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Abstract

We give a description of local and global moves on a class of locally planar trivalent
graphs and we show that it contains λ-Scale calculus, therefore in particular untyped
lambda calculus. Surprisingly, the beta reduction rule comes from a local ”sewing”
transformation of trivalent locally planar graphs.

1 Introduction

λ-Scale calculus, introduced in [4], is a formalism which contains both untyped lambda
calculus and emergent algebras. It has been conceived in order to give a rigorous meaning
to ”computing with space” [5], i.e. to give a precise meaning to computation associated to
emergent algebras.

Emergent algebras [2] [3] are a distillation of differential calculus in metric spaces with
dilations [1]. This class of metric spaces contain the ”classical” riemannian manifolds, as
well as fractal like spaces as Carnot groups or, more general, sub-riemannian or Carnot-
Carathéodory spaces, but also all kind of spaces obtained from differential geometric con-
structions under the constraint of low regularity.

In the paper [5] we proposed a formalism of decorated tangle diagrams for emergent
algebras and we called ”computing with space” the various manipulations of these diagrams
with geometric content. Nevertheless, in that paper we were not able to give a precise sense
of the use of the word ”computing”. We speculated, by using analogies from studies of the
visual system, especially the ”Brain a geometry engine” paradigm of Koenderink [9], that,
in order for the visual front end of the brain to reconstruct the visual space in the brain,
there should be a kind of ”geometrical computation” in the neural network of the brain akin
to the manipulation of decorated tangle diagrams described in our paper.

Tangle diagrams decorated by quandles or racks are a well known tool in knot theory
[6] [7]. Emergent algebras are a generalization of quandles, namely an emergent algebra
is a family of idempotent right quasigroups indexed by the elements of an abelian group,
while quandles are self-distributive idempotent right quasigroups. What was missing in this
picture was only a notion of computation. It is notable to mention the work of Kauffman
[8], where the author uses knot diagrams for representing combinatory logic, thus untyped
lambda calculus. Moreover, there are ways of transforming knot and tangle diagrams into
trivalent graphs, as explained in [5] section 3.1.

In this paper we give a description of λ-Scale calculus, therefore in particular of untyped
lambda calculus, in terms of transformations of a class of locally planar trivalent graphs. It is
very intriguing that the β-reduction rule of lambda calculus appear as a local transformation
of locally planar trivalent graphs.
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2 Graphs and moves

An oriented graph is a pair (V,E), with V the set of nodes and E ⊂ V × V the set of
edges. Let us denote by α : V → 2E the map which associates to any node N ∈ V the set
of adjacent edges α(N). In this paper we work with locally planar graphs with decorated
nodes, i.e. we shall attach to a graph (V,E) supplementary information:

- a function f : V → A which associates to any node N ∈ V an element of the ”graphical
alphabet” A (see definition 2.1),

- a cyclic order of α(N) for any N ∈ V , which is equivalent to giving a local embedding
of the node N and edges adjacent to it into the plane.

We shall construct a set of locally planar graphs with decorated nodes, starting from
a graphical alphabet of elementary graphs. On the set of graphs we shall define local
transformations, or moves. Global moves or conditions will be then introduced.

Definition 2.1 The graphical alphabet contains the elementary graphs, or gates, denoted by
λ, Υ, f, >, and for any element ε of the commutative group Γ, a graph denoted by ε̄. Here
are the elements of the graphical alphabet:

λ graph

λ

, Υ graph ,

f graph , ε̄ graph

ε

,

> graph .

With the exception of the >, all other elementary graphs have three edges. The graph > has
only one edge.

1. The set GRAPH. We construct the set of graphs GRAPH over the graphical alpha-
bet by grafting edges of a finite number of copies of the elements of the graphical alphabet.

Definition 2.2 GRAPH is the set of graphs obtained by grafting edges of a finite number
of copies of the elements of the graphical alphabet. During the grafting procedure, we start
from a set of gates and we add, one by one, a finite number of gates, such that, at any step,
any edge of any element of any gate is grafted on any other free edge (i.e. not already grafted
to other edge) of the graph, with the condition that they have the same orientation.

For any node of the graph, the local embedding into the plane is given by the element of
the graphical alphabet which decorates it.

The set of free edges of a graph G ∈ GRAPH is named the set of leaves L(G). Tech-
nically, one may imagine that we complete the graph G ∈ GRAPH by adding to the free
extremity of any free edge a decorated node, called ”leaf”, with decoration ”IN” or ”OUT”,
depending on the orientation of the respective free edge. The set of leaves L(G) thus decom-
poses into a disjoint union L(G) = IN(G) ∪OUT (G) of in or out leaves.
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2. The local moves. These are transformations of graphs in GRAPH which are local,
in the sense that any of the moves apply to a limited part of a graph, keeping the rest of
the graph unchanged.

We may define a local move as a rule of transformation of a graph into another of the
following form.

First, a subgraph of a graph G in GRAPH is any collection of nodes and/or edges of
G. It is not supposed that the mentioned subgraph must be in GRAPH. Also, a collection
of some edges of G, without any node, count as a subgraph of G. Thus, a subgraph of G
might be imagined as a subset of the reunion of nodes and edges of G.

For any natural number N and any graph G in GRAPH, let P(G,N) be the collection
of subgraphs P of the graph G which have the sum of the number of edges and nodes less
than or equal to N .

Definition 2.3 A local move has the following form: there is a number N and a condition C
which is formulated in terms of graphs which have the sum of the number of edges and nodes
less than or equal to N , such that for any graph G in GRAPH and for any P ∈ P(G,N),
if C is true for P then transform P into P ′, where P ′ is also a graph which have the sum
of the number of edges and nodes less than or equal to N .

Graphically we shall group the elements of the subgraph, subjected to the application
of the local rule, into a region encircled with a dashed closed, simple curve. The edges
which cross the curve (thus connecting the subgraph P with the rest of the graph) will be
numbered clockwise. The transformation will affect only the part of the graph which is
inside the dashed curve (inside meaning the bounded connected part of the plane which is
bounded by the dashed curve) and, after the transformation is performed, the edges of the
transformed graph will connect to the graph outside the dashed curve by respecting the
numbering of the edges which cross the dashed line.

2.1. Graphic β move. This is the most important move, inspired by the β-reduction
from lambda calculus, see theorem 3.1, see also the (β*) rule in λ-Scale calculus [4] and
theorem 4.1 here.

1

2

4

3

λ

1 4

32

This ”sewing braids” move will be used also in contexts outside of lambda calculus! It is
the most powerful move in this graphic calculus. A primitive form of this move appears as
the re-wiring move (W1) (section 3.3, p. 20 and the last paragraph and figure from section
3.4, p. 21 in [5]).

An alternative notation for this move is the following:

1

2

4

3

λ

1 3

24

2.2. (CO-ASSOC) move. This is the ”co-associativity” move involving the Υ graphs.
We think about the Υ graph as corresponding to a FAN-OUT gate (however, the (CO-
ASSOC) alone does not completely characterize Υ as being a FAN-OUT gate).
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1

2

3

4

1

2

3

4

2.3. (CO-COMM) move. This is the ”co-commutativity” move involving the Υ gate.
It will be not used until the section 5 concerning knot diagrams.

11

2 3 2 3

2.3. (R1) move. This corresponds to the Reidemeister I move for emergent algebras. It
involves an Υ graph and a ε̄ graph, with ε ∈ Γ.

ε

1

2

1

2

It appears also in section 3.4, p. 21 [5].

2.4. (R2) move. This corresponds to the Reidemeister II move for emergent algebras. It
involves an Υ graph and two other: a ε̄ and a µ̄ graph, with ε, µ ∈ Γ.

µ

ε

3

12

εµ

2

3

1

This move appears in section 3.4, p. 21 [5], with the supplementary name ”triangle
move”.

2.5. (ext2) move. This corresponds to the rule (ext2) from λ-Scale calculus, it expresses
the fact that in emergent algebras the operation indexed with the neutral element 1 of the
group Γ has the property x ◦1 y = y.
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1

1

2

3

12

3

2.6. Local pruning. These are local moves which eliminate ”dead” edges.

ε

1

2

1
2

1 2

1 2
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λ

1

2

1

2

1

2

Global moves or conditions. Global moves are those which are not local, either because
the condition C applies to parts of the graph which may have an arbitrary large sum or
edges plus nodes, or because after the move the graph P ′ which replaces the graph P has
an arbitrary large sum or edges plus nodes.

2.7. (ext1) move. This corresponds to the rule (ext1) from λ-Scale calculus, or to η-
reduction in lambda calculus. It involves a λ graph (think about the λ abstraction operation
in lambda calculus) and a f graph (think about the application operation in lambda calcu-
lus).

The rule is: if there is no oriented path from ”2” to ”1” outside of the dashed curve,
then the following move can be performed.

λ

1

2

1

2

2.8. (Global FAN-OUT) move. This is a global move, because it consists in replacing
(under certain circumstances) of a graph by two copies of that graph.

The rule is: if a graph in G ∈ GRAPH has a Υ bottleneck, that is if we can find a
sub-graph A ∈ GRAPH connected to the rest of the graph G only through a Υ gate, then
we can perform the move explained in the next figure, from the left to the right.

Conversely, if in the graph G we can find two identical subgraphs (denoted by A), which
are in GRAPH, which have no edge connecting one with another and which are connected
to the rest of G only through one edge, as in the RHS of the figure, then we can perform
the move from the right to the left.
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A

1
2

1
2

A A

Remark that (global FAN-OUT) trivially implies (CO-COMM).

2.9. Global pruning. This a global move which eliminates ”dead” edges.
The rule is: if a graph in G ∈ GRAPH has a > ending, that is if we can find a sub-graph

A ∈ GRAPH connected only to a > gate, with no edges connecting to the rest of G, then
we can erase this graph and the respective > gate.

Conversely, we may add to a graph G ∈ GRAPH a graph with a > ending, not connected
with G.

A

The global pruning may be needed because of the λ gates, which cannot be removed
only by local pruning.

2.10. Elimination of loops. It is possible that, after using a local or global move, we
obtain a graph with an arrow which closes itself, without being connected to any node. Here
is an example, concerning the application of the graphic β move.

1

3

λ

1

3

We shall erase any such loop, by convention. As an illustration, the previous figure, with
loop elimination, takes the following form.

λ1 12 2

λGRAPHS. The edges of an elementary graph λ can be numbered unambiguously, clock-
wise, by 1, 2, 3, such that 1 is the number of the entrant edge.
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Definition 2.4 A graph G ∈ GRAPH is a λ-graph, notation G ∈ λGRAPH, if:

- it does not have ε̄ gates,

- for any node λ any oriented path in G starting at the edge 2 of this node can be
completed to a path which either terminates in a graph >, or else terminates at the
edge 1 of this node.

The condition G ∈ λGRAPH is global, in the sense that in order to decide if G ∈ λGRAPH
we have to examine parts of the graph which may have an arbitrary large sum or edges plus
nodes.

Planar trivalent graphs. Planar graphs are graphs which can be globally embedded in
the plane.

Definition 2.5 A graph G ∈ GRAPH is a planar graph, notation G ∈ P − GRAPH, if,
forgetting the decoration of the nodes, but not those of the leaves, it can be globally embedded
into a disk in the plane such that all in or out leaves are on the boundary of the disk.
Two embeddings are considered the same up to smooth isotopy of disks, which transforms a
boundary of a disk into the boundary of the other disk and in or out nodes onto in or out
nodes respectively.

The condition G ∈ P −GRAPH is global.

Proposition 2.6 Any graph G ∈ GRAPH can be transformed into a graph G′ ∈ P −
GRAPH by a finite number of graphical (β) moves.

Proof. We may certainly represent the graph G ∈ GRAPH into a disk in the plane, such
that locally any node and surrounding edges respect the local planar embedding, such that
all edges are straight lines and such that the in and out leaves are on the boundary of the
disk. If this is a global embedding then there is nothing to prove. Else, there is a finite
number of crossings of the embedded edges. For each pair of embedded edges we eliminate
the crossing by an application of a graphical (β) move and we are done. �

3 Conversion of lambda terms into GRAPH

Here we show how to associate to a lambda term a graph in GRAPH, then we use this to
show that β-reduction in lambda calculus transforms into the β rule for GRAPH.

Indeed, to any term A ∈ T (X) (where T (X) is the set of lambda terms over the variable
set X) we associate its syntactic tree. The syntactic tree of any lambda term is constructed
by using two gates, one corresponding to the λ abstraction and the other corresponding to
the application. We draw syntactic trees with the leaves (elements of X) at the bottom and
the root at the top. We shall use the following notation for the two gates: at the left is the
gate for the λ abstraction and at the right is the gate for the application.

λ

x A

λx.A

A B

AB

Remark that these two gates are from the graphical alphabet of GRAPH, but the
syntactic tree is decorated: at the bottom we have leaves from X. Also, remark the peculiar
orientation of the edge from the left (in tree notation convention) of the λ gate. For the
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moment, this orientation is in contradiction with the implicit orientation (from down-up) of
edges of the syntactic tree, but soon this matter will become clear.

We shall remove all leaves decorations, with the price of introducing new gates, namely
Υ and > gates. This will be done in a sequence of steps, detailed further. Take the
syntactic tree of A ∈ T (X), drawn with the mentioned conventions (concerning gates and
the positioning of leaves and root respectively).

We take as examples the following five lambda terms: I = λx.x, K = λx.(λy.(xy)),
S = λx.(λy.(λz.((xz)(yz)))), Ω = (λx.(xx))(λx.(xx)) and T = (λx.(xy))(λx.(xy)).

Step 1. Elimination of bound variables, part I. Any leaf of the tree is connected to the
root by an unique path.

Start from the leftmost leaf, perform the algorithm explained further, then go to the
right and repeat until all leaves are exhausted. We initialize also a list B = ∅ of bound
variables.

Take a leaf, say decorated with x ∈ X. To this leaf is associated a word (a list) which is
formed by the symbols of gates which are on the path which connects (from the bottom-up)
the leaf with the root, together with information about which way, left (L) or right (R), the
path passes through the gates. Such a word is formed by the letters λL, λR, fL, fR.

If the first letter is λL then add to the list B the pair (x,w(x)) formed by the variable
name x, and the associated word (describing the path to follow from the respective leaf to
the root). Then pass to a new leaf.

Else continue along the path to the roof. If we arrive at a λ gate, this can happen only
coming from the right leg of the λ gate, thus we can find only the letter λR. In such a case
look at the variable y which decorates the left leg of the same λ gate. If x = y then add to
the syntactic tree a new edge, from y to x and proceed further along the path, else proceed
further. If the root is attained then pass to next leaf.

Examples: the graphs associated to the mentioned lambda terms, together with the list
of bound variables, are the following.

- I = λx.x has B =
{

(x, λL)
}

, K = λx.(λy.(xy)) has B =
{

(x, λL), (y, λLλR)
}

, S =
λx.(λy.(λz.((xz)(yz)))) has B =

{
(x, λL), (y, λLλR), (z, λLλRλR)

}
.

λ

x x

λ

λ
x

y x

λ λ λ

x

x

z

zy

y z

- Ω = (λx.(xx))(λx.(xx)) has B =
{

(x, λLfL), (x, λLfR)
}

, T = (λx.(xy))(λx.(xy)) has
B =

{
(x, λLfL), (x, λLfR)

}
.
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λ λ λ λ

x

x x x x

x x

x xy y

x

Step 2. Elimination of bound variables, part II. We have now a list B of bound variables.
If the list is empty then go to the next step. Else, do the following, starting from the first
element of the list, until the list is finished.

An element, say (x,w(x)), of the list, is either connected to other leaves by one or more
edges added at step 1, or not. If is not connected then erase the variable name with the
associated path w(x) and replace it by a > gate. If it is connected then erase it, replace it
by a tree formed by Υ gates, which starts at the place where the element of the list were
before the erasure and stops at the leaves which were connected to x. Erase all decorations
which were joined to x and also erase all edges which were added at step 1 to the leave x
from the list.

Examples: after the step 2, the graphs associated to the mentioned lambda terms are
the following.

- the graphs of I = λx.x, K = λx.(λy.(xy)), S = λx.(λy.(λz.((xz)(yz)))) are

λ

λ

λ

λ λ λ

- the graphs of Ω = (λx.(xx))(λx.(xx)), T = (λx.(xy))(λx.(xy)) are

λ λ λ λ

y y
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Remark that at this step the necessity of having the peculiar orientation of the left leg
of the λ gate becomes clear.

Remark also that there may be more than one possible tree of gates Υ, at each elimination
of a bound variable (in case a bound variable has at least tree occurrences). One may use
any tree of Υ which is fit. The problem of multiple possibilities is the reason of introducing
the (CO-ASSOC) move.

Step 3. We may still have leaves decorated by free variables. Starting from the left to
the right, group them together in case some of them occur in multiple places, then replace
the multiple occurrences of a free variable by a tree of Υ gates with a free root, which ends
exactly where the occurrences of the respective variable are. Again, there are multiple ways
of doing this, but we may pass from one to another by a sequence of (CO-ASSOC) moves.

Examples: after the step 3, all the graphs associated to the mentioned lambda terms,
excepting the last one, are left unchanged. The graph of the last term, changes.

- as an illustration, we figure the graphs of Ω = (λx.(xx))(λx.(xx)), left unchanged by
step 3, and the graph of T = (λx.(xy))(λx.(xy)):

λ λ λ λ

Theorem 3.1 Let A 7→ [A] be a transformation of a lambda term A into a graph [A] as
described previously (multiple transformations are possible because of the choice of Υ trees).
Then:

(a) for any term A the graph [A] is in λGRAPH,

(b) if [A]′ and [A]” are transformations of the term A then we may pass from [A]′ to [A]”
by using a finite number (exponential in the number of leaves of the syntactic tree of
A) of (CO-ASSOC) moves,

(c) if B is obtained from A by α-conversion then we may pass from [A] to [B] by a finite
sequence of (CO-ASSOC) moves,

(d) let A,B ∈ T (X) be two terms and x ∈ X be a variable. Consider the terms λx.A
and A[x := B], where A[x := B] is the term obtained by substituting in A the free
occurrences of x by B. We know that β reduction in lambda calculus consists in
passing from (λx.A)B to A[x := B]. Then, by one β move in GRAPH applied to
[(λx.A)B] we pass to a graph which can be further transformed into one of A[x := B],
via (global FAN-OUT) moves, (CO-ASSOC) moves and pruning moves.
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Proof. (a) we have to prove that for any node λ any oriented path in [A] starting at the
left exiting edge of this node can be completed to a path which either terminates in a graph
>, or else terminates at the entry peg of this node, but this is clear. Indeed, either the
bound variable (of this λ node in the syntactic tree of A) is fresh, then the bound variable
is replaced by a > gate, or else, the bound variable is replaced by a tree of Υ gates. No
matter which path we choose, we may complete it to a cycle passing by the said λ node.

(b) Clear also, because the (CO-ASSOC) move is designed for passing from a tree of Υ
gates to another tree with the same number of leaves.

(c) Indeed, the names of bound variables of A do not affect the construction of [A],
therefore ifB is obtained by α-conversion ofA, then [B] differs from [A] only by the particular
choice of trees of Υ gates. But this is solved by (CO-ASSOC) moves.

(d) This is the surprising, maybe, part of the theorem. There are two cases: x is fresh
for A or not. If x is fresh for A then in the graph [(λx.A)B] the name variable x is replaced
by a > gate. If not, then all the occurrences of x in A are connected by a Υ tree with root
at the left peg of the λ gate where x appears as a bound variable.

In the case when x is not fresh for A, we see in the LHS of the figure the graph [(λx.A)B]
(with a remanent decoration of ”x”). We perform a graphic (β) move and we obtain the
graph from the right.

B

x A

2

3

λ
1

4

1

4

B

x A

2

3

This graph can be transformed into a graph of A[x := B] via (global FAN-OUT) and
(CO-ASSOC) moves. The case when x is fresh for A is figured next.

1

4

B

x A

2

3

λ
1

4

B

x A

2

3

We see that the graph obtained by performing the graphic (β) move is the union of the
graph of A and the graph of B with a > gate added at the root. By pruning we are left
with the graph of A, which is consistent to the fact that when x is fresh for A then (λx.A)B
transforms by β reduction into A. �

As an example, let us manipulate the graph of Ω = (λx.(xx))(λx.(xx)):
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λ λ

λ

β

global FAN−OUT

We can pass from the LHS figure to the RHS figure by using a graphic (β) move. Con-
versely, we can pass from the RHS figure to the LHS figure by using a (global FAN-OUT)
move. These manipulations correspond to the well known fact that Ω is left unchanged after
β reduction: let U = λx.(xx), then Ω = UU = (λx.(xx))U ↔ UU = Ω.

3.1 Examples: combinatory logic and arithmetic

S, K and I combinators in GRAPH. The combinators I = λx.x, K = λx.(λy.(xy))
and S = λx.(λy.(λz.((xz)(yz)))) have the following correspondents in GRAPH, denoted by
the same letters:

λ λ λ λ λ λ

SKI

Proposition 3.2 (a) By one graphic (β) move I f A transforms into A, for any A ∈
GRAPH with one output.

(b) By two graphic (β) moves, followed by a global pruning, for any A,B ∈ GRAPH
with one output, the graph (K fA)fB transforms into A.

(c) By five graphic (β) moves, followed by one local pruning move, the graph (SfK)fK
transforms into I.

(d) By three graphic (β) moves followed by a (global FAN-OUT) move, for any A,B,C ∈
GRAPH with one output, the graph ((SfA)fB)fC transforms into the graph (AfC)f
(B f C).

Proof. The proof of (b) is given in the next figure.
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λ λ

B

A
β

A

B

λ
β A B

global
pruning

A

The proof of (c) is given in the following figure.

λ

λ λ λ

K

K βtwice

λ

λ λ

λ λ

twice

β

λ

λ λ

β

λ

λ
local
pruning

(a) and (d) are left to the interested reader. �

Church numerals. We shall introduce graphs which represent natural numbers and also
a graph called successor, constructed from the Church numerals and the encoding of lambda
calculus in GRAPH, according to the procedure described in section 3.

Definition 3.3 The following graphs represent natural numbers:

- the ”0” graph is:
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λ

λ

- the ”1”, ”2”, ”3” graphs are, from left to right:

λ

λ

λ

λ λ

λ

- for any natural number n ≥ 3, the ”n” graph is:

λλ

n−1 lines

- the succesor graph ”SUCC” is:

λ λ λ
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- the plus graph ”PLUS” is:

SUCC

λ λ

Proposition 3.4 By using three (β) moves, the graph obtained by applying SUCC to n,
i.e. the graph SUCC f n, is transformed into the graph n+ 1.

Proof. The graph SUCC f n is this:

SUCC n

Starting from this graph, we shall apply three (β) moves. Each time we shall mark by a
closed dashed curve the place where the β rule is applied.

We leave to the reader the cases n = 0, 1, 2 and we give the proof for n ≥ 3.
The first (β) move applies to the graph SUCC f n, figured in all details, at the place

encircled by a curved dashed line:

λλ

n−1 lines

λ λ λ

After the first (β) move we obtain the graph figured here:
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n−1 lines

λλ

λ λ

We see another place encircled by a curved dashed line, where we shall apply the second
(β) move. The result is this:

λ λ

λ

n−1 lines

Finally, we obtain the graph n+ 1 by applying the third (β) move at the place indicated
by a curved dashed line. Indeed, remark that after this last (β) move a new line Υ → f
adds to the n− 1 previous lines. �
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In order for the ”plus” operation to work properly, we need to use (global FAN-OUT)
moves.

Proposition 3.5 By using (β) moves and (global FAN-OUT) moves, the graph obtained by
(PLUS fm)f n, can be transformed into the graph m+ n.

The proof is left to the interested reader.

4 λ-Scale calculus and moves in GRAPH

For λ-Scale calculus see [4]. Terms in this calculus admit a transformation of their respective
syntactic trees into graphs in GRAPH. The procedure is similar to the one described in
section 3. The syntactic tree of a term in λ-Scale is constructed from the gates λ, f and ε̄
with ε ∈ Γ, where Γ is a given abelian group.

λ-Scale calculus. In this calculus we have two operations:

- the lambda abstraction, denoted by (x,A) 7→ xλA, with x a variable (name) and A a
term,

- for any ε ∈ Γ (where Γ is a given abelian group) there is an operation (A,B) 7→ AεB,
with A, B terms.

The terms, variables, free and bound, α-conversion and substitution in λ-Scale calculus
are defined as usual. The moves in λ-Scale calculus are:

(β*) if y 6∈ FV (B) ∪ FV (A[x := B]) then (xλA)εB ↔ (yλ(A[x := B]))εB

(R1) if x 6∈ FV (A) then for any ε ∈ Γ (xλA)εA↔ A,

(R2) if x 6∈ FV (B) and ε, µ ∈ Γ then (xλ(Bµx))εA↔ B(εµ)A,

(ext1) if x 6∈ FV (B) then xλ(B1x)↔ B,

(ext2) if x 6∈ FV (B) then (xλB)1A↔ B.

We proved in theorem 3.5 [4] that λ-Scale calculus contains lambda calculus with η-
reduction.

The syntactic tree of a term is made by elementary gates λ and ε̂, the former corre-
sponding to the λ abstraction and the latter to the ε operation. For the λ elementary tree
we adopt the same convention of drawing as before.

λ

x A
A B

.

λx A

ε

A ε B

The application operation, which will appear in the syntactic tree notation as the gate
f, is defined as

(A,B) 7→ AB = A1B

where A, B are terms in λ-Scale calculus and 1 is the neutral element of the group Γ.
In this calculus we define another operation, which corresponds to the ε̄ gate, by the

formula:
Bε̄A = (yλA)εB
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with y a fresh variable (see definition of ”dilation operation”, section 2.1, definition 2.2 [4]).
Thus, graphically, the elementary tree ε̄ appears as a composite.

A B

= 1

A BB

ε

A

= λ

ε

y

A

B

In proposition 3.2 [4] we prove that

BεA ↔ Aε̄ (AB)

by using a (ext1) move and a (β*) move. In theorem 3.5 [4] we prove that the β-reduction
from lambda calculus extends to terms in λ-Scale calculus, by using the (β*) move and
(ext1) (which corresponds to an extension of η-reduction to terms in λ-Scale calculus).

Transformation of syntactic trees in λ-Scale calculus into graphs in GRAPH. Up
to the use of (ext1) move and (β*) move, we can transform a syntactic tree of a term in
λ-Scale calculus into a syntactic tree of an (equivalent via the transitive closure of moves)
term written only with the help of operations λ, f and ε̄. For these terms we use the
set of moves: (β)-reduction, and (R1), (R2), (ext1), (ext2) expressed with the help of the
operations λ, f and ε̄ (see the proof of theorem 3.4 [4], where it is explained how (R1), (R2)
and (ext2) are transformed).

From here, the procedure of transformation of the syntactic tree of a term in lambda
calculus into a graph in GRAPH extends verbatim to a procedure of transformation of
the mentioned syntactic trees of terms in λ-Scale calculus. That is because the procedure
described in section 3 eliminates variables and acts only on the λ gates, therefore the said
procedure apply as well to trees which have also ε̄ gates.

Here is a result which is similar to theorem 3.1.

Theorem 4.1 Let A 7→ [A] be a transformation of a λ-Scale term A (written only with
operations λ, f and ε̄) into a graph [A] by using (the extension of) the procedure described
in section 3. Then:

(a) for any term A the graph [A] is in GRAPH,

(b) if [A]′ and [A]” are transformations of the term A then we may pass from [A]′ to [A]”
by using a finite number (exponential in the number of leaves of the syntactic tree of
A) of (CO-ASSOC) moves,

(c1) if B is obtained from A by α-conversion then we may pass from [A] to [B] by a finite
sequence of (CO-ASSOC) moves,

c2) if B is obtained from A by (ext1), (ext2), (R1) or (R2) rules in λ-Scale, then we may
pass from [A] to [B] by a finite sequence of (CO-ASSOC) moves, and moves (ext1),
(ext2), (R1) and (R2) acting on GRAPH,

(d) let A,B ∈ T (X) be two terms and x ∈ X be a variable. Consider the terms xλA
and A[x := B], where A[x := B] is the term obtained by substituting in A the free
occurrences of x by B. Then, by one graphic (β) move in GRAPH applied to [(xλA)B]
we pass to a graph which can be further transformed into one of A[x := B], via (global
FAN-OUT) moves, (CO-ASSOC) moves and pruning moves.
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Proof. (a), (b) (c1) and (d) have the same proof as the one for (a), (b) (c), (d) theorem
3.1. For (c2) see the proof of theorem 3.4 [4] in order to transform the moves (R1), (R2),
(ext2) from Λ-Scale calculus into moves expressed with the gates λ, f and ε̄. The move
(ext1) is already expressed with these gates. The procedure of transformation of A into [A]
transforms then these moves into the graphic moves (ext1), (ext2), (R1) or (R2). �

5 Outside lambda calculus: crossings

In this section we use the graphic β move in ways which are exterior to lambda calculus.

Planar β moves. Remark that we may put the graphic (β) move in the following form:

λ

1
2

34

1 2

34

We use then the graphic (β) move in order to prove the planar (β) moves, listed furter.

(βP1) move. The particular embedding of the arrow from ”1” to ”2” is graph-theoretic
not relevant, but we can exploit it in order to prove this move.

λ

21 1 2

λ 21

1 2

β

1 2

β

β P1 β P1

(βP2) move. Likewise, it does not matter if the embeddings of arrows from ”1” to ”2”
and from ”3” to ”4” are crossing or not, but this may be used for proving this move, via
two graphic (β) moves.
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β

λ λ
1 2

4

P2

β
(two times)

1 2

3 34

1 2

34

(βP3) move. Finally, it does not matter how ”1” connects to ”4”, ”6” to ”3” and ”5” to
”2”, but we can use three graphic (β) moves for proving this.

1 2

3

45

6

β
(three times)

β
(three times)

λ

λ

λ
1

2

3

4
5

6

β P3

1 2

3

45

6

λ

λ

λ

1 2

3

45

6

Braids crossings. In the following figure ε ∈ Γ is an arbitrary element of the abelian
group Γ.

We may ”code” a crossing in a braid diagram in the following way.

ε

λ
ε

=

λ

ε

=

ε
−1

Let us prove that these crossings are one the inverse of another (this corresponds to the
Reidemeister II move for braids).
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ε ε

=

λ λ

ε ε−1

β P 2

ε ε
−1

CO−ASSOC

ε ε
−1

R2

1

ext2

local
pruning

We keep the investigation of these crossings for another paper, here we remark that
for these crossings to satisfy the Reidemeister III move, one needs to add a new move,
corresponding to what we called ”linearity” in the realm of dilation structures, or left dis-
tributivity in he frame of emergent algebras.
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