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Abstract

We explain a dissipative version of hamiltonian mechanics, based
on the information content of the deviation from hamiltonian dynam-
ics. From this formulation we deduce minimal dissipation principles,
dynamical inclusions, or constrained evolution with hamiltonian drift
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1 General notations and hamiltonian dynamics

In hamiltonian mechanics, a physical system is described by a pair z = (q, p),
where q ∈ Q is a state vector and p ∈ P is a momentum vector. The spaces
Q and P are topological, locally convex, real vector spaces, with a duality

(q, p) 7→ 〈q, p〉 ∈ R

The duality is such that for any linear and continuous A : Q → R there is
an unique p ∈ P such that for all q ∈ Q we have A(q) = 〈q, p〉. The same
is true for the other side: for any linear and continuous B : P → R there is
an unique q ∈ Q such that for all p ∈ P we have B(p) = 〈q, p〉.

On the space Q× P there is a symplectic form, which can be seen as a
duality of Q× P with itself, defined by

ω(z′, z”) = 〈q”, p′〉 − 〈q′, p”〉

The dynamics of the physical system is described via an energy function
H = H(q, p, t), called the hamiltonian of the system. We suppose that H is
a differentiable function

H : Q× P ×R→ R

The partial derivatives of H at a point z = (q, p) ∈ Q×P are defined via the
duality between Q and P , so that the partial derivative of H with respect
to p is an element of Q, with

〈∂H
∂p

(q, p, t), p′〉 = lim
ε→0

1

ε

(
H
(
q, p+ εp′, t

)
−H(q, p, t)

)
for any p′ ∈ P , and the partial derivative of H with respect to q is an element
of P , given by

〈q′, ∂H
∂q

(q, p, t)〉 = lim
ε→0

1

ε

(
H
(
q + εq′, p, t

)
−H(q, p, t)

)
for any q′ ∈ Q. The derivative of H with respect to the time t is a real
number

∂H

∂t
(q, p, t) = lim

ε→0

1

ε
(H (q, p, t+ ε)−H(q, p, t))

The symplectic gradient of H, denoted by XH(q, p, t) ∈ Q× P , is

XH(q, p, t) =

(
∂H

∂p
(q, p, t),−∂H

∂q
(q, p, t)

)
(1)
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The evolution equation for hamiltonian dynamics is:

ċ(t) = XH(c(t), t)

or, in a more clear form {
q̇ = ∂H

∂p (q, p, t)

ṗ = −∂H
∂q (q, p, t)

(2)

where q̇, ṗ denote derivatives with respect to time of q, resp. p.

Hamiltonian dynamics is conservative, in the following sense. Consider
an evolution curve z(t) = (q(t), p(t)) and compute

d

dt
H(z(t), t)− ∂H

∂t
(z(t), t) = 〈∂H

∂p
(q, p, t), ṗ〉+ 〈q̇, ∂H

∂q
(q, p, t)〉

From (2) we obtain:

〈∂H
∂p

(q, p, t), ṗ〉+ 〈q′, ∂H
∂q

(q, p, t)〉 =

= 〈∂H
∂p

(q, p, t),−∂H
∂q

(q, p, t)〉+ 〈∂H
∂p

(q, p, t),
∂H

∂q
(q, p, t)〉 = 0

Therefore
d

dt
H(z(t), t)− ∂H

∂t
(z(t), t) = 0

2 Likelihoods

In the symplectic space Q×P we introduce the maximal likelihood between
two vectors as:

πmax(z′, z”) = emin{0,ω(z′,z”)} (3)

This is a number in (0, 1], for example when z′ and z” are colinear their
maximal likelihood is 1, or if ω(z′, z”) > 0 then again the maximal likelihood
is 1.

Definition 1 A likelihood function is a function π : (Q× P )3 → [0, 1] with
the properties: for any z, z′, z” ∈ Q× P

(a) if either of max
v∈Q×P

π(z, z′, v) , max
w∈Q×P

π(z, w, z”) exist then they equal 0

or 1
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(b) the functions − lnπ(z, z′, ·) and − lnπ(z, ·, z”) are convex and lower
semicontinuous (lsc).

The information content of the likelihood function π is I : (Q × P )3 →
[0,+∞],

I(z, z′, z”) = − lnπ(z, z′, z”)

with the convention that − ln 0 = +∞.
A likelihood π : (Q × P )3 → [0, 1] is tempered if moreover for any

z, z′, z” ∈ Q× P

(c) π(z, z′, z”) ≤ πmax(z′, z”)

Clearly, the maximal likelihood is a tempered likelihood function according
to definition 1, but we shall see that many other, interesting likelihood exist.
In order to describe them we need to introduce some convex analysis notions,
the classical ones from Moreau [12], adapted to the symplectic space Q×P .

Let d : (Q× P )2 → R be a duality of Q× P with itself.

Definition 2 For a function f : Q × P → R ∪ {+∞} and a point (q, p) ∈
Q×P , the left subgradient at (q, p) of f with respect to the duality d is the set
∂Ld f(q, p) of all (q′, p′) ∈ Q×P with the property that for any (q”, p”) ∈ Q×P

f(q, p) + d((q′, p′), (q”, p”)− (q, p)) ≤ f(q”, p”)

The left polar of f with respect to the duality d is the function f∗Ld : Q×P →
R ∪ {+∞},

f∗Ld (q”, p”) = sup
{
d((q”, p”), (q′, p′))− f(q′, p′) : (q′, p′) ∈ Q× P

}
Likewise, the right subgradient at (q, p) of f with respect to the duality d
is the set ∂Rd f(q, p) of all (q′, p′) ∈ Q × P with the property that for any
(q”, p”) ∈ Q× P

f(q, p) + d((q”, p”)− (q, p), (q′, p′)) ≤ f(q”, p”)

The right polar of f with respect to the duality d is the function f∗Rd : Q×P →
R ∪ {+∞},

f∗Rd (q”, p”) = sup
{
d((q′, p′), (q”, p”))− f(q′, p′) : (q′, p′) ∈ Q× P

}
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By unwinding this definition we arrive to the following Fenchel inequal-
ities theorem.

Theorem 1 (Fenchel inequalities.) Let f : Q× P → R ∪ {+∞} be convex
and lsc. Then for any (q′, p′), (q”, p”) ∈ Q× P

f(q′, p′) + f∗Rd (q”, p”) ≥ d((q′, p′), (q”, p”))

The function f∗Rd is convex lsc. The equality

f(q′, p′) + f∗Rd (q”, p”) = d((q′, p′), (q”, p”))

is equivalent with

(q”, p”) ∈ ∂Rd f(q′, p′)

Likewise, for any (q′, p′), (q”, p”) ∈ Q× P

f∗Ld (q′, p′) + f(q”, p”) ≥ d((q′, p′), (q”, p”))

The function f∗Ld is convex lsc. The equality

f∗Ld (q′, p′) + f(q”, p”) = d((q′, p′), (q”, p”))

is equivalent with

(q′, p′) ∈ ∂Ld f(q”, p”)

Finally, g = f∗Rd implies f = g∗Ld , and g = f∗Ld implies f = g∗Rd .

This gives us a way to construct likelihoods.

Theorem 2 For any function f : Q×P → R∪{+∞} which is convex, lsc,
and for any duality d : (Q× P )2 → R be a duality of Q× P with itself, the
following functions

πRf (z, z′, z”) = exp
(
d(z′, z”)− f(z′)− f∗Rd (z”)

)

πLf (z, z′, z”) = exp
(
d(z′, z”)− f∗Ld (z′)− f(z”)

)
are likelihoods in the sense of definition 1.
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Proof. Let IRf be the information content of the likelihood πRf :

IRf (z, z′, z”) = f(z′) + f∗Rd (z”)− d(z′, z”)

From the definition we see that IRf (z, z′, z”) is convex and lsc in each of the
arguments z′ and z”. The Fenchel inequality implies that

IRf (z, z′, z”) ∈ [0,+∞]

equivalently that
πRf (z, z′, z”) ∈ [0, 1]

If there exists max
w∈Q×P

πRf (z, w, z”) and it is different from 0, then there exists

a z′ ∈ Q× P such that

min
w∈Q×P

(
f(w) + f∗Rd (z”)− d(w, z”)

)
= f(z′) + f∗Rd (z”)− d(z′, z”) ∈ R

This implies that for any w ∈ Q× P we have

f(w)− d(w, z”) ≥ f(z′)− d(z′, z”)

therefore z” ∈ ∂Rd f(z′), which by Fenchel equality implies IRf (z, z′, z”) = 0.

Therefore the max
w∈Q×P

πRf (z, w, z”) equals 1.

Finally, let’s denote g = f∗Rd . Then f = g∗Ld , so

πRf (z, z′, z”) = πLg (z, z′, z”)

which allows us to end the proof, simply by repeating the same reasoning
for g.

For a convex, lsc function f : Q× P → R ∪ {+∞}, let us denote by

bf (z′, z”) = f(z′) + f∗Rd (z”)

This is called the separable bipotential associated to f . Bipotentials were
introduced in [14] as a convex analysis notion which is well adapted for
applications to non-associated constitutive laws. Bipotentials were used in
soil mechanics, plasticity, damage or friction. In all these applications the
dualities considered were among static variables, but the definition and the-
oretical results about bipotentials do apply for any duality. For the theory of
bipotentials and applications in quasistatic mechanics, see the review paper
[6]. In [3] the symplectic duality was used for the first time and the hamil-
tonian inclusions with dissipation were introduced and applied to dynamic
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damage mechanics. We showed there that we obtain a generalization in
dynamics of Mielke et al theory of rate-independent processes [9], [10], [11].
Later this was continued in [4] where separable bipotentials with respect
to the symplectic duality were used. The corresponding subgradients and
polars were called ”symplectic” and the hamiltonian inclusions with dissipa-
tion were reformulated as the Symplectic Brezis-Ekeland-Nayroles principle
(SBEN) and used to show that in the quasistatic approximation we can
recover classical variational principles of Brezis-Ekeland [1] and Nayroles
[13].

In our context, for a space Q× P which is in duality d : (Q× P )2 → R
with itself, bipotentials have the following definition.

Definition 3 A function b : (Q× P )2 → R ∪ {+∞} is a bipotential if:

(a) b(z′, z”) ≥ d(z′, z”) for any z′, z” ∈ Q× P

(b) b(z′, z”) = d(z′, z”) if and only if z” ∈ ∂Rd b(·, z”)(z′) if and only if
z′ ∈ ∂Ld b(z′, ·)(z”)

Likelihoods are related to bipotentials. The relation has been noted
before, where information contents of likelihoods appear as syncs, definition
2.3 [7]. The same was first observed in relations (51), (52) [8]. The proof
of the following theorem is the same as the one of proposition 2.4 [7], only
adapted to the notations of the present article.

Theorem 3 Let π : (Q× P )3 → [0, 1] be a function and d : (Q× P )2 → R
be a duality of Q × P with itself. Denote by I = − lnπ the information
content of the function π, and by

bd(z, z
′, z”) = I(z, z′, z”) + d(z′, z”)

The function π is a likelihood if and only if the function bd(z, ·, ·) is a bipo-
tential with respect to the duality d.

As we can see, while likelihoods are independent of dualities, bipotentials
are relative to a duality. We can easily transform a bipotential b with respect
to the duality d into another bipotential b′ with respect to another duality
d′, by the formula:

b′(z′, z”)− d′(z′, z”) = b(z′, z”)− d(z′, z”)

For the particular duality ω, the symplectic form, to any likelihood we
associate its symplectic bipotential.
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Definition 4 Let π : (Q × P )3 → [0, 1] be a likelihood. With I(z, z′, z”) =
− lnπ(z, z′, z”) the information content of π, the symplectic bipotential as-
sociated to this likelihood is

bπω(z, z′, z”) = I(z, z′, z”) + ω(z′, z”)

The minimal symplectic bipotential is the symplectic bipotential of the
maximal likelihood πmax, i.e.

bminω (z′, z”) = max
{
0, ω(z′, z”)

}

A likelihood π is tempered if and only if for any z, z′, z” ∈ Q× P

bπω(z, z′, z”) ≥ 0

or equivalently
bπω(z, z′, z”) ≥ bminω (z′, z”)

3 Deviation from hamiltonian dynamics

We give here a dissipative modification of hamiltonian mechanics (2), which
continues [2], [3], [4], [5]. In this modification we need a hamiltonian and a
tempered likelihood function.

The dynamics of a disipative physical system is obtained by the intro-
duction of new variables, gathered in the gap vector η = (ηq, ηp) ∈ Q × P .
We shall also need new equations, which come from the likelihood function.

Definition 5 Given a hamiltonian H and a tempered likelihood function π

H : Q× P ×R→ R , π : (Q× P )3 → [0, 1]

the dynamics of a physical system is defined by the modification of the hamil-
tonian dynamics equations (2){

q̇ = ∂H
∂p (q, p, t) + ηq

ṗ = −∂H
∂q (q, p, t) + ηp

(4)

together with the new equation:

π(z, ż, η) = 1 (5)

with the notations z = (q, p), η = (ηq, ηp) ∈ Q× P , ż = (ṗ, q̇) ∈ Q× P .
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Let’s put the equation (5) in a more explicit form. For a duality d, we
know from theorem 3 that

bd(z, z
′, z”) = I(z, z′, z”) + d(z′, z”)

is a bipotential with respect to d, where I is the information content of the
likelihood π. The equation (5) is then equivalent with

η ∈ ∂Rd bd(c(t), ·, η)(ċ) (6)

which is also equivalent with

ċ ∈ ∂Ld bd(c(t), ċ, ·)(η) (7)

We define for any z ∈ Q×P and t ∈ [0, T ] the set Gap(z, t) of all z” ∈ Q×P
such that

z” ∈ ∂Rd bd(z, ·, z”)(z” +XH(z, t)) (8)

Remark that z” ∈ Gap(z, t) if and only if

bd(z, z” +XH(z, t), z”) = d(z” +XH(z, t), z”)

We thus get the following equivalent formulations of the problem 5.

Theorem 4 t ∈ [0, T ] 7→ (c(t), η(t)) is a solution of 5 with the initial con-
dition c(0) = z0 if and only if the curve t ∈ [0, T ] 7→ c(t) satisfies c(0) = z0
and any of the following are true for any t ∈ [0, T ] :

(a) (dynamical inclusion)

ċ(t) ∈ XH(c(t), t) + ∂Rd bd(c(t), ·, ċ(t)−XH(c(t), t))(ċ(t)) (9)

(b) (dynamical inclusion)

ċ(t) ∈ ∂Ld bd(c(t), ċ(t), ·)(ċ(t)−XH(c(t), t)) (10)

(c) (constraint with hamiltonian drift)

ċ(t) ∈ XH(c(t), t) +Gap(c(t), t) (11)

(d) (implicit evolution)

bd(c(t), ċ(t), ċ(t)−XH(c(t), t)) = d(ċ(t), ċ(t)−XH(c(t), t)) (12)
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and η is defined as:

η(t) = ċ(t)−XH(c(t), t) (13)

Recall that for the same information content, for different dualities we
obtain different bipotentials, therefore

bd(z, z
′, z”)− d(z′, z”) = bπω(z, z′, z”)− ω(z′, z”) = I(z, z′, z”)

Definition 6 The dissipation along a curve t ∈ [0, T ] 7→ c(t) ∈ Q × P is
the functional:

Dissπ(c, 0, T ) =

∫ T

0
bπω(ċ(t), ċ(t)−XH(c(t), t)) dt (14)

Remark that for any curve

Dissπ(c, 0, T ) ≥ 0

because the likelihood π is tempered.

In the following theorem we give the energy balance and dissipation
inequalities.

Theorem 5 Let t ∈ [0, T ] 7→ (c(t), η(t)) be a solution of 5 with the initial
condition c(0) = z0. Then for any t ∈ [0, T ]:

(a) (energy balance)

H(c(t), t) = H(z0, 0) +

∫ t

0

∂H

∂t
(c(τ), τ) dτ − Dissπ(c, 0, t) (15)

(b) (dissipation inequalities)

d

dt
H(c(t), t))− ∂H

∂t
(c(t), t) ≤ 0

For any curve t ∈ [0, T ] 7→ c′(t) which satisfies c′(0) = c(0) we have

Dissπ(c′, 0, t) +H(c′(t), t) ≥ Dissπ(c, 0, t) +H(c(t), t) (16)
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Proof. From theorem 4 (d), the curve t ∈ [0, T ] 7→ (c(t), η(t)) be a solution
of 5 with the initial condition c(0) = z0 if and only if η is given by (13) and
c satisfies

bπω(ċ(t), ċ(t)−XH(c(t), t))− ω(ċ(t), ċ(t)−XH(c(t), t)) = 0

But the same calculation as in the section about hamiltonian dynamics gives

−ω(ċ(t), ċ(t)−XH(c(t), t)) = −ω(XH(c(t), t), ċ(t)) =

=
d

dt
H(c(t), t))− ∂H

∂t
(c(t), t)

Therefore we obtain

d

dt
H(c(t), t)) =

∂H

∂t
(c(t), t)− bπω(ċ(t), ċ(t)−XH(c(t), t))

We integrate this equality over [0, t] and we obtain the energy balance (a).

The first dissipation inequality from (b) is a consequence of the positivity
of the symplectic bipotential. In order to obtain the second inequality from
(b), we introduce the information content gap functional G(c, 0, t) for any
curve t ∈ [0, T ] 7→ c(t):

G(c, 0, t) =

∫ t

0
I(c(τ), ċ(τ), ċ(τ)−XH(c(τ), τ))) dτ

In more detail:

G(c, 0, t) =

∫ t

0
I

(
c(τ), ċ(τ), q̇(τ)− ∂H

∂p
(c(τ), τ),−ṗ(τ)− ∂H

∂q
(c(τ), τ)

)
dτ

(17)
We compute, for an arbitrary curve:

G(c, 0, t) = Dissπ(c, 0, t) +H(c(t), t)−H(c(0), 0)

For a solution t ∈ [0, T ] 7→ c(t) of 5 and for any curve t ∈ [0, T ] 7→ c′(t)
which satisfies c′(0) = c(0) , we have:

G(c′, 0, t) ≥ 0 = G(c, 0, t)

therefore we obtain a principle of minimal information content disclosed by
the curve c:

G(c′, 0, t) ≥ G(c, 0, t) (18)
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Previous computations show that (18) is equivalent with

Dissπ(c′, 0, t) +H(c′(t), t)−H(c′(0), 0) ≥

≥ Dissπ(c, 0, t) +H(c(t), t)−H(c(0), 0)

But c′(0) = c(0), therefore H(c′(0), 0) = H(c(0), 0). The previous inequality
becomes (16).

The inequality (16) can be seen as a principle of minimal dissipation.
Alternatively, as in [2], we can see this as a principle of minimal informa-
tion content (18) disclosed by the deviation from hamiltonian evolution,
measured by the information content gap functional (17).

4 Applications

Pure dissipative evolution. We pick the minimal symplectic bipoten-
tial:

bπω(z, z′, z”) = bminω (z′, z”) = max
{
0, ω(z′, z”)

}
see definition 4. Then a solution of 5 in the sense of theorem 4 (d) is a
t ∈ [0, T ] 7→ c(t) which satisfies the initial condition c(0) = z0 and

bminω (ċ(t), ċ(t)−XH(c(t), t)) = ω(ċ(t), ċ(t)−XH(c(t), t))

This is just

max {0, ω(ċ(t), ċ(t)−XH(c(t), t))} = ω(ċ(t), ċ(t)−XH(c(t), t))

which is equivalent with

ω(ċ(t), ċ(t)−XH(c(t), t)) ≥ 0

Recall that

ω(ċ(t), ċ(t)−XH(c(t), t)) = − d

dt
H(c(t), t)) +

∂H

∂t
(c(t), t)

therefore any curve c which satisfies the initial condition and has the prop-
erty

d

dt
H(c(t), t))− ∂H

∂t
(c(t), t) ≤ 0

for any t ∈ [0, T ] is a solution of 5.
Let’s compute the gap set: z” ∈ Gap(z, t) if and only if

bπω(z” +XH(z, t), z”) = ω(z” +XH(z, t), z”)
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which is just

ω(XH(z, t), z”) ≥ 0

The theorem 4 (c) formulation, i.e. constraint with hamiltonian drift, be-
comes

ċ(t) ∈ XH(c(t), t) + η(c(t)) , ω(XH(c(t), t), η(c(t))) ≥ 0

Pure Hamiltonian evolution. Let’s pick the information content (1) to
be:

I(z, z′, z”) = χ0(z”) =

{
0 if z” = 0
+∞ otherwise

This corresponds to a likelihood function:

π(z, z′, z”) =

{
1 if z” = 0
0 otherwise

The maximization of the likelihood (5) implies that the gap vector η =
0, therefore the evolution equations (4) reduce to the pure Hamiltonian
evolution equations (2).

Dominance. In general, we may compare the sets of solutions for two
symplectic bipotentials

b1ω(z, z′, z”) ≥ b2ω(z, z′, z”)

This corresponds to two likelihoods

π1(z, z′, z”) ≤ π2(z, z′, z”)

It is then easy to see that any solution of 5 for the likelihood π1 is also a
solution for the same problem, but for the likelihood π2. We say that π2

dominates π1.

Any tempered likelihood π is by definition 1 (c) dominated by πmax,
so it is not surprizing that any solution of 5 for the likelihood π is also a
solution of the same problem, but for the likelihood πmax, i.e. as shown in
the previous example, it dissipates.
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Smooth dissipation. We consider a symplectic bipotential as in theorem
2

bω(z, z′, z”) = f(z′) + f∗Rω (z”)

where f is a smooth positive convex function. Mind that we have to choose
f such that bω is nonnegative! Suppose we are in this situation, let’s see
what are the equations of 5 in this case. We use theorem 4. The dynamical
inclusion (a) becomes

ċ(t) ∈ XH(c(t), t) + ∂Rω f(ċ(t))

But z” ∈ ∂Rω f(z′) if and only if for any z ∈ Q× P we have

f(z′) + ω(z − z′, z”) ≤ f(z)

which is equivalent with

f(z′)− ω(z′, z”) ≤ f(z)− ω(z, z”)

Because f is smooth, this is equivalent with

z” = Xf(z′)

Therefore our equation becomes

ċ(t) = XH(c(t), t) +Xf(ċ(t)) (19)

For simplicity let us suppose that f(z) = φ(q). Then

Xf(ċ(t)) = (0,−∂φ
∂q

(q̇(t)))

Let us compute also f∗Rω (z”) in this case, where z” = (q”, p”):

f∗Rω (q”, p”) = sup {〈q”, p〉+ 〈q,−p”〉 − φ(q) : z = (q, p) ∈ Q× P}

f∗Rω (q”, p”) = χ0(q”) + φ∗(−p”)

where φ∗ is the usual polar with respect to the duality between Q and P .
The symplectic bipotential is then

bω((q′, p′), (q”, p”)) = φ(q′) + φ∗(−p”) + χ0(q”)

and bω((q′, p′), (q”, p”)) ≥ 0 for all z′, z” ∈ Q× P is equivalent with

φ(q) + φ∗(p) ≥ 0
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for all q ∈ Q, p ∈ P . In the familiar case where Q and P are the same

Hilbert space with norm ‖ · ‖, if we pick φ(q) =
a

2
‖q‖2 (for some a > 0)

then φ∗(−p) =
1

2a
‖p‖2 and the symplectic bipotential is nonnegative. We

discover Rayleigh dissipation:{
q̇ = ∂H

∂p (q, p, t)

ṗ = −∂H
∂q (q, p, t) − ∂φ

∂q (q̇)

On discontinuous solutions. For nonsmooth symplectic bipotentials we
might need to reformulate 5 in order to accept discontinuous solutions. In-
deed, for example in contact problems (also in plasticity or damage, as
shown in [2], [3]) the solution curve c(t) = (q(t), p(t)) may be continuous in
the position variable q but discontinuous in the momentum variable p, or
alternatively some of the variables are continuous and some are discontin-
uous. In order to cover such cases we have to pick a weak formulation of
(4), in the sense of distributions. A good choice seems to be to pick c as
a function of bounded variation over [0, T ] and η a measure with singular
part with respect to dt concentrated on the jump set of c. We leave these
technicalities for another paper, even if they are significant in the case of
the next application.

Relation with rate-independent processes. We show that we can
cover a dynamical version of Mielke and collaborators – Mielke, Theil [10],
Mielke, Theil and Levitas [11], [9] – quasistatic rate-independent evolution-
ary processes. This was done first time in [3], but here we can give a short
and useful description.

We pick a symplectic bipotential of the form:

bω(z, z′, z”) = f(z′) + f∗Rd (z”)

as in the smooth dissipation example, but now f is convex, positive and
1-homogeneous: for any positive scalar a > 0

f(az′) = af(z′)

The function f is no longer smooth (because not derivable in 0, at least).
For the dual

f∗Rω (z”) = sup {ω(z, z”)− f(z) : z ∈ Q× P}
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notice that for any a > 0

f∗Rω (z”) = sup {ω(az, z”)− f(az) : az ∈ Q× P} = af∗Rd (z”)

therefore f∗Rω (z”) ∈ {0,+∞}, i.e. it is a characteristic function of a set
C ∈ Q× P with 0 ∈ C, more precisely:

C = {z” ∈ Q× P : ω(z, z”) ≤ f(z) ∀z ∈ Q× P} (20)

Therefore
bω(z, z′, z”) = f(z′) + χC(z”)

and the equations for the problem 5 are, in terms of gap sets:

Gap(z, t) = {z” ∈ C : f(z” +XH(z, t)) = ω(XH(z, t), z”)} (21)

ċ(t)−XH(c(t), t) ∈ Gap(c(t), t) (22)

f is a dissipation potential and the dissipation functional (14) is

Dissπ(c, 0, T ) =

∫ T

0
f(ċ(t)) + χC(ċ(t)−XH(c(t), t)) dt

Theorem 5 applied for this case gives us the energy balance equations, dis-
sipation inequalities and the principle of minimal dissipation, thus it allows
us to extend the formulation of Mielke et al rate-independent processes, but
this time in dynamics.
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