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Abstract

We study certain ergodic properties of equilibrium measures of hyperbolic non-invertible

maps f on basic sets with overlaps Λ. We prove that if the equilibrium measure µφ of a Holder

potential φ, is 1-sided Bernoulli, then f is expanding from the point of view of a pointwise section

dimension of µφ. If the measure of maximal entropy µ0 is 1-sided Bernoulli, then f is shown to

be distance expanding on Λ; and if µφ is 1-sided Bernoulli for f expanding, then µφ must be

the measure of maximal entropy. These properties are very different from the case of hyperbolic

diffeomorphisms. Another result is about the non 1-sided Bernoullicity for certain equilibrium

measures for hyperbolic toral endomorphisms. We also prove the non-existence of generating

Rokhlin partitions for measure-preserving endomorphisms in several cases, among which the case

of hyperbolic non-expanding toral endomorphisms with Haar measure. Nevertheless the system

(Λ, f, µφ) is shown to have always exponential decay of correlations on Holder observables and

to be mixing of any order.
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1 Introduction and outline of main results.

We investigate some ergodic properties of equilibrium measures on folded basic sets, i.e on locally

maximal invariant sets for non-reversible smooth dynamical systems. Such systems appear naturally

in statistical mechanics or in fractal theory. One central property in ergodic theory is the 1-sided

(2-sided) Bernoullicity, or lack of it, i.e the possibility to code the measure-preserving system with

a shift on a space of sequences. In a sense, 1-sided Bernoulli shifts represent the most chaotic and

unpredictable non-reversible systems (see [15]). Parry and Walters showed in [18] that measurable

endomorphisms of Lebesgue spaces behave very differently than automorphisms. Indeed for

automorphisms Ornstein proved a famous result, namely that two invertible Bernoulli shifts on

Lebesgue spaces are isomorphic if and only if they have the same measure theoretic entropy (see

eg. [15]). However as Parry and Walters showed in [18] for measure-preserving endomorphisms

f : (X,B, µ) → (X,B, µ), the entropy alone hµ(f) does not determine the conjugacy class. So the

problem of coding for endomorphisms of Lebesgue spaces (in particular for 1-sided Bernoulli shifts)

is subtle and there are no exhaustive classifications.
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Hyperbolic diffeomorphisms on basic sets have Markov partitions (see [2]), and these are fun-

damental in establishing a coding to a 2-sided Bernoulli shift, of the diffeomorphism with an

equilibrium measure of a Holder potential ([2], [3]); however such Markov partitions lack in general

for endomorphisms. Endomorphisms on Lebesgue spaces present important differences from the

automorphism/diffeomorphism case (for example [4], [5], [9], [18], [16], [22], [28], [10], [11], [12],

etc.) In [9] Mane proved that some iterate fm of a rational map f is 1-sided Bernoulli with respect

to the measure of maximal entropy on the Julia set of f .

In this paper we consider the significantly different case of equilibrium measures for smooth

noninvertible maps (referred to also as endomorphisms) which are hyperbolic on basic sets with

overlaps Λ; in general the map may have both stable and unstable directions on Λ. Here the local

unstable manifolds do not form necessarily a foliation (unlike for hyperbolic diffeomorphisms), as

they depend on the whole past. There are many examples of interesting and/or unexpected dy-

namical behaviour for endomorphisms, for instance: examples from statistical mechanics (see [22]);

horseshoes with overlaps ([1]); hyperbolic toral endomorphisms (see [8], [27]), and endomorphisms

on infranilmanifolds ([8]); strange attractors and strange repellers with overlaps ([24], [12], [11]);

holomorphic maps in one complex variable and measures on their Julia sets ([9]); holomorphic

maps in higher dimension, hyperbolic on certain sets ([12]); skew product endomorphisms with

overlaps in fibers, having Cantor sets of points in fibers with infinitely many prehistories, as in [10];

parameterized families of skew products, satisfying a transversality condition ([14]), etc.

We denote by B(Λ) the σ-algebra of borelian sets on Λ; all our measures are borelian. In

Theorem 1 we will show that, if the system (Λ, f, µφ) is 1-sided Bernoulli, with f a hyperbolic

endomorphism and µφ the equilibrium measure of a Holder continuous potential φ, then f must

be ”expanding” on Λ from the point of view of µφ. In the proof of Theorem 1 we will use the

notion of folding entropy introduced by Ruelle in [22]. Then in Theorem 2 we show that if

the hyperbolic endomorphism f is 1-sided Bernoulli with respect to the measure of maximal

entropy µ0, then f must in fact be (distance)-expanding in the usual sense on Λ. And that, if

f is expanding on Λ and if the equilibrium measure µφ is 1-sided Bernoulli, then µφ must be the

measure of maximal entropy µ0. Thus there exists a strong relation between 1-sided Bernoullicity,

the distance expanding property and the measure of maximal entropy on Λ. In particular from

Corollary 1 it will follow that no hyperbolic non-expanding toral endomorphism can be 1-sided

Bernoulli with respect to the Lebesgue (Haar) measure.

In Theorem 3, we study hyperbolic toral endomorphisms and families of Holder potentials

φ whose respective equilibrium measures µφ are not 1-sided Bernoulli. To do this we will

employ commuting automorphisms in the case when the Jacobian-generated σ-algebra βµφ(f) is

equal to B(Λ) (see [28], [18]). The lack of 1-sided Bernoullicity above is in clear contrast to the

case of hyperbolic toral automorphisms; and in contrast with a class of 1-sided Bernoulli toral

discontinuous skew-products given in [16].

In Theorem 4 we prove the mixing of arbitrary orders for equilibrium measures of Holder

potentials for hyperbolic endomorphisms on folded basic sets. We obtain also Exponential Decay

of Correlations on Holder observables.
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We give then several classes of examples of hyperbolic saddle-type endomorphisms with equi-

librium measures for which we check 1-sided Bernoullicity or lack of it.

Finally in Corollary 2 we prove the non-existence of generating Rokhlin partitions for certain

endomorphisms with equilibrium measures. In particular an arbitrary hyperbolic non-expanding

toral endomorphism with Haar measure does not have a generating Rokhlin partition.

2 Coding and mixing on folded basic sets.

We will work with smooth (say C2), non-invertible maps f : M →M defined on a smooth Rieman-

nian manifold M . A locally maximal set Λ is an invariant compact set which has a neighbourhood

U ⊂M with Λ = ∩
n∈Z

fn(U). By basic set for f we mean here a locally maximal set Λ such that f

is topologically mixing on Λ. As the map f is non-invertible on Λ, we will sometimes say that Λ is

a folded basic set (or a basic set with overlaps, or folded fractal).

Our endomorphisms will be assumed hyperbolic on basic sets; the definition of hyperbolicity for

endomorphisms (see [19], [24]) is different than the one for diffeomorphisms and involves the various

prehistories of points x ∈ Λ with respect to f , namely sequences x̂ = (x, x−1, x−2, . . .) consisting of

consecutive preimages, i. e f(x−i) = x−i+1, i ≥ 1. We need therefore the inverse limit (or natural

extension) Λ̂ := {x̂, x̂ = (x, x−1, x−2, . . .), x−i ∈ Λ, i ≥ 0, s. t x̂ is a prehistory of x ∈ Λ}; this is a

compact metric space with the canonical metric, d(x̂, ŷ) :=
∑
i≥0

d(x−i,y−i)
2i

, x̂, ŷ ∈ Λ̂. Notice that the

canonical projection π : Λ̂ → Λ, π(x̂) = x, is Lipschitz continuous in the above metric. We have

also the shift homeomorphism f̂ : Λ̂→ Λ̂, f̂(x̂) = (f(x), x, x−1, . . .), x̂ ∈ Λ̂.

Definition 1. Let Λ be a basic set for the smooth endomorphism f : M →M . Then we say that

f is hyperbolic on Λ if there exists a splitting of the tangent bundle over Λ̂, TΛ̂M = {(x̂, v), x̂ ∈
Λ̂, v ∈ TxM} into a direct sum Tx̂M = Esx⊕Eux̂ such that Dfx(Esx) ⊂ Esf(x), Dfx(Eux̂) ⊂ Eu

f̂ x̂
, x̂ ∈ Λ̂

and Df contracts uniformly on Esx and Df expands uniformly on Eux̂ .

Associated to each prehistory we have local unstable manifolds W u
r (x̂) and local stable manifolds

W s
r (x) (the local stable manifolds depend only on the base point). Since the unstable tangent spaces

Eux̂ depend on the whole past, there may exist many unstable manifolds going through the same

point; this changes the dynamics on Λ, as compared with diffeomorphisms (see for instance [19],

[24], [10], [11], [13], etc).

We adopt in this paper the above definition for basic set (where f |Λ is assumed topologically

mixing), which is somewhat more restrictive than the usual one requiring that f be only topo-

logically forward transitive on Λ. However for hyperbolic locally maximal sets this is not crucial.

Indeed, if f were only transitive on Λ, then every point in Λ is nonwandering; hence by the same

proof as in Corollary 6.4.19 from [7], it follows that: if f is hyperbolic on Λ, then its periodic points

are dense in Λ. Thus as in the Spectral Decomposition Theorem ([7], [24], etc.), there exists a finite

partition of Λ, Λ = Λ1∪ . . .∪Λk s.t for each i = 1, . . . , k there is a positive integer mi s.t the iterate

fmi invariates and is topologically mixing on Λi.
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Now by n-preimage of x ∈ Λ we consider any point y ∈ f−n(x) ∩ Λ; a word of caution is in

place here: the set Λ is not necessarily totally f -invariant, so there may exist points z ∈ M \ Λ

such that fn(z) = x ∈ Λ. However we work only with the restriction of f to Λ and will consider

only those preimages remaining in Λ.

Since we work with a hyperbolic endomorphism f on Λ, we can lift it to the shift homeomorphism

f̂ : Λ̂→ Λ̂. One can notice quickly that f̂ is expansive. Indeed let us take ε > 0 small enough and

assume that x̂, ŷ ∈ Λ̂ such that d(f̂nx̂, f̂nŷ) ≤ ε, n ∈ Z. Then we would have d(fnx, fny) ≤ ε, n ≥ 0,

thus y ∈W s
ε (x) and d(x−n, y−n) ≤ ε, n ≥ 0, so y ∈W u

ε (x̂). But from [7], pg. 272 one obtains that

any hyperbolic locally maximal set has local product structure; hence from above it follows that

y = x, and similarly y−n = x−n, n ≥ 0. Thus f̂ : Λ̂→ Λ̂ is expansive.

In the sequel we shall use also the specification property for homeomorphisms as defined in [7]

(pg. 578). The proof of the Specification Theorem 18.3.9 from [7] can be repeated for endomor-

phisms to show that if f is hyperbolic on the basic set Λ, then f |Λ has the specification property.

From this we see easily that f̂ has the specification property on Λ̂ too; this follows since for a given

specification Ŝ = {x̂1 = (x1, x1
−1, . . .), . . . , x̂

k = (xk, xk−1, . . .)} in Λ̂ we can apply the specification

property of f |Λ to a specification S in Λ, formed with iterates of certain preimages x1
−m, . . . , x

k
−m

for m > 0 large enough.

So from the discussion above, we know that f̂ is an expansive homeomorphism with the speci-

fication property on the inverse limit space Λ̂.

Let now an f -invariant probability measure µ on the invariant set Λ. We always consider the

compact set Λ endowed with the σ-algebra of its borelian subsets, denoted by B(Λ). All measures

considered are borelian and probabilistic.

Consider a real valued Holder continuous potential φ on Λ. Then from [2] or [7] pg. 635, there

exists a unique equilibrium measure µ̂φ◦π on Λ̂ for the Holder potential φ ◦ π, where π : Λ̂ → Λ is

the canonical projection π(x̂) = x. But any f̂ -invariant measure µ̂ on Λ̂ has a unique push forward

µ = π∗(µ̂) and viceversa (see [25], pg. 118); also topological pressure is preserved by the canonical

projection. So we obtain a unique equilibrium measure µφ on Λ for the non-invertible map f , and

µφ = π∗µ̂φ◦π.

By using the canonical metric on Λ̂, we form the Bowen balls B̂n(x̂, ε) := {ŷ ∈ Λ̂, d(f̂ iŷ, f̂ ix̂) <

ε, i = 0, . . . , n− 1}. Then as in [7] pg. 630, we can estimate µ̂φ◦π on these Bowen balls. But there

exists a positive constant T depending on f such that Bn(x, εT ) ⊂ π(B̂n(x̂, ε)) ⊂ Bn(x, ε), x̂ ∈ Λ̂;

and π−1π(B̂n(x̂, ε)) is contained in a finite union of balls of type B̂n(x̂i, T ε) for some prehistories x̂i

of x. On the other hand we have P (φ) = P (φ ◦ π). Hence from the estimates on B̂n(x̂, ε) obtained

in [7] pg. 630, and since µφ = π∗µ̂φ◦π, we conclude that for any ε > 0 there are constants Aε, Bε > 0

s.t:

Aεe
Snφ(x)−nP (φ) ≤ µφ(Bn(x, ε)) ≤ BεeSnφ(x)−nP (φ), x ∈ Λ, n > 0, (1)

where P (φ) is the topological pressure of φ, Bn(x, ε) := {y ∈ Λ, d(f ix, f iy) ≤ ε, i = 0, . . . , n− 1} is

a Bowen ball and Snφ(x) := φ(x) + . . .+ φ(fn−1x). Inspired by (1), we give the following:
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Definition 2. Two quantities Q1(n, x), Q2(n, x) depending on the variables n > 1, x ∈ Λ, are

said to be comparable, i.e Q1(n, x) ≈ Q2(n, x), if there exist positive constants A,B such that

A ·Q1(n, x) ≤ Q2(n, x) ≤ B ·Q1(n, x) for all n, x.

Let us now denote by Σ+
d := {1, . . . , d}Z+

the space of sequences ω of 1, . . . , d, indexed by

the nonnegative integers. On Σ+
d we consider the shift σd : Σ+

d → Σ+
d ; also for a probability

vector p = (p1, . . . , pd) we define the σd-invariant product measure νp, with the initial probabilities

νp({ω, ω0 = i}) = pi, i = 1, . . . , d. The triple (Σ+
d , σd, νp) is called a (model) 1-sided Bernoulli

shift. By extension we call 1-sided Bernoulli shift any triple (X, f, µ), with µ f -invariant, which is

measure-theoretically isomorphic to (Σ+
d , σd, νp), for some d ≥ 1 and p = (p1, . . . , pd) a probabilistic

vector.

In the sequel we will use the important notions of Jacobian of an invariant measure introduced

by Parry in [17], and that of index of a countable-to-one endomorphism of Lebesgue spaces (see [18]).

In short, the Jacobian of the f -invariant probability measure µ on the Lebesgue space (X, f, µ)

is the Radon-Nikodym derivative of µ ◦ f with respect to µ. If (X, f, µ) is a measure-preserving

system (with some σ-algebra B), and if ε is the point partition, one can form the fiber partition

ξ = f−1ε which is a measurable partition if f is countable-to-1 on (X,µ); let also π : X → X/ξ be

the canonical projection. This partition induces a factor space (X/ξ, g, ν), where an arbitrary point

z of X/ξ is a fiber f−1(x), x ∈ X, g(z) := π(x), z ∈ X/ξ and ν(E) := µ(π−1(E)), E measurable in

X/ξ. Now from the Rokhlin theory of measurable partitions (see [21], [17], etc.), ξ induces a family

of conditional measures on the fibers of f , {µz}z∈X/ξ such that µ(A) =
∫
X/ξ µz(A ∩ z)dν(z), for

A measurable in X. This family of conditional measures is unique modulo ν. Notice that µz is a

probability measure on the (at most countable) fiber z = f−1x; its support supp µz is a subset of

f−1x. Then the index of (X, f, µ) is the measurable function

indµ(f)(x) := card(supp µz), z = f−1x, for µ− a.e x ∈ X

For an f -invariant probability measure µ on Λ, let λ1(x) < . . . < λS(x)(x) < 0 be the negative

Lyapunov exponents of µ with respect to f , which are defined for µ-a.e x ∈ Λ; let also the i-th

partial stable manifold W s
i (x) := {y ∈ M, lim sup

n→∞
1
n log d(fnx, fny) ≤ λi(x)}, 1 ≤ i ≤ S(x). It is

clear that the (usual) stable manifold of x, namely W s(x) is actually W s
S(x)(x). We also denote for

r > 0 small, by W s
i,r the i-th partial stable manifold of radius r. In our case since we work with

uniformly hyperbolic maps, r can be chosen independent of x.

One can find a measurable partition ξ of Λ, subordinate to the partial stable manifolds W s
i (see

for instance [26]) and can define the i-th pointwise stable dimension of µ, or the dimension

of µ on W s
i -manifolds as

δsi (µ, x, ξ) := lim inf
r→0

logµξx(Bi(x, r))

log r
,

where {µξx}x is the system of conditional measures of µ associated to the partition ξ and Bi(x, r)

is the ball of radius r centered at x inside W s
i . It can be shown that δsi (µ, x, ξ) does not depend on

ξ and it is constant along orbits.
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Moreover we have δsi (µ, x, ξ) = lim sup
r→0

log µξx(Bi(x,r))
log r .

So if µ is ergodic, then the pointwise i-th stable dimension of µ, denoted by δsi (µ), is

defined by δsi (µ) = δsi (µ, x, ξ), µ-a.a x ∈ Λ, and 1 ≤ i ≤ S(x) = S.

We show now that if the triple (Λ, f, µφ) is coded by a 1-sided Bernoulli shift, then f must be

expanding on Λ from a certain measure-theoretical point of view. This is in contrast with the

hyperbolic diffeomorphism case, where all equilibrium measures of Holder potentials can be coded

with 2-sided Bernoulli shifts.

In general for a measurable partition ξ of Λ denote by ξ(x) the unique (modulo µ) set of ξ

which contains x. For a measurable partition ξ subordinated to the stable manifolds W s
S , we can

define the stable dimension of µ on ξ(x) as:

HDs(µ, x) := HD(µξx) = inf{HD(Z), Z ⊂ ξ(x), µξx(Z) = 1}, µ− a.e x ∈ Λ

We remind the definition of expanding map from [7], pg. 71; the metric considered on Λ is the

one induced from the Riemannian metric on M .

Theorem 1. Let f be a smooth hyperbolic endomorphism on a connected basic set Λ; let also φ be a

Holder continuous potential on Λ and µφ the unique equilibrium measure of φ. Then, if the measure-

preserving system (Λ, f, µφ) is 1-sided Bernoulli, it follows that either f is distance-expanding on

Λ, or the stable dimension of µφ is zero, i.e HDs(µφ, x) = 0 for µφ-a.e x ∈ Λ.

Proof. Let us assume that (Λ, f, µφ) is 1-sided Bernoulli, i.e isomorphic to (Σ+
d , σd, νp) for some

d > 1 and probability vector p. Now the equilibrium measure of a Holder potential µφ is supported

everywhere, since the µφ-measure of any ball is positive, from estimate (1). Thus, as the index

function is preserved by isomorphisms (see [18]) and since any point from Λ has finitely many

preimages, it follows that the fiber f−1(x) must contain d points for µφ-almost all x ∈ Λ. Also

since we have an isomorphism with a 1-sided Bernoulli shift, we know from [17] that the Jacobian

Jµφ(f) of µφ, must be equal a.e with the Jacobian of the product measure νp.

Let us consider now a measurable partition ξ of Λ subordinated to the local stable manifolds

W s; by ξ(x) we shall denote the set of ξ that contains x. We recall that W s
S,r = W s

r notationally.

Since f is uniformly hyperbolic on Λ and thus the local stable/unstable manifolds have a fixed

positive radius, it follows that we may take the partition ξ to be with borelian subsets of the

stable manifolds which contain a smaller stable set of fixed radius, i. e there exist r0, r1 > 0 s.t

W s
r1(x) ⊂ ξ(x) ⊂W s

r0(x), µφ-a.a x ∈ Λ. To this measurable partition ξ, we can associate (uniquely)

a family of conditional measures of µφ; a generic element of this family is denoted by µξφ,x and it is

a probability measure on the subset ξ(x) of ξ (containing the point x).

We want to show now that for µφ-almost all points x ∈ Λ we have that the conditional measure

µξφ,x gives positive measure to any non-empty open subset in the local stable manifold ξ(x). First

we notice that if A is the intersection of a Bowen ball Bm(y, ε) with a neighbourhood of the local

unstable manifold W u
ε (ζ̂), ζ̂ ∈ Λ̂, then the measure µξφ induced on the factor space Λ/ξ has the

property that:

µξφ(A/ξ) = µφ(Bm(y, ε))
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But we know from the definition of conditional measures that

µφ(A) =

∫
A/ξ

µξφ,x(A ∩ ξ(x))dµξφ(ξ(x)),

where ξ(x) are the leaves of the measurable partition ξ which intersect A (in the factor space Λ/ξ

these leaves are identified with points). But µφ(A) > 0, since A is an open set in Λ (thus contains

some Bowen ball); also µξφ(A/ξ) = µφ(Bm(y, ε) > 0. Thus from the essential uniqueness of the

conditional measures, and since the sets of type A as above form a basis for open sets, we obtain that

for µξφ-almost all partition leaves ξ(x) ∈ Λ, µξφ,x(V ) > 0, for V a neighbourhood of z and z ∈ ξ(x).

This implies that

suppµξφ,x = ξ(x) ∩ Λ, µφ − a.e

We will now use Theorem 1.1 of [26] translated to our case, for the ergodic equilibrium measure

µφ. In this case the Lyapunov exponents are all constant a.e and will be denoted simply by λi.

Denote also by

γ1 := δs1(µφ), γ2 := δs2(µφ)− δs1(µφ), . . . , γS := δsS(µφ)− γS−1

Recall now the notion of folding entropy Fµ(f) of an arbitrary f -invariant probability measure

µ (see [22]), which is defined as the conditional entropy

Fµ(f) := Hµ(ε|f−1ε),

where ε is the partition of M into single points.

We can consider thus the folding entropy Fµφ(f) of an equilibrium measure µφ. From [22], [17]

it follows that the folding entropy Fµφ(f) is equal to the integral of the logarithm of the Jacobian

of µφ, i. e

Fµφ(f) =

∫
Λ

log Jµφ(f)dµφ

And from [26] we have that:

hµφ(f) = Fµφ(f)−
∑

1≤i≤S
λiγi(µφ), (2)

Since (Λ, f, µφ) is isomorphic to (Σ+
m, σm, νp) and since the Jacobian is preserved by isomor-

phisms of Lebesgue spaces (see [17]), it follows that

Fµφ(f) =

∫
Λ

log Jµφ(f)dµφ =

∫
Σ+
m

log Jνp(σm)dνp = hνp(σm) = hµφ(f)

Thus from (2) we obtain
∑

1≤i≤S
λiγi(µφ) = 0. But since we have a uniformly hyperbolic system,

either f is distance-expanding on Λ (i. e it does not have stable directions), or λi < 0, 1 ≤ i ≤ S

and γi(µφ) = δsi (µφ) = 0, 1 ≤ i ≤ S.

Thus for a measurable partition ξ subordinated to the stable manifolds W s = W s
S ,

δsS = lim sup
r→0

logµξφ,x(B(y, r))

log r
= 0, for µφ − a.e x, and µξφ,x − a.e y ∈ ξ(x)
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So there exists a set E ⊂ Λ with µφ(E) = 1 so that for any small β > 0, there exists r(y, β) >

0, y ∈ E such that

µξφ,x(B(y, r)) > rβ, 0 < r < r(y, β), y ∈ E ∩ ξ(x), (3)

for µφ-a.e x ∈ Λ. From the definition of conditional measures (see [21], [17]), we deduce that if

µφ(E) = 1 then for almost all x, µξφ,x(E ∩ ξ(x)) = 1. So for almost all leaves ξ(x) of ξ, µξφ,x-almost

all points y ∈ ξ(x) satisfy (3).

Now using the Vitali Covering Theorem, we can cover a set E′ ⊂ E ∩ ξ(x) having µξφ,x(E′) = 1,

with mutually disjoint balls B(y, ρ(y)) where ρ(y) < r(y, β). Thus we obtain a cover with a family

of mutually disjoint balls B(y, ρ(y)), y ∈ F ⊂ E ∩ ξ(x) and

1 ≥
∑
y∈F

µξφ,x(B(y, ρ(y))) ≥
∑
y∈F

ρ(y)β

Hence HD(E′) ≤ β for µφ-almost all x ∈ Λ. But β > 0 is arbitrarily small; hence recalling also

that µξφ,x(E ∩ ξ(x)) = µξφ,x(E′) = 1 we obtain

HDs(µφ, x) = 0, µφ − a.e x ∈ Λ

For a system endowed with the measure of maximal entropy, we can say more:

Theorem 2. a) Let f be a smooth endomorphism on a Riemannian manifold M such that f

is hyperbolic on the basic set Λ and the critical set Cf does not intersect Λ. Then if the system

(Λ, f, µ0) given by the measure of maximal entropy µ0 is 1-sided Bernoulli, it follows that f is

expanding on Λ.

b) Assume f is an expanding endomorphism on Λ. If µφ is the equilibrium measure of the

Holder potential φ and if (Λ, f, µφ) is 1-sided Bernoulli, then µφ = µ0, where µ0 is the unique

measure of maximal entropy for f on Λ.

Proof. a) In the sequel we work with the restriction of f to Λ, f |Λ : Λ → Λ. From (1) and

Definition 2 it follows that, for ε > 0 small enough,

µ0(Bn(x, ε)) ≈ 1

enhtop(f)
, n > 0, x ∈ Λ,

and the comparability constants do not depend on n, x.

Assume that (Λ, f, µ0) is isomorphic to (Σ+
d , σd, νp) for a certain probability vector p = (p1, . . . , pd).

Hence since the measure-theoretic entropy is preserved by isomorphisms (see [18]), it follows that

hµ0(f) = htop(f) = hνp(σd) ≤ log d (4)

Also we know that the index is preserved by isomorphisms (see [18], [28]), thus f is at least

d-to-1 on Λ µ0-a.e.

Let us now consider a Rokhlin partition of (Λ, f, µ0) with the sets A1, . . . , Ad (see for example

[17]); we have that f |Ai : Ai → Λ is bijective (modulo µ0) for any i = 1, . . . , d. Denote G := {x ∈
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Λ, |f−1(x)∩Λ| ≥ d}. From above, we know that µ0(G) = 1. Let now G1 := f(G∩A1)∩ . . .∩f(G∩
Ad); this can be viewed also as the set of points x having at least d preimages in Λ, and such that

each of its preimages has at least d preimages in turn. Notice now that since µ0 ◦ f is absolutely

continuous with respect to µ0 (see [17]), we obtain µ0(f(G ∩ Ai)) = µ0(f(Ai)) = 1, i = 1, . . . , d.

Therefore µ0(G1) = 1. In general define inductively

Gj := f(Gj−1 ∩A1) ∩ . . . ∩ f(Gj−1 ∩Ad), j ≥ 2

Thus all points in Gj have at least dj+1 f j+1-preimages in Λ, and by induction and a similar

argument as above, we have µ0(Gj) = 1, j ≥ 1. Also it is clear that Gj ⊂ Gj−1, j ≥ 1 (mod µ0),

where G0 := G.

But for any given x ∈ Λ, the set f−n(x) ∩ Λ is an (n, ε)-separated set for ε > 0 small enough,

since Cf ∩ Λ = ∅; so if x ∈ Gn, then there exist at least dn fn-preimages of x in Λ for n > 2. This

implies that

htop(f |Λ) ≥ log d

This implies that hνp(σd) = hµ0(f) = log d, hence νp is the measure of maximal entropy on Σ+
d .

Therefore the probability vector p is equal to (1
d , . . . ,

1
d). Hence

Jνp(σd) = d, νp − a.e

But the Jacobians are preserved by measure-theoretic isomorphisms, hence

Jµ0(f) = d, µ0 − a.e, and Jµ0(fn) = dn, n > 0, µ0 − a.e

Thus from the properties of Jacobians from [17], we obtain that

µ0(fn(Bn(x, ε))) =

∫
Bn(x,ε)

Jµ0(fn)dµ0 = dn · µ0(Bn(x, ε)) ≈ dn

enhtop(f)
= 1,

where the comparability constants do not depend on n, x.

This means that for r > 0 sufficiently small, the intersection W s
r (x) ∩ Λ is equal to {x}, for

x ∈ Λ. Hence f can be considered to be expanding on Λ since on Λ there are no points y close to

x and forward-asymptotic to x, for any x ∈ Λ.

b) Since f is assumed expanding on Λ now, we have from [23] or [8] that the equilibrium

measure µφ is the weak limit of the sequence of measures

µxn :=
∑

y∈f−n(x)∩Λ

δy · eSnφ(y)

enP (φ)
, n > 1,

i.e µxn →n→∞µφ for any x ∈ Λ. This implies easily that the Jacobian of µφ in the expanding case is

Jµφ(f)(x) = e−φ(x)+P (φ), (5)

for µφ-almost all x ∈ Λ.
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On the other hand, the probability vector p = (p1, . . . , pd) gives the 1-sided Bernoulli measure

νp on Σ+
d , and we have the invariance of the Jacobians by the measure theoretic isomorphism. So

Jµφ(f) = Jνp(σd) and Jµφ(f) must take the values 1
p1
, . . . 1

pd
respectively, on the sets of a measurable

partition of Λ. But we showed in (5) that Jµφ(f) is in fact equal µφ-a. e with the continuous function

e−φ+P (φ). Since µφ gives positive measure to open sets we obtain then that all the values p1, . . . , pd

must be equal, i.e p1 = . . . = pd = 1
d . Also it follows that the continuous function φ must be

constant a.e. Hence µφ = µ0, where µ0 is the measure of maximal entropy.

From the above Theorem we obtain immediately the following:

Corollary 1. Let fA be a hyperbolic endomorphism of the torus Tm (m ≥ 2), given by the integer

valued matrix A. Assume that A has both eigenvalues of absolute value larger than 1 and eigenvalues

of absolute value strictly less than 1. Then the measure-preserving system (Tm, fA,m) is not 1-sided

Bernoulli, where m is the Lebesgue (Haar) measure.

We study now other equilibrium measures µφ for hyperbolic toral endomorphisms.

Theorem 3. Consider a hyperbolic non-expanding toral endomorphism fA : Tm → Tm associated

to the integer valued matrix A. Assume |det(A)| = 2, let α 6= (0, . . . , 0) be a fixed point of fA,

and let φ be a periodic Holder continuous function of period α on Tm. Then (Tm, fA, µφ) is not

isomorphic to (Σ+
2 , σ2, νp), for p = (p1, p2), p1 6= 1

2 .

Proof. First remark that the number of fA-preimages of any point in Tm is constant and equal

to |det(A)|. So fA is 2-to-1 on Tm, then the only 1-sided Bernoulli shifts which could possibly

be isomorphic to (Tm, fA, µφ) live on (Σ+
2 , σ2). Assume then that (Tm, fA, µφ) is isomorphic to

(Σ+
2 , σ2, ν(p1,p2)) with p1 6= 1

2 .

Since A is hyperbolic, 1 is not an eigenvalue for A, so A − I is invertible. Now remark that

for an integer-valued matrix A, there exist exactly |det(A− I)| isolated fixed points for fA on Tm.

Since in our case A−I is invertible, we have that det(A−I) 6= 0, so there exist isolated fixed points

for fA.

Let α be such a fixed point for fA in Tm. Denote by Tα(x) := x−α = (x1−α1, . . . , xm−αm), x ∈
Tm. It can be seen easily that Tα is well defined and that it is a bijection on Tm. Also since α is

fixed point for fA, Tα commutes with fA, i.e

Tα ◦ fA = fA ◦ Tα (6)

We want to show now that Tα preserves the measure µφ if φ is periodic of period α. For this

recall how the equilibrium measure µφ was constructed: µφ is the weak limit of a sequence of

probability measures of type

µn :=
∑

y∈Fix(fnA)∩Λ

eSnφ(y)δy∑
y∈Fix(fnA)∩Λ

eSnφ(y)
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Now if B is a borelian set in Λ with µφ(∂B) = µφ(∂Tα(B)) = 0, then we know that µn(B)→ µφ(B).

Now µn(B) =
∑

y∈Fix(fnA)∩B

eSnφ(y)δy∑
y∈Fix(fn

A
)∩Λ

eSnφ(y) and µn(Tα(B)) =
∑

y∈Fix(fnA)∩Tα(B)

eSnφ(y)δy∑
y∈Fix(fn

A
)∩Λ

eSnφ(y) . But

y ∈ Fix(fnA) ∩ B if and only if Tα(y) ∈ Fix(fnA) ∩ Tα(B), since fA is linear and α is a fixed point

for fA; at the same time notice that Snφ(y) = Snφ(y− α), n ≥ 1 since φ was chosen to be periodic

of period α. Therefore we obtain that µn(B) = µn(Tα(B)), n ≥ 1 and thus for the type of sets B

considered above, we have µφ(B) = µφ(Tα(B)). But the sets B considered above form a sufficient

family of borelians, hence

µφ(B) = µφ(Tα(B)),

for any borelian set B in Λ.

Hence we proved that the nontrivial automorphism Tα preserves the measure µφ and commutes

with fA. Let now βµφ(fA) be the smallest σ-algebra contained in B(Tm) with respect to which

the Jacobian Jµφ(fA) is measurable and s.t f−1
A βµφ(fA) ⊂ βµφ(fA). The fact that the system

(Tm, fA, µφ) was assumed measure-theoretically isomorphic to (Σ+
2 , σ2, ν(p1,p2)) with p1 6= 1

2 implies

that:

βµφ(fA) = B(Tm)

(see [28]). Notice that if p1 were 1
2 , then the last statement would not hold. Now if βµφ(fA) is

equal to the σ-algebra of borelians on Tm and if we have a nontrivial automorphism Tα commuting

with fA and preserving µφ, we can apply [4] Theorem 2.21 (see also [18] and [28]) in order to get

a contradiction. In conclusion we obtain that (Tm, fA, µφ) is not a 1-sided {p1, p2} Bernoulli shift

with p1 6= 1
2 .

We now prove mixing of any order (see [20] for definition) and Exponential Decay of Correlations

(see [2], [3] for definitions) in general, for the triple (Λ, f, µφ).

Theorem 4. Let f be a smooth endomorphism on M , hyperbolic on a basic set Λ and let φ be a

Holder continuous potential defined on Λ; let µφ be the unique equilibrium measure of φ. Then:

a) the measure-preserving system (Λ, f, µφ) is mixing of any order.

b) the measure µφ has Exponential Decay of Correlations on Holder observables.

Proof. a) By assumption the map f is uniformly hyperbolic on Λ, so as in [7], pg. 272, we obtain

that f has local product structure on Λ, and similarly f̂ has local product structure on Λ̂ with local

stable sets (defined for some δ > 0 small enough):

V −x̂ := {ŷ ∈ Λ̂, d(f̂nŷ, f̂nx̂) < δ, n ≥ 0},

and local unstable sets

V +
x̂ := {ŷ ∈ Λ̂, d(f̂−nŷ, f̂−nx̂) < δ, n ≥ 0}, x̂ ∈ Λ̂

This implies that (Λ̂, f̂) has a Smale space structure, as defined in [25].
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Now since the potential φ on Λ is Holder continuous and as π : Λ̂→ Λ is Lipschitz continuous,

it follows that φ̂ := φ ◦ π : Λ̂ → R is Holder continuous; so to the unique equilibrium measure µφ

of φ it corresponds the unique equilibrium measure µφ̂ of φ̂ on Λ̂ s.t µφ = π∗µφ̂. We have that

Pf (φ) = Pf̂ (φ̂) and hµφ(f) = hµφ̂(f̂). Also
∫

Λ φdµφ =
∫

Λ̂ φ ◦ πdµφ̂.
Now we assumed that f is topologically mixing on Λ, which implies easily that f̂ is topologically

mixing on Λ̂ (this is standard proof by considering certain preimages of large order). But from [25]

Corollary 7.10 d) we have then, that (Λ̂, f̂ , µφ̂) is isomorphic to a Bernoulli automorphism. Hence

as Bernoulli automorphisms are Kolmogorov (by [8], pg. 161), it follows that (Λ̂, f̂ , µφ̂) is mixing

of any order. Thus (Λ, f, µφ) is mixing of any order (see [20]).

b) We have Exponential Decay of Correlations on Holder observables, for the inverse limit

(Λ̂, f̂ , µ̂φ) since from a), this is a Bernoulli automorphism (see [2], [3]).

Then due to the bijective correspondence between f -invariant probabilities on Λ and f̂ -invariant

probabilities on Λ̂, and by the invariance of measure-theoretic entropies and integrals discussed

above, we obtain Exponential Decay of Correlations on Holder observables for the system (Λ, f, µφ)

as well.

More Examples: Theorems 2 and 4 apply also to the examples of hyperbolic skew-product

endomorphisms constructed in [10] and in [14].

For the nonlinear skew products with overlaps in fibers fα(x, y) = (g(x), hα(x, y)) and their

basic sets Λα from [10], we showed that there exist Cantor sets in fibers, such that every point in

such a set has uncountably many prehistories in Λ̂. We also proved in Corollary 2 of [10] that the

stable dimension in that case is non-zero, at any point of Λα, by using properties of the thickness

of the intersection of Cantor sets. In fact if α is small enough, we proved that this stable dimension

is close to 1. Thus the examples of [10] are non-invertible, hyperbolic and non-expanding on Λα,

since the stable dimension is strictly positive. Hence we can apply Theorem 2 to prove that the

system with the measure of maximal entropy (Λ, f, µ0) is not 1-sided Bernoulli. More generally

for the equilibrium measure µφ of an arbitrary Holder potential φ, we know from Theorem 1 that

the system (Λ, f, µφ) is not 1-sided Bernoulli, as long as the stable dimension of µφ is non-zero a.e.

Also, for the family of parameterized hyperbolic skew products Fλ satisfying the transversality

condition from [14] we proved for almost all parameters λ, a Bowen-type formula (on the natural

extension) for the stable dimension of the respective basic set Λλ. One such example is

Fλ(x, y) = (f(x), λi + Φi(x, y, λ)), x ∈ Xi, i = 1, . . . , d,

where f and Xi are given by an iterated function system, and λi are real parameters.

Another example from [14] with transversality condition and defined on an open set W ⊂ C2,

is:

Fλ(z, w) = (z2 + c, h(z) +
1

5
w2 + λz2),

where |c| is small enough, h is a Lipschitz function satisfying a growth condition and |λ| < 1
6 is a

complex parameter. But since these examples satisfy the transversality condition, we can find the
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stable dimension as the zero of the pressure function of a certain potential, on the natural extension

Λ̂; but since htop(f |Λ) > 0, we obtain that the stable dimension is positive, hence the function Fλ

is not expanding on Λ. So the system with the measure of maximal entropy (Λλ, Fλ, µ0,λ) is not

1-sided Bernoulli.

Also from Theorem 4 we have Exponential Decay of Correlations on Holder observables and

mixing of any order, for all equilibrium measures of Holder potentials for the above examples of

[10], [14].

�

An important notion related to the coding problem for endomorphisms on Lebesgue spaces

is that of Rokhlin partition. Let ε be the point partition on the Lebesgue space (X, f, µ), where

µ is an f -invariant probability measure defined on the σ-algebra B on X. We denote by P1 =

{E1, . . . , Em−1} a partition of X into measurable subsets so that f |Ei is a bijection a.e between Ei

and X, i = 0, . . . ,m − 1. Such a partition exists and it is called a Rokhlin partition (see [20],

[17], [5]). Clearly it is not uniquely defined.

In general, given a Rokhlin partition P1, define the measurable partition

P :=
∨
i≥1

T−iP1

The measurable partition P1 is called a 1-sided generator for (X, f, µ) if the smallest sub-σ-

algebra of B(Λ) containing P and complete with respect to µ, is equal modulo µ to the borelian

σ-algebra B(Λ). In this case we will say also that P1 is a generating partition.

Corollary 2. a) Let an endomorphism f hyperbolic and non-expanding on a basic set Λ. Then

there exists no generating Rokhlin partition P1 of (Λ, f, µ0) s.t Jµ0 is piecewise constant a.e on the

sets of P1 (where µ0 is the measure of maximal entropy).

Also if f is expanding on Λ but µφ 6= µ0, then there is no generating Rokhlin partition P1 of

(Λ, f, µφ) s.t Jµφ(f) piecewise constant a.e on the sets of P1.

b) A hyperbolic non-expanding toral endomorphism fA : Tm → Tm,m ≥ 2, does not have

generating Rokhlin partitions with respect to the Lebesgue measure.

Proof. a) If there exists a generating Rokhlin partition P1 for (Λ, f, µφ) s.t the Jacobian Jµφ is

constant µφ-a.e on the sets of the partition P1, then from Proposition 3.7 of [5] it follows that

(Λ, f, µφ) is isomorphic to a 1-sided Bernoulli shift. But this gives then a contradiction with

Theorem 2, since we assumed that f is non-expanding on Λ.

Hence no Rokhlin partition can be a generator for hyperbolic non-expanding endomorphisms

as above equipped with the measure of maximal entropy.

Same conclusion holds if f is expanding on Λ, but µφ is not the measure of maximal entropy.

b) This follows immediately from b) for φ ≡ 0, since the Jacobian of the Lebesgue measure µ0

with respect to fA, is constant and equal to |det(A)| a.e. Thus if there were generating Rokhlin

partitions then from [5] it would follow that the system were 1-sided Bernoulli with respect to the

Lebesgue measure, which is also the measure of maximal entropy.
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Thus we obtain a contradiction with respect to Corollary 1.
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