
Tangent bundles to sub-Riemannian groups

Marius Buliga

Institut Bernoulli
Bâtiment MA
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1 Introduction

Classical calculus is a basic tool in analysis. We use it so often that we forget that its
construction needed considerable time and effort.

Especially in the last decade, the progresses made in the field of analysis in metric
spaces make us reconsider this calculus. Along this line of thought, all started with the
definition of Pansu derivative [25] and its version of Rademacher theorem in Carnot
groups. It is amazing that such a basic notion can still lead to impressive results, like
the rigidity of quasi-isometric embeddings.

The Gromov-Hausdorff convergence of metric spaces allows to define the notion
of tangent space to a metric space. The tangent space to a metric space at a point
is defined only up to isometry. For example, the tangent space to a n-dimensional
Riemannian manifold, at a point, is Rn with the Euclidean distance.

For (almost) general metric spaces Cheeger [7] constructed a tangent bundle. The
tangent bundle constructed by Cheeger does not have as fiber the metric tangent space,
in the case of regular sub-Riemannian manifolds.

The sub-Riemannian manifolds (and improper called sub-Riemannian geometry)
form an important class of metric spaces which are not Euclidean at any scale. Basic
references for sub-Riemannian geometry are Belläıche [4] and Gromov [15].

These spaces have more structure than just the metric one.
The extra structure of sub-Riemannian manifolds permitted to Margulis and Mostow

[23] to construct a tangent bundle to a sub-Riemannian manifold. Their previous paper
[22] contains a study of the differentiability properties of quasi-conformal mappings be-
tween regular sub-Riemannian manifolds. The central result is a Stepanov theorem in
this setting, that is any quasi-conformal map from a Carnot-Carathéodory manifold to
another is a.e. differentiable. Same result for quasi-conformal maps on Carnot groups
has been first proved by Koranyi, Reimann [19].

As a motivation of the paper [23] the authors mention a comment of Deligne about
the fact that in [22] they refer to ”the tangent space” to a point, that is to a tangent
bundle structure, which was not constructed in the first paper. They remedy this gap
in the second paper [23]; their tangent bundle has fibers isometric with the tangent
spaces.

Stepanov theorem is a hard generalisation of Rademacher theorem. A way to prove
Stepanov theorem for sub-Riemannian spaces is to prove that Pansu-Rademacher the-
orem holds Lipschitz functions f : A ⊂M → N , where M, N are Carnot groups and A
is just measurable. This has been done for the first time in Vodop’yanov, Ukhlov [34],
in the case of Carnot groups. Their technique of proof differs from the one used by
Pansu in [25]. It is closer to the one used in Margulis, Mostow [22], where it is proven
that any quasi-conformal map from a Carnot-Carathéodory manifold to another is a.e.
differentiable, without using Rademacher theorem.

This paper is a continuation of [5], where it is argued that sub-Riemannian geometry
is in fact non-Euclidean analysis. This is more easy to see when approaching the concept
of a sub-Riemannian Lie group. As a starting point we have a real Lie group G which
is connected and a vectorspace D ⊂ g = Lie(G) which bracket generates the Lie
algebra g. The vectorspace D provides a left-invariant regular distribution on G which
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is completely non-integrable. By an arbitrary choice of an Euclidean norm on D we
can endow G with a left invariant Carnot-Caratheodory distance. The machinery of
metric spaces comes into action and tells that, as a metric space, G has tangent space
at any point and any such tangent space is isomorphic with the nilpotentization of g

with respect to D, denoted by N(G).
N(G) is a Carnot group, that is a simply connected nilpotent group endowed with

a one-parameter group of dilatations. The intrinsic calculus on N(G) is based on the
notion of derivative introduced by Pansu. We shall say therefore that a function is
smooth if it is Pansu derivable. The same denomination will be used for functions
between Carnot groups.

During the process of establishing a non-Euclidean analysis problems begin to ap-
pear.

a) Right translations, the group operation and the inverse map are not smooth.

b) If G 6= N(G) then generically there is no atlas of G over N(G) with smooth
transition of charts such that the group exponential is smooth. A noticeable
exception is the contact case, that is the case where N(G) is a Heisenberg group.

c) Mostow-Margulis (or any other known) construction of a tangent bundle TG of
G do not provide a group structure to TG.

d) there is no notion of higher order derivatives (except the horizontal classical
derivatives which have no direct intrinsic meaning).

We would like to have a notion of sub-Riemannian Lie group such that a), b), c) d)
are solved. This is obviously a problem of good choice of ”smoothness”.

As a first attempt we present the formalism of uniform groups. We then concentrate
on the typical example of a Lie group with left invariant distribution and give several
notions of tangent bundle and smoothness, all of them equivalent in the ”commutative”
case D = g. We exemplify our constructions in the case of Carnot groups and in the
case of compact part of real split groups.
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2 Overview of sub-Riemannian manifolds

The name ”sub-Riemannian manifold” is a compromise in the actual state of develop-
ment of non-Euclidean analysis because it contains the word ”manifold”. This denom-
ination is therefore a bit misleading, because one does not have, up to the moment,
a satisfactory notion of manifold, the Euclidean case excepted. Maybe a better name
would by ”model of sub-Riemannian manifold”, which is rather long and equally unclear
at the moment.

Definition 2.1 A sub-Riemannian (SR) manifold is a triple (M,H, g), where M is a
connected manifold, H is a subbundle of TM , named horizontal bundle or distribution,
and g is a metric (Euclidean inner-product) on the horizontal bundle.

A horizontal curve is a continuous, almost everywhere differentiable curve, whose
tangents lie in the horizontal bundle.

The length of a horizontal curve c : [a, b] →M is

l(c) =
∫ b

a

√
gc(t)(ċ(t), ċ(t)) dt

The SR manifold is called a Carnot-Carathéodory (CC) space if any two points can
be joined by a finite length horizontal curve.

A CC space is a path metric space with the Carnot-Carathéodory distance induced
by the length l:

d(x, y) = inf {l(c) : c : [a, b] →M , c(a) = x , c(b) = y}

In the class of sub-Riemannian manifolds there is the distinguished subclass of
regular ones. Regularity is a notion which concerns only the distribution D. Let us
explain it.

Given the distribution D, a point x ∈ M and a sufficiently small open neighbour-
hood x ∈ U ⊂ M , one can define on U a filtration of bundles as follows. Define first
the class of horizontal vectorfields on U :

X 1(U,D) = {X ∈ Γ∞(TU) : ∀y ∈ U , X(u) ∈ Dy}

Next, define inductively for all positive integers k:

X k+1(U,D) = X k(U,D) ∪ [X 1(U,D),X k(U,D)]

Here [·, ·] denotes vectorfields bracket. We obtain therefore a filtration X k(U,D) ⊂
X k+1(U,D). Evaluate now this filtration at x:

V k(x,U,D) =
{
X(x) : X ∈ X k(U,D)

}
Because the distribution was supposed to be completely non-integrable, there are m(x),
positive integer, and small enough U such that V k(x,U,D) = V k(x,D) for all k ≤ m
and

DxV
1(x,D) ⊂ V 2(x,D) ⊂ ... ⊂ V m(x)(x,D) = TxM
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We equally have

ν1(x) = dimV 1(x,D) < ν2(x) = dimV 2(x,D) < ... < n = dimM

Off course, ν1(x) is constant over M , but generally m(x), νk(x) may vary from a point
to another.

Definition 2.2 The distribution D is regular if m(x), νk(x) are constant on the man-
ifold M .

For example a contact manifold and a Lie group with left invariant nonintegrable
distribution are examples of sub-Riemannian spaces with regular distribution. In con-
trast, the Grushin plane distribution is non regular.

The particular case that will be interesting for us is the following one. Let G be a
real connected Lie group with Lie algebra g and D ⊂ g a vector space which generates
the algebra. This means that the sequence

V1 = D , V i+1 = V i + [D,V i]

provides a filtration of g:
V 1 ⊂ V 2 ⊂ ... V m = g (2.0.1)

We set the distribution induced by D to be

Dx = TLxD

where x ∈ G is arbitrary and Lx : G→ G, Lxy = xy is the left translation by x. We
shall use the same notation D for the induced distribution.

This distribution is non-integrable (easy form of Chow theorem). For any (left
or right invariant) metric defined on D we have an associated Carnot-Carathéodory
distance.

2.1 Carnot groups. Pansu derivative. Mitchell’s theorem 2

Carnot groups are particular examples of sub-Riemannian manifolds. They are es-
pecially important because they provide infinitesimal models for any sub-Riemannian
manifold. Moreover, all the fundamental results of sub-Riemannian geometry are par-
ticularly easy to prove and understand in the case of Carnot groups.

Structure of Carnot groups. Mitchell’s theorem 2

Definition 2.3 A Carnot (or stratified nilpotent) group is a connected simply con-
nected group N with a distinguished vectorspace V1 such that the Lie algebra of the
group has the direct sum decomposition:

n =
m∑

i=1

Vi , Vi+1 = [V1, Vi]
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The number m is the step of the group. The number

Q =
m∑

i=1

i dimVi

is called the homogeneous dimension of the group.

Because the group is nilpotent and simply connected, the exponential mapping is a
diffeomorphism. We shall identify the group with the algebra, if is not locally otherwise
stated.

The structure that we obtain is a set N endowed with a Lie bracket and a group
multiplication operation given by the Baker-Campbell-Hausdorff formula.

This formula has only a finite number of terms, because the algebra is nilpotent.
This shows that the group operation is polynomial. It is easy to see that the Lebesgue
measure on the algebra is (by identification of the algebra with the group) a bi-invariant
measure.

We give further examples of such groups:
(1.) Rn with addition is the only commutative Carnot group. It generates the

classical, or Euclidean, or commutative calculus.
(2.) The Heisenberg group is the first non-trivial example. This is the group

H(n) = R2n ×R with the operation:

(x, x̄)(y, ȳ) = (x+ y, x̄+ ȳ +
1
2
ω(x, y))

where ω is the standard symplectic form on R2n. The Lie bracket is

[(x, x̄), (y, ȳ)] = (0, ω(x, y))

The direct sum decomposition of (the algebra of the) group is:

H(n) = V + Z , V = R2n × {0} , Z = {0} ×R

Z is the center of the algebra, the group has step 2 and homogeneous dimension 2n+2.
This group generates the symplectic calculus, as shown in section 5.

(3.) H-type groups. These are two step nilpotent Lie groups N endowed with an
inner product (·, ·), such that the following orthogonal direct sum decomposition occurs:

N = V + Z

Z is the center of the Lie algebra. Define now the function

J : Z → End(V ) , (Jzx, x
′) = (z, [x, x′])

The group N is of H-type if for any z ∈ Z we have

Jz ◦ Jz = − | z |2 I
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From the Baker-Campbell-Hausdorff formula we see that the group operation is

(x, z)(x′, z′) = (x+ x′, z + z′ +
1
2
[x, x′])

These groups appear naturally as the nilpotent part in the Iwasawa decomposition of
a semisimple real group of rank one. (see [9])

(4.) The last example is the group of n × n upper triangular matrices, which
is nilpotent of step n − 1. This example is important because any Carnot group is
isomorphic with a subgroup of a group of upper triangular matrices. However, it is not
generally true that given a Carnot group N with a compatible familly of dilatations,
there is an injective morphism from N to a group of upper triangular matrices which
commutes with dilatations (on N we have the chosen dilatations and in the group of
upper triangular matrices we have canonical dilatations).

Any Carnot group admits a one-parameter family of dilatations. For any ε > 0, the
associated dilatation is:

x =
m∑

i=1

xi 7→ δεx =
m∑

i=1

εixi

Any such dilatation is a group morphism and a Lie algebra morphism.
In fact the class of Carnot groups is characterised by the existence of dilatations.

Proposition 2.4 Suppose that the Lie algebra g admits an one parameter group ε ∈
(0,+∞) 7→ δε of simultaneously diagonalisable Lie algebra isomorphisms. Then g is
the algebra of a Carnot group.

We can always find Euclidean inner products on N such that the decomposition
N =

∑m
i=1 Vi is an orthogonal sum. Let us pick such an inner product and denote by

‖ · ‖ the Euclidean norm associated to it.
We shall endow the group N with a structure of a sub-Riemannian manifold now.

For this take the distribution obtained from left translates of the space V1. The metric
on that distribution is obtained by left translation of the inner product restricted to
V1.

If V1 Lie generates (the algebra) N then any element x ∈ N can be written as a
product of elements from V1. A slight reformulation of Lemma 1.40, Folland, Stein [11]:

Lemma 2.5 Let N be a Carnot group and X1, ..., Xp an orthonormal basis for V1.
Then there is a a natural number M and a function g : {1, ...,M} → {1, ..., p} such
that any element x ∈ N can be written as:

x =
M∏
i=1

exp(tiXg(i)) (2.1.2)

Moreover, if x is sufficiently close (in Euclidean norm) to 0 then each ti can be chosen
such that | ti |≤ C‖x‖1/m.
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This means that there is a horizontal curve joining any two points. Hence the
distance

d(x, y) = inf
{∫ b

a
‖c−1ċ‖ dt : c(a) = x, c(b) = y, c−1ċ ∈ V1

}
is finite for any two x, y ∈ N . The distance is obviously left invariant.

Associate to the CC distance d the function:

| x |d = d(0, x)

The map | · |d looks like a norm. However it is intrinsically defined and hard to work
with. This is the reason for the introduction of homogeneous norms.

Definition 2.6 A continuous function from x 7→| x | from G to [0,+∞) is a homoge-
neous norm if

(a) the set {x ∈ G : | x |= 1} does not contain 0.

(b) | x−1 |=| x | for any x ∈ G.

(c) | δεx |= ε | x | for any x ∈ G and ε > 0.

Homogeneous norms exist. | · |d is a homogeneous norm. For any p ∈ [0,+∞) a
homogeneous norm is:

| x |p =

[
m∑

i=1

| xi |p/i

]1/p

For p = +∞ the corresponding norm is

| x |∞ = max
{
| xi |1/i

}
Proposition 2.7 Any two homogeneous norms are equivalent. Let | · | be a homoge-
neous norm. Then the set {x : | x |= 1} is compact.

There is a constant C > 0 such that for any x, y ∈ N we have:

| xy | ≤ C (| x | + | y |)

There are two important consequences of this simple proposition. The first is a
description of the behaviour of any homogeneous norm. The following proposition
implies also that the Euclidean topology and uniformity are the same as the topology
and uniformity induced by the Carnot-Carathéodory distance.

Proposition 2.8 Let | · | be a homogeneous norm. Then there are constants c, C > 0
such that for any x ∈ N , | x |< 1, we have

c‖x‖ ≤ | x | ≤ C‖x‖1/m
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The second consequence of proposition 2.7 says that the balls in CC-distance look
roughly like boxes (as it is the case with the Euclidean balls). A box is a set

Box(r) =

{
x =

m∑
i=1

xi : ‖xi‖ ≤ ri

}

Proposition 2.9 (”Ball-Box theorem”) There are positive constants c, C such that for
any r > 0 we have:

Box(cr) ⊂ B(0, r) ⊂ Box(Cr)

As a consequence the Lebesgue measure is absolutely continuous with respect to the
Hausdorff measure HQ. Because of the invariance with respect to the group operation
it follows that the Lebesgue measure is a multiple of the mentioned Hausdorff measure.

The following theorem is Theorem 2. from Mitchell [24], in the particular case of
Carnot groups.

Theorem 2.10 The ball B(0, 1) has Hausdorff dimension Q.

Proof. We know that the volume of a ball with radius ε is cεQ.
Consider a maximal filling of B(0, 1) with balls of radius ε. There are Nε such balls

in the filling; an upper bound for this number is:

Nε ≤ 1/εQ

The set of concentric balls of radius 2ε cover B(0, 1); each of these balls has diameter
smaller than 4ε, so the Hausdorff α measure of B(0, 1) is smaller than

lim
ε→0

Nε(2ε)α

which is 0 if α > Q. Therefore the Hausdorff dimension is smaller than Q.
Conversely, given any covering of B(0, 1) by sets of diameter ≤ ε, there is an as-

sociated covering with balls of the same diameter; the number Mε of this balls has a
lower bound:

Mε ≥ 1/εQ

thus there is a lower bound ∑
cover

εα ≥ εα/εQ

which shows that if α < Q then Hα(B(0, 1)) = ∞. Therefore the Hausdorff dimension
of the ball is greater than Q. �

We collect the important facts discovered until now: let N be a Carnot group
endowed with the left invariant distribution generated by V1 and with an Euclidean
norm on V1.

(a) If V1 Lie-generates the whole Lie algebra of N then any two points can be joined
by a horizontal path.
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(b) The metric topology and uniformity of N are the same as Euclidean topology
and uniformity respective.

(c) The ball B(0, r) looks roughly like the box
{
x =

∑m
i=1 xi : ‖xi‖ ≤ ri

}
.

(d) the Hausdorff measure HQ is group invariant and the Hausdorff dimension of a
ball is Q.

(e) there is a one-parameter group of dilatations, where a dilatation is an isomorphism
δε of N which transforms the distance d in εd.

All these facts are true (under slight and almost obvious modifications) in the case
of a sub-Riemannian manifold.

Pansu derivative. Rademacher theorem A Carnot group has it’s own concept
of differentiability, introduced by Pansu [25].

In Euclidean spaces, given f : Rn → Rm and a fixed point x ∈ Rn, one considers
the difference function:

X ∈ B(0, 1) ⊂ Rn 7→ f(x+ tX)− f(x)
t

∈ Rm

The convergence of the difference function as t → 0 in the uniform convergence gives
rise to the concept of differentiability in it’s classical sense. The same convergence, but
in measure, leads to approximate differentiability. This and another topologies might
be considered (see Vodop’yanov [30], [31]).

In the frame of Carnot groups the difference function can be written using only
dilatations and the group operation. Indeed, for any function between Carnot groups
f : G→ P , for any fixed point x ∈ G and ε > 0 the finite difference function is defined
by the formula:

X ∈ B(1) ⊂ G 7→ δ−1
ε

(
f(x)−1f (xδεX)

)
∈ P

In the expression of the finite difference function enters δ−1
ε and δε, which are dilatations

in P , respectively G.
Pansu’s differentiability is obtained from uniform convergence of the difference func-

tion when ε→ 0.
The derivative of a function f : G→ P is linear in the sense explained further. For

simplicity we shall consider only the case G = P . In this way we don’t have to use a
heavy notation for the dilatations.

Definition 2.11 Let N be a Carnot group. The function F : N → N is linear if

(a) F is a group morphism,

(b) for any ε > 0 F ◦ δε = δε ◦ F .

We shall denote by HL(N) the group of invertible linear maps of N , called the linear
group of N .
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The condition (b) means that F , seen as an algebra morphism, preserves the grading
of N .

The definition of Pansu differentiability follows:

Definition 2.12 Let f : N → N and x ∈ N . We say that f is (Pansu) differentiable
in the point x if there is a linear function Df(x) : N → N such that

sup {d(Fε(y), Df(x)y) : y ∈ B(0, 1)}

converges to 0 when ε→ 0. The functions Fε are the finite difference functions, defined
by

Ft(y) = δ−1
t

(
f(x)−1f(xδty)

)
The definition says that f is differentiable at x if the sequence of finite differences

Ft uniformly converges to a linear map when t tends to 0.
We are interested to see how this differential looks like. For any f : N → N ,

x, y ∈ N Df(x)y means

Df(x)y = lim
t→0

δ−1
t

(
f(x)−1f(xδty)

)
provided that the limit exists.

Proposition 2.13 Let f : N → N , y, z ∈ N such that:

(i) Df(x)y, Df(x)z exist for any x ∈ N .

(ii) The map x 7→ Df(x)z is continuous.

(iii) x 7→ δ−1
t

(
f(x)−1f(xδtz)

)
converges uniformly to Df(x)z.

Then for any a, b > 0 and any w = δaxδby the limit Df(x)w exists and we have:

Df(x)δaxδby = δaDf(x)y δbDf(x)z

If f is Lipschitz then the previous proposition holds almost everywhere. In Propo-
sition 3.2, Pansu [25] there is a more general statement:

Proposition 2.14 Let f : N → N have finite dilatation and suppose that for almost
any x ∈ N the limits Df(x)y and Df(x)z exist. Then for almost any x and for any
w = δay δbz the limit Df(x)w exists and we have:

Df(x)δaxδby = δaDf(x)y δbDf(x)z
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Proof. The idea is to use Proposition 2.13. We shall suppose first that f is Lipschitz.
Then any finite difference function Ft is also Lipschitz.

Recall the general Egorov theorem:

Lemma 2.15 (Egorov Theorem) Let µ be a finite measure on X and (fn)n a sequence
of measurable functions which converges µ almost everywhere (a.e.) to f . Then for
any ε > 0 there exists a measurable set Xε such that µ(X \Xε) < ε and fn converges
uniformly to f on Xε.

Proof. It is not restrictive to suppose that fn converges pointwise to f . Define, for
any q, p ∈ N, the set:

Xq,p = {x ∈ X : | fn(x)− f(x) | < 1/p , ∀n ≥ q}

For fixed p the sequence of sets Xq,p is increasing and at the limit it fills the space:⋃
q∈N

Xq,p = X

Therefore for any ε > 0 and any p there is a q(p) such that µ(X \Xq(p)p) < ε/2p.
Define then

Xε =
⋂

p∈N

Xq(p)p

and check that it satisfies the conclusion. �
If we could improve the conclusion of Egorov Theorem by claiming that if µ is a

Borel measure then each Xε can be chosen to be open, then the proof would resume
like this.

We can take X to be a ball in the group N and µ to be the Q Hausdorff measure,
which is Borel. Then we are able to apply Proposition 2.13 on Xε. When we tend ε to
0 we obtain the claim (for f Lipschitz).

Unfortunately, such an improvement in the conclusion of Egorov theorem does not
hold. In fact, in Pansu paper, during the proof of his Rademacher theorem, there
is a missing step, as Vodop’yanov remarked. This missing step describes precisely
what happens when Xε (a Borel measurable set) is replaced by an arbitrarily fine open
approximation X ′

ε. For this especially subtle step see Vodop’yanov in same proceedings
[...].

�
A consequence of this proposition is Corollary 3.3, Pansu [25].

Corollary 2.16 If f : N → N has finite dilatation and X1, ..., XK is a basis for the
distribution V1 such that

s 7→ f(xδsXi)

is differentiable in s = 0 for almost any x ∈ N , then f is differentiable almost every-
where and the differential is linear, i.e. if

y =
M∏
i=1

δtiXg(i)
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then

Df(x)y =
M∏
i=1

δtiXg(i)(f)(x)

A very important result is theorem 2, Pansu [25], which contains the Rademacher
theorem for Carnot groups.

Theorem 2.17 Let f : M → N be a Lipschitz function between Carnot groups. Then
f is differentiable almost everywhere.

This is the kind of result that motivates the study of sub-Riemannian manifolds as
metric spaces endowed with a measure. It is to be noticed that in the Rademacher theo-
rem enters differentiability, measure and distance. This theorem is indeed a concentrate
of fundamental facts from analysis and measure theory, hence its importance.

The proof is based on the corollary 2.16 and the technique of development of a
curve, Pansu sections 4.3 - 4.6 [25].

Let c : [0, 1] → N be a Lipschitz curve such that c(0) = 0. To any division
Σ : 0 = t0 < .... < tn = 1 of the interval [0, 1] is a associated the element σΣ ∈ N (the
algebra) given by:

σΣ =
n∑

k=0

c(tk)−1c(tk+1)

Lemma (18) Pansu [26] implies the existence of a constant C > 0 such that

‖σΣ − c(1)‖ ≤ C

(
n∑

k=0

‖c(tk)−1c(tk+1)‖

)2

(2.1.3)

Take now a finer division Σ′ and look at the interval [tk, tk+1] divided further by Σ′

like this:
tk = t′l < ... < t′m = tk+1

The estimate (2.1.3) applied for each interval [tk, tk+1] lead us to the inequality:

‖σΣ′ − σΣ‖ ≤
n∑

k=0

d(c(tk), c(tk+1))2

The curve has finite length (being Lipschitz) therefore the right hand side of the previous
inequality tends to 0 with the norm of the division. Set

σ(s) = lim
‖Σ‖→0

σΣ(s)

where σΣ(s) is relative to the curve c restricted to the interval [0, s]. The curve such
defined is called the development of the curve c. It is easy to see that σ has the same
length (measured with the Euclidean norm ‖ · ‖) as c. If we parametrise c with the
length then we have the estimate:

‖σ(s) c(s)‖ ≤ Cs2 (2.1.4)
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This shows that σ is a Lipschitz curve (with respect to the Euclidean distance). Indeed,
prove first that σ has finite dilatation in almost any point, using (2.1.4) and the fact
that c is Lipschitz. Then show that the dilatation is majorised by the Lipschitz constant
of c. By the classical Rademacher theorem σ is almost everywhere derivable.

Remark 2.18 The development of a curve can be done in an arbitrary Lie connected
group, endowed with a left invariant distribution which generates the algebra. One
should add some logarithms, because in the case of Carnot groups, we have identified
the group with the algebra. The inequality (2.1.4) still holds.

Conversely, given a curve σ in the algebra N , we can perform the inverse operation
to development (called multiplicative integral by Pansu; we shall call it ”lift”). Indeed,
to any division Σ of the interval [0, s] we associate the point

cΣ(s) =
n∏

k=0

(σ(tk+1) − σ(tk))

Define then
c(s) = lim

‖Σ‖→0
cΣ(s)

Remark that if σ([0, 1]) ⊂ V1 and it is almost everywhere differentiable then c is a
horizontal curve.

Fix s ∈ [0, 1) and parametrise c by the length. Apply the inequality (2.1.4) to the
curve t 7→ c(s)−1c(s + t). We get the fact that the vertical part of σ(s + t) − σ(s) is
controlled by s2. Therefore, if c is Lipschitz then σ is included in V1.

Denote the i multiple bracket [x, [x, ...[x, y]...] by [x, y]i. For any division Σ of the
interval [0, s] set:

Ai
Σ(s) =

n∑
k=0

[σ(tk), σ(tk+1)]i

As before, one can show that when the norm of the division tends to 0, Ai
Σ converges.

Denote by

Ai(s) =
∫ s

0
[σ, dσ]i = lim

‖Σ‖→0
Ai

Σ(s)

the i-area function. The estimate corresponding to (2.1.4) is

‖Ai(s)‖ ≤ Csi+1 (2.1.5)

What is the significance of Ai(s)? The answer is simple, based on the well known
formula of derivation of left translations in a group. Define, in a neighbourhood of 0 in
the Lie algebra g of the Lie group G, the operation

X
g
· Y = logG (expG(X) expG(Y ))

The left translation by X is the function LX(Y ) = X
g
· Y . It is known that

DLX(0)(Z) =
∑
i=0

1
(i+ 1)!

[X,Z]i
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It follows that if the group G is Carnot then [X,Z]i measures the infinitesimal variation
of the Vi component of LX(Y ), for Y = 0. Otherwise said,

d

dt
σi(t) =

1
(i+ 1)!

lim
ε→0

ε−i

∫ t+ε

t
[σ, dσ]i

Because σ is Lipschitz, the left hand side exists for all i for a.e. t. The estimate (2.1.5)
tells us that the right hand side equals 0. This implies the following proposition (Pansu,
4.1 [25]).

Proposition 2.19 If c is Lipschitz then c is differentiable almost everywhere.

Proof of theorem 2.17. The proposition 2.19 implies that we are in the hypothesis
of corollary 2.16. �

In order to prove Stepanov theorem, the Pansu-Rademacher theorem has been
improved for Lipschitz functions f : A ⊂M → N , where M, N are Carnot groups and
A is just measurable, in Vodop’yanov, Ukhlov [34].

Their technique differs from Pansu. It resembles with the one used in Margulis,
Mostow [22], where it is proven that any quasi-conformal map from a Carnot-Carathéodory
manifold to another is a.e. differentiable, without using Rademacher theorem. Same
result for quasi-conformal maps on Carnot groups has been first proved by Koranyi,
Reimann [19]. Finally Magnani [21] reproved a.e. differentiability of Lipschitz functions
on Carnot groups, defined on measurable sets, continuing Pansu technique.

For a review of other connected results, such as approximate differentiability, dif-
ferentiability in Sobolev topology, see the excellent Vodop’yanov papers [30], [31].

2.2 Nilpotentisation of a sub-Riemannian manifold

In this section we return to the case of a connected real Lie group endowed with a
nonintegrable left invariant distribution. We shall associate to such a sub-Riemannian
space a Carnot group, using the procedure of nilpotentisation.

The filtration (2.0.1) has the straightforward property: if x ∈ V i and y ∈ V j then
[x, y] ∈ V i+j (where V k = g for all k ≥ m and V 0 = {0}). This allows to construct the
Lie algebra

n(g, D) = ⊕m
i=1Vi , Vi = V i/V i−1

with Lie bracket [x̂, ŷ]n = [̂x, y], where x̂ = x+ V i−1 if x ∈ V i \ V i−1.

Proposition 2.20 n(g, D) with distinguished space V1 = D is the Lie algebra of a
Carnot group of step m. It is called the nilpotentisation of the filtration (2.0.1).

Remark that n(g, D) and g have the same dimension, therefore they are isomorphic as
vector spaces.

Let {X1, ..., Xp} be a basis of the vector space D. We shall build a basis of g which
will give a vector spaces isomorphism with n(g, D).
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A word with letters A = {X1, ..., Xp} is a string Xh(1)...Xh(s) where h : {1, ..., s} →
{1, ..., p}. The set of words forms the dictionary Dict(A), ordered lexicographically. We
set the function Bracket : Dict(A) → g to be

Bracket(Xh(1)...Xh(s)) = [Xh(1), [Xh(2), [..., Xh(s)]...]

For any x ∈ Bracket(Dict(A)) let x̂ ∈ Dict(A) be the least word such thatBracket(x̂) =
x. The collection of all these words is denoted by ĝ.

The length l(x) = length(x̂) is well defined. The dictionary Dict(A) admit a
filtration made by the length of words function. In the same way the function l gives
the filtration

V 1 ∩Bracket(Dict(A)) ⊂ V 2 ∩Bracket(Dict(A)) ⊂ ... Bracket(Dict(A))

Choose now, in the lexicographic order in ĝ, a set B̂ such that B = Bracket(B̂) is a
basis for g. Any element X in this basis can be written as

X = [Xh(1), [Xh(2), [..., Xh(s)]...]

such that l(X) = s or equivalently X ∈ V s \ V s−1.
It is obvious that the map

X ∈ B 7→ X̃ = X + V l(X)−1 ∈ n(g, D)

is a bijection and that B̃ =
{
X̃j : j = 1, ..., dim g

}
is a basis for n(g, D). We can

identify then g with n(g, D) by the identification Xj = X̃j .
Equivalently we can define the nilpotent Lie bracket [·, ·]n directly on g, with the

use of the dilatations on n(g, D).
Instead of the filtration (2.0.1) let us start with a direct sum decomposition of g

g = ⊕m
i=1Wi , V i = ⊕i

j=1Wj (2.2.6)

such that [V i, V j ] ⊂ V i+j . The chain V i form a filtration like (2.0.1).
We set

δε(x) =
m∑

i=1

εixi

for any ε > 0 and x ∈ g, which decomposes according to (2.2.6) as x =
∑m

i=1 xi.

Proposition 2.21 The limit

[x, y]n = lim
ε→0

δ−1
ε [δεx, δεy] (2.2.7)

exists for any x, y ∈ g and (g, [·, ·]n) is the Lie algebra of a Carnot group with dilatations
δε.
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Proof. Let x =
∑i

j=1 xj and y =
∑l

k=1 yk. Then

[δεx, δ − εy] =
i+l∑
s=2

εs
∑

j+k=s

s∑
p=1

[xj , yk]p

We apply δ−1
ε to this equality and we obtain:

δ−1
ε [δεx, δεy] =

i+l∑
s=2

∑
j+k=s

s∑
p=1

εs−p[xj , yk]p

When ε tends to 0 the expression converges to the limit

[x, y]n =
i+l∑
s=2

∑
j+k=s

[xj , yk]s (2.2.8)

For any ε > 0 the expression

[x, y]ε = δ−1
ε [δεx, δεy]

is a Lie bracket (bilinear, antisymmetric and it satisfies the Jacobi identity). Therefore
at the limit ε→ 0 we get a Lie bracket. Moreover, it is straightforward to see from the
definition of [x, y]n that δε is an algebra isomorphism. We conclude that (g, [·, ·]n) is
the Lie algebra of a Carnot group with dilatations δε. �

Proposition 2.22 Let {X1, ..., Xdim g} be a basis of g constructed from a basis {X1, ..., Xp}
of D. Set

Wj = span {Xi : l(Xi) = j}
Then the spaces Wj provides a direct sum decomposition (2.2.6). Moreover the identi-
fication X̂i = Xi gives a Lie algebra isomorphism between (g, [·, ·]n) and n(g, D).

Proof. In the basis {X1, ..., Xdim g} the Lie bracket on g looks like this:

[Xi, Xj ] =
∑

CijkXk

where cijk = 0 if l(Xi) + l(Xj) < l(Xk). From here the first part of the proposition
is straightforward. The expression of the Lie bracket generated by the decomposition
(2.2.6) is obtained from (2.2.8). We have

[Xi, Xj ]n =
∑

λijkCijkXk

where λikj = 1 if l(Xi) + l(Xj) = l(Xk) and 0 otherwise. The Lie algebra isomorphism
follows from the expression of the Lie bracket on n(g, D):

[X̂i, X̂j ] = [Xi, Xj ] + V l(Xi)+l(Xj)−1

�
In conclusion the expression of the nilpotent Lie bracket depends on the choice of

basis B trough the transport of the dilatations group from n(g, D) to g.
Let N(G,D) be the simply connected Lie group with Lie algebra n(g, D). As

previously, we identify N(G,D) with n(g, D) by the exponential map.
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2.3 Gromov-Hausdorff convergence and metric tangent cones

This section contains the general notions and results which allows to say what a tangent
space to a metric space is.

Distances between metric spaces The references for this section are Gromov [16],
chapter 3, and Burago & al. [6] section 7.4. There are several definitions of distances
between metric spaces. The very fertile idea of introducing such distances belongs to
Gromov.

In order to introduce the Hausdorff distance between metric spaces, recall the Haus-
dorff distance between subsets of a metric space.

Definition 2.23 For any set A ⊂ X of a metric space and any ε > 0 set the ε
neighbourhood of A to be

Aε = ∪x∈AB(x, ε)

The Hausdorff distance between A,B ⊂ X is defined as

dX
H(A,B) = inf {ε > 0 : A ⊂ Bε , B ⊂ Aε}

By considering all isometric embeddings of two metric spaces X, Y into an arbitrary
metric space Z we obtain the Hausdorff distance between X, Y (Gromov [16] definition
3.4).

Definition 2.24 The Hausdorff distance dH(X,Y ) between metric spaces X Y is the
infimum of the numbers

dZ
H(f(X), g(Y ))

for all isometric embeddings f : X → Z, g : Y → Z in a metric space Z.

If X, Y are compact then dH(X,Y ) < +∞. Indeed, let Z be the disjoint union of
X,Y and M = max {diam(X), diam(Y )}. Define the distance on Z to be

dZ(x, y) =


dX(x, y) x, y ∈ X
dY (x, y) x, y ∈ Y
1
2M otherwise

Then dZ
H(X,Y ) < +∞.

The Hausdorff distance between isometric spaces equals 0. The converse is also true
(Gromov op. cit. proposition 3.6) in the class of compact metric spaces.

Theorem 2.25 If X,Y are compact metric spaces such that dH(X,Y ) = 0 then X,Y
are isometric.

For the proof of the theorem we need the Lipschitz distance (op. cit. definition 3.1)
and a criterion for convergence of metric spaces in the Hausdorff distance ( op. cit.
proposition 3.5 ). We shall give the definition of Gromov for Lipschitz distance and the
first part of the mentioned proposition.
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Definition 2.26 The Lipschitz distance dL(X,Y ) between bi-Lipschitz homeomorphic
metric spaces X,Y is the infimum of

| log dil(f) | + | log dil(f−1) |

for all f : X → Y , bi-Lipschitz homeomorphisms.

Obviously, if dL(X,Y ) = 0 then X,Y are isometric. Indeed, by definition we have
a sequence fn : X → Y such that dil(fn) → 1 as n → ∞. Extract an uniformly
convergent subsequence; the limit is an isometry.

Definition 2.27 A ε-net in the metric space X is a set P ⊂ X such that Pε = X.
The separation of the net P is

sep(P ) = inf {d(x, y) : x 6= y , x, y ∈ P}

A ε-isometry between X and Y is a function f : X → Y such that dis f ≤ ε and f(X)
is a ε net in Y .

The following proposition gives a connection between convergence of metric spaces
in the Hausdorff distance and convergence of ε nets in the Lipschitz distance.

Definition 2.28 A sequence of metric spaces (Xi) converges in the sense of Gromov-
Hausdorff to the metric space X if dH(X,Xi) → 0 as i→∞. This means that there is
a sequence ηi → 0 and isometric embeddings fi : X → Zi, gi : Xi → Zi such that

dZi
H (fi(X), gi(Xi)) < ηi

The next proposition is corollary 7.3.28 (b), Burago & al. [6]. The proof is adapted
from Gromov, proof of proposition 3.5 (b).

Proposition 2.29 If there exists a ε-isometry between X,Y then dH(X,Y ) < 2ε.

Proof. Let f : X → Y be the ε-isometry. On the disjoint union Z = X ∪ Y extend
the distances dX , dY in the following way. Define the distance between x ∈ X and
y ∈ Y by

d(x, y) = inf
{
dX(x, u) + dY (f(u), y) + ε

}
This gives a distance dZ on Z. Check that dZ

H(X,Y ) < 2ε. �
The proof of theorem 2.25 follows as an application of previous propositions.
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Metric tangent cones The infinitesimal (not local!) geometry of a path metric
space is described with the help of Gromov-Hausdorff convergence of pointed metric
spaces.

This is definition 3.14 Gromov [16].

Definition 2.30 The sequence of pointed metric spaces (Xn, xn, dn) converges in the
sense of Gromov-Hausdorff to the pointed space (X,x, dX) if for any r > 0, ε > 0 there
is n0 ∈ N such that for all n ≥ n0 there exists fn : Bn(xn, r) ⊂ Xn → X such that:

(1) fn(xn) = x,

(2) the distorsion of fn is bounded by ε: dis fn < ε,

(3) BX(x, r) ⊂ (fn(Bn(xn, r)))ε.

The Gromov-Hausdorff limit is defined up to isometry, in the class of compact
metric spaces (Proposition 3.6 Gromov [16]) or in the class of locally compact cones.
Here it is the definition of a cone.

Definition 2.31 A pointed metric space (X,x0) is called a cone if there is a one param-
eter group of dilatations with center x0 {δλ : X → X : λ > 0} such that δλ(x0) = x0

and for any x, y ∈ X
d(δλ(x), δλ(y)) = λ d(x, y)

The infinitesimal geometry of a metric space X in the neighbourhood of x0 ∈ X is
described by the tangent space to (X,x0) (if such object exists).

Definition 2.32 The tangent space to (X,x0) is the Gromov-Hausdorff limit

(Tx0 , 0, dx0) = lim
λ→∞

(X,x0, λd)

Three remarks are in order:

1. The tangent space is obviously a cone. We shall see that in a large class of
situations is also a group, hence a graded nilpotent group, called for short Carnot
group.

2. The tangent space comes with a metric inside. This space is path metric (Gromov
[16] Proposition 3.8).

3. The tangent cone is defined up to isometry, therefore there is no way to use the
metric tangent cone definition to construct a tangent bundle. For a modification
of the definitions in this direction see Margulis, Mostow [23], or Vodop’yanov &
Greshnov [32], [33].
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2.4 Mitchell’s theorem 1. Belläıche’s construction

We collect here three key items in the edification of sub-Riemannian geometry. The
first is Mitchell [24] theorem 1:

Theorem 2.33 For a regular sub-Riemannian space (M,D, g), the tangent cone of
(M,dCC) at x ∈ M exists and it is isometric to (N(D), dN ), which is a Carnot group
with a left invariant distribution and dN is a induced Carnot-Carathéodory distance.

We shall prove this theorem in the particular case of a Lie group with left-invariant
distribution. For a detailed proof of the general case see Vodop’yanov & Greshnov [32]
[33].

The Carnot group N(D) is called the nilpotentisation of the regular distribution D
and it can be constructed from D exclusively. However, the metric on N(D) depends
on the choice of metric g on the sub-Riemannian manifold.

Recall that the limit in the Gromov-Hausdorff sense is defined up to isometry. This
means it this case that N(D) is a model for the tangent space at x to (M,dCC). In the
Riemannian case D = TM and N(D) = Rn, as a group with addition.

This theorem tells us nothing about the tangent bundle. There are however other
ways to associate a tangent bundle to a metric measure space (Cheeger [7]) or to
a regular sub-Riemannian manifold (Margulis & Mostow [22], [23]). These bundles
differs. As Tyson (interpreting Cheeger) asserts (see Tyson paper in these proceedings
(??)), Cheeger tangent bundle can be identified with the distribution D and Margulis-
Mostow bundle is the same as the usual tangent bundle, but with the fiber isomorphic
with N(D), instead of Rn. We shall explain how the Margulis-Mostow tangent bundle
is constructed a bit further (again in the particular case considered here).

Let us not, for the moment, be too ambitious and restrict to the question: is there
a metric derivation of the group operation on N(D)? Belläıche [4] writes that he asked
Gromov this question, who pointed out that the key tool to construct the operation
from metric is uniformity. Belläıche proposed therefore the following construction,
which starts from the proof of Mitchell theorem 1, where it can be seen that the
Gromov-Hausdorff convergence to the tangent space is uniform with respect to x ∈M .
This means that for any ε > 0 there is R(ε) > 0 and map φx,ε : BCC(x,R(ε)) → N(D)
such that

dN (φx,ε(y), φx,ε(z)) = dCC(y, z) + o(ε) ∀y, z ∈ BCC(x,R(ε))

Let us forget about ε (Belläıche does not mention anything about it further) and take
arbitrary X,Y ∈ N(D). Pick then y ∈M such that φx(y) = X. Denote φxy = φyφ

−1
x .

Then the operation in N(D) is defined by:

X
n· Y = lim

λ→∞
φ−1

xy δ
−1
λ φxyδλ(Y )

It is easier to understand this in the Euclidean case, that is in Rn. We can take for
example

φx(y) = Q(x)(y − x) = X , y = x+Q−1X ,x 7→ Q(x) ∈ SO(n) arbitrary
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(and we have no dependence on ε) Let us compute the operation. We get

lim
λ→∞

φ−1
xy δ

−1
λ φxyδλ(Y ) = X + Y

as expected. Notice that the arbitrary choice of the rotations Q(x) does not influence
the result. The tangent spaces at any point can rotate independently, which is a sign
that this construction cannot lead to a tangent bundle.

There are several problems with Belläıche’s construction:

a) when λ→∞ the expression φxyδλ(Y ) might not make sense,

b) is not clear how ε and λ interact.

This is the reason why we introduced (first in [5], then here) the notion of uniform
group, which encodes all that one really need to do the construction, again in the case
of Lie groups with left invariant distributions.

Another way to transform Belläıche’s construction into an effective one (and more,
to obtain a tangent bundle) is proposed by Margulis and Mostow. We shall explain
further their construction. However, there are other problems emerging. as mentioned
in the introduction.

2.5 Margulis & Mostow tangent bundle

In this section we shall apply Margulis & Mostow [23] construction of the tangent
bundle to a SR manifold for the case of a group with left invariant distribution. It will
turn that the tangent bundle does not have a group structure, due to the fact that, as
previously, the non-smoothness of the right translations is not studied.

The main point in the construction of a tangent bundle is to have a functorial
definition of the tangent space. This is achieved by Margulis & Mostow [23] in a very
natural way. One of the geometrical definitions of a tangent vector v at a point x, to a
manifold M , is the following one: identify v with the class of smooth curves which pass
through x and have tangent v. If the manifold M is endowed with a distance then one
can define the equivalence relation based in x by: c1 ≡x c2 if c1(0) = c2(0) = x and the
distance between c1(t) and c2(t) is negligible with respect to t for small t. The set of
equivalence classes is the tangent space at x. One has to put then some structure on
the tangent space (as, for example, the nilpotent multiplication).

To put is practice this idea is not so easy though. This is achieved by the following
sequence of definitions and theorems. For commodity we shall explain this construction
in the case M = G connected Lie group, endowed with a left invariant distribution D.
The general case is the one of a regular sub-Riemannian manifold. We shall denote by
dG the CC distance on G and we identify G with g, as previously. The CC distance
induced by the distribution DN , generated by left translations of G using nilpotent
multiplication

n·, will be denoted by dN .

Definition 2.34 A C∞ curve in G with x = c(0) is called rectifiable at t = 0 if
dG(x, c(t)) ≤ Ct as t→ 0.
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Two C∞ curves c′, c” with c′(0) = x = c”(0) are called equivalent at x if

t−1dG(c′(t), c”(t)) → 0

as t→ 0.
The tangent cone to G as x, denoted by CxG is the set of equivalence classes of all

C∞ paths c with c(0) = x, rectifiable at t = 0.

Let c : [−1, 1] → G be a C∞ rectifiable curve, x = c(0) and

v = lim
t→0

δ−1
t

(
c(0)−1 g

· c(t)
)

(2.5.9)

The limit v exists because the curve is rectifiable.
Introduce the curve c0(t) = x expG(δtv). Then

d(x, c0(t)) = d(e, x−1c(t)) <| v | t

as t→ 0 (by the Ball-Box theorem) The curve c is equivalent with c0. Indeed, we have
(for t > 0):

1
t
dG(c(t), c0(t)) =

1
t
dG(c(t), x

g
· δtv) =

1
t
dG(δt(v−1)

g
· x−1 g

· c(t), 0)

The latter expression is equivalent (by the Ball-Box Theorem) with

1
t
dN (δt(v−1)

g
· x−1 g

· c(t), 0) = dN

(
δ−1
t

(
δt(v−1)

g
· δt
(
δ−1
t

(
x−1 g

· c(t)
))))

The right hand side (RHS) converges to dN (v−1 n· v, 0), as t → 0, as a consequence of
the definition of v and theorem 3.14.

Therefore we can identify CxG with the set of curves t 7→ x expG(δtv), for all v ∈ g.
Remark that the equivalence relation between curves c1, c2, such that c1(0) = c2(0) =
x can be redefined as:

lim
t→0

δ−1
t

(
c2(t)−1 g

· c1(t)
)

= 0 (2.5.10)

In order to define the multiplication Margulis & Mostow introduce the families of
segments rectifiable at t.

Definition 2.35 A family of segments rectifiable at t = 0 is a C∞ map

F : U → G

where U is an open neighbourhood of G× 0 in G×R satisfying

(a) F(·, 0) = id

(b) the curve t 7→ F(x, t) is rectifiable at t = 0 uniformly for all x ∈ G, that is for
every compact K in G there is a constant CK and a compact neighbourhood I of
0 such that dG(y,F(y, t)) < CKt for all (y, t) ∈ K × I.
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Two families of segments rectifiable at t = 0 are called equivalent if

t−1dG(F1(x, t),F2(x, t)) → 0

as t→ 0, uniformly on compact sets in the domain of definition.

Part (b) from the definition of a family of segments rectifiable can be restated as:
there exists the limit

v(x) = lim
t→0

δ−1
t

(
x−1 g

· F(x, t)
)

(2.5.11)

and the limit is uniform with respect to x ∈ K, K arbitrary compact set.
It follows then, as previously, that F is equivalent to F0, defined by:

F0(x, t) = x
g
· δtv(x)

Also, the equivalence between families of segments rectifiable can be redefined as:

lim
t→0

δ−1
t

(
F2(x, t)−1 g

· F1(x, t)
)

= 0 (2.5.12)

uniformly with respect to x ∈ K, K arbitrary compact set.

Definition 2.36 The product of two families F1, F2 of segments rectifiable at t = 0 is
defined by

(F1 ◦ F2) (x, t) = F1(F2(x, t), t)

The product is well defined by Lemma 1.2 op. cit.. One of the main results is then
the following theorem (5.5).

Theorem 2.37 Let c1, c2 be C∞ paths rectifiable at t = 0, such that c1(0) = x0 =
c2(0). Let F1, F2 be two families of segments rectifiable at t = 0 with:

F1(x0, t) = c1(t) , F2(x0, t) = c2(t)

Then the equivalence class of
t 7→ F1 ◦ F2(x0, t)

depends only on the equivalence classes of c1 and c2. This defines the product of the
elements of the tangent cone Cx0G.

This theorem is the straightforward consequence of the following facts (5.1(5) and
5.2 in Margulis & Mostow [23]).

We shall denote by F ≈ F ′ the equivalence relation of families of segments rec-
tifiable; the equivalence relation of rectifiable curves based at x will be denoted by
c

x
≈ c′.

Lemma 2.38 (a) Let F1 ≈ F2 and G1 ≈ G2. Then F1 ◦ G1 ≈ F2 ◦ G2.

(b) The map F 7→ F0 is constant on equivalence classes of families of segments
rectifiable.
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Proof. Let
F0(x, t) = x

g
· δtw1(x) , G0(x, t) = x

g
· δtw2(x)

For the point (a) it is sufficient to prove that

F ◦ G ≈ F0 ◦ G0

This is true by the following chain of estimates.

1
t
dG(F ◦ G(x, t),F0 ◦ G0(x, t)) =

=
1
t
dG(δtw1(G0(x, t))−1 g

· δtw2(x)−1 g
· x−1 g

· F(G(x, t), t), 0)

The RHS of this equality behaves like

dN (δ−1
t

(
δtw1(G0(x, t))−1 g

· δtw2(x)−1 g
· δt
(
δ−1
t

(
x−1 g

· G(x, t)
))

g
·

g
· δt
(
δ−1
t

(
G(x, t)−1 g

· F(G(x, t), t)
)))

, 0)

This quantity converges (uniformly with respect to x ∈ K, K an arbitrary compact) to

dN (w1(x)−1 n· w2(x)−1 n· w2(x)
n· w1(x), 0) = 0

The point (b) is easier: let F ≈ G and consider F0, G0, as above. We want to prove
that F0 = G0, which is equivalent to w1 = w2.

Because ≈ is an equivalence relation all we have to prove is that if F0 ≈ G0 then
w1 = w2. We have:

1
t
dG(F0(x, t),G0(x, t)) =

1
t
dG(x

g
· δtw1(x), x

g
· δtw2(x))

We use the
g
· left invariance of dG and the Ball-Box theorem to deduce that the RHS

behaves like
dN (δ−1

t

(
δtw2(x)−1 g

· δtw1(x)−1
)
, 0)

which converges to dN (w1(x), w2(x)) as t goes to 0. The two families are equivalent,
therefore the limit equals 0, which implies that w1(x) = w2(x) for all x. �

We shall apply this theorem. Let ci(t) = x0 expG δtvi, for i = 1, 2. It is easy to
check that Fi(x, t) = x expG(δtvi) are families of segments rectifiable at t = 0 which
satisfy the hypothesis of the theorem. But then

(F1 ◦ F2) (x, t) = x0 expG(δtv1) expG(δtv2)

which is equivalent with
F expG

(
δt(v1

n· v2)
)

Therefore the tangent bundle defined by this procedure is the same as the virtual
tangent bundle which we shall define soon, inspired from the construction proposed by
Belläıche.
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Maybe I misunderstood the notations, but it seems to me that several times the
authors claim that the exponential map which they construct is bi-Lipschitz (as in
5.1(4) and Corollary 4.5). This is false, as explained before. In Belläıche [4], Theorem
7.32 and also at the beginning of section 7.6 we find that the exponential map is only
1/m Hölder continuous (where m is the step of the nilpotentization). However, the
final results of Margulis & Mostow hold true, if not entirely proven facts, as statements
at least.

2.6 Vodop’yanov & Greshnov definition of the derivability. Rademacher
theorem

We choose Vodop’yanov & Greshnov [32], [33] way of defining the derivability in order to
explain Margulis & Mostow [22] Rademacher theorem 10.5 (or Vodop’yanov & Greshnov
theorem 1). The definition (10.3.1) of derivability in the paper [22] is to be compared
with the definition of P differentiability from [32], first page, which is in my opinion
clearer. However, the reader entering for the first time in this subject might find hard to
understand why such elementary notions as differentiability need so lengthy discussions.
It is, I think, another sign of the fact that the foundations of non-Euclidean analysis
are still in construction.

We stay, as previously, in the case of Lie groups with left invariant distributions.
We put on such groups Lebesgue measures coming from arbitrary atlases.

Definition 2.39 A mapping f : G1 → G2 is said to be differentiable at x ∈ G1 if the
mapping exp−1

G2
◦Lf(x) ◦ f ◦ Lx ◦ expG1

is Pansu derivable at 0, when we identify the
algebras g1, g2 with the nilpotentisations of G1, G2 respectively.

The following theorem then holds. The original (and stronger) versions of this theo-
rem concern quasi-conformal mapping and can be found in Margulis & Mostow [22],
Vodop’yanov & Greshnov [32] and the paper by Vodop’yanov in these proceedings.

Theorem 2.40 Any Lipschitz map f : E ⊂ G1 → G2, E measurable, is derivable
almost everywhere.

3 Uniform groups

We start with the following setting: G is a topological group endowed with an unifor-
mity such that the operation is uniformly continuous. More specifically, we introduce
first the double of G, as the group G(2) = G×G with operation

(x, u)(y, v) = (xy, y−1uyv)

The operation on the group G, seen as the function

op : G(2) → G , op(x, y) = xy

is a group morphism. Also the inclusions:

i′ : G→ G(2) , i′(x) = (x, e)
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i” : G→ G(2) , i”(x) = (x, x−1)

are group morphisms.

Definition 3.1 1. G is an uniform group if we have two uniformity structures, on
G and G2, such that op, i′, i” are uniformly continuous.

2. A local action of a uniform group G on a uniform pointed space (X,x0) is a
function φ ∈W ∈ V(e) 7→ φ̂ : Uφ ∈ V(x0) → Vφ ∈ V(x0) such that:

(a) the map (φ, x) 7→ φ̂(x) is uniformly continuous from G × X (with product
uniformity) to X,

(b) for any φ, ψ ∈ G there is D ∈ V(x0) such that for any x ∈ D ˆφψ−1(x) and
φ̂(ψ̂−1(x)) make sense and ˆφψ−1(x) = φ̂(ψ̂−1(x)).

3. Finally, a local group is an uniform space G with an operation defined in a neigh-
bourhood of (e, e) ⊂ G×G which satisfies the uniform group axioms locally.

Remark that a local group acts locally at left (and also by conjugation) on itself.
This definition deserves an explanation. We shall start by recalling what an uni-

formity is (consult, for example the book James [18], for an introduction to uniform
spaces). We need first some notations.

A relation R of a given set X is just a subset R ⊂ X ×X. The inverse of R is

R−1 = {(y, x) ∈ X ×X : (x, y) ∈ R}

The composition of two relations R,S is defined by:

R ◦ S = {(x, z) ∈ X ×X : ∃y ∈ X (x, y) ∈ R , (y, z) ∈ S}

The composition is an associative operation.
The diagonal of X is the relation

∆(X) = {(x, x) : x ∈ x}

A filter on X is a set Ω of subsets of X such that:

- if A,B ∈ Ω then A ∩B ∈ Ω,

- if A ∈ Ω, B ⊂ X and A ⊂ B then B ∈ Ω.

Definition 3.2 An uniformity of a given set X is a filter Ω on X ×X such that:

i) for all D ∈ Ω ∆(X) ⊂ D,

ii) if D ∈ Ω then D−1 ∈ Ω,

iii) if D ∈ Ω then there is E ∈ Ω such that E ◦ E ⊂ D.
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For example, if (X, d) is a metric space then the filter on X ×X generated by the
sets:

B(r) = {(x, y) ∈ X ×X : d(x, y) < r}
for all r > 0 is an uniformity on X. Indeed, property i) comes from the fact that
d(x, x) = 0 for any x ∈ X, ii) comes from d(x, y) = d(y, x) for any x, y ∈ X and iii)
comes from the triangle inequality for the distance d.

Let (X,ΩX) and (Y,ΩY ) be two uniform spaces. A function φ : X → Y is uniformly
continuos if

(φ× φ)−1 (ΩY ) ⊂ ΩX

An uniform group, according to the definition (3.1), is a group G such that left
translations are uniformly continuous functions and the left action of G on itself is uni-
formly continuous too. In order two precisely formulate this we need two uniformities:
one on G and another on G×G.

These uniformities should be compatible, which is achieved by saying that i′, i”
are uniformly continuous. The uniformity of the group operation is achieved by saying
that the op morphism is uniformly continuous.

The particular choice of the operation on G ×G is not essential at this point, but
it is justified by the cae of a Lie group endowed with the CC distance induced by a left
invariant distribution. We shall construct a natural CC distance on G × G, which is
left invariant with respect to the chosen operation on G × G. These distances induce
uniformities which transform G into an uniform group according to definition (3.1). The
goal, achieved in the next section, is proposition (3.11) which claims that the operation
function op is derivable, even if right translations are not ”smooth”, i.e. commutative
smooth according to definition (3.6).

We prepare now the path to this result. The ”infinitesimal version” of an uniform
group is a conical local uniform group.

Definition 3.3 A conical local uniform group N is a local group with a local action of
(0,+∞) by morphisms δε such that lim

ε→0
δεx = e for any x in a neighbourhood of the

neutral element e.

We shall make the following hypotheses on the local uniform group G: there is a
local action of (0,+∞) (denoted by δ), on (G, e) such that

H0. the limit limε→0 δεx = e exists and is uniform with respect to x.

H1. the limit
β(x, y) = lim

ε→0
δ−1
ε ((δεx)(δεy))

is well defined in a neighbourhood of e and the limit is uniform.

H2. the following relation holds

lim
ε→0

δ−1
ε

(
(δεx)−1

)
= x−1

where the limit from the left hand side exists in a neighbourhood of e and is
uniform with respect to x.
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3.1 Virtual tangent bundle

Proposition 3.4 Under the hypotheses H0, H1, H2 (G, β) is a conical local uniform
group.

Proof. All the uniformity assumptions permit to change at will the order of taking
limits. We shall not insist on this further and we shall concentrate on the algebraic
aspects.

We have to prove the associativity, existence of neutral element, existence of inverse
and the property of being conical. The proof is straightforward. For the associativity
β(x, β(y, z)) = β(β(x, y), z) we compute:

β(x, β(y, z)) = lim
ε→0,η→0

δ−1
ε

{
(δεx)δε/η ((δηy)(δηz))

}
We take ε = η and we get

β(x, β(y, z)) = lim
ε→0

{(δεx)(δεy)(δεz)}

In the same way:

β(β(x, y), z) = lim
ε→0,η→0

δ−1
ε

{
(δε/ηx) ((δηx)(δηy)) (δεz)

}
and again taking ε = η we obtain

β(β(x, y), z) = lim
ε→0

{(δεx)(δεy)(δεz)}

The neutral element is e, from H0 (first part): β(x, e) = β(e, x) = x. The inverse of
x is x−1, by a similar argument:

β(x, x−1) = lim
ε→0,η→0

δ−1
ε

{
(δεx)

(
δε/η(δηx)

−1
)}

and taking ε = η we obtain

β(x, x−1) = lim
ε→0

δ−1
ε

(
(δεx)(δεx)−1

)
= lim

ε→0
δ−1
ε (e) = e

Finally, β has the property:

β(δηx, δηy) = δηβ(x, y)

which comes from the definition of β and commutativity of multiplication in (0,+∞).
This proves that (G, β) is conical. �

We arrive at a natural realization of the tangent space to the neutral element. Let
us denote by [f, g] = f ◦ g ◦ f−1 ◦ g−1 the commutator of two transformations. For
the group we shall denote by LG

x y = xy the left translation and by LN
x y = β(x, y).

The preceding proposition tells us that (G, β) acts locally by left translations on G.
We shall call the left translations with respect to the group operation β ”infinitesimal”.
Those infinitesimal translations admit the very important representation:

lim
λ→0

[LG
(δλx)−1 , δ

−1
λ ] = LN

x (3.1.1)
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Definition 3.5 The group V TeG formed by all transformations LN
x is called the virtual

tangent space at e to G.

The virtual tangent space V TxG at x ∈ G to G is obtained by translating the group
operation and the dilatations from e to x. This means: define a new operation on G
by

y
x· z = yx−1z

The group G with this operation is isomorphic to G with old operation and the left
translation LG

x y = xy is the isomorphism. The neutral element is x. Introduce also
the dilatations based at x by

δx
ε y = xδε(x−1y)

Then Gx = (G,
x·) with the group of dilatations δx

ε satisfy the axioms Ho, H1, H2.
Define then the virtual tangent space V TxG to be: V TxG = V TxG

x. A short
computation shows that

V TxG =
{
LN,x

y = LxL
N
x−1yLx : y ∈ Ux ∈ V(X)

}
where

LN,x
y = lim

λ→0
δ−1,x
λ [δx

λ, L
G
(δλx)x,−1 ]δx

λ

We shall introduce the notion of commutative smoothness, which contains a deriva-
tive resembling with Pansu derivative. This definition is a little bit stronger than the
one given by Vodopyanov & Greshnov [32], because their definition is good for a general
CC space, when uniformities are taken according to the distances in CC spaces G(2)

and G.

Definition 3.6 A function f : G1 → G2 is commutative smooth at x ∈ G1, where
G1, G2 are two groups satisfying H0, H1, H2, if the application

u ∈ G1 7→ (f(x), Df(x)u) ∈ G(2)
2

exists, where
Df(x)u = lim

ε→0
δ−1
ε

(
f(x)−1f(xδεu)

)
and the convergence is uniform with respect to u in compact sets.

For example the left translations Lx are commutative smooth and the derivative
equals identity. If we want to see how the derivative moves the virtual tangent spaces
we have to give a definition.

Inspired by (3.1.1), we shall introduce the virtual tangent. We proceed as follows:
to f : G→ G and x ∈ G let associate the function:

f̂x : G×G→ G , f̂x(y, z) = f̂x
y (z) = (f(x))−1 f(xy)z

To this function is associated a flow of left translations

λ > 0 7→ f̂x
δλy : G→ G
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Definition 3.7 The function f : G → G is virtually derivable at x ∈ G if there is a
virtual tangent V Df(x) such that

lim
λ→0

[(
f̂x

δλy

)−1
, δ−1

λ

]
= V Df(x)y (3.1.2)

and the limit is uniform with respect to y in a compact set.

Proposition 3.8 Suppose that f is commutative derivable. Then it is also virtually
derivable and the virtual tangent to f is given by:

V Df(x)y = Lf(x)L
N
Df(x)yL

−1
f(x)(y)

Remark 3.9 All definitions hold for f : G1 → G2 in an obvious way.

With this definition Lx is commutative smooth and it’s virtual tangent in any point
y is a group morphism from V TyG to V TxyG. More generally, by standard reasoning,
we get again the proposition 2.13, in this more general setting. This time we shall give
the proof, for further reference.

Proposition 3.10 Let f : G→ G, y, z ∈ G such that:

(i) Df(x)y, Df(x)z exist for any x ∈ G.

(ii) The map x 7→ Df(x)z is continuous.

(iii) x 7→ δ−1
t

(
f(x)−1f(xδtz)

)
converges uniformly to Df(x)z.

Then for any (sufficiently small) a, b > 0 and any w = β(δax, δby) the limit Df(x)w
exists and we have:

Df(x)δaxδby = β(δaDf(x)y, δbDf(x)z)

Proof. The proof is standard. Remark that if Df(x)y exists then for any a > 0 the
limit Df(x)δay exists and

Df(x)δay = δaDf(x)y

It is not restrictive therefore to suppose that everything happens in a neighbourhood
of the identity. Let w = β(y, z). We also use the notation

βt(x, y) = δ−1
t (δt(x)δt(y))

We write:
δ−1
t

(
f(x)−1f(xδtw)

)
= βt ((1)t, (2)t)

with the notation (useful for further reference in proposition (4.8))

(1)t = δ−1
t

(
f(x)−1f(xδty)

)



3 UNIFORM GROUPS 33

(2)t = δ−1
t

(
f(xδty)−1f(xδtyδtz)

)
When t tends to 0 (i) implies that (1)t tends to Df(x)y, (ii) and (iii) imply that (2)t

tends to Df(x)z. �
Remark that in principle the right translations are not commutative smooth.
Now that we have a model for the tangent space to e at G, we can show that the

operation is commutative smooth.

Proposition 3.11 Let G satisfy H0, H1, H2 and δ(2)
ε : G(2) → G(2) be defined by

δ(2)
ε (x, u) = (δεx, δεy)

Then G(2) satisfies H0, H1, H2, the operation (op function) is commutative smooth and
we have the relation:

D op (x, u)(y, v) = β(y, v)

Proof. It is sufficient to use the morphism property of the operation. Indeed, the
right hand side of the relation to be proven is

RHS = lim
ε→0

δ−1
ε

(
op(x, u)−1op(x, u)op

(
δ(2)ε (y, v)

))
=

= lim
ε→0

δ−1
ε

(
op(δ(2)ε (y, v))

)
= β(y, v)

The rest is trivial. �

3.2 The case of sub-Riemannian groups

The notion of virtual tangent space is not based on the use of distances, but on the
use of dilatations. In fact, any manifold has a tangent space to any of its points, not
only the Riemannian manifolds. We shall prove further that V TeG is isomorphic to the
nilpotentisation N(G,D).

We start from Euclidean norm on D and we choose an orthonormal basis of D. We
can then extend the Euclidean norm to g by stating that the basis of g constructed, as
explained, from the basis on D, is orthonormal. By left translating the Euclidean norm
on g we endow G with a structure of Riemannian manifold. The induced Riemannian
distance dR will give an uniform structure on G. This distance is left invariant:

dR(xy, xz) = dR(y, z)

for any x, y, z ∈ G.
Any left invariant distance d is uniquely determined if we set d(x) = d(e, x).
The following lemma is important (compare with lemma 2.5).
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Lemma 3.12 Let X1, ..., Xp be a basis of D. Then there are U ⊂ G and V ⊂ N(G,D),
open neighbourhoods of the neutral elements eG, eN respectively, and a surjective func-
tion g : {1, ...,M} → {1, ..., p} such that any x ∈ U , y ∈ V can be written as

x =
M∏
i=1

expG(tiXg(i)) , y =
M∏
i=1

expN (τiXg(i)) (3.2.3)

Proof. We shall make the proof for G; the proof for N(G,D) will follow from the
identifications explained before.

Denote by n the dimension of g. We start the proof with the remark that the
function

(t1, ..., tn) 7→
n∏

i=1

expG(tiXi) (3.2.4)

is invertible in a neighbourhood of 0 ∈ Rn, where the Xi are elements of a basis B
constructed as before. Remember that each Xi ∈ B is a multi-bracket of elements
from the basis of D. If we replace a bracket expG(t[x, y]) in the expression (3.2.4) by
expG(t1x) expG(t2y) expG(t3x) expG(t4y) and we replace t by (t1, ..., t4) then the image
of a neighbourhood of 0 by the obtained function still covers a neighbourhood of the
neutral element. We repeat this procedure a finite number of times and the thesis is
proven. �

As a corollary we obtain the Chow theorem for our particular example.

Theorem 3.13 Any two points x, y ∈ G can be joined by a horizontal curve.

Let dG be the Carnot-Carathéodory distance induced by the distribution D and the
metric. This distance is also left invariant. We obviously have dR ≤ dG. We want to
show that dR and dG induce the same uniformity on G.

Let us introduce another left invariant distance on G

d1
G(x) = inf

{∑
| ti | : x =

∏
expG(tiYi) , Yi ∈ D

}
and the auxiliary functions :

∆1
G(x) = inf

{
M∑
i=1

| ti | : x =
∏

expG(tiXg(i))

}

∆∞
G (x) = inf

{
max | ti | : x =

∏
expG(tiXg(i))

}
We can prove that d1

G = dG(eG, ·). (Indeed dG(eG, ·) ≤ d1
G. On the other part d1

G(x)
is less equal than the variation of any Lipschitz curve joining eG with x. Therefore we
have equality.)

The functions ∆1
G, ∆∞

G don’t induce left invariant distances. Nevertheless they are
useful, because of their equivalence:

∆∞
G (x) ≤ ∆1

G(x) ≤ M ∆∞
G (x) (3.2.5)



3 UNIFORM GROUPS 35

for any x ∈ G. This is a consequence of the lemma 3.12.
We have therefore the chain of inequalities:

dR ≤ dG ≤ ∆1
G ≤ M∆∞

G

But from the proof of lemma 3.12 we see that ∆∞
G is uniformly continuous. This proves

the equivalence of the uniformities.
Because expG does not deform much the Riemannian dR distances near e, it can be

checked that the group G with the dilatations

δ̃ε(expG x) = expG(δεx)

satisfies H0, H1, H2.
The same conclusion is true for the local uniform group (with the uniformity induced

by the Euclidean distance) g with the operation:

X
g
· Y = logG (expG(X) expG(Y ))

for any X,Y in a neighbourhood of 0 ∈ g. Here the dilatations are δε. We shall
denote this group by logG. These two groups are isomorphic as local uniform groups
by the map expG. Dilatations commute with the isomorphism. They have therefore
isomorphic (by expG) virtual tangent spaces.

Theorem 3.14 The virtual tangent space V TeG is isomorphic to N(G,D). More pre-
cisely N(G,D) is equal (as local group) to the virtual tangent space to logG:

N(G,D) = V T0 logG

Proof. The product XY in logG is given by Baker-Campbell-Hausdorff formula

X
g
· Y = X + Y +

1
2
[X,Y ] + ...

Use proposition 2.21 to compute β(X,Y ) and show that β(X,Y ) equals the nilpotent
multiplication. �

3.3 Proof of Mitchell’s theorem 1

We shall prove the result of Mitchell [24] theorem 1, that G admits in any point a
metric tangent cone, which is isomorphic with the nilpotentisation N(G,D). Mitchell
theorem is true for regular sub-Riemannian manifolds. The proof that we give here is
based on the lemma 3.12 and Gromov [16] section 1.2.

Because left translations are isometries, it is sufficient to prove that G admits a
metric tangent cone in identity and that the tangent cone is isometric with N(G,D).

For this we transport all in the algebra g, endowed with two brackets [·, ·]G, [·, ·]N
and with two operations

g
· and

n·. Denote by dG, dN the Carnot-Carathéodory distances
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corresponding to the
g
·, respectively

n· left invariant distributions on (a neighbourhood of
0 in) g. lG, lN are the corresponding length functionals. We shall denote by BG(x,R),
BN (x,R) the balls centered in x with radius R with respect to dG, dN .

We can refine lemma 3.12 in order to obtain the Ball-Box theorem in this more
general situation.

Theorem 3.15 (Ball-Box Theorem) Denote by

Box1
G(ε) =

{
x ∈ G : ∆1

G(x) < ε
}

Box1
N (ε) =

{
x ∈ N : ∆1

N (x) < ε
}

For small ε > 0 there is a constant C > 1 such that

expG

(
Box1

N (ε)
)
⊂ Box1

G(Cε) ⊂ expG

(
Box1

N (C2ε)
)

Proof. Reconsider the proof of lemma 3.12. This time, instead of the trick of replacing
commutators expG[X,Y ](t) with four letters words

expGX(t1) expG Y (t2) expGX(t3) expG Y (t4)

we shall use a smarter replacement (which, important! , works equally for the nilpo-
tentisation N(G,D)).

We start with a basis {Y1, ..., Yn} of the algebra g, constructed from multibrackets of
elements {X1, ..., Xp} which form a basis for the distributionD. Introduce an Euclidean
distance by declaring the basis of g orthonormal. Set

[X(t), Y (t)]◦ = (tX)
g
· (tY )

g
· (−tX)

g
· (−tY )

It is known that for any set of vectors Z1, ..., Zq ∈ g, if we denote by α◦(Z1(t), ..., Zq(t))
a [·, ·]◦ multibracket and by α(Z1, ..., Zq) the same constructed [·, ·] multibracket, then
we have

α◦(Z1(t), ..., Zq(t)) = tqα(Z1, ..., Zq) + o(tq)

with respect to the Euclidean norm.
Remark as previously that the function

(t1, ..., tn) 7→
n∏

i=1

(tiYi) (3.3.6)

is invertible in a neighbourhood of 0 ∈ Rn. Each Xi from the basis of g can be written
as a multibracket

Xi = αi(Xk1 , ..., Xkji
)

which has the length li = ji − 1. If li is odd then replace (tiXi) by

α◦(Xk1(t
1/li), ..., Xkji

(t1/li))
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If li is even then the multibracket αi can be rewritten as

αi(Xk1 , ..., Xkji
) = βi(Xk1 , ..., [Xkp , Xkp+1 ], ..., Xkji

)

Replace then (tiXi) by{
β◦i (Xk1(| t |1/li), ..., [Xkp(| t |1/li), Xkp+1(| t |1/li)]◦, ..., Xkji

(| t |1/li)) if t ≥ 0
β◦i (Xk1(| t |1/li), ..., [Xkp+1(| t |1/li), Xkp(| t |1/li)]◦, ..., Xkji

(| t |1/li)) if t ≤ 0

After this replacements in the expression (3.3.6) one obtains a function EG which is still
invertible in a neighbourhood of 0. We obtain a function EN with the same algebraic
expression as EG, but with [·, ·]◦N brackets instead of [·, ·]◦G ones. Use these functions to
(obviously) end the proof of the theorem. �

Theorem 3.16 (Mitchell’s theorem 1) The Gromov-Hausdorff limit of pointed metric
spaces (g, 0, λdG) as λ→∞ exists and equals (g, dN ).

Proof. We shall use the proposition 2.29. For this we shall construct ε isometries
between Box1

N (1) and Box1
G(Cε). These are provided by the function EG ◦ E−1

N ◦ δε.
The trick consists in the definition of the nets. We shall exemplify the construction

for the case of a 3 dimensional algebra g. The basis of g is X1, X2, X3 = [X1, X2]G.
Divide the interval [0, X1] into P equal parts, same for the interval [0, X2]. The interval
[0, X3] though will be divided into P 2 intervals. The net so obtained, seen in N ≡ g,
turn EG ◦ E−1

N ◦ δε into a ε isometry between Box1
N (1) and Box1

G(Cε). To check this
is mostly a matter of smart (but still heavy) notations. �

The proof of this theorem is basically a refinement of Proposition 3.15, Gromov [16],
pages 85–86, mentioned in the introduction of these notes. Close examination shows
that the theorem is a consequence of the following facts:

(a) the identity map id : (g, dG) → (g, dN ) has finite dilatation in 0 (equivalently
expG : N(D,G) → G has finite dilatation in 0),

(b) the change from the G-invariant distribution induced by D to the N invariant
distribution induced by the same D is classically smooth.

It is therefore natural that the result does not feel the non-derivability of id map in
x 6= 0. Here one has to think of id map as the exponential map, defined from the
group algebra g, endowed with the nilpotent distribution, to the group G, endowed
with initial distribution.

3.4 Constructions of tangent bundles

In the previous sections we had fixed one parameter group of dilatations which satisfy
the axioms H0, H1, H2. We shall look now to the class of all dilatation groups (or
dilatation flows, because these groups are one dimensional) which satisfy those axioms.

G is a real connected Lie group endowed with a left invariant distribution D, as
considered previously. We shall denote by d the Carnot-Carathéodory distance and by
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δε the one parameter group of dilatations (which are morphisms of the nilpotentisation,
but they are transported first on the Lie algebra g and next on a neighbourhood of the
neutral element in G). We know now that G endowed with the dilatations δε and with
the uniformities

- the d induced uniformity on G,

- the uniformity induced by the Carnot-Carathéodory distance on G(2). This
distance correspond to the left-invariant distribution generated by D × D ⊂
Lie(G(2)),

is an uniform group according to the definition 3.1.
The use of the distance d simplifies the writing of the paper. The constructions

described further work for uniform groups.
We begin by considering the class of all dilatation flows ε 7→ δ̂ε : G→ G such that:

(a) lim
ε→0

δ̂ε(x) = e uniformly with respect to x ∈ K, K compact neighbourhood of e.

(b) β(x, y) = lim
ε→0

δ̂−1
ε

(
δ̂ε(x)δ̂ε(y)

)
uniformly with respect to x, y ∈ K, K compact

neighbourhood of e.

(c) x−1 = lim
ε→0

δ̂−1
ε

(
δ̂ε(x)−1

)
uniformly with respect to x ∈ K, K compact neigh-

bourhood of e.

If we replace δε by δ̂ε then we obtain the same infinitesimal objects (same virtual
tangent space, same virtual tangent bundle).

Definition 3.17 (i) Two dilatation flows δ′, δ” are equivalent (we write δ′ ≡ δ”) if

lim
ε→0

1
ε
d(δ′ε ◦ δ−1

ε (x), δ′ε ◦ δ−1
ε (x)) = 0

uniformly with respect to x. We denote by [δ′] the equivalence class of δ′.

(ii) A is the class of all dilatation flows which are equivalent to flows of the following
form:

δ̂ε(x) = y−1
ε δε(x) , lim

ε→0
δ−1
ε yε = 0

It is easy to check that any dilatation flow δ′ε ∈ A satisfies conditions (a), (b), (c).
Further we shall look to ”finite curves” which are kind of ”rectifiable” curves (in

Margulis, Mostow terminology) with respect to a dilatation flow in the class A.

Definition 3.18 The class of finite curves is the collection of all curves c : [a,+∞) →
G such that δεc(

1
ε
) converges to a point xc, as ε goes to 0.

On the class of finite curves we define two equivalence relations (weak and strong):
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- the curves c1, c2 are weakly equivalent

c1
w
≈ c2 ⇔ lim

ε→0

1
ε
d(δεc1(

1
ε
), δεc2(

1
ε
)) = 0

- the curves c1, c2 are strongly equivalent

c1
s
≈ c2 ⇔ lim

ε→0

1
ε
d( δεc1(

1
ε
) x, δεc2(

1
ε
) x) = 0

uniform with respect to x (in a neighbourhood of the neutral element).

It is an obvious remark that c1
s
≈ c2 implies c1

w
≈ c2. If we denote by [c]w, [c]s, the

weak, strong respectively, equivalence class of c, then [c]w decomposes in disjoint union
of strong classes.

Proposition 3.19 Let c1, c2 be finite curves. Define

δ(c1,c2)ε
= δεc1(

1
ε
)−1 δεc2(

1
ε
) δε

We have then:

(a) c1
w
≈ c2 is equivalent to δ(c1,c2) ∈ A.

(b) c1
s
≈ c2 is equivalent to δ(c1,c2) ≡ δ.

(c) Let Σ[c] be the spectrum of the finite curve c, that is the collection of all [δ(c,c′)],

with c′
w
≈ c. Then

[c]w =
⋃

[δ(c,c′)]∈Σ[c]

[c′]s

(disjoint union). In other words the weak class of c decomposes into strong classes
enumerated by the spectrum of c.

Proof. The points (a), (b) by direct check of definitions. Point (c) follows from (a),
(b). �

The definition of spectrum in proposition (3.19) (c) deserves attention. We may
choose first a class of curves C. Then weak, strong classes and spectra are defined with
respect to the class C. For the moment the class C is the class of finite curves, but in
the future we shall restrict this class.

The composition of curves is defined by:

c1 ◦ c2(
1
ε
) = δ−1

ε

(
δεc1(

1
ε
) δεc2(

1
ε
)
)

The following proposition justifies the introduction of strong equivalence classes.

Proposition 3.20 The composition operation induces an operation on strong equiva-
lence classes.

Moreover, if c1
s
≈ c′1 and c2

w
≈ c′2 then c1 ◦ c2

w
≈ c′1 ◦ c′2.

However, composition does not induce an operation on weak classes, generally.



3 UNIFORM GROUPS 40

Proof. We shall prove the second assertion: if c1
s
≈ c′1 and c2

w
≈ c′2 then c1◦c2

w
≈ c′1◦c′2.

The first and third parts of the proposition have a similar proof.
Let ε > 0. We have then

1
ε
d

(
δ−1
ε (c1 ◦ c2)

(
1
ε

)
, δ−1

ε (c′1 ◦ c′2)
(

1
ε

))
=

=
1
ε
d

(
δεc1

(
1
ε

)
δεc2

(
1
ε

)
, δεc

′
1

(
1
ε

)
δεc

′
2

(
1
ε

))
≤

≤ 1
ε
d

(
δεc

′
2

(
1
ε

)
, δεc

′
1

(
1
ε

))
+

+ ≤ 1
ε
d

(
δεc

′
1

(
1
ε

)
δεc2

(
1
ε

)
, δεc1

(
1
ε

)
δεc2

(
1
ε

))
But both quantities from the RHS tend to 0 as ε→ 0, because of the hypothesis. �

On A/ ≡ we have the following operation:

[y−1
ε δε] ◦ [u−1

ε δε] = [y−1
ε u−1

ε δε]

(Check that the operation is well defined). This operation makes A/ ≡ into a group.
This group admits an one parameter family of isomorphisms:

δµ[[y−1
ε δε] = [y−1

εµ δεµ]

Therefore any Lie subgroup of A/ ≡ is Carnot. A particular subgroup of A/ ≡ is the
spectrum of a curve.

Another observation is that a weak class can be seen as a bundle. The bijection
between fibers (strong classes) is as follows: take in the strong class [c1]s a representant
c1

w
≈ c. Then the function:

c′ ∈ [c]s 7→ c1 ◦ c−1 ◦ c′ ∈ [c1]s

is a bijection.
However, A/ ≡, or the spectrum of a curve are too big to be finite dimensional

groups. That is why we shall restrict to smaller classes.
A particular class of finite curves is given by words. A word is a string (x1y1....xpyp)

with xi, yi ∈ G. To any word it is associated the curve:

c =
(
x1 x2 ... xp

y1 y2 ... yp

)
, c(

1
ε
) = δ−1

ε (x1 δεy1 ...xpδεyp)

Word concatenation correspond to curves composition.

For any µ > 0 we define (δµ ◦ c) (
1
ε
) = δµc(

1
εµ

).

Proposition 3.21 We have the following relations:

(a)
(
x1 x2 ... xp

y1 y2 ... yp

)
◦
(

0
y

)
w
≈
(
x1 x2 ... xp

y1 y2 ... β(yp, y)

)
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(b)
(
x

0

)
◦
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
x x1 x2 ... xp

y1 y2 ... yp

)

(c) δµ ◦
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
x1 x2 ... xp

δµy1 δµy2 ... δµyp

)

This proposition gives an interesting interpretation of the Margulis & Mostow tangent
bundle.

Corollary 3.22 The virtual tangent bundle (or the Margulis & Mostow tangent bun-
dle) is the bundle of two-letters words, with basis the group and bundle projection on
the first letter.

The definition of the tangent bundle can be naturally given in at least two ways.
Here is the first.

Definition 3.23 The word tangent bundle WG is the group of strong equivalence
classes of words. The bundle structure of WG is given by the map

[c]s 7→ xc = lim
ε→0

δεc

(
1
ε

)
W0G is the fiber of the neutral element and it is a group.

We shall explain further the structure of WG. For this we shall start from the class
Cm([0,+∞), g) of all functions in g which admit a development of order m around 0.
To any f ∈ Cm([0,+∞), g) we associate the finite curve

cf (
1
ε
) = δ−1

ε (f(ε))

Conversely, to any finite curve c we associate the function

fc(ε) = δε

(
c

(
1
ε

))
This function is prolongated by continuity to ε = 0 (which is possible, because the
curve is finite).

For any curve c associated to a word we have fc ∈ Cm([0,+∞), g). We shall use
further the following notations:

C(G) = {cf : f ∈ Cm([0,+∞), g)} /
s
≈

WG = {cf : f is a word } /
s
≈

The word tangent bundle WG can be seen as a subset of C(G).
The tangent bundle WG is a group with the multiplication operation of strong

classes of curves. We want to show that in fact is a Lie group.



3 UNIFORM GROUPS 42

Let f ∈ Cm([0,+∞), g) and

f(ε) = P (ε) + S(ε)

with P ∈ g[ε] is a polynomial of degree at most m and S is of order o(εm). We want to
check if cf and cP are strongly equivalent. This is equivalent with c−1

P ◦ cf
s
≈ 0, which

is straightforward.
We conclude therefore that

C(G) =
(
g[ε]/εm+1g[ε]

)
/

s
≈

in the sense that the sides of the previous equality can be identified. Let us denote

g(m)[ε] = g[ε]/εm+1g[ε]

This is a factorisation of a Lie algebra by an ideal, hence it is itself a Lie algebra.
Recall that g admits a direct sum decomposition and a filtration:

g = V1 + ...+ Vm , V i = V1 + ...+ Vi

such that [V i, V j ] ⊂ V i+j (here V k = g for any k ≥ m).
Any element of g(m)[ε] has a representant P ∈ g[ε], degP ≤ m,

P (ε) = P1(ε) + ...+ Pm(ε)

such that Pi ∈ Vi[ε] for all i. From the degree condition we see that we can write (for
any i = 1, ...,m):

Pi(ε) =
m∑

k=0

aikε
k , aik ∈ Vi

We can do the following decomposition:

P (ε) = PW (ε) + PS(ε)

PW (ε)i =
i∑

k=0

aikε
k

Let c1, c2 two arbitrary finite curves and fi = fci , i = 1, 2. Then c1
w
≈ c2 if and only if

δ−1
ε

(
f−1
1 (ε)f2(ε)

)
→ 0

as ε → 0. From here (and the filtration of g) we deduce that cP
w
≈ cP W , therefore the

weak class of f is PW , where P is the development of order m of f around 0.
We have to identify now the strong classes which compose a weak class. For this

consider the sets:

Weak(g) =
{
PW : P ∈ g[ε] , degP ≤ m

}
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Strong(g) =
{
PS : P ∈ g[ε] , degP ≤ m

}
O(g) =

{
P ∈ Strong(g) : cP

s
≈ 0
}

The set O(g) can be seen as a normal subgroup of g(m)[ε]. Indeed, P ∈ O(g) if and
only if for any x ∈ G we have

δ−1
ε AdG

x P (ε) → 0

as ε→ 0. This implies that O(g) is AdG invariant, hence the claim.
Because of proposition 3.20 it follows that if P ∈ O(g) and Q ∈ Strong(g) then

PQ ∈ Strong(g). Putting all together, we have obtained the characterisation of C(G).

Theorem 3.24 C(G) is a Lie group with Lie algebra isomorphic to

Weak(g) + (Strong(g)/O(g))

For any f ∈ Cm([0,+∞), G) with associated P , development of order m around 0, the
weak class [cf ]w can be identified with PW . The spectrum of cf (in the same class of
curves as cf ) does not depend on f and equals Strong(g)/O(g).

WG is a closed subgroup of C(G), hence it is a Lie group. W0G is a subgroup of
WG.

It will be useful further to work with C(G). We shall denote by T0G the fiber of 0
in C(G), namely the set:

T0G = {f ∈ Cm([0,+∞), G) : f(0) = 0} /
s
≈

The notion which later will lead to derivability is transport.

Definition 3.25 The continuous function f : N → M transports finite curves into
finite curves according to the definition:

f ∗ c(1
ε
) = δ−1

ε f(δεc(
1
ε
))

Let us see how the translations and dilatations act on the tangent bundle.
We start from the observation: translations and dilatations preserve strong classes.

Indeed, let f : G → G be a left or right translation and cf1

s
≈ cf2 , with f1, f2 ∈

Cm([0,+∞), G). We want to prove that f ∗ c1
s
≈ f ∗ c2. Suppose first that f(x) = yx.

The claim is then true because the distance (or uniformity) in G is left invariant. If f
is a right translation (f(x) = xy), take z ∈ G arbitrary. Then

1
ε
d(δε

(
f ∗ c1(

1
ε
)
)
z, δε

(
f ∗ c2(

1
ε
)
)
z) =

1
ε
d(f1(ε)yz, f2(ε)yz)

which converges to 0 as ε→ 0 because c1
s
≈ c2.

Recall that we defined a dilatation on the class of curves (and we used the concate-
nation notation)

δµ(c)(
1
ε
) = (δµ ◦ c)(

1
ε
) = δµc(

1
εµ

)



3 UNIFORM GROUPS 44

with µ > 0. This function preserves strong classes. Indeed:

1
ε
d(δε

(
δµ ◦ c1(

1
ε
)
)
z, δε

(
δµ ◦ c2(

1
ε
)
)
z) =

= µ
1
εµ
d(f1(εµ)z, f2(εµ)z)

which converges to 0 as ε→ 0 because c1
s
≈ c2.

We prove now that classical dilatations transport strong classes into strong classes.
For this we shall use the following characterisation of strong equivalence: c1

s
≈ c2 if and

only if for any z (in a neighbourhood of the neutral element) we have

dN (δ−1
ε (f1(ε)

n· z), δ−1
ε (f1(ε)

n· z)) → 0

as ε→ 0, uniformly with respect to z. Here dN is the distance on the tangent cone at the
neutral element (remember that, as in Vodop’yanov & Greshnov [32], we have identified
a neighbourhood of the neutral element of the tangent cone with a neighbourhood of
the neutral element of the group G; on this neighbourhood we have also the distance
dN ).

With this characterisation δµ ∗ cf1

s
≈ δµ ∗ cf2 if and only if

µ

ε
dN (f1(ε)

n· δ−1
µ z, f1(ε)

n· δ−1
µ z) → 0

as ε→ 0, uniformly with respect to z, which is true by hypothesis.
It is easy to see that translation and dilatations (in both senses: δµ ◦ ... and

δµ ∗ ...) preserve the class of words and the class of curved induced from functions
in Cm([0,+∞), G).

Coming back to transport, we notice that any Lipschitz maps f transports weak
classes into weak classes. We cannot use this to define a tangent map the tangent
bundles in the sense introduced here, because such tangent bundles are constructed
with strong classes.

The following lemma (with straightforward proof) shows that Pansu derivative gives
only a partial description about how f transports finite curves. Here by Pansu deriva-
tive we mean a derivative in the sense of definition 2.39.

Lemma 3.26 If f : N → L is Pansu derivable in x then it transports any two letter

word of the form
(
x

y

)
to a curve weakly equivalent to the word f(x)

(
0

Pf(x)y

)
,

where Pf(x) denotes the Pansu derivative of f at x.

From the point of view developed in this section, the meaning of Rademacher the-
orem is that any Lipschitz function transports two letter word weak classes into two
letter word weak classes, almost everywhere with respect to the first letter.

The problem that we have in order to introduce a derivative notion is that we would
like the derivative of f at x to act on strong classes, but (the Pansu derivative) provide
a transformation of (a particular family of) weak classes.

Before introducing the derivative notion in this setting, we shall look closer to
Carnot groups.
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4 Calculus on Carnot groups

Let N be a Carnot group. We shall develop the notions introduced in the previous
section. But let us first justify the approach by looking at the right translations in the
Heisenberg group.

Consider therefore the right translation f : H(n) → H(n),

f(x, x̄) = (x+ y, x̄+ ȳ +
1
2
ω(x, y))

We look at f(x̃δεz̃), with x̃, z̃ ∈ H(n), x̃ = (x, x̄), z̃ = (z, z̄). Then

f(x̃δεz̃) = f(x+ εz, x̄+ ε
1
2
ω(x, z) + ε2z̄) =

= (x+ y + εz, x̄+ ȳ +
1
2
ω(x, y) + ε

(
1
2
ω(z, y) +

1
2
ω(x, z)

)
+ ε2z̄)

We compute now the expression

(f(x̃))−1 f(x̃δεz̃) = (εz, εω(z, y) + ε2z̄)

Because of the term εω(z, y), the right translation is not derivable, unless y = 0.
Nevertheless, what is to be remarked is that the polynomial expression (εz, ε2z̄) has
been transported to (εz, εω(z, y) + ε2z̄), which is not so bad.

We go back now to general Carnot groups. We shall see that in this case we can
pass from weak classes to strong classes by choosing representantives in a canonical
way.

Definition 4.1 Let C(N) the group of polynomial curves

ε > 0 7→ (Pi(ε))i=1,...,n , degPi(ε) ≤ i , Pi(ε) ∈ Vi[ε]

This is a group with respect to the pointwise multiplication in N .
To any variational word

c =
(
x1 x2 ... xp

y1 y2 ... yp

)

we associate the element Pc(ε) = δεc(
1
ε
). The class of all such polynomials, denoted

by WN , forms a subgroup of C(N).
Conversely, to any P ∈ C(N) we associate the finite curve

cP (
1
ε
) = δ−1

ε P (ε)

A curve c is good if c
w
≈ cP for some P ∈ C(N). The curve c is very good if c

w
≈ cP

with P ∈WN .
The tangent bundle of N is by definition WN . We collect in a proposition some

basic facts about weak and strong classes of good and very good curves.
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Proposition 4.2 (a) Let P,Q ∈ C(N). cP
w
≈ cQ if and only if P = Q. Therefore on

the class of good curves the weak classes are equal with strong classes. Otherwise
said: the spectrum of a good curve is trivial (in the class of good curves).

(b) The composition operation between strong classes of good and very good curves
descends on the group operation on C(N), respectively WN .

To any left or right translation in N there is an associated map on the tangent
bundle. Indeed, let x ∈ N ; we look at the transport given by left translations of
variational words:

Lx ∗
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
xx1 x2 ... xp

y1 y2 ... yp

)
In the same way

Rx ∗
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
x1 x2 ... xp x

y1 y2 ... yp 0

)
For that dilation δµ we have:

δµ ∗
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
δµx1 δµx2 ... δµxp

δµy1 δµy2 ... δµyp

)
We also have the formula

δµ ◦
(
x1 x2 ... xp

y1 y2 ... yp

)
=
(
x1 x2 ... xp

δµy1 δµy2 ... δµyp

)
Remark that the tangent bundle is a Carnot group. We consider the generating

distribution

D2 =
{(

x
y

)
: x, y ∈ D

}
and the Euclidean norm

|
(
x

y

)
| =

(
| x |2 + | y |2

) 1
2

(although any Lp norm is good as well). This gives us a distance on WN , denoted by
dW .

Remark 4.3 The fact that the tangent bundle is a Carnot group is a key property,
because we stay in the same category after derivation. Hence one can do an indefinite
number of derivatives.

The tangent space at the neutral element is

T0N = {P ∈ C(N) : P (0) = 0}
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and it is a Carnot group too. The dimension of T0N equals the homogeneous dimension
of N . The tangent bundle WN is a semidirect product between N and W0N .

The dilatations in T0N are defined by:

δµ(P )(ε) = P (µε)

for any µ > 0.

Definition 4.4 The function f : N → L is weakly derivable at x ∈ N if there is a
function Tf(x) : T0N →WL with the following property:

1
ε
d (f(xP (ε)), T f(x)(P )(ε)) → 0 (4.0.1)

as ε→ 0, uniformly with respect to P ∈ B(0, 1) ⊂ T0N .

It is straightforward from this definition that there exist Df(x) : T0N → T0L such
that

Tf(x)(P ) = f(x)Df(x)(P )

and Df(x) commutes with dilatations.
The following is a simple, but important observation.

Proposition 4.5 Let f : N → N be a function, f = (f1, ...., fm), where m is the step
of N . Suppose that fi admits a development of order i around x. Then f is weakly
derivable.

The equivalent of proposition 3.10 is not true for weak derivatives, because the
quantities from the proof, denoted by (1)t, (2)t might converge to infinity. That is why
we state two more definitions.

Definition 4.6 The function f : N → L is derivable at x ∈ N if there exists a group
morphism Df(x) : T0N → T0L such that

1
ε
d (f(xP (ε)), f(x)Df(x)(P )(ε)) → 0

as ε→ 0, uniformly with respect to P ∈ ¯B(0, 1) ⊂ T0N .

Definition 4.7 The function f : N → L is strongly derivable at x ∈ N if there exists
Df(x) : T0N → T0L such that

1
ε
d (f(xP (ε))y, f(x)Df(x)(P )(ε)y) → 0

as ε→ 0, for any y ∈ N , uniformly with respect to P ∈ ¯B(0, 1) ⊂ T0N .

Now comes the equivalent of proposition 3.10.

Proposition 4.8 Let f : N → L be a function.
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a) If f is strongly derivable at x then it is derivable.

b) If f is weakly derivable and

- the convergence in the definition of the derivative is uniform with respect to
x,

- f satisfies the following condition (A) (from ”additive”): for any P,Q ∈
B(0, 1) ⊂ T0N and any x ∈ N

(A)
1
ε
d
(
f(xP (ε)Q(ε)), f(xP (ε))f(x)−1f(xQ(ε))

)
→ 0 (4.0.2)

goes to 0 as ε→ 0, uniformly with respect to P,Q,

then f is derivable.

One can imagine many sufficient conditions for (A). One of them is the following:
there exists C > 0 such that for any u, x, z ∈ N we have

d(f(u)−1f(uz), f(x)−1f(xz)) ≤ Cd(u, x)d(0, z)m (4.0.3)

Let us see what (4.0.3) means in the commutative case N = Rn. Take f : Rn → Rk

and x, y ∈ Rn. Construct the function gxy(z) = f(x+ z)− f(y+ z). If f has Lipschitz
derivatives then it satisfies condition (4.0.3), which in this case reads:

‖gxy(z)− gxy(0)‖ ≤ C‖x− y‖‖z‖

The constant C equals Lip(∇f).

Proof. (of proposition 4.8) We shall prove only the point (b), because (a) has an easy
proof. We have to prove the morphism property of Df(x).

Let P,Q ∈ T0N . Because Df(y) commutes with dilatations for any y ∈ U , we can
suppose that P,Q,∈ ¯B(0, 1) ⊂ T0N .

We start from the inequality:

1
ε
d (f(x(P )(ε)Q(ε)), f(x)Df(x)(P )(ε)Df(x)(Q)(ε)) ≤ A(ε) +B(ε)

with A(ε) → 0 because of condition (A). We used the notations:

A(ε) =
1
ε
d
(
f(xP (ε)Q(ε)), f(xP (ε))f(x)−1f(xQ(ε))

)
B(ε) =

1
ε
d
(
f(xP (ε))f(x)−1f(xQ(ε)), f(x)Df(x)(P )(ε)Df(x)(Q)(ε)

)
We continue:

B(ε) ≤ C(ε) +D(ε)

with the notations

C(ε) =
1
ε
d
(
f(xP (ε))f(x)−1f(xQ(ε)), f(xP (ε))Df(x)(Q)(ε)

)
D(ε) =

1
ε
d (f(xP (ε))Df(x)(Q)(ε), f(x)Df(x)(P )(ε)Df(x)(Q)(ε)) (4.0.4)
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Remark 4.9 The quantity D(ε) will be important in the section concerning general
groups, in relation to the definition 6.1 of mild equivalence.

The quantity C(ε) converges to 0 as ε→ 0 because f is weakly derivable. The second
quantity D(ε) behaves in the same way again because f is weakly derivable, because
of the uniformity assumption in part (b) of the hypothesis and because of proposition
4.2 (a). We have proved that

1
ε
d (f(x(P )(ε)Q(ε)), f(x)Df(x)(P )(ε)Df(x)(Q)(ε))

converges to 0 as ε→ 0, uniformly with respect to P,Q,∈ ¯B(0, 1) ⊂ T0N .
The one thing left to do is to use once again the fact that f is weakly derivable, this

time along P (ε)Q(ε). This fact, together with the convergence previously established,
end the proof of the morphism property. �

It seems hard to believe that these three definitions of derivability are really differ-
ent. This is a purely non-Euclidean property. We shall see in the section dedicated to
the Heisenberg group that the differences are really big and that the good notion of
derivability seems to be 4.6.

The Rademacher theorem for our notion of derivative is:

Theorem 4.10 Let f : N → L be a Lipschitz function which satisfies condition (A).
Then f is derivable a.e. and the derivative of f has the property:

Df(x)
(
x

y

)
=
(

0
Pf(x)y

)

The proof is a direct consequence of Pansu-Rademacher theorem, propositions 4.5,
4.8 and the observation that the Margulis-Mostow tangent bundle (bundle of two-letter
words) generates the word tangent bundle.

We end this section with the remark that the derivative satisfies the chain rule by
the very definition.

5 Case of the Heisenberg group

In this case CH(n) = WH(n), which comes from the fact that two letter words generate
CH(n). T0H(n) is the group of all polynomials with the form:

P (ε) = (u, u′, u”)(ε) = (εu, εu′ + ε2u”)

with u ∈ R2n, u′, u” ∈ R. This group is isomorphic with H(n)×R and the isomorphism
is given by:

(u, u′, u”) ∈ T0H(n) 7→ ((u, u”), u′) ∈ H(n)×R

The morphisms from R to T0H(n) which commute with dilatations forms a set called
HL(R, T0H(n)) (”HL” means ”horizontal linear”). Any element F of this set can be
seen as an element (a, a′) ∈ R2n ×R, meaning that F ∈ HL(R, T0H(n)) has the form:

F (u) = (ua, u′a′, 0)
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Derivable curves Let f̃ : R ×H(n), f(t) = (f(t), f̄(t)) derivable. This means that
there is (a(t), a′(t)) such that for any u ∈ R, | u |< 1 we have:

δ−1
ε

(
(−f(t+ εu),−f̄(t+ εu))(f(t), f̄(t))(εua(t), εua′t)

)
→ 0

as ε→ 0, uniformly with respect to u. We obtain the following characterisation of f̃ :

a) f is derivable with respect to t and a(t) = ḟ(t),

b) the map s 7→ f̄(t + s) − 1
2
ω(f(t), f(t + s)) has a second order development at

s = 0 of the form:

f̄(t+ s)− 1
2
ω(f(t), f(t+ s)) = f̄(t) + sa′(t) + o(s2)

Putting a) and b) together we get: f̃ is classically derivable and
a(t) = ḟ(t)
a′(t) = ˙̄f − 1

2ω(f(t), ḟ(t))
d
dta

′(t) = 0

So the curve f̃ is not horizontal generally, but the difference from horizontality, mea-
sured by a′, is constant along the curve. A straightforward computation says that when
f is parametrised by arclength, the 2 Hausdorff measure of f̃ is a′L(f), where L(f) is
the length of f .

An analoguous computation shows that f̃ is strongly derivable if and only if it is
linear.

Derivative of the right translation The right translations are derivable. We con-
tinue with the motivating example from the beginning of the previous section.

We saw there that the right translation f : H(n) → H(n), f(x̃) = x̃ỹ transports
the polynomial (z, 0, z̄) to (z, ω(z, y), z̄). The same computation shows that

Df(x̃)(u, u′, u”) = (u, u′ + ω(u, y), u”)

We can write this derivative as a matrix:

Df(x̃) =

 1 0 0
−Jy 1 0

0 0 1


and check that Df(x̃) is indeed a morphism of T0H(n) which commute with dilatations.
That means Df(x̃) ∈ HL(T0H(n)), where

HL(T0H(n)) = {F ∈ GL(T0H(n)) : ∀x, y ∈ T0H(n) [Fx, Fy] = F [x, y] , ∀ε > 0 δεF = Fδε}



5 CASE OF THE HEISENBERG GROUP 51

Remark 5.1 It has been shown in Ambrosio, Rigot [2] that the problem of optimal
transportation in the Heisenberg group has solutions. In classical situations the optimal
transport map ψ satisfies the Monge-Ampère equation, which contains det∇ψ. In the
case of the Heisenberg group one can prove that right translations are optimal transport
maps (for a particular choice of the measures to be transported). But right translations
are not Pansu differentiable, hence the problem of understanding the Monge-Ampère
equation in this setting. We don’t deal in this paper with the calculus of variations
associated to the notions of derivative just introduced. This will be done in a future
paper. I think that it is encouraging though the fact that right translations are derivable,
which might lead to an interpretation of the Monge-Ampère equation in the Heisenberg
group.

Derivable homeomorphisms We look first for the class of isomorphisms of T0H(n)
which commute with dilatations. This class is denoted by HL(T0H(n)). We get A ∈
HL(T0H(n)) if and only if A is represented by a matrix: A 0 0

c d 0
0 0 h


such that A is conformally symplectic and h = (detA)

1
n .

We proceed like in the case of curves: let f : H(n) → H(n), f(x, x̄) = (φ(x, x̄), φ̄(x, x̄)).
If f is derivable at (x, x̄) then the first conclusion is that φ = φ(x). An interesting
consequence is obtained if f is also volume preserving. In this case φ is symplectic and
moreover

φ̄(x, x̄) = x̄+ c · x+ F (x)

where F is the generating function of φ and c does not depend on (x, x̄).
We paste here the section 3.2, 3.3 of [5], for completeness of the picture of derivability

in the Heisenberg group. Before this we state Theorem 5.2, which is correct version of
theorem 3.8. from [5].

Theorem 5.2 Take any φ̃ locally bi-Lipschitz volume preserving homeomorphism of
H(n), which is derivable. Then φ̃ has the form:

φ̃(x, x̄) = (φ(x), x̄ + F (x))

Moreover
φ ∈ Sympl(R2n, Lip)

F : R2n → R is Lipschitz and for almost any point (x, x̄) ∈ H(n) we have:

DF (x)y =
1
2
ω(φ(x), Dφ(x)y) − 1

2
ω(x, y)
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Proof. Let (u, u′, u”) ∈ T0H(n) and (x, x̄) ∈ H(n). The condition on f to be deriv-
able has the form:

E(ε) = δ−1
ε

{
(−φ((x, x̄)(u, u′, u”)(ε)),−φ̄((x, x̄)(u, u′, u”)(ε)))(φ(x, x̄), φ̄(x, x̄))

(εAu, εcu+ εdu′ + ε2hu”)
}
→ 0

as ε→ 0, uniformly with respect to (u, u′, u”) such that

| u | + | u′ | + | u” |
1
2≤ 1

Here A is conformally symplectic and h = (detA)
1
n . The R2n component of the E(ε)

is
1
ε

(
φ(x, x̄)− φ(x+ εu, x̄+ εu′ + ε

1
2
ω(x, u) + ε2u”) + εAu

)
and it has to converge to 0 as ε→ 0. Take now u = 0, u′ = 0 and get that φ is derivable
with respect to x̄ and the derivative equals 0. Therefore φ = φ(x). From here we get
that φ is classically derivable with respect to x and

A =
∂φ

∂x

The second component of E(ε) admits a similar treatment. We leave the details to the
reader. The conclusions are:

1) φ̄ is derivable with respect to x and x̄,

2) we have
∂φ̄

∂x̄
= d = h,

3) we have also the equality

cu =
∂φ̄

∂x
u− 1

2
ω(φ,

∂φ

∂x
u) +

∂φ̄

∂x̄

1
2
ω(x, u)

for any u ∈ R2n.

4) the coefficient c has to be constant with respect to (x, x̄).

The function f is Lipschitz therefore Pansu derivable almost everywhere. Because f
is also volume preserving, the area formula (change of variables formula, we have not
touched this subject in this paper, see for example Vodop’yanov, Ukhlov [30] [34] or
Pauls [27] and Magnani [21]) implies that a.e. A have to be symplectic, hence h = d = 1.

Use 2), 3), 4) to get

∂φ̄

∂x
=

1
2
ω(φ,

∂φ

∂x
u)− 1

2
ω(x, u) + c

But the generating function F of φ is defined up to an additive constant by

DF (x)u =
1
2
ω(φ,

∂φ

∂x
u)− 1

2
ω(x, u)

(This function exists, as a consequence of the fact that φ is symplectic a.e.) The proof
is finished. �
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5.1 Hamiltonian dynamics in a nutshell

The purpose of this section is to use the sub-Riemannian calculus on the Heisenberg
group to recover the basic notions in Hamiltonian dynamics. We show that Hamiltonian
dynamics is just the study of flows of volume preserving derivable homeomorphisms of
the Heisenberg group. Notions of generating function, hamiltonian, Hamilton equation,
Hofer distance, appear without premeditation. One might wonder what is the result of
the study of volume preserving derivable homeomorphisms in a general Carnot group.
The case of H-type Carnot groups may as well be linked to Clifford analysis (because
there is a natural correspondence between Clifford algebras and H-type groups, see
Reimann [29] or Barbano [3]).

Classically smooth maps and the derivative: lifts of symplectic diffeomor-
phisms In this section we are interested in the group of volume preserving classically
diffeomorphisms of H(n), which are also derivable in our new sense. Recall a previous
proposition which roughly says that a sufficiently regular function is weakly derivable.
In order that the function to be derivable some supplementary conditions upon higher
order derivatives have to be satisfied. What is interesting in this subsection is the
proof that classically smooth enough volume preserving diffeomorphisms are also
derivable, not only weakly derivable.

Volume preserving diffeomorphisms Let A ⊂ R2n, open, such that 0 6∈ A. This
condition does not restrict the generality; it leads only to a simplified notation.

Definition 5.3 Diff2(A, vol) is the group of volume preserving diffeomorphisms φ̃ of
H(n) such that:

a) φ̃ has horizontal compact support in A × R ⊂ H(n), in the sense that it differs
from a map (x, x̄) 7→ (x, x̄+ c) (c ∈ R, arbitrar), only in a compact set included
in A×R,

b) φ̃ and it’s inverse have (classical) regularity C2.

In the same way we define Sympl2(A) to be the group of C2 symplectomorphisms
of R2n with compact support in A.

For the regularity chosen in the definition (5.3), the result equivalent with theorem
(5.2) is given further. We denote further by λ a one-form on R2n such that 2 dλ = ω.

Theorem 5.4 We have the isomorphism of groups

Diff2(A, vol) ≈ Sympl2(A)×R

given by the mapping

f̃ = (f, f̄) ∈ Diff2(A, vol) 7→
(
f ∈ Sympl2(A), f̄(0, 0)

)
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The inverse of this isomorphism has the expression(
f ∈ Sympl2(A), a ∈ R

)
7→ f̃ = (f, f̄) ∈ Diff2(A, vol)

f̃(x, x̄) = (f(x), x̄+ F (x))

where F (0) = a and dF = f∗λ − λ.

Remark 5.5 We need the assumption 0 6∈ A only for the morphism property.

Proof. Let f̃ = (f, f̄) : H(n) → H(n) be an element of the group
Diff2(A, vol). We shall compute:

Df̃((x, x̄))(y, ȳ) = lim
ε→0

δε−1

((
f̃(x, x̄)

)−1
f̃ ((x, x̄)δε(y, ȳ))

)
We know that Df̃(x, x̄) has to be a linear mapping.

After a short computation we see that we have to pass to the limit ε → 0 in the
following expressions (representing the two components of Df̃((x, x̄))(y, ȳ)):

1
ε

(
f
(
x+ εy, x̄+ ε2ȳ +

ε

2
ω(x, y)

)
− f(x, x̄)

)
(5.1.1)

1
ε2

(
f̄
(
x+ εy, x̄+ ε2ȳ +

ε

2
ω(x, y)

)
− f̄(x, x̄)− (5.1.2)

−1
2
ω
(
f(x, x̄), f

(
x+ εy, x̄+ ε2ȳ +

ε

2
ω(x, y)

)))
The first component (5.1.1) tends to

∂f

∂x
(x, x̄)y +

1
2
∂f

∂x̄
(x, x̄)ω(x, y)

The terms of order ε must cancel in the second component (5.1.2). We obtain the can-
cellation condition (we shall omit from now on the argument (x, x̄) from all functions):

1
2
ω(x, y)

∂f̄

∂x̄
− 1

2
ω(f,

∂f

∂x
y)− 1

4
ω(x, y)ω(f,

∂f

∂x̄
) +

∂f̄

∂x
· y = 0 (5.1.3)

The second component tends to

∂f̄

∂x̄
ȳ − 1

2
ω(f,

∂f

∂x̄
)ȳ

The group morphism Df̃(x, x̄) is represented by the matrix:

df̃(x, x̄) =

(
∂f
∂x + 1

2
∂f
∂x̄ ⊗ Jx 0
0 ∂f̄

∂x̄ −
1
2ω(f, ∂f

∂x̄ )

)
(5.1.4)
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We shall remember now that f̃ is volume preserving. This implies:

∂f

∂x
+

1
2
∂f

∂x̄
⊗ Jx ∈ Sp(n) (5.1.5)

∂f̄

∂x̄
− 1

2
ω(f,

∂f

∂x̄
) = 1 (5.1.6)

The cancellation condition (5.1.3) and relation (5.1.6) give

∂f̄

∂x
y =

1
2
ω(f,

∂f

∂x
y) − 1

2
ω(x, y) (5.1.7)

These conditions describe completely the class of volume preserving diffeomor-
phisms of H(n). Conditions (5.1.6) and (5.1.7) are in fact differential equations for
the function f̄ when f is given. However, there is a compatibility condition in terms of
f which has to be fulfilled for (5.1.7) to have a solution f̄ . Let us look closer to (5.1.7).
We can see the symplectic form ω as a closed 2-form. Let λ be a 1-form such that
2dλ = ω. If we take the (regular) differential with respect to x in (5.1.7) we quickly
obtain the compatibility condition

∂f

∂x
∈ Sp(n) (5.1.8)

and (5.1.7) takes the form:
df̄ = f∗λ − λ (5.1.9)

(all functions seen as functions of x only).
Conditions (5.1.8) and (5.1.5) imply: there is a scalar function µ = µ(x, x̄) such

that
∂f

∂x̄
= µ Jx

Let us see what we have until now:

∂f

∂x
∈ Sp(n) (5.1.10)

∂f̄

∂x
=

1
2

[(
∂f

∂x

)T

Jf − Jx

]
(5.1.11)

∂f̄

∂x̄
= 1 +

1
2
ω(f,

∂f

∂x̄
) (5.1.12)

∂f

∂x̄
= µ Jx (5.1.13)

Now, differentiate (5.1.11) with respect to x̄ and use (5.1.13). In the same time differ-
entiate (5.1.12) with respect to x. From the equality

∂2f̄

∂x∂x̄
=

∂2f̄

∂x̄∂x

we shall obtain by straightforward computation µ = 0.
The morphism property is easy to check. �
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Hamilton’s equations For any element φ ∈ Sympl2(A) we define the lift φ̃ to be
the image of (φ, 0) by the isomorphism described in the theorem 5.4.

Definition 5.6 For any flow t 7→ φt ∈ Sympl2(A) denote by φh(·, x)) the horizontal
flow in H(n) obtained by the lift of all curves t 7→ φ(t, x) and by φ̃(·, t) the flow obtained
by the lift of all φt. The vertical flow is defined by the expression

φv = φ̃−1 ◦ φh (5.1.14)

Relation (5.1.14) can be seen as Hamilton equation, with known quantity φv and
unknown quantities φh, φ̃. This is explained further.

Proposition 5.7 Let t ∈ [0, 1] 7→ φv
t be a curve of diffeomorphisms of H(n) satisfying

the equation:
d

dt
φv

t (x, x̄) = (0,H(t, x)) , φv
0 = idH(n) (5.1.15)

Consider the Hamiltonian flow t 7→ φt generated by H and lift it using theorem 5.4
to the flow t 7→ φ̃t; lift it also horizontally, as explained in definition 5.6, to the flow
t 7→ φh

t . Then equation (5.1.14) is satisfied.
Conversely, for any Hamiltonian flow t 7→ φt, generated by H, the vertical flow

t 7→ φv
t (defined this time by the relation (5.1.14)) satisfies the equation (5.1.15).

Proof. Write the lifts φ̃t and φh
t , compute then the differential of the quantity ˙̃

φt− φ̇h
t

and show that it equals the differential of H. Use finally the fact that all quantities in
the proof have compact support. �

Flows of volume preserving diffeomorphisms We want to know if there is any
nontrivial smooth (according to Pansu differentiability) flow of volume preserving dif-
feomorphisms.

Proposition 5.8 Suppose that t 7→ φ̃t ∈ Diff2(A, vol) is a flow such that

- is C2 in the classical sense with respect to (x, t),

- is horizontal, that is t 7→ φ̃t(x) is a horizontal curve for any x.

Then the flow is constant.

Proof. By direct computation, involving second order derivatives. Indeed, let φ̃t(x, x̄) =
(φt(x), x̄+ Ft(x)). From the condition φ̃t ∈ Diff2(A, vol) we obtain

∂Ft

∂x
y =

1
2
ω(φt(x),

∂φt

∂x
(x)y) − 1

2
ω(x, y)
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and from the hypothesis that t 7→ φ̃t(x) is a horizontal curve for any x we get

dFt

dt
(x) =

1
2
ω(φt(x), φ̇t(x))

Equal now the derivative of the RHS of the first relation with respect to t with the
derivative of the RHS of the second relation with respect to x. We get the equality, for
any y ∈ R2n:

0 =
1
2
ω(
∂φt

∂x
(x)y, φ̇t(x))

therefore φ̇t(x) = 0. �
One should expect such a result to be true, based on two remarks. The first,

general remark: take a flow of left translations in a Carnot group, that is a flow t 7→
φt(x) = xtx. We can see directly that each φt is smooth, because the distribution is left
invariant. But the flow is not horizontal, because the distribution is not right invariant.
The second, particular remark: any flow which satisfies the hypothesis of proposition
5.8 corresponds to a Hamiltonian flow with null Hamiltonian function, hence the flow
is constant.

5.2 Symplectomorphisms, capacities and Hofer distance

Symplectic capacities are invariants under the action of the symplectomorphisms group.
Hofer geometry is the geometry of the group of Hamiltonian diffeomorphisms, with
respect to the Hofer distance. For an introduction into the subject see Hofer, Zehnder
[17] chapters 2,3 and 5, and Polterovich [28], chapters 1,2.

A symplectic capacity is a map which associates to any symplectic manifold (M,ω)
a number c(M,ω) ∈ [0,+∞]. Symplectic capacities are special cases of conformal
symplectic invariants, described by:

A1. Monotonicity: c(M,ω) ≤ c(N, τ) if there is a symplectic embedding from M to
N ,

A2. Conformality: c(M, εω) =| ε | c(M,ω) for any α ∈ R, α 6= 0.

We can see a conformal symplectic invariant from another point of view. Take a
symplectic manifold (M,ω) and consider the invariant defined over the class of Borel
sets B(M), (seen as embedded submanifolds). In the particular case of R2n with the
standard symplectic form, an invariant is a function c : B(R2n) → [0,+∞] such that:

B1. Monotonicity: c(M) ≤ c(N) if there is a symplectomorphism φ such that φ(M) ⊂
N ,

B2. Conformality: c(εM) = ε2c(M) for any ε ∈ R.

An invariant is nontrivial if it takes finite values on sets with infinite volume, like
cylinders:

Z(R) =
{
x ∈ R2n : x2

1 + x2
2 < R

}
There exist highly nontrivial invariants, as the following theorem shows:
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Theorem 5.9 (Gromov’s squeezing theorem) The ball B(r) can be symplectically em-
bedded in the cylinder Z(R) if and only if r ≤ R.

This theorem permits to define the invariant:

c(A) = sup
{
R2 : ∃φ(B(R)) ⊂ A

}
called Gromov’s capacity.

Another important invariant is Hofer-Zehnder capacity. In order to introduce this
we need the notion of a Hamiltonian flow.

A flow of symplectomorphisms t 7→ φt is Hamiltonian if there is a function H :
M ×R→ R such that for any time t and place x we have

ω(φ̇t(x), v) = dH(φt(x), t)v

for any v ∈ Tφt(x)M .
Let H(R2n) be the set of compactly supported Hamiltonians. Given a set A ⊂ R2n,

the class of admissible Hamiltonians is H(A), made by all compactly supported maps
in A such that the generated Hamiltonian flow does not have closed orbits of periods
smaller than 1. Then the Hofer-Zehnder capacity is defined by:

hz(A) = sup {‖H‖∞ : H ∈ H(A)}

Let us denote by Ham(A) the class of Hamiltonian diffeomorphisms compactly
supported in A. A Hamiltonian diffeomorphism is the time one value of a Hamiltonian
flow. In the case which interest us, that is R2n, Ham(A) is the connected component
of the identity in the group of compactly supported symplectomorphisms.

A curve of Hamiltonian diffeomorphisms (with compact support) is a Hamiltonian
flow. For any such curve t 7→ c(t) we shall denote by t 7→ Hc(t, ·) the associated
Hamiltonian function (with compact support).

On the group of Hamiltonian diffeomorphisms there is a bi-invariant distance intro-
duced by Hofer. This is given by the expression:

dH(φ, ψ) = inf
{∫ 1

0
‖Hc(t)‖∞,R2n dt : c : [0, 1] → Ham(R2n)

}
(5.2.16)

It is easy to check that d is indeed bi-invariant and it satisfies the triangle property.
It is a deep result that d is non-degenerate, that is d(id, φ) = 0 implies φ = id.

With the help of the Hofer distance one can define another symplectic invariant,
called displacement energy. For a set A ⊂ R2n the displacement energy is:

de(A) = inf
{
dH(id, φ) : φ ∈ Ham(R2n) , φ(A) ∩A = ∅

}
A displacement energy can be associated to any group of transformations endowed

with a bi-invariant distance (see Eliashberg & Polterovich [10], section 1.3). The fact
that the displacement energy is a nontrivial invariant is equivalent with the non-
degeneracy of the Hofer distance. Section 2. Hofer & Zehnder [17] is dedicated to
the implications of the existence of a non-trivial capacity. All in all the non-degeneracy
of the Hofer distance (proved for example in the Section 5. Hofer & Zehnder [17]) is
the cornerstone of symplectic rigidity theory.
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5.3 Hausdorff measure 2 and Hofer distance

We shall give in this section a metric proof of the non-degeneracy of the Hofer distance.
A flow of symplectomorphisms t 7→ φt with compact support in A is Hamiltonian

if it is the projection onto R2n of a flow in Hom(H(n), vol, Lip)(A).
Consider such a flow which joins identity id with φ. Take the lift of the flow

t ∈ [0, 1] 7→ φ̃t ∈ Hom(H(n), vol, Lip)(A).

Proposition 5.10 The curve t 7→ φ̃t(x, 0) has Hausdorff dimension 2 and measure
(up to a multiplicative constant)

H2
(
t 7→ φ̃t(x, 0)

)
=
∫ 1

0
| Ht(φt(x)) | dt (5.3.17)

Proof. The curve is not horizontal. The tangent has a vertical part (equal to the
Hamiltonian). Therefore the curve has Hausdorff measure greater than one. We shall
compute its Hausdorff measure 2.

By definition this is:

H2
(
t 7→ φ̃t(x, 0)

)
= sup {Qδ : δ > 0}

Qδ = inf

{
n∑

i=1

d2(φ̃ti(x, 0), φ̃ti+1(x, 0)) : 0 = t1 < ... < tN = 1 , ∀i d(φ̃ti(x, 0), φ̃ti+1(x, 0)) < δ

}
The Ball-Box theorem 2.9 and the (classical) derivability of the curve ensures us that
approximatively

d2(φ̃ti(x, 0), φ̃ti+1(x, 0)) ≈| H(φti(x)) | (ti+1 − ti) + | φ̇ti(x) |2 (ti+1 − ti)2

This implies (almost) the desired inequality (5.3.17). If we would use instead of the CC
distance another distance which is more computable, for example the distance induced
by the homogeneous norm

‖(x, x̄)‖2 = | x |2 +
1
4
| x̄ |

then we would have exactly the relation (5.3.17), modulus a multiplicative constant
C = 1

4 , namely:

H2
(
t 7→ φ̃t(x, 0)

)
= C

∫ 1

0
| Ht(φt(x)) | dt (5.3.18)

The Hausdorff measure correspond to the chosen homogeneous norm.
In our case, that is for the Hausdorff measure which comes from the CC distance,

the constant C is simply

C = lim
t→0

d2((0, 0), (0, t))
t

�
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We shall prove now that the Hofer distance (5.2.16) is non-degenerate. For given
φ with compact support in A and generating function F , look at the one parameter
family:

φ̃a(x, x̄) = (φ(x), x̄+ F (x) + a)

The volume of the set

{(x, z) : x ∈ A, z between 0 and F (x) + a}

attains the minimum V (φ,A) for an a0 ∈ R. Let us take an arbitrary flow t ∈ [0, 1] 7→
φ̃t ∈ Hom(H(n), vol, Lip)(A) such that φ̃0 = id and φ̃1 = φ̃a. The family of curves
t 7→ φ̃t(x, 0) provides a foliation of the set

B =
{
φ̃t(x, 0) : x ∈ A

}
We want to prove the following proposition:

Proposition 5.11 There is a constant C > 0 such that

HQ(B) ≤ C vol(A)
∫ 1

0
‖Ht‖∞,A dt (5.3.19)

Suppose that (5.3.19) is true. From the the definition of the Hofer distance (5.2.16)
and from the obvious inequality HQ(B) ≥ V (φ,A) we get

V (φ,A) ≤ vol(A) C dH(id, φ) (5.3.20)

This proves the non-degeneracy of the Hofer distance, because if the RHS of (5.3.20)
equals 0 then V (φ,A) is 0, which means that the generating function of φ is almost
everywhere constant, therefore φ is the identity everywhere in R2n.

Proof of proposition 5.11 We shall use proposition 5.10 and the definition of Haus-
dorff measures. For ε > 0 pick a ε-dense (in Euclidean distance) set

{xi : i ∈ Iε}

in A and a ε division 0 = t0 < ... < tN(ε) = 1. It is clear that one can (almost) cover
the set B with sets

Bij(ε) = Lφ̃tj (xi,0)

(
Dφtj (xi)Beucl

R2n (0,
3
4
ε) × [−ε, ε]

)
Denote by D(ε) this cover and define a D(ε) nested cover to be an arbitrary (almost)
cover

D(ε)
{
BCC(x̃α, rα) : α ∈ Kε

}
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of the set B with CC balls such that any ball BCC(x̃α, rα) from the nested cover D(ε)
is included in exactly one set Bij and moreover the center x̃α of the ball has the form

Lφ̃tj (xi,0)
(0, zα)

We shall denote the fact that D(ε) is D(ε) nested by D(ε) < D(ε). Let P (ε) be the
number:

P (ε) = inf
{∑

rQ
α : D(ε) < D(ε)

}
and let

S = lim sup
ε→0

P (ε)

Use proposition 5.10 to estimate S, by first ”counting” the balls in D(ε) < D(ε) which
cover the fiber {

φ̃t(xi, 0) : t ∈ [0, 1]
}

and then ”counting” by the elements xi of the ε net of A. We get the upper bound

C vol(A)
∫ 1

0
‖Ht‖∞,A dt

On the other part, not any cover of B with CC balls is nested, therefore from the
definition of the Hausdorff measure HQ we get

S ≥ HQ(B)

These two inequalities provide the desired result. �
We close with the translation of the inequality (5.3.20) in symplectic terms.

Proposition 5.12 Let φ be a Hamiltonian diffeomorphism with compact support in
A and F its generating function, that is dF = φ∗λ − λ, where dλ = ω. Consider
a Hamiltonian flow t 7→ Ht, with compact support in A, such that the time one map
equals φ. Then the following inequality holds:

C inf
{∫

A
| F (x)− c | dx : c ∈ R

}
≤ vol(A)

∫ 1

0
‖Ht‖∞,A dt

with C > 0 an universal constant.

5.4 Submanifolds in the Heisenberg group

We can imagine that a submanifold in the Heisenberg group should be a set which
is locally connected by derivable curves. More than this, suppose that we have a
coordinate system made of derivable curves. This means that a submanifold is locally
a set:

x̃ = φ̃(t1, ..., tk)

such that all curves
τ 7→ f̃j(τ) = φ̃(...tj + τ...)
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(and all other components fixed) are derivable. Recall that a curve f̃ is derivable if it
is classically derivable and moreover the quantity

˙̄f(t)− 1
2
ω(f(t), ḟ(t))

is constant along the curve. This quantity has an interpretation: it is (up to a constant)
the constant density of the Hausdorff 2 measure of the curve.

We can imagine therefore (at least) three types of submanifolds. The type I and II
submanifolds are (regular versions of) rectifiable sets:

I in the sense of Franchi, Serapioni, Serra Cassano [12], as sets which locally are
level sets of Lipschitz maps from H(n) to R,

II in the sense of Pauls [27], as sets which locally are images of Lipschitz maps from
a nilpotent group to H(n).

For the notion of rectifiable sets see Garofalo, Nhieu [13].
We have to comment on type II submanifolds. There is, up to now, no satisfactory

theory of currents in Carnot groups. The Ambrosio, Kirchheim [1] theory of currents
in metric spaces does not apply for Carnot groups. It is the belief of the author
that a meaningful theory of currents in Carnot groups can be obtained as a theory of
representations of the group of ”smooth” homeomorphisms of the Carnot group. (This
proposition will be the subject of a forthcoming paper; the axioms of this theory, in
the case of the Heisenberg group, have been presented in a talk at the Mathematical
Institute, University of Bern, in 2002. I use the opportunity to thank Martin Reimann
for the kind invitation). It seems reasonable to think that:

- in such a theory we should have, instead of a gradation in the space of currents, a
more complex relation connected to the ways in in which one can split the Carnot
group in smaller Carnot groups, and

- that submanifolds are (associated to) a kind of currents, even in the setting of
Carnot groups.

The Ambrosio-Kirchheim theory can be described as a theory associated to Rn, which
is a Carnot group which split successively in one dimensional subgroups. Hence the
usual gradation of currents which lead to the usual classification of manifolds according
to their dimension.

In general Carnot group one should consider also the splitting given by the well-
known Kirillov lemma (see, for example [8] lemma 1.1.12):

Lemma 5.13 Let g be a noncommutative nilpotent Lie algebra with one dimensional
center Z(g) = RZ. Then g can written as

g = RZ ⊕RY ⊕RX ⊕w = RX ⊕ g0

where [X,Y ] = Z and g0 is the centralizer of Y and an ideal.
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One can split a Carnot group N in two ways: if Z(N) has dimension greater than 1 then
it might be possible to split N using an ideal in Z(N), or, if Z(N) is one dimensional,
we can use Kirillov lemma.

Now I am getting to the point: type II submanifolds in the group N should then be
associated to factorisations by ideals ofN which appear in a splitting ofN . For example,
in the Heisenberg group one can have as type II submanifolds Heisenberg submanifolds
or M submanifolds, where M ⊂ R2n is a Lagrangian subspace (the symplectic form is
identically 0 on M).

We shall introduce here yet another type of submanifolds.

Definition 5.14 A type III k-submanifold in the Heisenberg group is a set M ⊂ H(n)
such that for any x̃ ∈M there is an open neighbourhood Ux̃ ∩M which has the form

Ux̃ ∩M =
{
φ̃t(x̃) : t ∈ T k

}
∩M

where T k is the k real torus and t ∈ T k 7→ φ̃t is the lift (up to multiplication by a
constant vertical element of H(n)) of a Hamiltonian action of T k on R2n.

Let x̃ = (x, x̄) ∈ M and Ux be as in the previous definition. Let also Vx ⊂ R2n be
the projection of Ux on R2n. The moment map of the torus action which defines the
manifold around x̃ is denoted by J : Vx → Rk. The coordinate curve

tj 7→ f̃j(tj) = φ̃(...tj ...)(x)

(all other components are 0) is then derivable and the derivative of this curve in tj = 0
is

(
∂φ

∂tj
(0), Jj(x), 0)

Therefore a submanifold in the Heisenberg group can be seen as a lift of a symplectic
sub-manifold in R2n endowed with a Hamiltonian torus action. The moment map of
the action is visible in the tangent space of the lift.

Definition 5.15 The tangent space at M in x̃ ∈ M is the class of all v ∈ T0H(n)
which are tangent to derivable curves in M , at x̃. This space has the description:

Tx̃M = span

{
(
∂φ

∂tj
(0), Jj(x), 0) : j = 1, ..., k

}
A general submanifold should be a combination of these types. The difficult task

is to classify these combinations, maybe in the same way irreducible representations of
nilpotent Lie groups are classified.

6 Calculus on general groups

In this section we come back to a general group G and we try to find the good notion
of derivative. The problem that we have is that the Pansu derivative of a function
transforms weak classes of two letter words into similar weak classes. We defined the
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word tangent bundle to be a set of strong classes. In the case of Carnot groups we
had the possibility to choose polynomial representantives of strong classes, one in each
weak class. We cannot do the same in the general case.

Until now we have a Pansu type derivative, which is good for Lipschitz functions.
We also remarked that left, right translations preserve the word tangent bundle, but
right translations are not generally Pansu derivable. We need to find a notion of
derivative in between these situations.

6.1 Mild equivalence

Our starting point is the proposition 3.20, more specifically the following useful fact:
strong classes act at left on weak classes. This means the function

([c]s, c′]w 7→ [c]s ∗ [c′]w = [c ◦ c′]w

is well defined and it is an action:

[c1]s ∗
(
[c2]s ∗ [c]w

)
=
(
[c1]s ◦ [c2]s

)
∗ [c]w

Instead of working with strong classes (elements of the word tangent bundle), we shall
work with the action of these on weak classes. This is the same idea as in the case of the
virtual derivative. If we were in an Euclidean situation, these choices and differences
are not at all significant. Here they are.

We introduced weak and strong equivalence relations. Now we want to identify
strong classes which acts the same on weak classes of finite curves cq, q ∈ Cm

0 ([0,+∞), G),
where

Cm
0 ([0,+∞), G) = {s ∈ Cm([0,+∞), G) : s(0) = 0}

This is the same as introducing yet another equivalence relation on finite curves, which
is between the weak and strong relations. We shall call it ”mild”.

Definition 6.1 Two finite curves cf , cp, f, p ∈ Cm([0,+∞), G), are mildly equivalent
cf

m
≈ cp if for any q ∈ Cm

0 ([0,+∞), G), we have [cf ]s ∗ [cq]w = [cp]s ∗ [cq]w.
This equivalence relation can be written as cf◦cq

w
≈ cp◦cq, for any q ∈ Cm

0 ([0,+∞), G).

Otherwise said, two elements P,R ∈ g(m)[ε], are mildly equivalent if and only if for
any Q ∈Weak(g), Q(0) = 0 we have

1
ε
d(P (ε)Q(ε), R(ε)Q(ε)) → 0

as ε→ 0.
Here comes the second way to define a nice tangent bundle.

Definition 6.2 The mild tangent bundle MG is the group of mild equivalence classes
of words, with the bundle structure given by the projection on the first letter.



6 CALCULUS ON GENERAL GROUPS 65

To understand the structure of this bundle we introduce

MC(G) = {cf : f ∈ Cm([0,+∞), G)} /
m
≈

As previously, MC(G) is a Lie group, with the algebra identified with

(Weak(g) + Strong(g)) /M(g)

where M(g) is the subalgebra of Strong(g) of elements mildly equivalent with 0.

Remark 6.3 This algebra is nilpotent (see remarks about the spectrum), like O(g), but
it is not an ideal. Therefore the operation on MC(G) cannot be read directly from the
factorisation. The reason for this is that mild equivalence is not invariant under
conjugation.

The fiber of the neutral element in MC(G) will be denoted by MC0(G). Similarly,
M0G denotes the fiber of the neutral element in MG.

We can take only the factorisation

MC0(G) = {cf : f ∈ Cm
0 ([0,+∞), G)} /

m
≈

We shall call this the true tangent space of G at the neutral element. This is also a
group and the Lie algebra structure of it is obtained by a factorisation. Indeed, consider
the class

g
(m)
0 [ε] =

{
P ∈ g(m) : P (0) = 0

}
Then MC(G)∩g

(m)
0 [ε] is an ideal in g

(m)
0 [ε] and MC0(G) is a Lie group with Lie algebra

obtained by factorisation.
We arrive now to the definition of the semi-derivative.

Definition 6.4 The function f is semi-derivable at x if there is a function

Df(x) : g
(m)
0 [ε] →Weak(g)

such that
1
ε
d(f(xP (ε)), f(x)Df(x)(P )(ε)) → 0

as ε→ 0, uniformly with respect to P .

The notion of weak derivative follows.

Definition 6.5 The function f : G → G′ is weakly derivable if there is a function
Df(x) : g

(m)
0 [ε] →M0G′ such that for any Q ∈Weak(g′), Q(0) = 0, we have

1
ε
d(f(xP (ε))Q(ε), Df(x)(P )(ε)Q(ε)) → 0

uniformly with respect to P .
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All these algebraic construction seem complicated. There are a lot of differences
(like the one between MC0(G) and MC0(G)) which are unseen in the Euclidean case,
and even in the nilpotent case. That is why in the next section we shall take an example
and we shall compute everything.

We close this section with the Rademacher theorem. This will be the identical with
the theorem 4.10, but from slightly different reasons. Namely, instead of proposition
4.8 we have:

Proposition 6.6 If f satisfies the condition (A) and it is weakly derivable then Df(x)
is a group morphism. Moreover, for any P,R ∈ g

(m)
0 [ε], if P

m
≈ R then Df(x)(P ) =

Df(x)(Q).

Proof. The proof is the same as the one of proposition 4.8, with a single difference.
The reason for which the quantity D(ε), defined by the relation (4.0.4), converges to 0
as ε→ 0 is the derivability of f . �

This suggest the good definition of derivative.

Definition 6.7 The function f : G → G′ is derivable if there is a group morphism
Df(x) : MC0(G) →MC0(G′) such that for any P ∈MC0(G) we have

1
ε
d(f(xP (ε))Q(ε), Df(x)(P )(ε)Q(ε)) → 0

uniformly with respect to Q ∈Weak(g′), Q(0) = 0.

The Rademacher theorem in this context is simply this.

Theorem 6.8 Let f : G → H be a Lipschitz function which satisfies condition (A).
Then f is a.e. derivable in the sense of definition 6.7.

If f : G→ G′ is derivable then Df is not a function from MC(G) to MC(G′). This
poses a problem concerning upper order derivatives.

The chain rule for this type of derivatives holds. Moreover, if f preserves the word
tangent bundles and g is just derivable then f ◦ g is derivable. We leave to the reader
to check this fact.

All in all, we have obtained reasonable notions for calculus in general groups. But
the real hard work of understanding this calculus is still ahead. Several phenomena
which are non-Euclidean have been discovered. We have to learn how to control better
these new behaviours and this can be done only after deep study of many particular
cases, in order to make the difference between important and marginal features of non-
Euclidean analysis. Only after this we are free to forget this intricate mechanism and
use it with same ease as we do with the classical calculus.
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6.2 An example: SO(3)

In this section we shall look to the group G = SO(3) of orthogonal matrices in R3. The
Lie algebra so(3) is spanned by the matrices

X1 = e1 ⊗ e2 − e2 ⊗ e1 X1 = e2 ⊗ e3 − e3 ⊗ e2 X1 = e1 ⊗ e3 − e3 ⊗ e1

with the bracket relations

[X1, X2] = X3 [X2, X3] = X1 [X3, X1] = X2

The space spanned by X1, X2 generate the algebra. We shall consider therefore the
dilatation flow δε : so(3) → so(3)

δεX1 = εX1 δεX2 = εX2 δεX3 = ε2X3

Then so(3) decomposes as

so(3) = V1 + V2 V1 = span {X1, X2} V2 = RX3

The nilpotentisation N of (SO(3), V1) is the Heisenberg group. The step m of the
group is equal to 2. The algebra so(3)(2) is 12 dimensional and it is spanned by Xi,
εXi, ε2Xi, i = 1, 2, 3, with bracket relations modulo o(ε2). This is the algebra of the
word tangent bundle (check that WSO(3) = CSO(3)). It contains as subalgebras

so(3) = span {X1, X2, X3}

H(1) = N(SO(3)) = span
{
εX1, εX2, ε

2X3

}
(Check that the space O(so(3)) is trivial.)

The tangent at 0, called T0SO(3), is 6 dimensional, spanned by εXi, ε2Xi, i = 1, 2, 3.
If we want to look to MC0SO(3), we find that it is 4 dimensional, isomorphic

to the algebra T0H(1). This can be done by knowing that for any q ∈ SO(3) Adq

is an orthogonal matrix, obtained as a permutation of q. This allows us to compute
M(so(3)) to be the group with Lie algebra spanned by ε2X1, ε2X2, which is abelian
(hence Carnot, as forecasted).

Finally, the group MC(SO(3)), the mild tangent bundle, can be recovered by look-
ing to the actions of AdG, AdN , on Weak0(SO(3)), spanned by εXi, ε2X3, i = 1, 2, 3.
Attention, this action is done by applying AdG or AdN and then taking projection on
Weak0(SO(3)). We notice that ε2X3 is a fixed point of these actions and that the
group generated by AdG, AdN is simply SL(3, R), which is 8 dimensional. We infer
that the mild tangent bundle is SL(3, R).
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