̄ ) is strictly contained
in V . We define then the f -invariant set X∗ := {y ∈ X, f jy ∈ X, j ≥ 0} and for
each x ∈ X∗, let us consider the fiber Λx := ∩

n≥0
∪

z∈f |−n
X∗ (x)

gfnz ◦ . . . ◦ gz(W̄ ). Then

consider the compact set: Λ := ∪
x∈X∗

Λx, (see for example [30] for a similar type of

skew products). It can be seen that F (x, y) := (f(x), g(x, y)) defined on X∗ ×W
is hyperbolic on its basic set Λ. In this case we can apply the above Theorem 15.
Indeed for each j with 1 ≤ j ≤ m, we know that a point z ∈ X∗ ∩ Xj has at
most qj preimages in Λ, where qj is the number of subsets Xi, 1 ≤ i ≤ m such that
f(Xi) ⊃ Xj . Then we have that the preimage counting function associated to F
and Λ is smaller or equal than a locally constant function ω given by ω(x, y) := qj
if x ∈ Xj , 1 ≤ j ≤ m. However points in Λ∩ ({x} ×W ) may have strictly less than
qj F -preimages in Λ for x ∈ Xj ∩X∗. Hence we obtain the following:

Corollary 18. ([28]) Let a c-hyperbolic skew-product pair (F,Λ) as above. Then
the stable dimension of Λ, i.e the Hausdorff dimension of the fibers Λx, x ∈ X∗, is
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larger or equal than the unique zero of the pressure function t → P (tΦs − logω),
where ω|(X∗∩Xj)×W = qj , 1 ≤ j ≤ m.

Another Corollary, obtained in [28], and giving a relationship between the number
of preimages remaining in Λ and the stable dimension is the following:

Corollary 19. ([28]) In the setting of Corollary 18, if f(Ij) contains all subintervals
I1, . . . , Im, 1 ≤ j ≤ m, it follows that F is m-to-1 on Λ if and only if ∃z ∈ Λ with
δs(z) = 0. In this case we obtain δs(y) = 0,∀y ∈ Λ.

The stable dimension has also some interesting applications to a phenomenon
of geometric rigidity for basic saddle sets for smooth endomorphisms. Indeed
we proved in [23] that, if the stable dimension attains its lowest value (zero) at
some point, then the preimage counting function is constant on Λ and actually Λ
is contained in a finite number of unstable manifolds (like in the case of the map
(z, w) → (z2 + c, w2) on its basic set Λ = {pc} × S1, where pc is the unique fixed
attracting point of the map z → z2 + c, for small |c| 6= 0). The precise result proved
in [23] is this:

Theorem 20. ([23]) Let f : M →M be a smooth endomorphism which is hyperbolic
on a basic set Λ with Cf ∩ Λ = ∅ and such that f is conformal on local stable
manifolds. Assume that d is the maximum possible value of d(·) on Λ, and that
there exists a point x ∈ Λ where δs(x) = td = 0. Then it follows that d(·) ≡ d on
Λ and there exist a finite number of unstable manifolds whose union contains Λ.
In particular if Λ is connected, there exists an unstable manifold containing Λ, and
f |Λ is expanding.

5. 1-sided Bernoullicity and stable dimension. An important general prob-
lem in ergodic theory is to see whether the system (Λ, f, µ) is 1-sided (or 2-sided)
Bernoulli for a certain f -invariant measure on the basic set Λ (see [4], [15], [35],
[42], etc.). Again, the problem for endomorphisms (i.e for smooth non-invertible
maps) is very different than the one for diffeomorphisms, and presents many partic-
ularities. For example while we know that entropy gives a classification of 2-sided
Bernoulli automorphisms (by work of Ornstein), no such classification exists for
endomorphisms of Lebesgue spaces; in fact Parry and Walters proved:

Theorem 21 ([35]). There are non-isomorphic exact endomorphisms S, T of a
Lebesgue space (X,B, µ) so that S2 = T 2 (hence S, T have the same entropy w.r.t
µ), S−nB = T−nB, n ≥ 0 and s.t the Jacobians of S and T w.r.t µ are equal.

However a lot of work has been done recently in order to establish whether a
certain endomorphism on a Lebesgue space together with a certain measure, is a
1-sided Bernoulli endomorphism (see for instance [4]). The problem is complex and
must be attacked on a case-by-case approach.

In [4], Bruin and Hawkins gave several criteria for maps to be 1-sided Bernoulli;
in fact for interval/circle maps, there exist rigidity type results for 1-sided Bernoulli
maps:

Theorem 22. ([4]) Let T : I → I be a piecewise C2 n-to-1 interval map preserving
a probability measure µ equivalent to Lebesgue measure m s.t the Radon-Nikodym
derivative g = dµ

dm is continuous and bounded away from 0. Then T is 1-sided

Bernoulli on (I,B, µ) if and only if T is C1-conjugate to a map S : I → I whose

graph consists of n linear pieces with slopes + 1
pi

s.t hµ(T ) = −
n∑
i=1

pi log pi.
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Corollary 23. ([4]) Let T : S1 → S1 be an expanding C2 degree n ≥ 2 circle
map with T (0) = 0; then T is 1-sided Bernoulli if and only if it is C1-conjugate to
z → zn.

Also in [4] there were obtained several examples of non-Bernoulli n-to-1 maps
(see also [5]).

Theorem 24. ([18]) Let fA be a toral endomorphism on Tm,m ≥ 2, given by the
integer-valued matrix A, all of whose eigenvalues are strictly larger than 1 in abso-
lute value. Then the endomorphism fA on the torus Tm equipped with its Lebesgue
(Haar) measure µm, is isomorphic to a 1-sided Bernoulli shift.

More generally in [18] we proved that expanding endomorphisms on tori are
1-sided Bernoulli with respect to their associated measures of maximal entropy.
We also studied in [18] certain toral extensions of these endomorphisms; for general
theory of group extensions and relations to Livsic theory see [36].

In [23] we proved the following result, this time for expanding maps on general
basic sets:

Theorem 25. ([23]) Assume that Λ is a hyperbolic basic set for a smooth endo-
morphism f , such that f |Λ is d-to-1, td = 0 and f |Λ is expanding. Then (Λ, f, µ0)
is 1-sided Bernoulli, where µ0 is the unique measure of maximal entropy.

However, if the system has stable directions and if the stable dimension is posi-
tive, we obtained the following result of non-Bernoullicity:

Theorem 26. ([23]) Let f be a smooth endomorphism, which is hyperbolic on a
basic set Λ, such that Λ ∩ Cf = ∅ and f is conformal on stable manifolds. Assume
that there exists a point x ∈ Λ with δs(x) > 0, and denote by µs the equilibrium
measure of the potential δs(x) ·Φs(·). Then the measure preserving system (Λ, f, µs)
cannot be 1-sided Bernoulli.

In [23] we gave a Classification Theorem for the possible types of ergodic and
metric behaviour that may appear when perturbing a certain class of holomorphic
maps in C2:

Theorem 27. ([23]) Let us consider the holomorphic map f(z, w) = (z2 + c, w2)
for small |c| 6= 0. Let also fε be a holomorphic perturbation of f and Λε the
corresponding basic set of fε, close to the set Λ := {pc} × S1, where pc is the fixed
attracting point of z → z2 + c. Then we may have exactly one of the following
possibilities:

a) There exists a point x ∈ Λε where δs(x) = 0. Then there exists a manifold
W such that Λε ⊂ W , fε|Λε is expanding and fε|Λε is 2-to-1. In this case the
stable dimension is 0 at any point from Λε, and the measure preserving system
(Λε, fε, µ0,ε) is 1-sided Bernoulli (where µ0,ε is the unique measure of maximal
entropy for fε|Λε).

b) There exists a point x ∈ Λε with 0 < δs(x) < 2. Then the stable dimension is
positive at any point of Λε, and the measure preserving system (Λε, fε, µs,ε) cannot
be 1-sided Bernoulli (where µs,ε is the equilibrium measure of the potential δs(x)Φsε).
We have two subcases:

b1) fε|Λε is a homeomorphism, and in this case the measure preserving system
(Λε, fε, µφ) is 2-sided Bernoulli for any Holder continuous potential φ, where µφ is
the equilibrium measure of φ.
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b2) there exist both points with one fε-preimage in Λε and points with two
fε-preimages in Λε, but the set of points with one fε-preimage in Λε has non-empty
interior.

For example the map fε(z, w) = (z2+εw4, w2) has a basic set Λε close to {0}×S1.
Moreover its basic set is contained in the submanifold

W := {(z, w) ∈ C2, z = α · w2),

where α = 1−
√

1−4ε
2 . In fact we have in this case f(W ) = W = f−1(W ). In this

case fε is expanding and 2-to-1 on Λε, and the stable dimension is everywhere equal
to 0.

In the case when the number of preimages varies along Λ, for example, if d(·)
takes two values on Λ, namely d(x) = d1, x ∈ Λ1 and d(y) = d2, y ∈ Λ2, and if
◦
Λ1 6= ∅, we may take a continuous function ω(·) so that ω ≡ d2 on a neighbourhood

V2 of Λ2, ω ≡ d1 on some open set V1 with V̄1 ⊂
◦
Λ1 and d1 ≤ ω(x) ≤ d2 for other

points x ∈ Λ. Then from Theorem 15 (see [28]), we know that td1 ≥ δs(x) ≥ tω,
where tω is the unique zero of the pressure function t→ P (tΦs − logω). �

Relations between 1-sided Bernoullicity and the pointwise dimension of an arbi-
trary equilibrium measure were given in 2011 in [17]:

Theorem 28. ([17]) Let f be a smooth hyperbolic endomorphism on a connected
basic set Λ; let also φ be a Holder continuous potential on Λ and µφ the unique
equilibrium measure of φ. Then if the measure-preserving system (Λ, f, µφ) is 1-
sided Bernoulli, it follows that either f is distance-expanding on Λ, or the stable
dimension of µφ is zero, i.e HDs(µφ, x) = 0 for µφ-a.e x ∈ Λ.

6. Applications of inverse pressure to certain metric properties. We will
finish with several results from [19] about the Hausdorff dimension of the global

unstable set Wu(Λ̂) for a basic set Λ with self-intersections, which is not a
repellor.

Definition 29. Let a smooth (C2) map on a Riemannian manifold M , f : M →M ,
and assume that f is hyperbolic on a basic set Λ. Then we say that Λ is a local
repellor for f if there exist local stable manifolds of f contained in Λ.

For diffeomorphisms, a basic set Λ is said to be a repellor if there exists a neigh-
bourhood U of Λ such that f(U) ⊃ Ū . However, for endomorphisms this condition
alone does not guarantee a priori that all of the local stable manifolds are not
contained in Λ. This may happen because of the subtle structure of foldings and
overlappings for endomorphisms, which may take a point outside Λ into a point
from Λ. If we want to have equivalence between our Definition 29 and the fact that
there exists a neighbourhood U of Λ with Ū ⊂ f(U), then we have to assume in
addition that f |Λ is open on Λ for example. The main advantage of a set which is
not a local repellor is that this property is stable under perturbation, thus giving
a whole class of examples.

A cf-hyperbolic map is by definition, a map which is hyperbolic on a basic
set Λ, conformal on local stable manifolds of real dimension 2 and without critical
points in Λ (see [19]).

Theorem 30. ([19]) Let f be a cf-hyperbolic map on a basic set Λ which is not a
local repellor. Then for any perturbation g close enough to f (in the C2 topology),
the corresponding basic set Λg is not a local repellor for g either.
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If f : P2 → P2 is holomorphic on the 2-dimensional projective space and s-
hyperbolic on a basic set of saddle type Λ, it follows that Λ cannot be a local repellor
for f (see [19], using some results of Takeuchi about domains of holomorphy). In
[19] we focused mainly on basic sets which are not local repellors, i.e which do
not have any local stable manifold contained inside Λ. For this type of basic sets
we can show (by using arguments related to the inverse pressure) that the stable
dimension is always strictly less than 2.

We denote by ts(ε) the unique zero of the inverse pressure function restricted
to covers of Λ of mesh less than ε, namely t→ P−(tΦs, ε) (see [32], [29], [19] for def-
inition/properties of the inverse pressure; also [34] for a different notion of preimage
entropy). Then ts(ε) gives the following bound for the upper box dimension of the
stable slice:

Theorem 31. ([19]) Let M be a smooth compact Riemannian manifold of real
dimension 4 and f : M → M be a cf-hyperbolic map on a basic set of saddle
type Λ which is not a local repellor. Then for any point x ∈ Λ, we have δs(x) =
HD(W s

r (x) ∩ Λ) ≤ dimB(W s
r (x) ∩ Λ) ≤ ts(ε) < 2, for some ε > 0. In particular

this holds also in the case of a holomorphic map f : P2 → P2 which is s-hyperbolic
on a basic set of saddle type Λ.

We do not know yet whether, for endomorphisms, the stable dimension and the
stable upper box dimension coincide always. We proved however this fact in the case
when the preimage counting function is constant on Λ. For basic sets which are not
local repellors we showed in [19] that the Hausdorff dimension of the global unstable
set must be less than 4 (if we are in R4). In the case when f is a holomorphic map on
P2 we obtain thus an estimate for the Hausdorff dimension of the global unstable
set (which is equal, up to finitely many points, to the set K− of points whose
prehistories do not converge towards the support of the Green measure); notice
that K− is the analogue of the set of points with bounded backward iterates from
the Henon case.

Theorem 32. ([19]) Let M be a compact Riemannian manifold of real dimension
4, and f : M → M be a smooth cf-hyperbolic map on a basic set of saddle type Λ,
which is not a local repellor. Assume also that the following condition on derivatives
is satisfied:

sup
ξ̂∈Λ̂

|Dfu(ξ̂)| · |Dfs(ξ)| < 1 (4)

Then HD(Wu(Λ̂)) < 4. The same conclusion holds if f : P2 → P2 is a holomorphic
map which is s-hyperbolic on a basic set of saddle type Λ and satisfies (4).

Finally in [19] we proved also the following Theorem about the relation between
the stable dimension over Λ and the bounds on the preimage counting function; the
conditions of the Theorem can be verified on a number of examples.

Theorem 33. ([19]) Let M be a compact Riemannian manifold of real dimension
4, and f : M → M be a smooth cf-hyperbolic map on a basic set of saddle type Λ,
which is not a local repellor. Let us denote by χs := infΛ |Dfs|, λs := supΛ |Dfs|
and sup

x̂∈Λ̂

|Dfs(x)| · |(Df |Eu(x̂))
−1| =: τ . Suppose that every point from Λ has at most

d f -preimages and at least d′ f -preimages in Λ. If the condition:

2 inf{1, − log τ

| logχs|
} − log d

| logχs|
≥ htop(f |Λ)− log d′

| log λs|
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is satisfied, then HD(Wu(Λ̂) ∩ ∆) < 2 for any disk ∆ transversal to the unstable

directions. Moreover we obtain HD(Wu(Λ̂)) < 4.

Applications. The above results can be applied for instance also to problems
from economics; there exist several overlapping generations models, or cobweb mod-
els with adaptive adjustments, which present non-invertibility character plus some
form of hyperbolicity (see [10], [27], etc.) In this setting the complexity of the invari-
ant fractal sets presents significance for the economic problem, and one can apply
the above results to investigate their metric (various types of dimension, fractal
geometry, etc.) and ergodic properties (entropy, invariant measures, distributions
of recurrent values, mixing, etc.)

We can apply Theorem 15 to the invariant fractal sets Λ obtained in chaotic 2-
dimensional overlapping generations models or in certain hedging models, in order
to obtain estimates on the dimension δs of the sets of points which stay close to Λ
in forward time; and find the dimension of the local unstable intersections by using
[24]. For the applications mentioned above, the inverse limits (natural extension
spaces) are important and one can study the equilibrium measures of various utility
functions on inverse limits; such utility functions are Hölder continuous with respect
to the canonical metric on Λ̂ (see [27]). A utility function on Λ̂, W : Λ̂→ R is given
by W (x̂) =

∑
i≥0

βiU(x−i), for β ∈ (0, 1) and

a) in case Λ ⊂ (0,∞) we have U(x) := min{1,x}1−σ
1−σ + (2−min{1,x})1−γ

1−γ , x ∈
Λ, with σ > 0, γ > 0.

b) or in case Λ ⊂ (0, 1) × (0, 1), we have U(x, y) := x1−σ

1−σ + y1−γ

1−γ , (x, y) ∈
Λ, with σ > 0, γ > 0.

The equilibrium measures of such functions are important as they give maximum
average utility value, while at the same time keeping the system as under control
as possible in the long run, thus improving the predictability of the model (see
the Variational Principle, [9]; the entropy gives here a measure of the disorder in
the system). Equilibrium measures can be approximated using the known past
trajectories as in Theorem 11 and its Corollaries. Moreover in these models the
SRB measures for the associated endomorphisms give the distributions of forward
iterates near attractors (if they exist), while the inverse SRB measures give the
distributions of all local inverse iterates near repellors (if they exist); see also [6].
Both the SRB and the inverse SRB measures are particular examples of equilibrium
states of Hölder potentials (see [40], [20]).

In practice it is important to work with models which are not changed drastically
by small perturbations. In our case by considering basic sets Λ for non-invertible
smooth maps f given in the above systems, we can apply Theorem 30 to assure the
non-repellor character of perturbations of Λ and also to have conjugacies on Λ̂, thus
preserving the dynamical properties.
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[24] E. Mihailescu, Unstable manifolds and Hölder structures for noninvertible maps, Discrete

and Cont. Dynam. Syst., 14 (2006), 419–446.
[25] E. Mihailescu, The set K− for hyperbolic non-invertible maps, Ergodic Th. and Dynam.

Syst., 22 (2002), 873–887.

[26] E. Mihailescu, Periodic points for actions of tori in Stein manifolds, Math. Ann., 314 (1999),
39–52.

[27] E. Mihailescu, Inverse limits and statistical properties for chaotic implicitly defined economic

models, arXiv:1111.3482v1, 2011.
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