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Abstract

We consider fully discrete schemes for the one dimensional linear Schrédinger
equation and analyze whether the classical dispersive properties of the
continuous model are presented in these approximations. In particular
Strichartz estimates and the local smoothing of the numerical solutions
are analyzed. Using a backward Euler approximation of the linear semi-
group we introduce a convergent scheme for the nonlinear Schrédinger
equation with nonlinearities which cannot be treated by energy methods.

1 Introduction
Let us consider the linear (LSE) Schrédinger equation

iug + Au=0, z € R%, t #0,
u(0,z) = ¢(x), z € R

Its solution is given by u(t) = S(t)¢, where S(t) = €2 is the free Schrédinger

operator. The linear semigroup S(t) has two important properties, the conser-

vation of the L?-norm

1S ¢llL2 ey = [I@llL2@a), t € R (1)

and the dispersive estimate:

1S(t)p ()| = fut, z)] < 1)d/2 Il o €RY E 40, (2)

(4]t
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More refined space-time estimates known as the Strichartz inequalities show
that, in addition to the decay of the solutions as t — oo, a gain of spatial
integrability occurs. Improving the work of Strichartz[24], Ginibre and Velo[7]
have proved that

1S(C)ellLagr, Lrrayy < Clg, ) @llL2(®) (3)

for the so-called admissible pairs (¢,7): ¢ > 2,2 <r < 2d/(d — 2) and

2 1 1
=a(3-1) end £ 2w )
The end-point case ¢ = 2,7 = 2d/(d — 2) has been finally achieved by Keel and
Tao[15]. The extension to the inhomogeneous linear Schrodinger equation is
due to Yajima[28] and Cazenave and Weissler[4].

These properties are not only relevant for a better understanding of the
dynamics of the linear system but also to derive well-posedness results for
inhomogeneous[24] and nonlinear Schrodinger equations. Typically the disper-
sive estimates are used when the energy methods fail to provide well posedness
of the nonlinear problems. They were first applied by Ginibre and Velo for non-
linear problems with H!(R?) initial data|7]. In the case of L?(R%)-initial data
and nonlinearity F(u) = |u[P~ u, p < 1 + 4/d, Tsutsumi[26], using estimates
(3), has proved the well-posedness and global existence of solutions. The critical
case has been analyzed by Cazenave and Weissler|[5].

The Schrodinger equation has another remarkable property: the gain of one
half space derivative[6, 16] in L2 ;:

1

oo
sup ﬁ/ / (=) e g dtdr < Cllil Fauay- (5)
zo,R B(zo,R) J—o0

It has been used in the study of the nonlinear Schrédinger equation with non-
linearities involving derivatives[17]. Also, this type of local smoothing effect has
been used|27] to prove the existence a.e. of lim;_gu(x,t) for solutions of the
Schrodinger equation with initial data in H*(R%), s > 1/2.

In this paper we analyze whether fully discrete schemes for the one dimen-
sional LSE have dispersive properties similar to (2)), (3) and (5), uniform with
respect to the mesh sizes. The study of these dispersion properties for ap-
proximation of the linear semigroup S(t) is relevant for introducing convergent
schemes in the nonlinear context. Since the well-posedness of the nonlinear
Schrédinger equations requires a fine use of the dispersion properties, the con-
vergence of the numerical scheme for the nonlinear problem cannot be proven
if these dispersion properties are not verified at the numerical level.

Estimates similar to (5) on discrete solutions will give sufficient conditions
to guarantee their compactness and thus the convergence towards the solution
of the nonlinear Schrodinger equation. Without such an estimate, despite the
uniform boundedness of the discrete solutions in the space [*°(kN, I2(hZ)) N

Il .(kN, I"(hZ)), one cannot pass to the limit in the nonlinear term.



For the conservative semi-discretization of the Schrodinger equation, the lack
of uniform dispersive estimates has been observed by Ignat and Zuazua[10), [12].
In the one dimensional case, the symbol of the Laplacian, &2, is replaced by
a discrete one sin?(¢/2) which vanishes its first and second derivative at the
points +7 and £7/2 of the spectrum. By concentrating wave packets at these
pathological points it is possible to prove the lack of any uniform estimate of
the type (2), (3) or (5). For the semidiscrete Schrodinger equation we also refer
to Ref. [2I]. In that paper the authors analyze the Schrédinger equation on the
lattice hZ? without concentrating on parameter h. They obtain Strichartz-like
estimates in a class of exponents ¢ and r larger than (4)).

In Ref. [19], the author considers an approximation of the KdV equation
based on the backward FEuler approximation of the linear semigroup and proves
space time estimates for that approximation. Here, we mean to give necessary
and sufficient conditions to guarantee the existence, at the discrete level, of
dispersive properties for the Schrédinger equation. The methods presented here
also work in any dimension but we do not know whether the conditions we give
in this paper are necessary. This is due to the fact that the construction of
counterexamples is more complicated in the case of a higher dimension.

In Sec. 6l we exemplify our results by considering two numerical schemes:
backward Euler and Crank-Nicolson. The first one introduces dissipation and
has similar dispersion properties as in the continuous case. The second one is
conservative and presents the same pathologies as the semidiscrete scheme we
have discussed before: no local integrability property or local smoothing effect,
being uniform with respect to the mesh size. This suggests that additional
techniques based on artificial numerical viscosity (see Ref. [10] for a semidiscrete
case) or a two-grid method[8] have to be used. In Sec. 10 we analyze the
possible application of the last method to the Crank-Nicolson scheme. Using
fine properties of number theory, in particular cyclotomic polynomials, we prove
that any two-grid algorithm applied to the Crank-Nicolson scheme would not
provide uniform I'(hZ) — [°°(hZ) estimates.

In Sec. |8 we introduce a numerical scheme for the nonlinear Schrédinger
equation based on the backward Euler approximation of the linear semigroup
and prove that its solutions remain uniformly bounded in the spaces where the
well-posedness of the nonlinear problem is guaranteed[3, 25]. We point out
that this can be done by using any other scheme that approximates the linear
Schrédinger semigroup and has an [(hZ) — [°°(hZ) decay of solutions uniform
with respect to the mesh size.

2 Finite difference approximation

In order to introduce the finite-difference approximation of the LSE, it will be
necessary to first introduce some notations. The space R x R will be replaced
by the lattice Z x Z, and instead of functions u(t,-) depending on t € R, con-
sideration will be given to sequences U" = (U}')jez for n € Z. For a mesh size
h >0 and a time step k& > 0, U} is supposed to approximate u(nk, jh); u(t, )



being a solution of the LSE. In the sequel we shall assume that Courant’s num-
ber A\ = k/h? is kept constant as h,k — 0 , and we shall consider a two-level

difference scheme:
{ Untl = A\U™, n >0, (6)
U° = .

We will be more precise on the type of estimates we are looking for. Let
us consider T > 0, h — 0 and n € Z such that nk — T. We will establish
necessary and sufficient conditions on the operator Ay to guarantee that

U™ 1a(nzy < C(T, A, 4, 90)[|U° 190 (2 (7)

for some gy < g with C(T, A, ¢, qo) independent of h, and then also on k. Prop-
erty (7) guarantees that the solutions of (6)) gain integrability with respect to
the initial data and that property is uniform with respect to the mesh size. Once
scheme (0) satisfies (7) we prove more general estimates of the type:

”UHl‘I(kN,l"(hZ)) <C(g,r, >\)HU0||Z2(hZ)7 (8)

uniformly on k and h, related by k/h? = \.

Using (6) as a numerical scheme for the linear semigroup, we introduce an
approximation for the inhomogeneous Schrédinger equation with null initial
data:

Utl = A\ U+ kf(n+1), n>0,
(9)
U° =0,

where f(n),>1 is an approximation of the inhomogeneous term. The differ-
ence equation (9) has an explicit solution, given by the discretized version of
Duhamel’s Principle:

n

(Af)(n,-) = kY Sa(n=4)fG.-), (10)

Jj=0

with the convention f(0) = 0. The same problem of uniform [7(kN,[9(hZ))
estimates for solutions of Eq. (9) will be studied in Sec. [7.

The local smoothing property will be analyzed in Sec. 5. We introduce
the discrete fractional derivatives on the lattice hZ by defining the fractional

derivative of order s, as:
zsin ¢h
h 2

where Fj(U) is the discrete Fourier transform at the scale h of the sequence U:

w/h

S

(-an vy = [ ¢, (U) (€)dE, § € 2.

—m/h

Fu(U)(€) =hY_ e ;.

JEL



In Sec. |5 we obtain necessary and sufficient conditions in order to guarantee
that the solutions of scheme (6)) satisfy for some positive s

kY [h Y (=AU < Cls,n) | IU7P (11)

nk<1 | |j|h<1 JEz

for some constant C(s, A), independent of h and k. In fact, once (11)) is satisfied
the above left hand sums can be taken over any finite set of indices nk < T and
ljlh < R.

The Fourier analysis of the scheme (see Iserles[13]|, Ch. 13), usually done in
the context of the stability, allows us to write the solution at the step n > 0 of
scheme (6) as

U"(€) = a3()B(&), € € [~ ], (12)

where a)(€) is the quotient of two trigonometrical polynomials and U= F1(U).
The stability and consistency of the scheme show that the symbol a) satisfies
lax(€)] < 1forall € € [—m, 7] and ay(€) ~ 1—iXE2, € ~ 0 (see Ref. [1], p. 259 for
more details). It follows, since ay is analytic, that one of the following conditions
is satisfied, namely: |ax(§)| = 1, £ € [—m, 7], or |ax(€)] < 1 for all but a finite
set of points. The first case corresponds to a conservative scheme; the second
one to a dissipative scheme.

From now on, we write the symbol ay in polar form a) = m) exp(ity) and
write the solution U™ in the semigroup formulation U™ = Sx(n)e. Thus the
consistency of the scheme implies that my (&) ~ 1 and ¥ (£) ~ —A&2 as € ~ 0.

3 Uniform [*°-decay rates

The main result concerning the long time behaviour of the discrete solutions is
given in the following Theorem:

Theorem 3.1. Let us assume that the symbol ay has the following property
ma(o) =1 = [¥X(&)| >0 or mX(&) # 0. (13)

Then for any q > 2 there is a positive constant C(q,\) such that

183 ()@ lisnzy < Cas k) E G2 [z (14)
holds for allm # 0, h,k > 0.

This estimate is similar to the L¢ (R) — L9(R) decay of the continuous
Schrodinger semigroup obtained by interpolation between (1) and (2)). Choosing
a positive time T' and k,, — 0 such that nk, — T and taking the limit in (14)
we obtain exactly the estimate for the continuous case.

We point out that with the same notations as in the one-dimensional case,
a similar result can be stated in R? if the symbol ay satisfies:

my(&) = 1 = rank(Hy, (&)) = d or EHpy,, (€0)€8 < 0, VE € RY,



where H,,, is the hessian matrix. However, we do not know if the condition is
necessary.

Condition (13) essentially says that at the points & where m) equals one,
either ¢} does not vanish or my(§) ~ 1+ (€ — &)?mY (&) as € ~ &. Also, at
any point different from zero where 9§ vanishes the dissipative effect of my is
present and vanishes the spurious effects introduced at that point by the scheme.

In the case h = 1, an additional estimate holds. Using the fact that the
discrete spaces [P(Z) are embedded, we also have [[S(0)¢l1a(z) < [[¢llar(z) and
then for all n > 0:

1(1_1
153 (n)¢llis(z) < Clg, A)(1 +7)* (i) 1ell1a” (nz)- (15)
More generally, for any n and n; positive the following holds
N C(A
[19x(1n)Sx(n1)*ll1a(z) < ( )l(i_l) lller 2y (16)
1+ |7’L — n1|2 " a

Sa(n1)* being the adjoint of Sy(n1). Estimate (16) follows by (I5) observ-
ing that (Sx(n1)*e)” = my" exp(—ini19»)@. The adjoint operator Sy(n)* has
another property that will be used later to establish Strichartz-like estimates:

Sa(n)e = S\(n)*p, a property that is also fulfilled by the continuous Schrédinger
semigroup.

Proof. We will consider the cases ¢ = 2 and ¢ = oo the other following by
interpolation of these two. The case ¢ = 2 easily follows by the stability of the
scheme. For the second one we re-scale all the [?(hZ)-norms, reducing the proof
to the case h = 1:

el nz) B hllelli (z) el (z)

(k)2 [S\()pllie nzy _ (0R) 2SN )@l z) _ 172172 193¢l 2

Now we prove that the right hand side remains bounded as long as n varies
in Z\{0}. Using representation (12) of the solutions, we obtain that Sy(n)p =
K7 * ¢, where the kernel K7 is given by

1 (7 , -
KX, = g/ my(€)emOelitag, n >0, j € Z.

Young’s inequality shows that [|Sx(n)pl|iz) < [|KX iz l2llir (z), s0, it is
sufficient to prove that K7 satisfies

CX

sup |K;\l,j| < YoR

JET

nez,n#0,

for some positive constant c).

The function ay being analytic the set A where m) equals one is either the
whole interval [—m, 7], or consists of a finite number of points. We remark that
mx(€) ~ 1 as £ ~ 0 so, A is nonempty.



The first case corresponds to a conservative scheme and in view of (3.1), ¥}
keeps constant sign. Thus by Van der Corput’s Lemma (see Ref. [23], p. 332)
we get for all n > 1:

1/2
n . C
Kl <e(n it @) <595

for all n > 1.

Let us analyze the case of A consisting of a finite number of points. Its
elements are isolated and we consider without loss of generality that A has
a single point, namely &;. At this point, m, has a local maximum and thus
m) (&) = 0 and mY (&) < 0.

Let us first consider the case m% (§y) < 0. Taylor’s expansion of my at £ = &y
gives us

ma(€) = 1+ (£ —&)*mX (&) + Ol — &%), € ~ &

and shows the existence of a positive € such that

(€ — &0)*m" (%)

ma(§) <1+ >

for all € € (& —¢€,& + e).

Thus, the kernel K} satisfies:

Kl < [ e+ (6)de
K < 5 [ m©d o | mi
’ 27 Jeo—e 27 J1—m i\ (€o—eEote)
1 Eo+e _ 2,11 n "
S - (1+(§ 50) m)\(go)> d£+ sup m)\(é—)
2m Eo—e 2 ge[—m,m\(§o—€,60+€)
1 [oote n(§ = &)*mf (&) ci(e)
< — d :
= o Je eXp( 2 ) § iy
< c n c1,a(€) _ O
> 27r(n|m’>((§0)‘)1/2 n1/2 n1/2

It remains to analyze the case 9} (&) # 0. The continuity of ¢} at £ = &
implies the existence of positive € and ¢ such that

W4(€)] > 3, for all € € (60— &0 + ).

Outside of the interval (& — €,&y + €), the function m) is strictly less than one
and we have the rough estimate

n
’ mz(g)eim/»\(f)eijédgl < sup  mx < %
-7 g€[—m,m] n
On the interval (§y — €, & + €) applying again Van der Corput’s Lemma we get
Eote
/ N  (€) i g
&

0—€

- MY Lo ((o—ctore))
< SYER

172
n inf 4
( £€(€0—e,0+¢) %(O')




4 Lack of uniform dispersive estimates

In this section we prove that condition (I13)) imposed in the previous section is
also necessary. If it fails we prove the lack of any uniform dispersive estimate.
This means that there is no uniform decay of solutions as in (2) nor a space
time estimate similar to (3).

Theorem 4.1. Let ¢ > qo > 1. Assume that ay does not satisfy (13). Then
forany T >0
1Sx(n)ellanzy

}ig(l’T etz Nllwomz (17)
and
Z [Sx(n)ellia(nz)
lim  sup k=T = 00. (18)
i @€ (RZ) lellia0 (nz)

Remark 4.1. Let I™* be a space-time interpolator, piecewise constant or linear.
For any fized T > 0 the uniform boundedness principle guarantees the existence
of a function ¢ € L?(R), a sequence h,, — 0, nk, =T and functions py,, such
that I"*» S(0)pn, — ¢ in L*(R) and [[I"*"S()en, [l 11,7, 7 (r)) — 0©-

We remark that a scaling argument as below
[Sx(0)ellianz) pi- s 19X (n)elliaz)
lelliao (nz) e lli90 z)

reduces (17) to the following one:

S\(N
m N sy 12l _ (19)
N—o0 p€L90 (7) ||50||l‘70(Z)

By a similar argument, we obtain the following for the second estimate

B ASAm@lianzy AT T30 Y 1S5 (n)¢lliez)

nk<T o nk<T

lellia0 (nz) a ll¢ll190 (z)

Denoting N = T'/k, (18) is reduced to the following one:

1,1(l,i) ZnSN ||S>\(n)90‘|l‘1(2)
su =

Iim N = 2\¢ a
N—o0 el (z) e lliao0 (z)

(20)

To prove that condition (13) is necessary, we introduce the operators T)(n)
defined by

™

(Ta(n)p)(x) = [ my(E)e™ el 5(¢)de.

—T



We point out that these operators are in fact band-limited interpolators of the
discrete operators Sy (n). Observe also, that once we have a 27-periodic function
@ we can define both operators, the continuous and the discrete one.

The results of Magyar et al[I8] (see also Plancherel and Polya[20]) on band-
limited functions show that the following inequality

152 () ll1a(z)
||<P\|z<zo(z)

[N COIZ L)

>C)‘7 )
2 X .00) ¢l Lao (m)

(21)

holds for any ¢ > g9 > 1 and for all 2mr-periodic functions @. This reduces
estimates (17) and (I8) on the operator Sy(n) to similar ones on Ty (n).
The following lemma is the key point in the proof of Theorem [17.

Lemma 4.1. Let us consider a symbol ay that does not verify (13). Then there
exist two positive constants ¢(\) and c1(\) such that for all N sufficiently large,
there exists a function gy that satisfies

lonllLe®) = NY3P for all p > 1
and

[(Tx(n)en) ()] = c(A) (22)
for alln < c; (AN and |z + nyh (&)] < cr(A)NY/3.

Proof. The assumption on ay shows the existence of a point & € [—m, 7] such
that ma(§) = 1, ¥Y (&) = 0 and mY (&) = 0. Also, at &, m) (&) = 0, mx
having a local maximum.

Let us first fix a positive function @; supported on (—1,1) such that @1 > 1
on (—1/2,1/2). For all positive N, we set the function ¢y as:

G (&) = N3G (NY3(€ - &)).

Observe that @y is supported on the interval (§y — N~1/3, &y + N—1/3). For any
p > 1 classical properties of the Fourier transform guarantee that

lon Loy = N71/3.

The mean value theorem allows us to bound from below the magnitude of the
oscillatory integral occurring in the definition of T)(n)en as follows:
[Tx(n)en(z)| = (1 —2N"VP sup g (€) +x> mX (§)@n (§)dé.

€ supp PN -7

Using that the second derivative of 1) vanishes at £ = £y we obtain the existence
of a positive constant ¢y such that

[N (€) + x| < [n} (&) + 2| + nealé = &I, € ~ &o.
In particular for all £ € [¢y — N™/3 & + N~1/3] the following holds

[ (€ + )| < | (€0) + o] + meaN 22,



Thus there exists a positive constant ¢1 () such that for all x and n satisfying
|z 4+ nh (€0)| < ct(VMN3 and n < ¢y (M) N:

1
aNTVEsup g (€) +al < 5
€ supp &N
and
1 ™ R N1/3 Eo+NT3)2
T(m)en(@)] > = [ miE)@n(€)de > / mi (€)de
2 —r 2 50—1\/*1/3/2

It remains to prove that for IV large enough the last term is uniformly bounded
by below.
In the case my = 1 inequality (22) holds with ¢(A) = 1/4. Otherwise, we

consider the smallest k > 3 such that mg\k) (&) # 0. Thus for £ near &
k

m{ (&)
2

In view of this property, choosing N sufficiently large we get

Eo+NT13/2 Lo+ NT3)2 m®) "
e mi€)de = NV | (1 LSCINS @V@) e

0—N-1/3/2 Co—N—1/3/2

N~/3/2 *) gk
S A (nmk (50)2> ¢

ma(§) =1+ € — &ol*

N-1/3,1/k

:2Nl/3n—l/k/ S
2

0

exp () (fo)£k> & (@)

For all n < ¢ (A)N we have that N'/3n=1/k > C(\, k)N'/3=1/k > C(\, k). Thus
the the right hand term of (23)) is uniformly bounded by below by a positive
constant ¢(\), which proves (22) and finishes the proof of this Lemma. O

In the following we apply the above Lemma to prove Theorem 4.1l

Proof. of Theorem 4.1 We will prove (19), the other estimate (20)) following by
the same arguments, just using that (22)) holds for all n < ¢;(A)N.
In view of (22), we will show that for N large enough

T N q
|| )\( )(pHL (R) > CQ()\)Nl/qul/SqU (24)
e lelLom

holds for some positive constant ca(A). Then by (2I) we obtain (19) which
finishes the proof.

First, let us choose N1 ~ N such that N < ¢1(A\)Ny with ¢;(\) given by
Lemma 4.1l Choosing ¢y, as in Lemma 4.1/ we have that ||, || r) = NY/3%
and

ITA(N)en, lLaw) = {2 |z — Ny (&o)| < 01(/\)N1/3}|1/q0(>\) > CQ(A)N1/3q~

10



Finally we get that

ITN(N)on, || Lar) > ¢y (A NV/30=1/300
o, [ Lao

which proves (24) and finishes the proof. O

5 Local smoothing effect

In this section we analyze the local smoothing effect that we discussed in the
Introduction. In the following Theorem we obtain necessary and sufficient con-
ditions such that this property holds uniformly with respect to the mesh size.

Theorem 5.1. There is a positive s and a constant C(s, \) such that (11) holds
for all p € I12(hZ) and h > 0 if and only if the symbol ay satisfies

fo#0,Y3(&)=0 = my(&H) <L (25)
Moreover if (25) holds then s = 1/2 and

sup kY ((—An)4Sx(n)9); 2| < CVRY_ Lol (26)

J€L | ez jez
holds for all p € I>(hZ) and all h.

Remark 5.1. Once (25) holds, a similar result can be stated for the inhomo-
geneous equation (9):

k Z Z (—A)Y2Af)(n,j) < k Z [ f(n ||l2(hZ)'

nk<T |j|h<R nk<T

Proof. We divide the proof in two steps. In the first one we prove that condition
(25) implies estimate (26). Secondly we prove that condition (25) is necessary.
Step I. First by a scaling argument we obtain that

P (CPVEEN I W (CV VRN
Ry les? N P
JEZ JEZ

A (=AY Sx(n)e);

n>0
> |esl? ’
JEZ

which reduces the proof to the case h = 1.
Now we prove that under condition (25) the following estimate

sup > [((=A1)Y4Sx(n));1> < (N> lpsI (27)

JEL 0 jez

11



holds for all ¢ € [?(Z) and for some positive constant ¢()\). The definition of
(—A1) 485 (n)g:

(a0 4Sym)p); = [ [2sin(e/2)] 26 Ompe)p(e e,
and Plancherel’s identity applied to the right hand term of (27)
Sleil =5 [ Iper,
JEZ
show that (27)) is equivalent with the following estimate:

S 2 )\ T |@(§)|2 .
sup 2 ISl < o ™ [ e 2

The consistency of the scheme guarantees that ), has at least one root in
[-7, 7], namely at £ = 0. We consider @ supported on [0, 7], the other case
being similar. Let I C [0, 7] be the interval where ¢/} has the unique root £ = 0.
We will prove that

20)P
su [(Sa( A
wup 2 IS < e | 1y

Taking into account that ¢} (§) ~ —2A¢ as & ~ 0, we can replace [¢}(§)| by
|sin(£/2)] in (29) and thus (28).
Observing that 1 is one to one on I, we will prove that V™ defined by

dg + c(X) . 2(&)1*ds. (29)

an:/(sijgeinwx(ﬁ)m (©P(&)dE, j € Z,n >0,
I

satisfies

o SV < |l;£()|)|d£ (30)

On [¢ = [0, 7]\ we will show that W* defined by
Wy = [ et O e)pene
satisfies

DL MECTS (1)

n>0

We first prove (30). Using that 1) is one to one we can apply a change of
variables and rewrite V" as

Vi :/w ( >einfeijw;mm’i(@b;l(f))@(%’l(5))(%1)/(5)%

12



Each of the above terms is similar to the Fourier coefficients of the function

exp(ijiby NPy 1) (w5 ") except for the weight term m% (5.
This is why we cannot apply Plancherel’s identity, and thus we need to use
the following Lemma:

Lemma 5.1. Let m : [—m, 7] be a continuous function satisfying
0< m(f) <1, f € [_71—77(]'

Then there exists a positive constant c(m) such that the following inequality
holds for any function f € L*(T?!)

D

neZ

2 T
< c(m) / F©)[2de, (32)

-7

/_ " ememinl (6) £(6)de

where TV is the one-dimensional torus.

We postpone its proof. Applying Lemmal5.1/to f = exp(ijw;1)$(¢;1)(w;1)’
and to the multiplier m)y we obtain

S [

n>0 ¥al

—¢c ~ —1 2
— () /w B @)

., 1B )Py ) (©)7de

3
A (03 (€)1

|2

=N | e

dg,

where ¢()) is independent of j.

We now proceed to prove (31). If I¢ is empty we have nothing to prove. Let
us consider the case when ¢ is nonempty, i.e. it contains at least one root &y of
Y. Without loss of generality we can assume that there is only one root. By
our assumption (25), at the point £, we have that my(§p) < 1. Let J C I¢ an
interval containing &, such that sup; my = M, < 1. Let us define J¢ = I°\J.
On J¢, 9} has no zeros and thus a similar argument as in the proof of (30)
shows that

2 ~ 2
<o [ 28 de < [ 1ae P

supz / eijgei7w>\(€)m’1\1(€)$(£)d§ W}/ (§)|
c e [Py

€L 154

It remains to prove that

Supz /Ie115e1"¢*(5)m§(£)¢(5)d5 S/J|g5(§)|2d§

JEL n>0

Applying Cauchy’s inequality to each term of the left hand side, we obtain that

>

n>0

2
<3 M / BO)Pde < e(N) / B(O)de

n>0

[ etem©my©)(e)de
J
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which finishes the proof of inequality (26]).

Step II. In the following we prove that if (25) fails then there is no constant
(A, s), independent of h, such that (11) holds for all ¢ € [?(hZ). As in the case
of lack of the integrability property the key point is the following Lemma:

Lemma 5.2. Let be & # 0 such that ¥'(§) = 0 and my(&) = 1. Then there
exist two constants c(\) and c1(X) such that for N sufficiently large, there exists
o such that |[pn|2(z) ~ NY2 gnd

(=A1)*/25x(n)p);] = ¢(A)
for all || < c1(A)N and n < ¢ (A\)N2.

We postpone the proof of this Lemma. Using the definition of (—A},)*/? and
that k/h% = \, we get

k3 b3 (AR 28 m)e)P AnP72 50 30 [((—A1)*/28x(n)e); 2

nk<1 |jln<1 B n<1/AR2 |§|<1/h
h Y lwil? > |wil?
JEZ JEZ

Let us choose N =1/h and ¢y as in Lemma [5.2l Then we obtain that
B3 b 30 [(DiSa(n)e);l®

nk<1 |jjp<1 - c(MN*2N? (N
h > le;l? - N ’
JEL
which finishes the proof. O

We now prove the two Lemmas that we used before.

Proof. of Lemma [5.1. Let us define the linear operator T'f as:
Th= [ emémMl© @)z, ne 2.

Inequality (32) means that T maps continuously L?(T) to [?(Z) or equivalently,
its adjoint T maps continuously [2(Z) to L?(T'). Explicit calculations show
that T has the following representation:

(T*9)(&) = D e ™ m"(€)gn, € € [-m,7].

neZ

It remains to prove that T* is well-defined and maps continuously L?(T) to
12(Z). The key point is the following pointwise estimate on 7*:

Z ein{,r\n|gn

neZ

[(T"9)(©)] < sup

0<r<1

, V&€ [-m,m]. (33)

14



For any 0 < r < 1, classical results on maximal functions (cf. Ref. [14], p. 76)

show that
Z einﬁr\nlgn
nez

< M, (6), (34)

where g¥(£) =,z € gn and My is the maximal function of f, defined by

1 t+s

— f(r)dr

M (t) =
F(t) = sup 2 ),

0<s<m

Using that the maximal function Mgv (cf. Ref. [14], p. 88) satisfies

[Mgv L2y < llg¥ lz2cmy = lgllz@),
we obtain in view of (33) and (34) that 7™ makes sense and maps continuously
L3(T) to I*(Z).
O

Proof. of Lemma 5.2l Let us choose a function @; supported in (—1,1) with
@1 >1on (—1/2,1/2) and set for all N > 1

Pn(&) = N1 (N(€ —&o))- (35)
Thus @y is supported on (§— N1, &+N"1) and |lon|i2z) = NV/2. Applying
mean value theorem and using that |sin(£/2)| ~ |£/2| on [—, 7], we obtain that
(=A1) 725\ (n)en);| = (1 —2N"' sup  [ngh(€) +J'|>/ [EIPmX () PN (§)dE.
§Esupp PN -7
Using that 9} vanishes at £ = &, we get
YA (€) + 3] < 3] + neal€ = &l, € ~ o

Then there exists a positive constant ¢;(A) such that for all j and n satisfying
l7] < c1(M\)N and n < ¢;(A\)N? the following holds:

_ ) 1
INTU sup [ng(§) +] < ;

€ supp &N
and
. L . Gl'N [oNTR
(a0 25swex)s| 2 5 [ lemien©de > 21T m(€)de.
- Eo—N-1/2

The same arguments as in the proof of Lemma 4.1/ show that the right hand
term in the above estimate remains uniformly bounded by below by a positive
constant ¢(\) for N large enough. O
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6 Two examples

Let us exemplify our previous work by considering two numerical schemes: the
backward Euler scheme:
urtt —yr Ut -2urtt 4 Uttt
- J Jj+1 J j=1 _ .
7 : + 02 =0,n>0,75€2Z, (36)
and the Crank-Nicolson scheme:

“+1 “+1 +1 —+1
Ut Uy UpH -2t g U, - 20 Uy

=0,n>0,j€Z
T 2h? * oh? m=he
(37)
For the first scheme the symbol a) is given by:
1 exp(—i arctan(4\ sin? %))
ax(§) = 1 tins2€ 172
AT (14160t §)

Explicit calculations show that the symbol ay satisfies (13) and (25)). In this
case, even 1 vanishes its second derivatives at some points different from & = 0,
the dissipative character of m) at these points allows us to recover the uniform
decay property (14). More precisely the symbol a) satisfies

ax(§) ~ 1 —irg? = X*¢* + 0(€°), £ ~ 0,
which shows that the scheme is dissipative of order two:

2
ax(@)] ~1 - 25

In the case of the Crank-Nicolson scheme the symbol a) is given by

1—2ixsin® § 3
a =— """ 2 —exp| —2iarctan 2\ sin? )) .
MO = i ¢ ( ( 2

+ 0, €~0.

Explicit calculations show that the derivative of the function %) is given by
—2Asiné

Iy
¥ale) 1+ 4X2sin? %

and the scheme fails to have property (25) at the point £ = 7 . Also the second
derivative of ¢y satisfies ¥} (0)y¥(7/2) < 0. This suffices to show that the
scheme does not satisfy (13).

These pathologies are similar to the ones of the semidiscrete conservative
scheme analyzed in Ref. [10] and additional techniques have to be introduced
to cancel these spurious effects: filtering[9], numerical viscosity[10] or a two-
grid preconditioner[11]. We point out that any filtration of initial data which
excludes the end points £ = +7 will guarantee the local smoothing property
(11). Regarding the I*(hZ)—1°°(hZ) decay, there exist two points +&y € [—, 7]
where the second derivative of 1), vanishes. Any filtration of initial data which
excludes these two points will recover the right decay property of solutions.

16



7 Strichartz like estimates

In this section we consider a numerical scheme which obeys the condition (13).
For such a scheme we prove time-space estimates similar to the Strichartz es-
timates in the continuous case. These estimates are important in the further
analysis of the approximations of nonlinear problems. We recall that in the
continuous case the Strichartz estimates play a crucial role in proving the well-
posedness of the nonlinear Schrédinger equations for a class of nonlinearities
that cannot be treated by energy arguments.

Theorem 7.1. Let Ay be such that its symbol ay satisfies (13) and (q,7) and
(q,7) be two admissible pairs. Then
i) There ezists a positive constant C(\,r) such that

19 C)ellia e, i nzyy < CA )@z (nz) (38)

holds for all p € I2(hZ), uniformly on h > 0.
it) There exists a positive constant C'(\,r) such that

Z Sx(n)*f(n) < C(A 7“)||f||zq’(kN, 1"’ (hZ)) (39)

nz0 12(hZ)

holds for all f € 19 (kN,1" (hZ)), uniformly on h > 0.
i11) There exists a positive constant C(\,r,T) such that

[AS s, v nzyy < CN a7 @O lliar on, 17 (nz) (40)

holds for all f € Zq/(kN, l’:/(hZ)), uniformly on h > 0.

Remark 7.1. In the particular case when for some positive integer N, f(n)
vanishes identically for all n > N then (39) implies that the following also
holds:

1/q
q
1’ (hZ)] (41)

with a constant C(A, q,r) independent on N and h. This estimate will be useful
in the proof of (40).

N
3" Sa(n)* f(n)
n=0

N
< C(\r) [Z k|l f(n)
n=0

12(hZ)

Proof. A scaling argument as in the previous proofs shows that it is sufficient
to consider the case h = 1.

By duality the proof of (38) is reduced to the one of (39)). Also, inequality
(39) turns out to be equivalent to the bilinear estimate

<Z Sx(n)* f(n), Z S,\(m)*g(m)> < C()‘vT)”f”lq/(N,l"'(Z))HgHZQ’(N, (7))

n>0 m>0

17



where (-, -) is the [?(Z)-inner product. In fact we prove the stronger inequality:

Yo D 1S m) f(n), Sa(m) g(m) | < OO o s, 00y 19l v, 17 2y-

n>0m>0

In view of estimate (16) we have

[ (Sx(n)"f(n), Sx(m)*g(m)) |

| (f(n), Sx(n)Sx(m)"g(m)) |
1 ()i 2y 1S3 () Sx ()" g(m)]|1r (2

gl z
COMNIE et @7 1~ miore

IN

IA

At this point we make use of the following Lemma[19], which is a discrete
version of the well-known Hardy-Litlewood-Sobolev inequality (cf. Ref. [22],
p- 119):

Lemma 7.1. Let be 0 < o < 1 and k a sequence such that

|k(n) Vn e Z.

| < ——r,
1+ |n|

Then the operator T defined by T (f) = f*k maps continuously IP(Z) into 19(Z)
for any p and q satisfying

1 1
l<p<g<ooand - =-—1+a.
q P

In view of this Lemma and applying Hélder’s inequality in variable n we
obtain that

Hg(m)Hzr’(z)
@)y In — m|2/a

>N USAm)* f(n), Sx(m) g(m)) < C(Ar) > > 1f(n)

n>0m>0 n>0m>0

lg(m) |1 2
< CONIF i g o || S5 2

1+ |n —m|?/4
m=0 12(2)

< C()‘aT)Hleq’(N, ' (Z))HQHM(N,V’ (Z))

and then (39).

It remains to prove inequality (40). We consider the cases (¢,7) = (00, 2),
(g,7) = (00,2) and (q,7) = (g, r), since the other cases follow by interpolation.
By duality

IAY flliaq, 1rzy) = sup {({A"f.9)),

19117 177 29y <1

where ((-,-)) is the inner product on I*(N,[?(Z)).

18



Let us choose a function g in 19 (N, 1" (Z)). The definition of A gives us

((A'f.g)) = Z<Z&m Nf <O

n>0
Z<f(j)7ZSA(n—j)*g(n)>- (42)
J=0 n=j

In the case (¢, 7) = (00,2), Cauchy’s inequality applied to (42) shows that

(A f,9)) < DDl || D San— 1) g(n)

>0 n>j @)
<l @y sup || > Sa(m)*g(m + )
320 |lm>0 )
12(z)

Applying estimate (39) to the function g(- + j) we obtain the desired inequality
for (4, 7) = (00, 2).
In view of (42), we also obtain that

({Af.g)) < Z Sx(n—3)f(5) gl v,i2(z))-
0=j=n 10 (N, 12(Z)

We write

> San— i) f( st,j “fG) =D S fn— )

7=0 7=0

and apply estimate (41)) to the function f(n — -).
It remains to analyze the case (¢q,r) = (G,7). Observe that Al satisfies for
any n > 0 the rough estimate

HALN) )l < S 1Sa = DFDlir@y < CAr) S 175 o

— 2/
7=0 0<j<n 1 + |TL ]| 4

The same arguments as in the proof of (39) based on Lemma (7.1, show that

||A1f||lq(N,l7'(Z)) < C()\»T)”szq/(N, 7' (z))>
which finishes the proof of the last case and that of Theorem [7.1. O

8 Application to a nonlinear problem

In this section we consider a numerical scheme for the semilinear NSE equation
in R with repulsive power law nonlinearity :

(43)

i+ Uy = |ulPu, x€R,E>0,
u(0,z) = ), z€R,
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p < 4 and initial data in L?(R). The case of nonlinearity f(u) = —|u|Pu could
be treated in the same manner. In fact, the key point in the global existence
of the solutions is that the L2-scalar product (f(u),u) is a real number. All
the results presented here extend to more general nonlinearities[3] f(u). The
critical case p = 4 could be also treated by imposing smallness on the initial
data.

With the notation f(z) = |z[Pz the scheme we propose is given by

UnJrl _ynr Uv_z+1 _ 2U7_1+1 + UnJrl

. +1 n .
1 J ]f J =+ J ]1],2 J :f(Uj'H),nZO,]GZ, (44)
U=y, j€L

J J b

¢ € [?(hZ) being an approximation of the initial datum ¢ and h and k such
that k/h? remains constant. This implies the existence of two operators Aj
and A » such that

U™ = (A7) Ao U™ + kAL F(U™), n > 0.

Using the notation Sy (n)¢ for the solution at the step n of the backward Euler
scheme for the linear Schrédinger equation, the solution of the above equation
is also solution of the following one:

U" = Sx(n)p+kY_ Sa(n— A5 f(T7).

=1

Concerning the existence of solutions for problem (&) the main result is given
by the following Theorem.

Theorem 8.1. Let p € [0,4) and U® € 1?(hZ). Then there is a unique solution
of equation (44]) which satisfies:

U™ i2nzy < NU°[li2(nz) (45)

for allm > 0.
Moreover, for all T > 0 and (q,7) an admissible pair there is a constant
C(T,r) such that

1Ullia k<, v (hzyy < C(T, U121z (46)
uniformly on h.

Proof. The proof consists in applying the Banach fix point Theorem in a ball of
19(nk < T, I"(hZ)) NL>®(nk < T, [>(hZ)) and in making use of the Strichartz-
like estimates proved in Theorem [7.1. Observe that the nonlinear term f(U)
is composed by the operator (A; »)~'. In order to apply the Banach fix point
Theorem we have to prove that the operator (4; y)~! is continuous from I*(hZ)
to I*(hZ) for any s € [1,2], with a norm independent of h > 0. Observe that by
scaling it is sufficient to prove that

I(AL) 7 f

12zy < cN|If

15(2)
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for all f € 1%(Z). Using the kernel representation of (A3 x)~'f in convolution
form

(A1) f = Kxx f,
where K is given by

~ 1

K =——— ¢€[-m,7),

it is sufficient to show that || Kx|[;1(z) < ¢(A). Using Carlson-Beurling inequality[2]
we get

~ ~ 1/2
1A @ < (IR rmp 1N a2 mm) ) = €.

This allows us to prove the local existence of the solution of Eq. (44) and
estimate (46).

To guarantee the global existence of the solution we prove a priori estimates
on the [>-norm of the solutions. Multiplying equation (44) by U?H we get for
alln >0 and j € Z:

—n+1

FAUT - 2Ur UMD = kf (U

arn+12 B it
iU = iU U i

J

Summing up on j € Z and taking the imaginary part we obtain
n+1(2 n+lymn

DT <Y ooy,

JEZ JEZ

which guarantees that the [2-norm of U™ is bounded above by the I2-norm of
the initial datum. This guarantees the [2-stability of the scheme and the global
existence of a solution (U™),>0.

O

9 Convergence of the method

In what follows we introduce the interpolator I"U, piecewise linear in time and
space.

Theorem 9.1. Let p < 4 and k and h be such that the Courant number k/h?
is a kept constant. Then the interpolator I"U satisfies

[T o= (10,00), 22 )y < [(T"U)(0)]| p2(R)-

and for all T > 0 and (q,r) an admissible pair there is a positive constant C(T)
such that

HIhU”L‘I([QT], Lr®R)) < O(T)”(IhU)(O)Hm(R)-

Moreover
I"U 2w in L®([0,00), L*(R)), (47)
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"U—u in L2 (]0,00),L"(R)), (48)
and

I"U—=u a.e. on [0,00) xR, (49)
where u is the unique weak solution of the NSE.

Proof. The first two estimates are a consequence of (45) and (46)). Thus, obvi-
ously (47) and (48) hold. The limit (49)) is a consequence of the local smoothing
property of the discrete operator S that allows us to prove the uniform bound-
edness of solutions in L} (R, Hy (R)), for some positive constant s, and thus
compactness for the sequence {I"U},~¢. All the above properties show the con-

vergence of I"u towards the unique solution u of the NSE. O

10 A finer analysis of the Crank-Nicolson Scheme

In this section we analyze whether the two-grid pre-conditioner, introduced
by Glowinsky|[8], recovers the dispersive properties (14) of the Crank-Nicolson
scheme. The two-grid method is roughly as follows. Two meshes are considered:
the coarse one of size ph, p > 1 integer, phZ, and the fine one, hZ, of size h > 0.
The method relies basically on solving the finite-difference discretization (37)
on the fine mesh hZ, but only for slow data, interpolated from the coarse grid
phZ. This method with p = 4 has been used successfully in Ref. [11] to prove
uniform dispersive estimates for conservative semidiscrete approximations of the
Schrodinger equation.

A careful Fourier analysis of initial data obtained by the above algorithm,
shows that their discrete Fourier transform is modulated by a multiplier g,
which vanishes quadratically at the points £ = +7r/p, 1 < r < p —1 of the one
dimensional torus T!.

In the case of a semidiscrete approximation of the one dimensional linear
Schrodinger equation the symbol introduced by the scheme is (&) = sin®(£/2)
and vanishes its second derivative at +m/2. As proved in Ref. [11], a two-
algorithm with quotient of the meshes 1/4 cancels the spurious effects at the
points +7/2, and the scheme has uniform dispersive properties in that class of
data.

The condition that the multiplicative factor ¢, vanishes at the roots & # 0
of 9§ is necessary. If not, using that the multiplicative factor g, behaves as a
nonzero constant near the point &£y, we can choose initial data concentrated at
this point as we already did in the proof of (17) and the dispersive properties
fail to be uniform on the mesh size.

In the following we prove that for any Courant number A\ = k/h? € Q, there
is no two-grid pre-conditioner that guarantees the dispersive properties (14) in
this particular class of data. We prove that any two-grid algorithm introduces
a multiplicative factor that vanishes only at points belonging to 27Q. On the
other hand, for any rational Courant number A, the second derivative of the
symbol 1, introduced by the Crank-Nicolson scheme vanishes at some point
that does not belong to the set 27Q, and thus, similar to (17) estimate holds.
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For the local smoothing properties (26), a two-grid pre-conditioner with
p = 2, allows us to recover that property. The essential point is that the first
derivative of 1 vanishes at the points -7 and a two-grid algorithm with the
quotient of the meshes 1/2 will vanish the spurious effects at these points.

The following lemma gives a characterization of data that are obtained by
a two-grid algorithm involving the meshes pZ and Z. Its proof uses only the
definition of the discrete Fourier transform and for that we omit it.

Lemma 10.1. Let p > 2 and {V (pk)}rez a function defined on the coarse grid
pZ. Then the new function, {U(k)}rez, defined by

(p—J)V(kp) +jV((k+1)p)
p

Ulkp +j) = ke, j=0,....,p—1,

satisfies
~ etlr—1) £V

U = <Z el’%) § € [-m 7).
Remark 10.1. We point out that the multiplicative factor Zk 0 L et*€ vanishes
only at the points & = 2kn/p with k=1,...,p— 1.

The symbol ay of Crank-Nicolson’s scheme is given by ay(§) = exp (ivx(§))
where

Y (€) = 2arctan <2)\ sin? §>

The first two derivatives of 1 are given by

Uh(©) = Hji“fg g€ -1l
and ) )
ve) - 2 (cos¢ (_11(;2:23 2))2(2 +cosé)) telomal
We prove that for any A € Q, the function
ga(€) = cos& — N2(1 — cos €)*(2 + cos€) (50)

has at least one root that does not belong to 27Q. The existence of a root easily
follows: gx(0)ga(7/2) < 0.

Let us suppose the existence of A € Q such that the function gy has a root
of the form 27m/n with m,n € Z, (m,n) = 1. We write cos¢ = (€% + ¢7%)/2
and set u = A\?/4 in equation (50). This gives us that ¢ satisfies the following
equation

e 4 e — w(2 — e i — ei§)2(4 + e 4 e_’f) =0.
Then the polynomial P,(x), defined by

P,(z) = 2* + 2% — p(2? — 22 + 1) (2 + 4z + 1)
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admits a root of the form z = exp(2imm/n), with (m,n) = 1. This implies
that P, (x) is divisible by some cyclotomic polynomials associated with the root
2mm/n. Using the fact that the degree of the cyclotomic polynomial of order
n, Qn, is p(n) the Euler p-function, we obtain that n satisfies p(n) < 6. The
possible values of n belong to the set {1,2,3,5,6,7,9,12}. In order to obtain
a contradiction it remains to prove that none of the following polynomials @,
divides P,:

lem_la Q2:$+17

Qs=2>+2+1, Qs=z*+23+22+zx+1,
Qs=2>—2z+1, Qr=a+22+2*+23+22+2+1,"
Q9=I6+1'3+1, Q12=I4—$2—|—1.

where @, is the cyclotomic polynomial of order n. Explicit calculations show
that
P, =2 mod Q:, P, = 2+ 2°u mod Qs

and
P,=-1- 27/12 mod @3, FP,=-1+ 5u2 mod Qg

which exclude the cases @1, @2, Q3,Qs. In the case of Q5 we get
P,=—2*(25p> + 1) + ... mod Qs
which proves that Q5 fP,. Similar calculations show that
P, = z*(9u* +1) + ... mod Q, P, = —154%2z%  mod Q1.

It remains to study the case of Q7. Using that both polynomials have the same
degree, P, equals )7 multiplied by a constant. Using the fact that the coefficient
of z in P, vanishes, we also exclude this case.
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