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Abstract

We consider fully discrete schemes for the one dimensional linear Schrödinger
equation and analyze whether the classical dispersive properties of the
continuous model are presented in these approximations. In particular
Strichartz estimates and the local smoothing of the numerical solutions
are analyzed. Using a backward Euler approximation of the linear semi-
group we introduce a convergent scheme for the nonlinear Schrödinger
equation with nonlinearities which cannot be treated by energy methods.

1 Introduction

Let us consider the linear (LSE) Schrödinger equation
{

iut + ∆u = 0, x ∈ Rd, t 6= 0,
u(0, x) = ϕ(x), x ∈ Rd.

Its solution is given by u(t) = S(t)ϕ, where S(t) = eit∆ is the free Schrödinger
operator. The linear semigroup S(t) has two important properties, the conser-
vation of the L2-norm

‖S(t)ϕ‖L2(Rd) = ‖ϕ‖L2(Rd), t ∈ R (1)

and the dispersive estimate:

|S(t)ϕ(x)| = |u(t, x)| ≤ 1
(4π|t|)d/2

‖ϕ‖L1(Rd), x ∈ Rd, t 6= 0. (2)
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More refined space-time estimates known as the Strichartz inequalities show
that, in addition to the decay of the solutions as t → ∞, a gain of spatial
integrability occurs. Improving the work of Strichartz[24], Ginibre and Velo[7]
have proved that

‖S(·)ϕ‖Lq(R, Lr(Rd)) ≤ C(q, r)‖ϕ‖L2(R) (3)

for the so-called admissible pairs (q, r): q ≥ 2, 2 ≤ r < 2d/(d− 2) and

2
q

= d

(
1
2
− 1

r

)
, (q, r, d) 6= (2,∞, 2). (4)

The end-point case q = 2, r = 2d/(d− 2) has been finally achieved by Keel and
Tao[15]. The extension to the inhomogeneous linear Schrödinger equation is
due to Yajima[28] and Cazenave and Weissler[4].

These properties are not only relevant for a better understanding of the
dynamics of the linear system but also to derive well-posedness results for
inhomogeneous[24] and nonlinear Schrödinger equations. Typically the disper-
sive estimates are used when the energy methods fail to provide well posedness
of the nonlinear problems. They were first applied by Ginibre and Velo for non-
linear problems with H1(Rd) initial data[7]. In the case of L2(Rd)-initial data
and nonlinearity F (u) = |u|p−1u, p < 1 + 4/d, Tsutsumi[26], using estimates
(3), has proved the well-posedness and global existence of solutions. The critical
case has been analyzed by Cazenave and Weissler[5].

The Schrödinger equation has another remarkable property: the gain of one
half space derivative[6, 16] in L2

x,t:

sup
x0,R

1
R

∫

B(x0,R)

∫ ∞

−∞
|(−∆)1/4eit∆ϕ|2dtdx ≤ C‖ϕ‖2L2(Rd). (5)

It has been used in the study of the nonlinear Schrödinger equation with non-
linearities involving derivatives[17]. Also, this type of local smoothing effect has
been used[27] to prove the existence a.e. of limt→0 u(x, t) for solutions of the
Schrödinger equation with initial data in Hs(Rd), s > 1/2.

In this paper we analyze whether fully discrete schemes for the one dimen-
sional LSE have dispersive properties similar to (2), (3) and (5), uniform with
respect to the mesh sizes. The study of these dispersion properties for ap-
proximation of the linear semigroup S(t) is relevant for introducing convergent
schemes in the nonlinear context. Since the well-posedness of the nonlinear
Schrödinger equations requires a fine use of the dispersion properties, the con-
vergence of the numerical scheme for the nonlinear problem cannot be proven
if these dispersion properties are not verified at the numerical level.

Estimates similar to (5) on discrete solutions will give sufficient conditions
to guarantee their compactness and thus the convergence towards the solution
of the nonlinear Schrödinger equation. Without such an estimate, despite the
uniform boundedness of the discrete solutions in the space l∞(kN, l2(hZ)) ∩
lqloc(kN, lr(hZ)), one cannot pass to the limit in the nonlinear term.
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For the conservative semi-discretization of the Schrödinger equation, the lack
of uniform dispersive estimates has been observed by Ignat and Zuazua[10, 12].
In the one dimensional case, the symbol of the Laplacian, ξ2, is replaced by
a discrete one sin2(ξ/2) which vanishes its first and second derivative at the
points ±π and ±π/2 of the spectrum. By concentrating wave packets at these
pathological points it is possible to prove the lack of any uniform estimate of
the type (2), (3) or (5). For the semidiscrete Schrödinger equation we also refer
to Ref. [21]. In that paper the authors analyze the Schrödinger equation on the
lattice hZd without concentrating on parameter h. They obtain Strichartz-like
estimates in a class of exponents q and r larger than (4).

In Ref. [19], the author considers an approximation of the KdV equation
based on the backward Euler approximation of the linear semigroup and proves
space time estimates for that approximation. Here, we mean to give necessary
and sufficient conditions to guarantee the existence, at the discrete level, of
dispersive properties for the Schrödinger equation. The methods presented here
also work in any dimension but we do not know whether the conditions we give
in this paper are necessary. This is due to the fact that the construction of
counterexamples is more complicated in the case of a higher dimension.

In Sec. 6 we exemplify our results by considering two numerical schemes:
backward Euler and Crank-Nicolson. The first one introduces dissipation and
has similar dispersion properties as in the continuous case. The second one is
conservative and presents the same pathologies as the semidiscrete scheme we
have discussed before: no local integrability property or local smoothing effect,
being uniform with respect to the mesh size. This suggests that additional
techniques based on artificial numerical viscosity (see Ref. [10] for a semidiscrete
case) or a two-grid method[8] have to be used. In Sec. 10 we analyze the
possible application of the last method to the Crank-Nicolson scheme. Using
fine properties of number theory, in particular cyclotomic polynomials, we prove
that any two-grid algorithm applied to the Crank-Nicolson scheme would not
provide uniform l1(hZ)− l∞(hZ) estimates.

In Sec. 8 we introduce a numerical scheme for the nonlinear Schrödinger
equation based on the backward Euler approximation of the linear semigroup
and prove that its solutions remain uniformly bounded in the spaces where the
well-posedness of the nonlinear problem is guaranteed[3, 25]. We point out
that this can be done by using any other scheme that approximates the linear
Schrödinger semigroup and has an l1(hZ)− l∞(hZ) decay of solutions uniform
with respect to the mesh size.

2 Finite difference approximation

In order to introduce the finite-difference approximation of the LSE, it will be
necessary to first introduce some notations. The space R × R will be replaced
by the lattice Z × Z, and instead of functions u(t, ·) depending on t ∈ R, con-
sideration will be given to sequences Un = (Un

j )j∈Z for n ∈ Z. For a mesh size
h > 0 and a time step k > 0, Un

j is supposed to approximate u(nk, jh); u(t, x)
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being a solution of the LSE. In the sequel we shall assume that Courant’s num-
ber λ = k/h2 is kept constant as h, k → 0 , and we shall consider a two-level
difference scheme: {

Un+1 = AλUn, n ≥ 0,
U0 = ϕ.

(6)

We will be more precise on the type of estimates we are looking for. Let
us consider T > 0, h → 0 and n ∈ Z such that nk → T . We will establish
necessary and sufficient conditions on the operator Aλ to guarantee that

‖Un‖lq(hZ) ≤ C(T, λ, q, q0)‖U0‖lq0 (hZ) (7)

for some q0 < q with C(T, λ, q, q0) independent of h, and then also on k. Prop-
erty (7) guarantees that the solutions of (6) gain integrability with respect to
the initial data and that property is uniform with respect to the mesh size. Once
scheme (6) satisfies (7) we prove more general estimates of the type:

‖U‖lq(kN, lr(hZ)) ≤ C(q, r, λ)‖U0‖l2(hZ), (8)

uniformly on k and h, related by k/h2 = λ.
Using (6) as a numerical scheme for the linear semigroup, we introduce an

approximation for the inhomogeneous Schrödinger equation with null initial
data: 




Un+1 = AλUn + kf(n + 1), n ≥ 0,

U0 = 0,
(9)

where f(n)n≥1 is an approximation of the inhomogeneous term. The differ-
ence equation (9) has an explicit solution, given by the discretized version of
Duhamel’s Principle:

(Λf)(n, ·) = k

n∑

j=0

Sλ(n− j)f(j, ·), (10)

with the convention f(0) ≡ 0. The same problem of uniform lq(kN, lq(hZ))
estimates for solutions of Eq. (9) will be studied in Sec. 7.

The local smoothing property will be analyzed in Sec. 5. We introduce
the discrete fractional derivatives on the lattice hZ by defining the fractional
derivative of order s, as:

((−∆h)s/2U)j =
∫ π/h

−π/h

∣∣∣∣
2
h

sin
(

ξh

2

)∣∣∣∣
s

eijξhFh(U)(ξ)dξ, j ∈ Z.

where Fh(U) is the discrete Fourier transform at the scale h of the sequence U :

Fh(U)(ξ) = h
∑

j∈Z
e−ijξhUj .
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In Sec. 5 we obtain necessary and sufficient conditions in order to guarantee
that the solutions of scheme (6) satisfy for some positive s

k
∑

nk≤1


h

∑

|j|h≤1

|((−∆h)s/2Un)j |2

 ≤ C(s, λ)


h

∑

j∈Z
|U0

j |2

 (11)

for some constant C(s, λ), independent of h and k. In fact, once (11) is satisfied
the above left hand sums can be taken over any finite set of indices nk ≤ T and
|j|h ≤ R.

The Fourier analysis of the scheme (see Iserles[13], Ch. 13), usually done in
the context of the stability, allows us to write the solution at the step n ≥ 0 of
scheme (6) as

Ûn(ξ) = an
λ(ξ)ϕ̂(ξ), ξ ∈ [−π, π], (12)

where aλ(ξ) is the quotient of two trigonometrical polynomials and Û = F1(U).
The stability and consistency of the scheme show that the symbol aλ satisfies
|aλ(ξ)| ≤ 1 for all ξ ∈ [−π, π] and aλ(ξ) ∼ 1−iλξ2, ξ ∼ 0 (see Ref. [1], p. 259 for
more details). It follows, since aλ is analytic, that one of the following conditions
is satisfied, namely: |aλ(ξ)| ≡ 1, ξ ∈ [−π, π], or |aλ(ξ)| < 1 for all but a finite
set of points. The first case corresponds to a conservative scheme; the second
one to a dissipative scheme.

From now on, we write the symbol aλ in polar form aλ = mλ exp(iψλ) and
write the solution Un in the semigroup formulation Un = Sλ(n)ϕ. Thus the
consistency of the scheme implies that mλ(ξ) ∼ 1 and ψλ(ξ) ∼ −λξ2 as ξ ∼ 0.

3 Uniform l∞-decay rates

The main result concerning the long time behaviour of the discrete solutions is
given in the following Theorem:

Theorem 3.1. Let us assume that the symbol aλ has the following property

mλ(ξ0) = 1 ⇒ |ψ′′λ(ξ0)| > 0 or m′′
λ(ξ0) 6= 0. (13)

Then for any q ≥ 2 there is a positive constant C(q, λ) such that

‖Sλ(n)ϕ‖lq(hZ) ≤ C(q, λ)(nk)
1
2

“
1
q− 1

q′
”
‖ϕ‖lq′ (hZ) (14)

holds for all n 6= 0, h, k > 0.

This estimate is similar to the Lq′(R) − Lq(R) decay of the continuous
Schrödinger semigroup obtained by interpolation between (1) and (2). Choosing
a positive time T and kn → 0 such that nkn → T and taking the limit in (14)
we obtain exactly the estimate for the continuous case.

We point out that with the same notations as in the one-dimensional case,
a similar result can be stated in Rd if the symbol aλ satisfies:

mλ(ξ0) = 1 ⇒ rank(Hψλ
(ξ0)) = d or ξHmλ

(ξ0)ξt < 0, ∀ ξ ∈ Rd,
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where Hmλ
is the hessian matrix. However, we do not know if the condition is

necessary.
Condition (13) essentially says that at the points ξ0 where mλ equals one,

either ψ′′λ does not vanish or mλ(ξ) ∼ 1 + (ξ − ξ0)2m′′
λ(ξ0) as ξ ∼ ξ0. Also, at

any point different from zero where ψ′′λ vanishes the dissipative effect of mλ is
present and vanishes the spurious effects introduced at that point by the scheme.

In the case h = 1, an additional estimate holds. Using the fact that the
discrete spaces lp(Z) are embedded, we also have ‖S(0)ϕ‖lq(Z) ≤ ‖ϕ‖lq′ (Z) and
then for all n ≥ 0:

‖Sλ(n)ϕ‖lq(Z) ≤ C(q, λ)(1 + n)
1
2

“
1
q− 1

q′
”
‖ϕ‖lq′ (hZ). (15)

More generally, for any n and n1 positive the following holds

‖Sλ(n)Sλ(n1)∗ϕ‖lq(Z) ≤
C(λ)

1 + |n− n1|
1
2 ( 1

q′− 1
q )
‖ϕ‖lq′ (Z), (16)

Sλ(n1)∗ being the adjoint of Sλ(n1). Estimate (16) follows by (15) observ-
ing that (Sλ(n1)∗ϕ)̂ = mn1

λ exp(−in1ψλ)ϕ̂. The adjoint operator Sλ(n)∗ has
another property that will be used later to establish Strichartz-like estimates:
Sλ(n)ϕ = Sλ(n)∗ϕ, a property that is also fulfilled by the continuous Schrödinger
semigroup.

Proof. We will consider the cases q = 2 and q = ∞ the other following by
interpolation of these two. The case q = 2 easily follows by the stability of the
scheme. For the second one we re-scale all the lp(hZ)-norms, reducing the proof
to the case h = 1:

(nk)1/2‖Sλ(n)ϕ‖l∞(hZ)
‖ϕ‖l1(hZ)

=
(nk)1/2‖Sλ(n)ϕ‖l∞(Z)

h‖ϕ‖l1(Z)
= λ1/2n1/2 ‖Sλ(n)ϕ‖l∞(Z)

‖ϕ‖l1(Z)
.

Now we prove that the right hand side remains bounded as long as n varies
in Z\{0}. Using representation (12) of the solutions, we obtain that Sλ(n)ϕ =
Kn

λ ∗ ϕ, where the kernel Kn
λ is given by

Kn
λ,j =

1
2π

∫ π

−π

mn
λ(ξ)einψλ(ξ)eijξdξ, n ≥ 0, j ∈ Z.

Young’s inequality shows that ‖Sλ(n)ϕ‖l∞(Z) ≤ ‖Kn
λ‖l∞(Z)‖ϕ‖l1(Z), so, it is

sufficient to prove that Kn
λ satisfies

sup
j∈Z

|Kn
λ,j | ≤

cλ

n1/2
, n ∈ Z, n 6= 0,

for some positive constant cλ.
The function aλ being analytic the set Λ where mλ equals one is either the

whole interval [−π, π], or consists of a finite number of points. We remark that
mλ(ξ) ∼ 1 as ξ ∼ 0 so, Λ is nonempty.
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The first case corresponds to a conservative scheme and in view of (3.1), ψ′′λ
keeps constant sign. Thus by Van der Corput’s Lemma (see Ref. [23], p. 332)
we get for all n ≥ 1:

|Kn
λ,j | ≤ c

(
n inf

ξ∈[−π,π]
|ψ′′λ(ξ)|

)1/2

≤ cλ

n1/2
,

for all n ≥ 1.
Let us analyze the case of Λ consisting of a finite number of points. Its

elements are isolated and we consider without loss of generality that Λ has
a single point, namely ξ0. At this point, mλ has a local maximum and thus
m′

λ(ξ0) = 0 and m′′
λ(ξ0) ≤ 0.

Let us first consider the case m′′
λ(ξ0) < 0. Taylor’s expansion of mλ at ξ = ξ0

gives us
mλ(ξ) = 1 + (ξ − ξ0)2m′′

λ(ξ0) + O(|ξ − ξ0|3), ξ ∼ ξ0

and shows the existence of a positive ε such that

mλ(ξ) ≤ 1 +
(ξ − ξ0)2m′′(ξ0)

2
for all ξ ∈ (ξ0 − ε, ξ0 + ε).

Thus, the kernel Kn
λ satisfies:

|Kn
λ,j | ≤ 1

2π

∫ ξ0+ε

ξ0−ε

mn
λ(ξ)dξ +

1
2π

∫

[−π,π]\(ξ0−ε,ξ0+ε)

mn
λ(ξ)dξ

≤ 1
2π

∫ ξ0+ε

ξ0−ε

(
1 +

(ξ − ξ0)2m′′
λ(ξ0)

2

)n

dξ +

(
sup

ξ∈[−π,π]\(ξ0−ε,ξ0+ε)

mλ(ξ)

)n

≤ 1
2π

∫ ξ0+ε

ξ0−ε

exp
(

n(ξ − ξ0)2m′′
λ(ξ0)

2

)
dξ +

c1,λ(ε)
n1/2

≤ c1

2π(n|m′′
λ(ξ0)|)1/2

+
c1,λ(ε)
n1/2

=
cλ

n1/2
.

It remains to analyze the case ψ′′λ(ξ0) 6= 0. The continuity of ψ′′λ at ξ = ξ0

implies the existence of positive ε and δ such that

|ψ′′λ(ξ)| ≥ δ

2
, for all ξ ∈ (ξ0 − ε, ξ0 + ε).

Outside of the interval (ξ0 − ε, ξ0 + ε), the function mλ is strictly less than one
and we have the rough estimate

∣∣∣∣
∫ π

−π

mn
λ(ξ)einψλ(ξ)eijξdξ

∣∣∣∣ ≤
(

sup
ξ∈[−π,π]

mλ

)n

≤ cλ

n1/2
.

On the interval (ξ0 − ε, ξ0 + ε) applying again Van der Corput’s Lemma we get
∣∣∣∣∣
∫ ξ0+ε

ξ0−ε

einψλ(ξ)mn
λ(ξ)eijξdξ

∣∣∣∣∣ ≤
‖mn

λ‖L∞((ξ0−ε,ξ0+ε))(
n inf

ξ∈(ξ0−ε,ξ0+ε)
|ψ′′λ(ξ)|

)1/2
=

cλ

n1/2
.
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4 Lack of uniform dispersive estimates

In this section we prove that condition (13) imposed in the previous section is
also necessary. If it fails we prove the lack of any uniform dispersive estimate.
This means that there is no uniform decay of solutions as in (2) nor a space
time estimate similar to (3).

Theorem 4.1. Let q > q0 ≥ 1. Assume that aλ does not satisfy (13). Then
for any T > 0

lim
h→0

nk→T

sup
ϕ∈lq0 (hZ)

‖Sλ(n)ϕ‖lq(hZ)
‖ϕ‖lq0 (hZ)

= ∞ (17)

and

lim
h→0

nk→T

sup
ϕ∈lq0 (hZ)

∑

nk≤T

‖Sλ(n)ϕ‖lq(hZ)

‖ϕ‖lq0 (hZ)
= ∞. (18)

Remark 4.1. Let Ih,k be a space-time interpolator, piecewise constant or linear.
For any fixed T > 0 the uniform boundedness principle guarantees the existence
of a function ϕ ∈ L2(R), a sequence hn → 0, nkn = T and functions ϕhn such
that Ihn,knS(0)ϕhn → ϕ in L2(R) and ‖Ihn,knS(·)ϕhn‖L1([0,T ], Lr(R)) →∞.

We remark that a scaling argument as below

‖Sλ(n)ϕ‖lq(hZ)
‖ϕ‖lq0 (hZ)

= h
1
q− 1

q0
‖Sλ(n)ϕ‖lq(Z)
‖ϕ‖lq0 (Z)

,

reduces (17) to the following one:

lim
N→∞

N
1

2q0
− 1

2q sup
ϕ∈lq0 (Z)

‖Sλ(N)ϕ‖lq(Z)
‖ϕ‖lq0 (Z)

= ∞. (19)

By a similar argument, we obtain the following for the second estimate

k
∑

nk≤T

‖Sλ(n)ϕ‖lq(hZ)

‖ϕ‖lq0 (hZ)
=

λh2+ 1
q− 1

q0

∑

nk≤T

‖Sλ(n)ϕ‖lq(Z)

‖ϕ‖lq0 (Z)
.

Denoting N = T/k, (18) is reduced to the following one:

lim
N→∞

N
−1− 1

2

“
1
q− 1

q0

”
sup

ϕ∈lq0 (Z)

∑
n≤N ‖Sλ(n)ϕ‖lq(Z)

‖ϕ‖lq0 (Z)
= ∞. (20)

To prove that condition (13) is necessary, we introduce the operators Tλ(n)
defined by

(Tλ(n)ϕ)(x) =
∫ π

−π

mn
λ(ξ)einψλ(ξ)eixξϕ̂(ξ)dξ.

8



We point out that these operators are in fact band-limited interpolators of the
discrete operators Sλ(n). Observe also, that once we have a 2π-periodic function
ϕ̂ we can define both operators, the continuous and the discrete one.

The results of Magyar et al[18] (see also Plancherel and Polya[20]) on band-
limited functions show that the following inequality

‖Sλ(n)ϕ‖lq(Z)
‖ϕ‖lq0 (Z)

≥ c(λ, q, q0)
‖Tλ(n)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
. (21)

holds for any q > q0 ≥ 1 and for all 2π-periodic functions ϕ̂. This reduces
estimates (17) and (18) on the operator Sλ(n) to similar ones on Tλ(n).

The following lemma is the key point in the proof of Theorem 17.

Lemma 4.1. Let us consider a symbol aλ that does not verify (13). Then there
exist two positive constants c(λ) and c1(λ) such that for all N sufficiently large,
there exists a function ϕN that satisfies

‖ϕN‖Lp(R) ' N1/3p for all p ≥ 1

and
|(Tλ(n)ϕN )(x)| ≥ c(λ) (22)

for all n ≤ c1(λ)N and |x + nψ′λ(ξ0)| ≤ c1(λ)N1/3.

Proof. The assumption on aλ shows the existence of a point ξ0 ∈ [−π, π] such
that mλ(ξ0) = 1, ψ′′λ(ξ0) = 0 and m′′

λ(ξ0) = 0. Also, at ξ0, m′
λ(ξ0) = 0, mλ

having a local maximum.
Let us first fix a positive function ϕ̂1 supported on (−1, 1) such that ϕ̂1 > 1

on (−1/2, 1/2). For all positive N , we set the function ϕN as:

ϕ̂N (ξ) = N1/3ϕ̂1(N1/3(ξ − ξ0)).

Observe that ϕ̂N is supported on the interval (ξ0−N−1/3, ξ0 +N−1/3). For any
p ≥ 1 classical properties of the Fourier transform guarantee that

‖ϕN‖Lp(R) ' N−1/3p.

The mean value theorem allows us to bound from below the magnitude of the
oscillatory integral occurring in the definition of Tλ(n)ϕN as follows:

|Tλ(n)ϕN (x)| ≥
(

1− 2N−1/3 sup
ξ∈ supp bϕN

|nψ′λ(ξ) + x|
) ∫ π

−π

mn
λ(ξ)ϕ̂N (ξ)dξ.

Using that the second derivative of ψλ vanishes at ξ = ξ0 we obtain the existence
of a positive constant cλ such that

|nψ′λ(ξ) + x| ≤ |nψ′λ(ξ0) + x|+ ncλ|ξ − ξ0|2, ξ ∼ ξ0.

In particular for all ξ ∈ [ξ0 −N−1/3, ξ0 + N−1/3] the following holds

|nψ′λ(ξ + x)| ≤ |nψ′λ(ξ0) + x|+ ncλN−2/3.
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Thus there exists a positive constant c1(λ) such that for all x and n satisfying
|x + nψ′λ(ξ0)| ≤ c1(λ)N1/3 and n ≤ c1(λ)N :

2N−1/3 sup
ξ∈ supp bϕN

|nψ′λ(ξ) + x| ≤ 1
2

and

|Tλ(n)ϕN (x)| ≥ 1
2

∫ π

−π

mn
λ(ξ)ϕ̂N (ξ)dξ ≥ N1/3

2

∫ ξ0+N−1/3/2

ξ0−N−1/3/2

mn
λ(ξ)dξ.

It remains to prove that for N large enough the last term is uniformly bounded
by below.

In the case mλ ≡ 1 inequality (22) holds with c(λ) = 1/4. Otherwise, we
consider the smallest k ≥ 3 such that m

(k)
λ (ξ0) 6= 0. Thus for ξ near ξ0

mλ(ξ) ≥ 1 +
m

(k)
λ (ξ0)

2
|ξ − ξ0|k.

In view of this property, choosing N sufficiently large we get

N1/3

∫ ξ0+N−1/3/2

ξ0−N−1/3/2

mn
λ(ξ)dξ ≥ N1/3

∫ ξ0+N−1/3/2

ξ0−N−1/3/2

(
1 +

m
(k)
λ (ξ0)

2
|ξ − ξ0|k

)n

dξ

≥ 2N1/3

∫ N−1/3/2

0

exp
(

nm
(k)
λ (ξ0)

ξk

2

)
dξ

= 2N1/3n−1/k

∫ N−1/3n1/k

0

exp
(

m
(k)
λ (ξ0)

ξk

2

)
dξ. (23)

For all n ≤ c1(λ)N we have that N1/3n−1/k ≥ C(λ, k)N1/3−1/k ≥ C(λ, k). Thus
the the right hand term of (23) is uniformly bounded by below by a positive
constant c(λ), which proves (22) and finishes the proof of this Lemma.

In the following we apply the above Lemma to prove Theorem 4.1.

Proof. of Theorem 4.1. We will prove (19), the other estimate (20) following by
the same arguments, just using that (22) holds for all n ≤ c1(λ)N .

In view of (22), we will show that for N large enough

sup
ϕ

‖Tλ(N)ϕ‖Lq(R)

‖ϕ‖Lq0 (R)
≥ c2(λ)N1/3q−1/3q0 (24)

holds for some positive constant c2(λ). Then by (21) we obtain (19) which
finishes the proof.

First, let us choose N1 ' N such that N ≤ c1(λ)N1 with c1(λ) given by
Lemma 4.1. Choosing ϕN1 as in Lemma 4.1 we have that ‖ϕN1‖Lq0 (R) ' N1/3q0

and

‖Tλ(N)ϕN1‖Lq(R) ≥ |{x : |x−Nψ′λ(ξ0)| ≤ c1(λ)N1/3}|1/qc(λ) ≥ c2(λ)N1/3q.

10



Finally we get that

‖Tλ(N)ϕN1‖Lq(R)

‖ϕN1‖Lq0

≥ c2(λ)N1/3q−1/3q0

which proves (24) and finishes the proof.

5 Local smoothing effect

In this section we analyze the local smoothing effect that we discussed in the
Introduction. In the following Theorem we obtain necessary and sufficient con-
ditions such that this property holds uniformly with respect to the mesh size.

Theorem 5.1. There is a positive s and a constant C(s, λ) such that (11) holds
for all ϕ ∈ l2(hZ) and h > 0 if and only if the symbol aλ satisfies

ξ0 6= 0, ψ′λ(ξ0) = 0 ⇒ mλ(ξ0) < 1. (25)

Moreover if (25) holds then s = 1/2 and

sup
j∈Z

[
k

∑

n∈Z
|((−∆h)1/4Sλ(n)ϕ)j |2

]
≤ C(λ)h

∑

j∈Z
|ϕj |2 (26)

holds for all ϕ ∈ l2(hZ) and all h.

Remark 5.1. Once (25) holds, a similar result can be stated for the inhomo-
geneous equation (9):

k
∑

nk≤T

h
∑

|j|h≤R

|((−∆h)1/2Λf)(n, j)|2 ≤ k
∑

nk≤T

‖f(n)‖2l2(hZ).

Proof. We divide the proof in two steps. In the first one we prove that condition
(25) implies estimate (26). Secondly we prove that condition (25) is necessary.

Step I. First by a scaling argument we obtain that

k
∑
n≥0

|((−∆h)1/4Sλ(n)ϕ)j |2

h
∑
j∈Z

|ϕj |2 =
kh−1

∑
n≥0

|((−∆1)1/4Sλ(n)ϕ)j |2

h
∑
j∈Z

|ϕj |2

=
λ

∑
n≥0

|((−∆1)1/4Sλ(n)ϕ)j |2
∑
j∈Z

|ϕj |2 ,

which reduces the proof to the case h = 1.
Now we prove that under condition (25) the following estimate

sup
j∈Z

∑

n≥0

|((−∆1)1/4Sλ(n)ϕ)j |2 ≤ c(λ)
∑

j∈Z
|ϕj |2 (27)

11



holds for all ϕ ∈ l2(Z) and for some positive constant c(λ). The definition of
(−∆1)1/4Sλ(n)ϕ:

((−∆1)1/4Sλ(n)ϕ)j =
∫ π

−π

|2 sin(ξ/2)|1/2eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ,

and Plancherel’s identity applied to the right hand term of (27)

∑

j∈Z
|ϕj |2 =

1
2π

∫ π

−π

|ϕ̂(ξ)|2dξ,

show that (27) is equivalent with the following estimate:

sup
j∈Z

∑

n≥0

|(Sλ(n)ϕ)j |2 ≤ c(λ)
∫ π

−π

|ϕ̂(ξ)|2
| sin(ξ/2)|dξ. (28)

The consistency of the scheme guarantees that ψ′λ has at least one root in
[−π, π], namely at ξ = 0. We consider ϕ̂ supported on [0, π], the other case
being similar. Let I ⊂ [0, π] be the interval where ψ′λ has the unique root ξ = 0.
We will prove that

sup
j∈Z

∑

n≥0

|(Sλ(n)ϕ)j |2 ≤ c(λ)
∫

I

|ϕ̂(ξ)|2
|ψ′λ(ξ)|dξ + c(λ)

∫

Ic

|ϕ̂(ξ)|2dξ. (29)

Taking into account that ψ′λ(ξ) ∼ −2λξ as ξ ∼ 0, we can replace |ψ′λ(ξ)| by
| sin(ξ/2)| in (29) and thus (28).

Observing that ψλ is one to one on I, we will prove that V n defined by

V n
j =

∫

I

eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ, j ∈ Z, n ≥ 0,

satisfies

sup
j∈Z

∑

n≥0

|V n
j |2 ≤

∫

I

|ϕ̂(ξ)|2
|ψ′λ(ξ)|dξ. (30)

On Ic = [0, π]\I we will show that Wn
j defined by

Wn
j =

∫

Ic

eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ

satisfies
sup
j∈Z

∑

n≥0

|Wn
j |2 ≤

∫

Ic

|ϕ̂(ξ)|2dξ. (31)

We first prove (30). Using that ψλ is one to one we can apply a change of
variables and rewrite V n

j as

V n
j =

∫

ψλ(I)

einξeijψ−1
λ (ξ)mn

λ(ψ−1
λ (ξ))ϕ̂(ψ−1

λ (ξ))(ψ−1
λ )′(ξ)dξ.

12



Each of the above terms is similar to the Fourier coefficients of the function
exp(ijψ−1

λ )ϕ̂(ψ−1
λ )(ψ−1

λ )′ except for the weight term mn
λ(ψ−1

λ ).
This is why we cannot apply Plancherel’s identity, and thus we need to use

the following Lemma:

Lemma 5.1. Let m : [−π, π] be a continuous function satisfying

0 ≤ m(ξ) ≤ 1, ξ ∈ [−π, π].

Then there exists a positive constant c(m) such that the following inequality
holds for any function f ∈ L2(T1)

∑

n∈Z

∣∣∣∣
∫ π

−π

einξm|n|(ξ)f(ξ)dξ

∣∣∣∣
2

≤ c(m)
∫ π

−π

|f(ξ)|2dξ, (32)

where T1 is the one-dimensional torus.

We postpone its proof. Applying Lemma 5.1 to f = exp(ijψ−1
λ )ϕ̂(ψ−1

λ )(ψ−1
λ )′

and to the multiplier mλ we obtain

∑

n≥0

|V n
j | ≤ c(λ)

∫

ψλ(I)

|ϕ̂(ψ−1
λ (ξ))|2|(ψ−1

λ )′(ξ)|2dξ

= c(λ)
∫

ψλ(I)

|ϕ̂(ψ−1
λ (ξ))|2 dξ

|ψ′λ(ψ−1
λ (ξ))|2 = c(λ)

∫

I

|ϕ̂(ξ)|2
|ψ′λ(ξ)|dξ,

where c(λ) is independent of j.
We now proceed to prove (31). If Ic is empty we have nothing to prove. Let

us consider the case when Ic is nonempty, i.e. it contains at least one root ξ0 of
ψ′λ. Without loss of generality we can assume that there is only one root. By
our assumption (25), at the point ξ0 we have that mλ(ξ0) < 1. Let J ⊂ Ic an
interval containing ξ0 such that supJ mλ = Mλ < 1. Let us define Jc = Ic\J .
On Jc, ψ′λ has no zeros and thus a similar argument as in the proof of (30)
shows that

sup
j∈Z

∑

n≥0

∣∣∣∣
∫

Jc

eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

≤ c(λ)
∫

Jc

|ϕ̂(ξ)|2
|ψ′λ(ξ)|dξ ≤ c(λ)

∫

Jc

|ϕ̂(ξ)|2dξ.

It remains to prove that

sup
j∈Z

∑

n≥0

∣∣∣∣
∫

J

eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

≤
∫

J

|ϕ̂(ξ)|2dξ.

Applying Cauchy’s inequality to each term of the left hand side, we obtain that

∑

n≥0

∣∣∣∣
∫

J

eijξeinψλ(ξ)mn
λ(ξ)ϕ̂(ξ)dξ

∣∣∣∣
2

≤
∑

n≥0

M2n
λ

∫

J

|ϕ̂(ξ)|2dξ ≤ c(λ)
∫

J

|ϕ̂(ξ)|2dξ

13



which finishes the proof of inequality (26).

Step II. In the following we prove that if (25) fails then there is no constant
c(λ, s), independent of h, such that (11) holds for all ϕ ∈ l2(hZ). As in the case
of lack of the integrability property the key point is the following Lemma:

Lemma 5.2. Let be ξ0 6= 0 such that ψ′(ξ0) = 0 and mλ(ξ0) = 1. Then there
exist two constants c(λ) and c1(λ) such that for N sufficiently large, there exists
ϕN such that ‖ϕN‖l2(Z) ' N1/2 and

|((−∆1)s/2Sλ(n)ϕ)j | ≥ c(λ)

for all |j| ≤ c1(λ)N and n ≤ c1(λ)N2.

We postpone the proof of this Lemma. Using the definition of (−∆h)s/2 and
that k/h2 = λ, we get

k
∑

nk≤1

h
∑

|j|h≤1

|((−∆h)s/2Sλ(n)ϕ)j |2

h
∑
j∈Z

|ϕj |2 =

λh2−2s
∑

n≤1/λh2

∑
|j|≤1/h

|((−∆1)s/2Sλ(n)ϕ)j |2
∑
j∈Z

|ϕj |2 .

Let us choose N = 1/h and ϕN as in Lemma 5.2. Then we obtain that

k
∑

nk≤1

h
∑

|j|h≤1

|(Ds
hSλ(n)ϕ)j |2

h
∑
j∈Z

|ϕj |2 ≥ c(λ)N2s−2N3

N
= c(λ)N2s,

which finishes the proof.

We now prove the two Lemmas that we used before.

Proof. of Lemma 5.1. Let us define the linear operator Tf as:

(Tf)n =
∫ π

−π

einξm|n|(ξ)f(ξ)dξ, n ∈ Z.

Inequality (32) means that T maps continuously L2(T) to l2(Z) or equivalently,
its adjoint T ∗ maps continuously l2(Z) to L2(T1). Explicit calculations show
that T ∗ has the following representation:

(T ∗g)(ξ) =
∑

n∈Z
e−inξm|n|(ξ)gn, ξ ∈ [−π, π].

It remains to prove that T ∗ is well-defined and maps continuously L2(T) to
l2(Z). The key point is the following pointwise estimate on T ∗:

|(T ∗g)(ξ)| ≤ sup
0≤r≤1

∣∣∣∣∣
∑

n∈Z
einξr|n|gn

∣∣∣∣∣ , ∀ ξ ∈ [−π, π]. (33)
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For any 0 ≤ r ≤ 1, classical results on maximal functions (cf. Ref. [14], p. 76)
show that ∣∣∣∣∣

∑

n∈Z
einξr|n|gn

∣∣∣∣∣ ≤ Mg∨(ξ), (34)

where g∨(ξ) =
∑

n∈Z einξgn and Mf is the maximal function of f , defined by

Mf (t) = sup
0<s≤π

∣∣∣∣
1
2s

∫ t+s

t−s

f(τ)dτ

∣∣∣∣ .

Using that the maximal function Mg∨ (cf. Ref. [14], p. 88) satisfies

‖Mg∨‖L2(T) ≤ ‖g∨‖L2(T) = ‖g‖l2(Z),

we obtain in view of (33) and (34) that T ∗ makes sense and maps continuously
L2(T) to l2(Z).

Proof. of Lemma 5.2. Let us choose a function ϕ̂1 supported in (−1, 1) with
ϕ̂1 > 1 on (−1/2, 1/2) and set for all N ≥ 1

ϕ̂N (ξ) = Nϕ̂1 (N(ξ − ξ0)) . (35)

Thus ϕ̂N is supported on (ξ0−N−1, ξ0+N−1) and ‖ϕN‖l2(Z) ' N1/2. Applying
mean value theorem and using that | sin(ξ/2)| ∼ |ξ/2| on [−π, π], we obtain that

|((−∆1)s/2Sλ(n)ϕN )j | ≥
(

1− 2N−1 sup
ξ∈ supp bϕN

|nψ′λ(ξ) + j|
)∫ π

−π

|ξ|smn
λ(ξ)ϕ̂N (ξ)dξ.

Using that ψ′λ vanishes at ξ = ξ0 we get

|nψ′λ(ξ) + j| ≤ |j|+ ncλ|ξ − ξ0|, ξ ∼ ξ0.

Then there exists a positive constant c1(λ) such that for all j and n satisfying
|j| ≤ c1(λ)N and n ≤ c1(λ)N2 the following holds:

2N−1 sup
ξ∈ supp bϕN

|nψ′λ(ξ) + j| ≤ 1
2

and

|((−∆1)s/2Sλ(n)ϕN )j | ≥ 1
2

∫ π

−π

|ξ|smn
λϕ̂N (ξ)dξ ≥ |ξ0|sN

2

∫ ξ0+N−1/2

ξ0−N−1/2

mn
λ(ξ)dξ.

The same arguments as in the proof of Lemma 4.1 show that the right hand
term in the above estimate remains uniformly bounded by below by a positive
constant c(λ) for N large enough.
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6 Two examples

Let us exemplify our previous work by considering two numerical schemes: the
backward Euler scheme:

i
Un+1

j − Un
j

k
+

Un+1
j+1 − 2Un+1

j + Un+1
j−1

h2
= 0, n ≥ 0, j ∈ Z, (36)

and the Crank-Nicolson scheme:

i
Un+1

j − Un
j

k
+

Un+1
j+1 − 2Un+1

j + Un+1
j−1

2h2
+

Un
j+1 − 2Un

j + Un
j−1

2h2
= 0, n ≥ 0, j ∈ Z.

(37)
For the first scheme the symbol aλ is given by:

aλ(ξ) =
1

1 + 4iλ sin2 ξ
2

=
exp(−i arctan(4λ sin2 ξ

2 ))
(
1 + 16λ2 sin4 ξ

2

)1/2
.

Explicit calculations show that the symbol aλ satisfies (13) and (25). In this
case, even ψλ vanishes its second derivatives at some points different from ξ = 0,
the dissipative character of mλ at these points allows us to recover the uniform
decay property (14). More precisely the symbol aλ satisfies

aλ(ξ) ∼ 1− iλξ2 − λ2ξ4 + O(ξ6), ξ ∼ 0,

which shows that the scheme is dissipative of order two:

|aλ(ξ)| ∼ 1− λξ2

2
+ O(ξ4), ξ ∼ 0.

In the case of the Crank-Nicolson scheme the symbol aλ is given by

aλ(ξ) =
1− 2iλ sin2 ξ

2

1 + 2iλ sin2 ξ
2

= exp
(
−2i arctan

(
2λ sin2 ξ

2

))
.

Explicit calculations show that the derivative of the function ψλ is given by

ψ′λ(ξ) =
−2λ sin ξ

1 + 4λ2 sin4 ξ
2

and the scheme fails to have property (25) at the point ξ = π . Also the second
derivative of ψλ satisfies ψ′′λ(0)ψ′′λ(π/2) < 0. This suffices to show that the
scheme does not satisfy (13).

These pathologies are similar to the ones of the semidiscrete conservative
scheme analyzed in Ref. [10] and additional techniques have to be introduced
to cancel these spurious effects: filtering[9], numerical viscosity[10] or a two-
grid preconditioner[11]. We point out that any filtration of initial data which
excludes the end points ξ = ±π will guarantee the local smoothing property
(11). Regarding the l1(hZ)− l∞(hZ) decay, there exist two points ±ξ0 ∈ [−π, π]
where the second derivative of ψ1 vanishes. Any filtration of initial data which
excludes these two points will recover the right decay property of solutions.

16



7 Strichartz like estimates

In this section we consider a numerical scheme which obeys the condition (13).
For such a scheme we prove time-space estimates similar to the Strichartz es-
timates in the continuous case. These estimates are important in the further
analysis of the approximations of nonlinear problems. We recall that in the
continuous case the Strichartz estimates play a crucial role in proving the well-
posedness of the nonlinear Schrödinger equations for a class of nonlinearities
that cannot be treated by energy arguments.

Theorem 7.1. Let Aλ be such that its symbol aλ satisfies (13) and (q, r) and
(q̃, r̃) be two admissible pairs. Then

i) There exists a positive constant C(λ, r) such that

‖Sλ(·)ϕ‖lq(kN, lr(hZ)) ≤ C(λ, r)‖ϕ‖l2(hZ) (38)

holds for all ϕ ∈ l2(hZ), uniformly on h > 0.
ii) There exists a positive constant C(λ, r) such that

∥∥∥∥∥∥
∑

n≥0

Sλ(n)∗f(n)

∥∥∥∥∥∥
l2(hZ)

≤ C(λ, r)‖f‖lq′ (kN, lr′ (hZ)) (39)

holds for all f ∈ lq
′
(kN, lr

′
(hZ)), uniformly on h > 0.

iii) There exists a positive constant C(λ, r, r̃) such that

‖Λf‖lq(kN, lr(hZ)) ≤ C(λ, q, r, q̃, r̃)‖f‖lq̃′ (kN, lr̃′ (hZ)) (40)

holds for all f ∈ lq̃
′
(kN, lr̃

′
(hZ)), uniformly on h > 0.

Remark 7.1. In the particular case when for some positive integer N , f(n)
vanishes identically for all n > N then (39) implies that the following also
holds: ∥∥∥∥∥

N∑
n=0

Sλ(n)∗f(n)

∥∥∥∥∥
l2(hZ)

≤ C(λ, r)

[
N∑

n=0

k‖f(n)‖q

lr′ (hZ)

]1/q

(41)

with a constant C(λ, q, r) independent on N and h. This estimate will be useful
in the proof of (40).

Proof. A scaling argument as in the previous proofs shows that it is sufficient
to consider the case h = 1.

By duality the proof of (38) is reduced to the one of (39). Also, inequality
(39) turns out to be equivalent to the bilinear estimate
∣∣∣∣∣∣

〈∑

n≥0

Sλ(n)∗f(n),
∑

m≥0

Sλ(m)∗g(m)

〉∣∣∣∣∣∣
≤ C(λ, r)‖f‖lq′ (N, lr′ (Z))‖g‖lq′ (N, lr′ (Z)),
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where 〈·, ·〉 is the l2(Z)-inner product. In fact we prove the stronger inequality:
∑

n≥0

∑

m≥0

| 〈Sλ(n)∗f(n), Sλ(m)∗g(m)〉 | ≤ C(λ, r)‖f‖lq′ (N, lr′ (Z))‖g‖lq′ (N, lr′ (Z)).

In view of estimate (16) we have

| 〈Sλ(n)∗f(n), Sλ(m)∗g(m)〉 | = | 〈f(n), Sλ(n)Sλ(m)∗g(m)〉 |
≤ ‖f(n)‖lr′ (Z)‖Sλ(n)Sλ(m)∗g(m)‖lr(Z)

≤ C(λ, r)‖f(n)‖lr′ (Z)
‖g(m)‖lr′ (Z)

1 + |n−m|2/q
.

At this point we make use of the following Lemma[19], which is a discrete
version of the well-known Hardy-Litlewood-Sobolev inequality (cf. Ref. [22],
p. 119):

Lemma 7.1. Let be 0 < α < 1 and k a sequence such that

|k(n)| ≤ 1
1 + |n|α , ∀n ∈ Z.

Then the operator T defined by T (f) = f ∗k maps continuously lp(Z) into lq(Z)
for any p and q satisfying

1 < p < q < ∞ and
1
q

=
1
p
− 1 + α.

In view of this Lemma and applying Hölder’s inequality in variable n we
obtain that

∑

n≥0

∑

m≥0

|〈Sλ(n)∗f(n), Sλ(m)∗g(m)〉| ≤ C(λ, r)
∑

n≥0

∑

m≥0

‖f(n)‖lr′ (Z)
‖g(m)‖lr′ (Z)

1 + |n−m|2/q

≤ C(λ, r)‖f‖lq′ (N,lr′ (Z))

∥∥∥∥∥∥


∑

m≥0

‖g(m)‖lr′ (Z)
1 + |n−m|2/q




∥∥∥∥∥∥
lq(Z)

≤ C(λ, r)‖f‖lq′ (N, lr′ (Z))‖g‖lq′ (N, lr′ (Z))

and then (39).
It remains to prove inequality (40). We consider the cases (q̃, r̃) = (∞, 2),

(q, r) = (∞, 2) and (q̃, r̃) = (q, r), since the other cases follow by interpolation.
By duality

‖Λ1f‖lq(N, lr(Z)) = sup
‖g‖

lq
′ (N,lr

′ (Z))≤1

〈〈
Λ1f, g

〉〉
,

where 〈〈·, ·〉〉 is the inner product on l2(N, l2(Z)).
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Let us choose a function g in lq
′
(N, lr

′
(Z)). The definition of Λ1 gives us

〈〈
Λ1f, g

〉〉
=

∑

n≥0

〈
n∑

j=0

Sλ(n− j)f(j), g(n)

〉

=
∑

j≥0

〈
f(j),

∑

n≥j

Sλ(n− j)∗g(n)

〉
. (42)

In the case (q̃, r̃) = (∞, 2), Cauchy’s inequality applied to (42) shows that

〈〈
Λ1f, g

〉〉 ≤
∑

j≥0

‖f(j)‖l2(Z)

∥∥∥∥∥∥
∑

n≥j

Sλ(n− j)∗g(n)

∥∥∥∥∥∥
l2(Z)

≤ ‖f‖l1(N, l2(Z)) sup
j≥0

∥∥∥∥∥∥
∑

m≥0

Sλ(m)∗g(m + j)

∥∥∥∥∥∥
l2(Z)

.

Applying estimate (39) to the function g(·+ j) we obtain the desired inequality
for (q̃, r̃) = (∞, 2).

In view of (42), we also obtain that

〈〈
Λ1f, g

〉〉 ≤
∥∥∥∥∥∥

∑

0≤j≤n

Sλ(n− j)f(j)

∥∥∥∥∥∥
l∞(N, l2(Z))

‖g‖l1(N,l2(Z)).

We write
n∑

j=0

Sλ(n− j)f(j) =
n∑

j=0

Sλ(n− j)∗f(j) =
n∑

j=0

Sλ(j)∗f(n− j)

and apply estimate (41) to the function f(n− ·).
It remains to analyze the case (q, r) = (q̃, r̃). Observe that Λ1 satisfies for

any n ≥ 0 the rough estimate

‖(Λ1f)(n)‖lr(Z) ≤
n∑

j=0

‖Sλ(n− j)f(j)‖lr(Z) ≤ C(λ, r)
∑

0≤j≤n

‖f(j)‖lr′ (Z)
1 + |n− j|2/q

The same arguments as in the proof of (39) based on Lemma 7.1, show that

‖Λ1f‖lq(N, lr(Z)) ≤ C(λ, r)‖f‖lq′ (N, lr′ (Z)),

which finishes the proof of the last case and that of Theorem 7.1.

8 Application to a nonlinear problem

In this section we consider a numerical scheme for the semilinear NSE equation
in R with repulsive power law nonlinearity :

{
iut + uxx = |u|pu, x ∈ R, t > 0,
u(0, x) = ϕ(x), x ∈ R,

(43)
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p < 4 and initial data in L2(R). The case of nonlinearity f(u) = −|u|pu could
be treated in the same manner. In fact, the key point in the global existence
of the solutions is that the L2-scalar product (f(u), u) is a real number. All
the results presented here extend to more general nonlinearities[3] f(u). The
critical case p = 4 could be also treated by imposing smallness on the initial
data.

With the notation f(x) = |x|px the scheme we propose is given by




i
Un+1

j − Un
j

k
+

Un+1
j+1 − 2Un+1

j + Un+1
j

h2
= f(Un+1

j ), n ≥ 0, j ∈ Z,

U0
j = ϕj , j ∈ Z,

(44)

ϕ ∈ l2(hZ) being an approximation of the initial datum ϕ and h and k such
that k/h2 remains constant. This implies the existence of two operators A1,λ

and A2,λ such that

Un+1 = (A−1
1,λ)A2,λUn + kA−1

1,λf(Un+1), n ≥ 0.

Using the notation Sλ(n)ϕ for the solution at the step n of the backward Euler
scheme for the linear Schrödinger equation, the solution of the above equation
is also solution of the following one:

Un = Sλ(n)ϕ + k

n∑

j=1

Sλ(n− j)A−1
1,λf(U j).

Concerning the existence of solutions for problem (8) the main result is given
by the following Theorem.

Theorem 8.1. Let p ∈ [0, 4) and U0 ∈ l2(hZ). Then there is a unique solution
of equation (44) which satisfies:

‖Un‖l2(hZ) ≤ ‖U0‖l2(hZ) (45)

for all n ≥ 0.
Moreover, for all T > 0 and (q, r) an admissible pair there is a constant

C(T, r) such that

‖U‖lq(nk≤T, lr(hZ)) ≤ C(T, r)‖U0‖l2(hZ) (46)

uniformly on h.

Proof. The proof consists in applying the Banach fix point Theorem in a ball of
lq(nk ≤ T, lr(hZ)) ∩L∞(nk ≤ T, l2(hZ)) and in making use of the Strichartz-
like estimates proved in Theorem 7.1. Observe that the nonlinear term f(U)
is composed by the operator (A1,λ)−1. In order to apply the Banach fix point
Theorem we have to prove that the operator (A1,λ)−1 is continuous from ls(hZ)
to ls(hZ) for any s ∈ [1, 2], with a norm independent of h > 0. Observe that by
scaling it is sufficient to prove that

‖(A1,λ)−1f‖ls(Z) ≤ c(λ)‖f‖ls(Z)
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for all f ∈ ls(Z). Using the kernel representation of (A1,λ)−1f in convolution
form

(A1,λ)−1f = Kλ ∗ f,

where Kλ is given by

K̂λ(ξ) =
1

1 + λ sin2( ξ
2 )

, ξ ∈ [−π, π],

it is sufficient to show that ‖Kλ‖l1(Z) ≤ c(λ). Using Carlson-Beurling inequality[2]
we get

‖Kλ‖l1(Z) ≤
(
‖K̂λ‖L2((−π,π))‖(K̂λ)′‖L2((−π,π))

)1/2

= c(λ).

This allows us to prove the local existence of the solution of Eq. (44) and
estimate (46).

To guarantee the global existence of the solution we prove a priori estimates
on the l2-norm of the solutions. Multiplying equation (44) by U

n+1

j we get for
all n ≥ 0 and j ∈ Z:

i|Un+1
j |2 − iUn

j U
n+1

j + λ(Un+1
j+1 − 2Un

j + Un+1
j−1 )U

n+1

j = kf(Un+1
j )U

n+1

j .

Summing up on j ∈ Z and taking the imaginary part we obtain
∑

j∈Z
|Un+1

j |2 ≤
∑

j∈Z
|Un+1

j Un
j |,

which guarantees that the l2-norm of Un is bounded above by the l2-norm of
the initial datum. This guarantees the l2-stability of the scheme and the global
existence of a solution (Un)n≥0.

9 Convergence of the method

In what follows we introduce the interpolator IhU , piecewise linear in time and
space.

Theorem 9.1. Let p < 4 and k and h be such that the Courant number k/h2

is a kept constant. Then the interpolator IhU satisfies

‖IhU‖L∞([0,∞),L2(R)) ≤ ‖(IhU)(0)‖L2(R).

and for all T > 0 and (q, r) an admissible pair there is a positive constant C(T )
such that

‖IhU‖Lq([0,T ], Lr(R)) ≤ C(T )‖(IhU)(0)‖L2(R).

Moreover
IhU

∗
⇀u in L∞([0,∞), L2(R)), (47)
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IhU⇀ u in Lq
loc([0,∞), Lr(R)), (48)

and
IhU→u a.e. on [0,∞)× R, (49)

where u is the unique weak solution of the NSE.

Proof. The first two estimates are a consequence of (45) and (46). Thus, obvi-
ously (47) and (48) hold. The limit (49) is a consequence of the local smoothing
property of the discrete operator Sλ that allows us to prove the uniform bound-
edness of solutions in L2

loc(R, Hs
loc(R)), for some positive constant s, and thus

compactness for the sequence {IhU}h>0. All the above properties show the con-
vergence of Ihu towards the unique solution u of the NSE.

10 A finer analysis of the Crank-Nicolson Scheme

In this section we analyze whether the two-grid pre-conditioner, introduced
by Glowinsky[8], recovers the dispersive properties (14) of the Crank-Nicolson
scheme. The two-grid method is roughly as follows. Two meshes are considered:
the coarse one of size ph, p ≥ 1 integer, phZ, and the fine one, hZ, of size h > 0.
The method relies basically on solving the finite-difference discretization (37)
on the fine mesh hZ, but only for slow data, interpolated from the coarse grid
phZ. This method with p = 4 has been used successfully in Ref. [11] to prove
uniform dispersive estimates for conservative semidiscrete approximations of the
Schrödinger equation.

A careful Fourier analysis of initial data obtained by the above algorithm,
shows that their discrete Fourier transform is modulated by a multiplier qp

which vanishes quadratically at the points ξ = ±πr/p, 1 ≤ r ≤ p− 1 of the one
dimensional torus T1.

In the case of a semidiscrete approximation of the one dimensional linear
Schrödinger equation the symbol introduced by the scheme is ψ(ξ) = sin2(ξ/2)
and vanishes its second derivative at ±π/2. As proved in Ref. [11], a two-
algorithm with quotient of the meshes 1/4 cancels the spurious effects at the
points ±π/2, and the scheme has uniform dispersive properties in that class of
data.

The condition that the multiplicative factor qp vanishes at the roots ξ0 6= 0
of ψ′′λ is necessary. If not, using that the multiplicative factor qp behaves as a
nonzero constant near the point ξ0, we can choose initial data concentrated at
this point as we already did in the proof of (17) and the dispersive properties
fail to be uniform on the mesh size.

In the following we prove that for any Courant number λ = k/h2 ∈ Q, there
is no two-grid pre-conditioner that guarantees the dispersive properties (14) in
this particular class of data. We prove that any two-grid algorithm introduces
a multiplicative factor that vanishes only at points belonging to 2πQ. On the
other hand, for any rational Courant number λ, the second derivative of the
symbol ψλ introduced by the Crank-Nicolson scheme vanishes at some point
that does not belong to the set 2πQ, and thus, similar to (17) estimate holds.
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For the local smoothing properties (26), a two-grid pre-conditioner with
p = 2, allows us to recover that property. The essential point is that the first
derivative of ψλ vanishes at the points ±π and a two-grid algorithm with the
quotient of the meshes 1/2 will vanish the spurious effects at these points.

The following lemma gives a characterization of data that are obtained by
a two-grid algorithm involving the meshes pZ and Z. Its proof uses only the
definition of the discrete Fourier transform and for that we omit it.

Lemma 10.1. Let p ≥ 2 and {V (pk)}k∈Z a function defined on the coarse grid
pZ. Then the new function, {U(k)}k∈Z, defined by

U(kp + j) =
(p− j)V (kp) + jV ((k + 1)p)

p
, k ∈ Z, j = 0, . . . , p− 1,

satisfies

Û(ξ) =
ei(p−1)ξV̂ (ξ)

p

(
p−1∑

k=0

eikξ

)2

, ξ ∈ [−π, π].

Remark 10.1. We point out that the multiplicative factor
∑p−1

k=0 eikξ vanishes
only at the points ξk = 2kπ/p with k = 1, . . . , p− 1.

The symbol aλ of Crank-Nicolson’s scheme is given by aλ(ξ) = exp (iψλ(ξ))
where

ψλ(ξ) = 2 arctan
(

2λ sin2 ξ

2

)
.

The first two derivatives of ψλ are given by

ψ′λ(ξ) =
−2λ sin ξ

1 + 4λ2 sin4 ξ
2

, ξ ∈ [−π, π]

and

ψ′′λ(ξ) =
−2λ

(
cos ξ − λ2(1− cos ξ)2(2 + cos ξ)

)

(1 + 4λ2 sin4 ξ
2 )2

, ξ ∈ [−π, π].

We prove that for any λ ∈ Q, the function

gλ(ξ) = cos ξ − λ2(1− cos ξ)2(2 + cos ξ) (50)

has at least one root that does not belong to 2πQ. The existence of a root easily
follows: gλ(0)gλ(π/2) < 0.

Let us suppose the existence of λ ∈ Q such that the function gλ has a root
of the form 2πm/n with m,n ∈ Z, (m,n) = 1. We write cos ξ = (eiξ + e−iξ)/2
and set µ = λ2/4 in equation (50). This gives us that ξ satisfies the following
equation

eiξ + e−iξ − µ(2− e−iξ − eiξ)2(4 + eiξ + e−iξ) = 0.

Then the polynomial Pµ(x), defined by

Pµ(x) = x4 + x2 − µ(x2 − 2x + 1)2(x2 + 4x + 1)
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admits a root of the form x = exp(2iπm/n), with (m,n) = 1. This implies
that Pµ(x) is divisible by some cyclotomic polynomials associated with the root
2πm/n. Using the fact that the degree of the cyclotomic polynomial of order
n, Qn, is ϕ(n) the Euler ϕ-function, we obtain that n satisfies ϕ(n) ≤ 6. The
possible values of n belong to the set {1, 2, 3, 5, 6, 7, 9, 12}. In order to obtain
a contradiction it remains to prove that none of the following polynomials Qn

divides Pµ:

Q1 = x− 1, Q2 = x + 1,
Q3 = x2 + x + 1, Q5 = x4 + x3 + x2 + x + 1,
Q6 = x2 − x + 1, Q7 = x6 + x5 + x4 + x3 + x2 + x + 1,
Q9 = x6 + x3 + 1, Q12 = x4 − x2 + 1.

,

where Qn is the cyclotomic polynomial of order n. Explicit calculations show
that

Pµ ≡ 2 mod Q1, Pµ ≡ 2 + 25µ mod Q2

and
Pµ ≡ −1− 27µ2 mod Q3, Pµ ≡ −1 + 5µ2 mod Q6

which exclude the cases Q1, Q2, Q3, Q6. In the case of Q5 we get

Pµ ≡ −x3(25µ2 + 1) + ... mod Q5

which proves that Q5 6 |Pµ. Similar calculations show that

Pµ ≡ x4(9µ2 + 1) + ... mod Q9, Pµ ≡ −15µ2x3 mod Q12.

It remains to study the case of Q7. Using that both polynomials have the same
degree, Pµ equals Q7 multiplied by a constant. Using the fact that the coefficient
of x in Pµ vanishes, we also exclude this case.
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